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Appendix A: Model description and parameter list 3 

FORMIND is an individual-based, spatially explicit and process-based model designed to simulate the 4 
dynamics of species-rich forests (Fischer et al., 2016). The model simulates the processes of establishment, 5 
growth, competition and mortality of trees on a regular grid of patches with the dimensions of a typical 6 
treefall gap (20 m × 20 m). Within each patch, the trees do not have explicit spatial positions as with the 7 
gap-model concept (Shugart, 1984). By combining many patches, large forest areas up to hundreds of 8 
hectares can be simulated. 9 

In each simulated time step (1 year), the following main processes take place: 1) Establishment: 10 
Seeds are distributed over the forest area. If light conditions are suitable, new saplings can establish and 11 
compete for light and space in the patch. 2) Competition: The main driving factor of the model is light. 12 
Radiation intensity within each patch decreases from the top to the ground according to a light extinction 13 
function. The light extinction depends on the combined vertical leaf area profile of all trees in the patch. 14 
The productivity of each tree is determined by the available light in its height layer. 3) The growth of each 15 
tree depends on its gross primary productivity (GPP), respiration and species-specific physiological and 16 
allometric parameters. 4) Mortality: Trees die stochastically according to a species-specific mortality rate. 17 
If a tree falls it can damage neighboring trees in adjacent patches.  18 

Besides these core processes, FORMIND offers the following feature: Carbon Cycle: Gross 19 
primary production, respiration and net primary production are calculated for each individual tree. Based 20 
on this, the carbon balance for a whole forest can be derived, including soil respiration, deadwood 21 
respiration and net ecosystem productivity. 22 

Tree species with similar ecological traits are aggregated into plant functional types (PFT) to 23 
facilitate parameterization for diverse forests and reduce computation time. The PFTs may represent 24 
different successional types (from pioneers to climax species) and size classes (from understory to emergent 25 
species). 26 

FORMIND has been applied to various forest sites in Brazil, Ecuador, French Guyana, Germany, 27 
Madagascar, Malaysia, Mexico, Panama, Tanzania and Venezuela (Köhler & Huth, 1998; Kammesheidt et 28 
al., 2001; Huth et al., 2004; Dislich et al., 2009; Groeneveld et al., 2009; Dislich & Huth, 2012; Bohn et al., 29 
2014; Kazmierczak et al., 2014; Pütz et al., 2014; Dantas de Paula et al., 2015; Fischer et al., 2015). The 30 
detailed model description was published with Fischer et al. (2016) and can also be found on 31 
www.formind.org. Parameters for the study site La Selva, Costa Rica are listed in Tab. A.1 and A.2. 32 
 33 
 Table A.1: General parameters and constants 34 

 Parameter Unit Value Reference 

ge
ne

ra
l  

tend yr 1000 technical parameter 

ty yr 1 technical parameter 

Aarea ha 9 technical parameter 

Apatch m2 400 technical parameter 

MaxGrp  6 technical parameter 
Δh m 0.5 technical parameter 

ca
rb

on
 

cy
cl

e AET mm yr-1 1350 - 

tSslow -> A yr-1 1/750 14 

tSfast -> A yr-1 1/15 14 



Table A.2: PFT-specific parameters 35 
  Parameter Unit Plant functional type (PFT) Reference 
  1 2 3 4 5 6 

ge
om

et
ry

 

Hmax m 50 45 30 18 15 13 field data 

h0  43.4 15,16 

h1  0.6 15,16 

cl0  0.4 15 

cd0  18.16 15,16 

cd1  0.68 15,16 

ρ tODM/m³ 0.55 0.48 0.51 0.44 0.69 0.44 field data 
σ  0.7 15 

f0  0.49 3 

f1  -0.1 3 

l0  2 15 

l1   0 15 

re
cr

ui
tm

en
t 

Nseed ha-1 yr-1 17 18 350 25 29 421 Calibrated 
Iseed  0.02 0.07 0.47 0.04 0.25 0.02 10 

Dmin m 0.05 10 

m
or

ta
lit

y MB yr-1 0.06 0.06 0.04 0.07 0.08 0.01 field data + calibrated 

ffall   0.4 15,17 

ph
ot

os
yn

th
es

is  

I0 μmolphoton m-2 s-1 700 - 
k  0.7 5 

lday h  12 - 

ϕact d 365 - 

pmax μmolCO2 μmolphoton-1 6.3 11.3 27.7 6.3 11.3 6.3 calibrated 

α μmolCO2 m-2 s-1 0.11 0.14 0.02 0.19 0.08 0.16 calibrated 

  function  polynom (y = g0 + g1 d + g2 d^2 + g3 d^3)  

gr
ow

th
 

g0  0.0093 0.0148 0.018 0.024 -0.0339 -0.0056 field data 

g1  0.0167 0.0547 0.0482 -0.2407 1.0413 0.1171 field data 

g2  -0.0403 -0.1087 -0.216 1.2485 -7.1106 0.2962 field data 

g3   0.0174 0.0433 0.1582 -2.4415 14.161 -4.703 field data 
 36 

 37 

 38 

 39 



Table A-3 Species Grouping into FORMIND PFTs   40 

FORMIND 
PFT CARBONO Code Genus Species 

1 DENDARBO Dendropanax arboreus 
1 GUARGENT Guarea gentryi 
1 DIPTPANA Dipteryx panamensis 
1 PROTPANA Protium panamense 
1 DUSSMACR Dussia macroprophyllata 
1 VITECOOP Vitex cooperi 
1 PROTPITT Protium pittieri 
1 MINQGUIA Minquartia guianensis 
1 WARSCOCC Warszewiczia coccinea 
1 ILEXSKUT Ilex skutchii 
1 RAUVPURP Rauvolfia purpurascens 
1 CARANICA Carapa nicaraguensis 
1 PTERSP.A Pterocarpus sp. A 
1 QUARBRAC Quararibea bracteolosa 
1 OTOBNOVO Otoba novogranatensis 
1 GUARHOFF Guarea hoffmanniana 
1 ABARADEN Abarema adenophora 
1 MACRCOST Macrolobium costaricense 
1 ANDIINER Andira inermis 
1 TABEARBO Tabernaemontana arborea 
1 POUT1062 Pouteria  
1 CLETCOST Clethra costaricensis 
1 POUTCALI Pouteria calistophylla 
1 DUSSSP Dussia  
1 OCOTFLOR Ocotea floribunda 
1 HIEROBLO Hieronyma oblonga 
1 GARCINTE Garcinia intermedia 
1 THEOSIMI Theobroma simiarum 
1 ESCHCOLL Eschweilera collinsii 
1 HIERALCH Hieronyma alchorneoides 
1 PACHAQUA Pachira aquatica 
1 ORMOVELU Ormosia velutina 
1 DUSSSPB Dussia sp. B 
1 MELIOCCI Meliosma occidentalis 
1 SWARNICA Swartzia nicaraguensis 



1 SLOAMEDU Sloanea medusula 
1 INGADENS Inga densiflora 
1 COUEPOLY Couepia polyandra 
1 STERRECO Sterculia recordiana 
1 AMPEMACR Ampelocera macrocarpa 
1 POUT1026 Pouteria   
2 PENTMACR Pentaclethra macroloba 
2 TAPIGUIA Tapirira guianensis 
2 GOETMEIA Goethalsia meiantha 
2 VIROKOSC Virola koschnyi 
2 VIROSEBI Virola sebifera 
2 LAETPROC Laetia procera 
2 APEIMEMB Apeiba membranacea 
2 HERNDIDY Hernandia didymantha 
2 POURBICO Pourouma bicolor 
2 BALIELEG Balizia elegans 
2 LECYAMPL Lecythis ampla 
2 CASEARBO Casearia arborea 
2 STRYMICR Stryphnodendron microstachyum 
2 LACMPANA Lacmellea panamensis 
2 BYRSARTH Byrsonima arthropoda 
2 CORDBICO Cordia bicolor 
2 INGALEIO Inga leiocalycina 
2 GUATAERU Guatteria aeruginosa 
2 OCOTHART Ocotea hartshorniana 
2 PROTGLAB Protium glabrum 
2 XYLOSERI Xylopia sericophylla 
2 CALOBRAS Calophyllum brasiliense 
2 HYMEMESO Hymenolobium mesoamericanum 
2 CESPSPAT Cespedesia spathulata 
2 VOUAANOM Vouarana anomala 
2 TETRPANA Tetragastris panamensis 
2 POURMINO Pourouma minor 
2 ORMOOCHR Ormosia  
2 INGASERT Inga sertulifera 
2 ALCHFLOR Alchorneopsis floribunda 
2 CONCPLEI Conceveiba pleiostemona 
2 HAMPAPPE Hampea appendiculata 
2 BAUHSP Bauhinia  
2 PSEUSPUR Pseudolmedia spuria 



2 POUT1019 Pouteria   
3 INGAPEZI Inga pezizifera 
3 INGAALBA Inga alba 
3 SIMAAMAR Simarouba amara 
3 INGATHIB Inga thibaudiana 
3 VOCHFERR Vochysia ferruginea 
3 JACACOPA Jacaranda copaia 
3 SPACCORR Spachea correae 
3 VISMMACR Vismia macrophylla 
4 WELFREGI Welfia regia 
4 IRIADELT Iriartea deltoidea 
4 GUARBULL Guarea bullata 
4 PROTCONF Protium confusum 
4 NAUCNAGA Naucleopsis naga 
4 BROSLACT Brosimum lactescens 
4 TRICSEPT Trichilia septentrionalis 
4 CASSELLI Cassipourea elliptica 
4 PINZCORI Pinzona coriacea 
4 GUARRHOP Guarea rhopalocarpa 
4 POUTTORT Pouteria torta 
4 CUPAPSEU Cupania pseudostipularis 
4 OCOTLAET Ocotea laetevirens 
4 CASECOMM Casearia commersoniana 
4 LICASARA Licaria sarapiquensis 
4 SIPACUSP Siparuna cuspidata 
4 ARDIFIMB Ardisia fimbrillifera 
4 BOROPATI Borojoa patinoi 
4 UNONPITT Unonopsis pittieri 
4 CINNCHAV Cinnamomum chavarrianum 
4 LICAARAC Licania arachicarpa 
4 HEISCONC Heisteria concinna 
4 RICHDRES Richeria dressleri 
4 CHRYVENE Chrysophyllum venezuelanense 
4 DALB1087 Dalbergia  
4 INGAACUM Inga acuminata 
4 INGAPAVO   
4 PARAANTI   
4 CORDDWYE Cordia dwyeri 
4 RHODKUNT Rhodostemonodaphne kunthiana 
4 OCOTMACR Ocotea macropoda 



4 BOROPANA Borojoa panamensis 
4 COLUSPIN Colubrina spinosa 
4 LACUPANA Lacunaria panamensis 
4 NEEAELEG Neea elegans 
4 THEOMAMM Theobroma mammosum 
4 OCOTCERN Ocotea cernua 
4 OCOTINSU Ocotea insularis 
4 PRADLIND   
4 LICAMISA Licaria misantlae 
4 POUTRETI Pouteria reticulata 
4 SAPRVIRI Sapranthus viridiflorus 
4 CECROBTU Cecropia obtusifolia 
4 FARAGLAN Faramea glandulosa 
4 POUT1023 Pouteria   
5 MICOMULT Miconia multispicata 
5 INGAUMBE Inga umbellifera 
5 SACOTRIC Sacoglottis trichogyna 
5 SLOAGUIA Sloanea guianensis 
5 MICOPUNC Miconia punctata 
5 CHRYCOLO Chrysophyllum colombianum 
6 SOCREXOR Socratea exorrhiza 
6 CASTELAS Castilla elastica 
6 EUTEPREC Euterpe precatoria 
6 PRESPITT Preslianthus pittieri 
6 RINODEFL Rinorea deflexiflora 
6 ANAXCRAS Anaxagorea crassipetala 
6 GUATAMPL Guatteria amplifolia 
6 LIANSP   
6 COUSHOND Coussarea hondensis 
6 DYSTPANI Dystovomita paniculata 
6 HIRTLEMS Hirtella lemsii 
6 PSYCPANA Psychotria panamensis 
6 EUGESELV Eugenia selvana 
6 ALCHLATI Alchornea latifolia 
6 MICOSTEV Miconia stevensiana 
6 PEREHISP Perebea hispidula 
6 POSOPANA Posoqueria panamensis 
6 ZYGIGIGA Zygia gigantifoliola 
6 ANNOSUBN Annona subnubila 
6 INGASP Inga  



6 SWAROCHN Swartzia ochnacea 
6 DRYPSTAN Drypetes standleyi 
6 EUGESP Eugenia  
6 GUARPILO Guarea pilosa 
6 HANDCHRY Handroanthus chrysanthus 
6 MELIDONN Meliosma donnellsmithii 
6 QUIIMACR Quiina macrophylla 
6 ARDISTAN Ardisia standleyana 
6 EUGE945 Eugenia  
6 EUGEGLAN Eugenia glandulosopunctata 
6 EUGELITH Eugenia lithosperma 
6 JACADOLI Jacaratia dolichaula 
6 LACIAGGR Lacistema aggregatum 
6 MARILAXI Marila laxiflora 
6 NECTCISS Nectandra cissiflora 
6 NEEAAMPL Neea amplifolia 
6 OCOTMOLL Ocotea mollifolia 
6 ORMOINTE Ormosia intermedia 
6 POUT981 Pouteria  
6 POUTDURL Pouteria durlandii 
6 SYMPSTRI Symplocos striata 
6 ASTRALAT Astrocaryum alatum 
6 CASE-99 Casearia  
6 COUS9 Coussarea  
6 EUGEHART Eugenia hartshornii 
6 LOZAPITT Lozania pittieri 
6 MABEOCCI Mabea occidentalis 
6 MAQUGUIA Maquira guianensis 
6 MYRCALIE Myrcia aliena 
6 PALICALI Palicourea calidicola 
6 PARATRIC Parathesis trichogyne 
6 PSYCLUXU Psychotria luxurians 
6 BEILSP.A Beilschmiedia sp. A 
6 POUT1004 Pouteria  
6 SLOAGENI Sloanea geniculata 
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 86 

Appendix B: Model Calibration - Stem Number and Size Distribution 87 

 Parameters that could not be calculated or were not found in the CARBONO dataset were 88 
taken from an in-depth literature review. For example, maximum tree height by species was 89 
estimated from CARBONO data, Clark and Clark (1992, 2001), Dubayah et al. (2010), and King 90 
and Clark (2011). For canopy heights and aboveground biomass comparison, we referred to 91 
Dubayah et al. (2010) and Drake et al. (2002, 2003). Tree allometries, lifespans of some selected 92 
species and height classes were taken from King (1996). In addition, LAI was compared to Tang 93 
et al. (2012), and mean maximum photosynthetic rate (Pmax) by shade tolerance class was 94 
compared to Oberbauer and Strain (1984). These comparisons were made to our calculations and 95 
to other forests in the region (Saatchi et al. 2011b; Chave et al. 2005, 2008, 2014; Clark and Clark 96 
2000, 2001, 2006; Clark et al. 2008, 2015; Kellner et al. 2009; Hurtt et al. 2004). For example, in 97 
the case of the height-diameter relationship, factor form and biomass fraction allocation, the Knapp 98 
et al (2018) parameters from Barro Colorado Island (BCI) were used. BCI is a lowland rainforest 99 
of similar size to La Selva, with similar site demography and similar seasonal distribution of 100 
rainfall. There are numerous studies that compare measurements of flora or fauna from one site to 101 
the other (see: Freitas-Neto et al 2019; Shapiro and Pickering 2000; Bohlman and Pacala 2012; 102 
Beath 1999). 103 

An important variable during model calibration, the resultant comparison of field measured 104 
to simulated stem numbers for all trees ≥10cm DBH are shown in Figure B-1, above. Over the 105 
course of the simulation, stem numbers follow the typical succession patterns described by Shugart 106 
(1984). After the initial high abundance of shade intolerant stems, shade intermediate and shade 107 
tolerant trees out-compete shade intolerant trees and dominate the canopy in an equilibrium state 108 
(Figure B-1, (a)). In comparing field observed stems to simulated stems, the model slightly 109 
underestimates total stem numbers, especially for shade intermediate large trees (PFT2) and shade 110 
tolerant small trees (PFT6) (Figure B-1, (b)). Analyzed by size class (Figure B-1, (c)), the model 111 
slightly overestimates smaller trees (<0.3m DBH), but slightly underestimates larger trees (0.4-112 
0.5m). 113 

 114 

Figure B-1 (a) Time series showing stem numbers from bare ground at year 0 through simulation year 300 for all trees 115 
>10cm DBH. The dots at the far right show the stem numbers by PFT as calculated from the field data set. Dots 116 
correspond to PFT number and color groups are indicative of light requirements (i.e. greens are shade tolerant, blues 117 
shade intermediate, red shade intolerant and total in black). (b) The middle figure shows a one to one comparison of 118 
stem numbers between observed (field data) and simulated (FORMIND) by PFT. (c) The figure at right depicts stem 119 
numbers by diameter size class. Black dots are calculated from field data and the red line shows simulated values. 120 



A further examination of the stem size distributions broken down by PFT is shown in 121 
Figure B-2. As shown by the figure, there is good agreement between each PFT for field measured 122 
and simulation produced trees, with a few exceptions. The simulation of PFT 1 trees slightly 123 
underestimates stem numbers of the smallest trees (0.10m – 0.20m), and the 0.50m-0.60m size 124 
class. For PFT 2 and PFT 3 there is slightly less agreement between simulated and observed stem 125 
numbers particularly for mid-sized trees. The PFT 2 observed stem numbers do not exhibit the 126 
typical J-curve size distribution patterning often observed in uneven-aged forests stands worldwide 127 
(Nyland 1998, Meyer 1952, DeLiocourt 1898). The smallest size classes were underestimated by 128 
the model for PFT 3, PFT 4, and PFT 6; whereas the PFT 1 overestimated the smallest size class 129 
stem numbers. The overall good agreement is indicative of the success of this FORMIND 130 
parameterization. The discrepancies are small (<20 stems per hectare) though could contribute 131 
slightly to error. Our calibration was aided by We performed a analysis by running the model 132 
hundreds of times, systematically changing certain parameters in small increments to achieve the 133 
best simulation of the study site forest (Lehmann and Huth 2015). 134 

 135 

Figure B-2 Stem size distribution by PFT, beginning with PFT1 in the upper left, to PFT6 in the lower right. The 136 
observed (black dots) values were calculated from the field dataset. The red line plots values obtained from the 137 
FORMIND simulation. The label color for the PFTs corresponds to light requirements, such that green is shade 138 
tolerant, blue is shade intermediate and red is shade intolerant.  139 

 With respect to tree height, Figure B-3 indicates that the forest height (m) as simulated by 140 
the FORMIND model compares well with Kellner et al.’s 2009 study. Mean forest height, or the 141 
average of the Lorey’s height for each 10m pixel, as shown in Figure B-3 (at right) has a slightly 142 
larger overall range, but with very similar mid-points (black dots). The forest has the spatial 143 
configuration of a mixed age rainforest stand (B-3, left), with heights ranging from canopy 144 
emergent trees, nearly 50m tall, to the canopy gaps consisting of holes with regeneration less than 145 
10m in height. A frequency analysis of tree height distribution of the simulated study forest 146 
indicates underestimates the frequency of 10m and 20m trees, and overestimates 14m and 16m 147 
trees. However, the overall average forest height matches that of Kellner (2009).  148 
 149 



 150 

 151 
Figure B-3 The forest height of the simulated forest is compared with Kellner et al 2009’s findings. At left: a sample 152 
of simulated forest is shown with heights given by colors from 0m to 50m (scale at the right). Here, forest height is 153 
defined as Lorey’s height at 10m pixel resolution. At center: A frequency distribution of forest heights (i.e., Lorey’s 154 
height) is given as compared to Kellner et al 2009. Blue line indicates the average forest height of our study. At 155 
right: Kellner et al 2009 range of forest height values is compared to those simulated by the FORMIND model in 156 
this study as box-and-whisker plots. 157 

 158 
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Appendix C: Aboveground biomass comparison to height metrics 270 
 271 
 Though the primary goal of this research was to investigate how the accuracy of the correlation of 272 
height to AGB, LAI and GPP changes if analyzed on different spatial scales, it is also important to consider 273 
how the correlation changes depending on the height metric used. Lorey’s Height was the height metric 274 
analyzed and presented in the main text body of this manuscript, however we also analyzed the correlation 275 
of aboveground biomass to RH100, mean height and canopy height at the four plot sizes (10m, 20, 50m, 276 
100m). Following the same methodology as with the Lorey’s Height comparison, 8000 data points were 277 
collected for each plot size so as not to introduce artificial bias into the dataset with an uneven number of 278 
points for the analysis. In this section we will present the analysis of RH100, canopy height and mean 279 
height.  280 
 281 

AGB was also compared to RH100 (Figure C-1), canopy height (Figure C-2) and mean height 282 
(Figure C-3), at the 10m, 20m, 50m and 100m plot sizes. At 10m resolution, RH100 predicted AGB with 283 
the highest R2 fit relationship of all the height metrics at all plot resolutions. In comparing the point clouds 284 
at each plot resolution, the 10m and 20m plot resolutions resemble a power law relationship (Figure C-1 a 285 

Figure C-1 The four plots display the relationship between RH100 (m) and aboveground 
biomass (Mgodm/ha) at plot scales of (a) 10x10m (100m2 = 0.01ha) in blue, (b) 20x20m 
(400m2 = 0.04ha) in red, (c) 50x50m (2500m2 = 0.25ha) in green, and (d) 100x100m 
(10000m2 = 1.0ha) in black. Note: For the purposes of visual comparison, the scale of figures 
(a) through (d) was kept consistent. The datasets in the figures are not truncated. 
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and b, respectively), whereas the 50m and 100m point clouds only extend along part of a power curve 286 
(Figure C-1 c and d, respectively), with the size of the point cloud decreasing from higher to lower 287 
resolution. Overall, the most complete power curve with the densest cloud over the full curve is at the 10m 288 
resolution. 289 
  290 

 291 
 The canopy height used in this study is the same measure used in Kohler and Huth’s 2010 study on 292 
ground-truthing spaceborne estimates of above-ground biomass in tropical rain forests in Sabah, Malaysia. 293 
Similar to RH100, the curves all represent the relationship as a power law function (see Figure C-2). Point 294 
clouds at the 50m and 100m resolutions (Figure C-2 c and d, respectively) have decreasingly smaller and 295 
more concentrated shapes, only covering a small area of the representative relationship curve. The point 296 
cloud shape at 100m is so small that the relationship cannot be not clearly defined as a power law curve (or 297 
any other type). In comparing 10m to 20m resolutions (Figure C-2 a and b), both point clouds range over 298 
the entire curve equation range. The 20m resolution relationship point cloud appears to be more diffuse 299 
than the 10m resolution.  300 

a) b) 

c) d) 

Figure C-2 The four plots display the relationship between canopy height (m) and 
aboveground biomass (Mgodm/ha) at plot scales of (a) 10x10m (100m2 = 0.01ha) in blue, 
(b) 20x20m (400m2 = 0.04ha) in red, (c) 50x50m (2500m2 = 0.25ha) in green, and (d) 
100x100m (10000m2 = 1.0ha) in black. Note: For the purposes of visual comparison, 
the scale of figures (a) through (d) was kept consistent. The datasets in figures are not 
truncated. 
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 301 

In addition, mean canopy height was also plotted against aboveground biomass for the four 302 
resolutions of interest in this study (Figure C-3). At each resolution, the relationship was comparatively 303 
weaker than that of each of the other height metrics investigated in this study. Though a power law curve 304 
was also the best type of equation to explain the plotted relationship, the fit of the data to this curve shape 305 
is poor at best (Figure C-3, a and b) and barely recognizable at low resolutions (Figure C-3, c and d). The 306 
shape of the data points for the 100m plot resolution (Figure C-3, d) is almost vertical and linear, with points 307 
highly concentrated over a small range of heights. At the 50m resolution (Figure C-3, c), the relationship is 308 
very similar to that of the 100m plot resolution, however the almost vertical line shaped point cloud is 309 
slightly less concentrated, indicating and increased range in the value of the data points. In contrast, the 310 
10m and 20m plot resolutions (Figure C-3, a and b, respectively) have a larger range of points, with a more 311 
clearly defined power law relationship shape. However, the point clouds at both plot resolutions appear to 312 
be more diffuse, with in increased number of outlier points, as compared to the other height metric 313 
correlations. 314 

 315 
 316 
 317 
 318 
 319 

a) b) 

c) d) 

Figure C-3 The four plots display the relationship between mean height (m) and 
aboveground biomass (Mgodm/ha) at plot scales of (a) 10x10m (100m2 = 0.01ha) in 
blue, (b) 20x20m (400m2 = 0.04ha) in red, (c) 50x50m (2500m2 = 0.25ha) in green, 
and (d) 100x100m (10000m2 = 1.0ha) in black. Note: For the purposes of visual 
comparison, the scale of figures (a) through (d) was kept consistent. However, the 
datasets in figures are not truncated. 
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As shown in Figure C-4 below, the comparison of r2 and RMSE for all plot resolutions indicates 320 
that there is a tradeoff between accuracy and precision within this dataset.  For instance, canopy height has 321 
the highest level of accuracy, with r2 values from 0.91 for the 10m resolution plots to 0.77 for the 100m 322 
plots. However, the RMSE ranges from 82.5 to 12.0 from 10m to 100m, respectively. In addition, there is 323 
little difference in r2 values from 20m (0.80) to 50m (0.81), but a substantial improvement in RMSE: from 324 
62.9 to 40.2, for the 20m and 50m. If using canopy height as a chosen metric, 50m resolution plots are more 325 
advantageous than 20m plots, and the decrease in error may be worth the accuracy lost (see figure C-4). 326 
The RH100 height metric had a rapid decrease in both accuracy and precision with increasing plot size. 327 
While the RMSE was lowest (21.5) at 100m plot resolution, the r2 value was 0.14, highlighting the lack of 328 
relationship when relating RH100 to aboveground biomass at courser scales. As shown in Figure C-4 in the 329 
bottom left figure, the r2 and RMSE are tightly coupled in terms of their downward trend. The largest drop 330 
in RMSE (>25%) from 10m to 20m, but the r2 decreases to 0.80. Thus, at 20m, roughly the size of a single 331 
tree canopy in a tropical forest if viewed from the top down, there is a greater balance in accuracy and 332 
precision. The mean canopy height exhibited the weakest overall relationship with aboveground biomass, 333 
with the highest RMSE at the 10m and 20m plot resolutions (Figure C-4, bottom right). Though the same 334 
decreasing trends of r2 and RMSE with increasing plot sizes was evident, the small r2 values suggest an 335 
overall weak relationship that should not be considered for analysis. 336 

 337 

 338 

 339 

 R2 (Power Law) RMSE (Power Law) 

Plot 
Resolution 

Lorey's 
Height  RH100 

Canopy 
Height 

Mean 
Height 

Lorey's 
Height  RH100 

Canopy 
Height 

Mean 
Height 

10m 0.83 0.91 0.91 0.61 130.5 84.7 82.5 461.3 
20m 0.70 0.80 0.80 0.43 76.3 62.9 63.0 113.3 
50m 0.60 0.32 0.81 0.35 31.3 40.2 22.3 37.9 
100m 0.53 0.14 0.77 0.30 16.0 21.5 12.0 19.2 

Figure C-4 The table at the top shows numeric values for r2 and root mean squared error (RMSE) for each of 
the height definitions at each plot resolution. The graphs at the bottom show the inverse relationship between r2 
and RMSE values. In all three graphs, plot resolution is on the x-axis, r2 is and RMSE are on the primary (red) 
and secondary y-axis (green), respectively. At left: Biomass estimated from RH100 (m). At middle: Biomass 
estimated from canopy height (m). At right: Biomass estimated from mean height (m).  

Biomass [Mg/ha] estimated from RH100 [m] Biomass [Mg/ha] estimated from canopy height [m] Biomass [Mg/ha] estimated from mean height [m] 
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Appendix D Leaf Area Index comparison to height metrics 344 
 345 

 FORMIND successfully characterizes total tree LAI amongst the trees included in the simulation 346 
(trees >10cm DBH) if comparing with the results presented in Tang et al (2012) and Clark et al (2008). A 347 
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Figure D-1 The matrix of plots presents the correlation of height to LAI at four plot scales and for each of the 
four height metrics analyzed in this study. The four spatial scales are color coded as the following: 10m in blue 
(plots a, e, i and m), 20m in red (plots b, f, j and n), 50m in green (plots c, g, k and o), and 100m in black (plots 
d, h, l and p). The four height metrics correlated consist of: Lorey’s Height (plots a through d), RH100 (plots e 
through h), Canopy Height (plots i through l), and Mean Height (plots m through p).  



well-known driver of productivity, LAI is typically measured at plot or even individual tree scales. 348 
However, in relating LAI to height metrics, extrapolation from plot to landscape scale could provide new 349 
information about forest productivity, with the potential to be quantified through time using remotely sensed 350 
datasets. The success of this approach hinges the ability of height to predict LAI within a study forest.  351 

Our correlation comparisons of the height metrics to LAI overall indicates that there is good 352 
relatability in La Selva study forest, though the accuracy and precision of the relationship depends on the 353 
scale and height metric used. As shown in Figure D-1, at 10m plot resolution RH100, canopy height and to 354 
a slightly lesser degree Lorey’s Height, have a clearly defined relationship over the full range of height 355 
values found in the forest. The 10m and 20m resolution correlations for all four height metrics compared 356 
relate to LAI best with power law equations, though the exponent would be smaller in the 20m equations, 357 
based on the point concentrations. The 50m and 100m plots decreasing point spread size, thus the equation 358 
does not relate over the entire range of height values. Mean height was not an appropriate height metric for 359 
predicting LAI at any resolution. Visually, the canopy height and RH100 relationships appear to be nearly 360 
identical at the 10m and 20m resolution but diverge at 50m and 100m. At 50m and 100m, the canopy 361 
height/LAI relationship more closely resembles that of Lorey’s Height.  362 

As with the AGB/height correlations, across all definitions there exists a trade-off between 363 
accuracy (R2) and precision (RMSE) across the 4 spatial scales. R2 values are the highest for RH100 and 364 
canopy height (Figure D-2), however RMSE is also comparatively high. Conversely, RMSE is lowest for 365 
all height definitions at 100m when R2 values are the lowest. Though the height/LAI correlation is very 366 
similar at the 20m resolution for RH100 and canopy height, they differ dramatically at 50m resolution. For 367 
RH100, the correlation is no longer present at 50m resolution and the R2 decreases by 0.47, whereas the 368 
strength of the canopy height correlation at from 20m to 50m resolution only decreases by 0.03. For both 369 

 R2 (Power Law) RMSE (Power Law) 

Plot 
Resolution 

Lorey's 
Height  RH100 

Canopy 
Height 

Mean 
Height 

Lorey's 
Height  RH100 

Canopy 
Height 

Mean 
Height 

10m 0.75 0.84 0.84 0.54 0.7 0.6 0.6 1.6 
20m 0.51 0.66 0.65 0.33 0.5 0.4 0.4 0.6 
50m 0.35 0.19 0.62 0.25 0.2 0.2 0.2 0.2 

100m 0.27 0.08 0.55 0.20 0.1 0.1 <0.1 0.1 
LAI estimated from RH100 [m] 

Figure D-1 The table at the top shows numeric values for R2 and root mean squared error (RMSE) for each of the 
height definitions correlated with LAI at each plot resolution. The graphs at the bottom show the inverse relationship 
between R2 and RMSE values. In all three graphs, plot resolution is on the x-axis, R2 is and RMSE are on the primary 
(red) and secondary y-axis (green), respectively. At left: LAI estimated from RH100 (m). At middle: LAI estimated 
from canopy height (m). At right: LAI estimated from mean height (m). 



height metrics, the RMSE is reduced by half, however. It therefore becomes apparent that the choice of 370 
height metric is as important as considering the scale in using height to predict LAI.  371 
 372 
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Appendix E Relating GPP to height metrics 411 
 412 
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Figure E-1 The matrix of plots presents the correlation of height to GPP at four plot scales and for each of the 
four height metrics analyzed in this study. The four spatial scales are color coded as the following: 10m in blue 
(plots a, e, i and m), 20m in red (plots b, f, j and n), 50m in green (plots c, g, k and o), and 100m in black (plots 
d, h, l and p). The four height metrics correlated consist of: Lorey’s Height (plots a through d), RH100 (plots e 
through h), Canopy Height (plots i through l), and Mean Height (plots m through p). Note: For the purposes of 
visual comparison, the scale of all plots was kept consistent. However, the dataset presented in each plot is not 
truncated. 



The highest GPP per unit area worldwide is found in tropical rainforests like that of our study site; 413 
tropical forests account for 34% of the global terrestrial GPP (Beer et al., 2010). Though GPP typically 414 
refers to a carbon flux at the ecosystem level rather than on an individual tree level, respiration and growth 415 
are individual functions that are scaled up to be relatable to GPP, and in the case of respiration, subtracted 416 
from GPP to calculate net primary production (NPP) (Propastin et al 2012). Plant respiration has been 417 
shown to be proportional to, or a relatively stable fraction of GPP (Propastin et al 2012; Waring et al., 1998; 418 
Gifford, 2003). The measure of leaf area exhibits the strongest biotic control on GPP (Yang et al., 2016; 419 
Gower et al., 200; Duursma et al., 2009), and as shown in the previous section, leaf area correlates strongly 420 
with tree height. 421 

We therefore investigated correlating GPP with tree height from 10m to 100m resolution (Figure 422 
E-1) and found a similar trade-off between accuracy and precision that was seen in other variables (Appendx 423 
C and D). A visual comparison of the results matrix in Figure E-1 highlights the similarities of RH100 and 424 
canopy height at 10m and 20m resolution though the behavior of the datasets diverges at 50m and 100m 425 
resolution. As with the other variables tested, the finer resolution plots indicate that height relates best to 426 
GPP using a power law relationship. At the 10m and 20m resolutions, points concentrate along where the 427 
equation line would be located, and the points extend across the full range of heights. The 50m and 100m 428 
resolutions not clearly related by a power law, and appear as all 8000 points concentrated at the larger end 429 
of the height range. Mean canopy height exhibited the weakest correlation at all scales, ranging from 0.56 430 
at 10m resolution to 0.19 at 100m resolution (Figure E-2). At the coarser resolutions, Lorey’s Height more 431 
closely resembles canopy height, whereas RH100 height saturates. 432 

 433 

 434 

 R2 (Power Law) RMSE (Power Law) 

Plot 
Resolution 

Lorey's 
Height  RH100 

Canopy 
Height 

Mean 
Height 

Lorey's 
Height  RH100 

Canopy 
Height 

Mean 
Height 

10m 0.78 0.86 0.99 0.56 21.6 15.5 15.5 61.1 
20m 0.61 0.73 0.72 0.37 13.3 11.4 11.5 17.5 
50m 0.50 0.28 0.75 0.26 5.7 6.8 4.1 6.7 
100m 0.43 0.10 0.73 0.19 2.9 3.6 2.0 3.4 

GPP [t/ha] estimated from RH100 
[m] 

Figure E-2 The table at the top shows numeric values for R
2
 and root mean squared error (RMSE) for 

each of the height definitions correlated with GPP at each plot resolution. The graphs at the bottom show 
the inverse relationship between R

2
 and RMSE values. In all three graphs, plot resolution is on the x-

axis, R
2
 is and RMSE are on the primary (red) and secondary y-axis (green), respectively. At left: GPP 

estimated from RH100 (m). At middle: GPP estimated from canopy height (m). At right: GPP estimated 
from mean height (m). 



 435 
Canopy height and RH100 had the overall strongest correlations with GPP, with the highest R2 436 

values of 0.99 and 0.86 respectively at 10m resolution. The accuracy and precision trade-offs were 437 
markedly different for each of the height metrics investigated (Figure E-2). Whereas the RMSE and R2 438 
decreased proportionally from 10m (R2: 0.86; RMSE: 15.5)  to 100m (R2: 0.10; RMSE: 3.6) resolution in 439 
the RH100/GPP comparison, the decrease in R2 was comparatively less (10m: 0.99;100m: 0.73) in the 440 
canopy height correlation, though the decrease in RMSE was very similar to that of RH100. These results 441 
suggest that for correlating height with GPP, the height definition used is arguably as important as the 442 
resolution considered.  443 
 444 
 445 
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Appendix F: Relationship between R2 and RMSE 481 
  482 

The relationships between R2 and nRMSE from the correlations of AGB, LAI and GPP with the 483 
height metrics across the different scales are shown in Figure F-1. The objective of a high R2 and a low 484 
nRMSE would result in points concentrating in the lower right quadrant of the plot space. As shown in F-485 
1 a through d, though no height definition had correlations that resulted in high R2 and low nRMSE, canopy 486 
height and the 10m and 20m resolution RH100 correlations were the closest to the lower right quadrant. 487 
Canopy height, RH100, and mean height had similar relationships across the variables tested (AGB, LAI 488 
and GPP); the Lorey’s height correlations differed slightly between the tested variables such that the AGB 489 
line had the largest slope, indicating that the R2 decreased the least while nRMSE decreased the most 490 
between 10m and 100m resolution, of the three variables tested. Conversely, the LAI relationship with 491 
Lorey’s height went from meaningful to not meaningful in comparing R2 values from 10m to 100m 492 
resolution.  493 
  494 

Estimated from Lorey’s Height (a) Estimated from RH100 (b) 

Estimated from Canopy Height (c) Estimated from Mean Height (d) 

Figure F-1 The figure summarizes the behavior of R2 vs normalized root mean square error 
(nRMSE) for each of the correlations by each height definition, such that: (a) is Lorey’s 
Height, (b) us RH100, (c) is canopy height and (d) is mean height. Biomass is shown in red, 
LAI is shown in blue and GPP is shown in green for all figures.  



Canopy height had the smallest range in R2 values between resolutions across each variable tested. 495 
For example, AGB had a less than 20% difference while the range in nRMSE was ~30%. This is compared 496 
to an 80% difference in R2 for RH100 (similar nRMSE difference) and a 40% (nRMSE difference: 50%) 497 
for Lorey’s height. The LAI and GPP R2 to nRMSE relationships have similar line shapes to that of AGB 498 
in the canopy height (F-1, c) and RH100 (F-1, b) plots, with a slightly larger R2 range for LAI and slightly 499 
smaller R2 range for GPP for canopy height. The proximity of the lines in to the lower right quadrant for 500 
canopy height and high resolution RH100 points indicates that both height metrics relate best to AGB, LAI 501 
and GPP. In both cases, the 20m plot resolution exhibits the demonstrably best accuracy/precision balance. 502 
This finding is supported by the knowledge that the typical diameter of a mature canopy tree crown is 20m 503 
in tropical rainforest ecosystems.  504 
 505 


