Understanding resilience optimization architectures with an optimization problem repository

Dr. Daniel Hulse

Robust Software Engineering Intelligent Systems Division NASA Ames Research Center

Hongyang Zhang Dr. Christopher Hoyle

Design Engineering Lab Dept. of Mech., Ind., & Mfg. Engineering Oregon State University

IDETC/CIE 2021

August 17 – 20, 2021

47th Design Automation Conference (DAC)

DAC-09: Design for Resilience and Failure Recovery

Virtual Presentation

DETC2021-70985

Why Study Resilience Optimization?

Design, **Operational**, and **Resiliencerelated** variables and objectives

Need to systematically manage the complexities to effectively explore the trade-space

Previous Work

Previous Work: Architectures

Two types of decomposition:

- Design/Resilience Levels
 - All-in-one
 - Bilevel
 - Alternating
 - Sequential

Resilience Model Scenarios

- Monolithic resilience model
- Scenario-independent resilience model
- Grouped-Scenario Resilience model

Why Develop a Repository?

Resilience Optimization Problem

 $\min_{\mathbf{x}} C_{D/O}(\mathbf{x}) + C_R(\mathbf{x})$ where $C_R = \sum_{s \in S} n * r_s * C_s(\mathbf{x})$ Small or large **number of scenarios Discrete or continuous** variables **Analytic or simulation** models

Different problem properties and types imply **one architecture**

may not fit all

Travelling Salesman Problem

MDO Test Suite

No.	Name	# of design variables (DV)	# of constraints	Notes	Status
1.1	Heart	8	8	algebraic eqs.	Done
1.2	Propane	10	10	algebraic eqs.	Done
2.1	Aircraft	10	2	empirical curve fits	Planned
2.2	Hub	many	many	parallel processing	Done
2.3	Electronic	8	3		Done
2.4	Speed	7	11	multilevel	Testing
2.5	Power	6	4		Done
2.7	Rule-based	5	5	discrete DV	Done
3.1	HSCT	44	300	GSE and database	Done
3.2	Space	163	41	Needs EAL	Done
3.4	Aerospike	15	5		Planned
3.6	Aerospike	15	5	Needs NASTRAN	Planned
3.7	FIDO 2	many	many		Planned
3.8	Damper	1507	11	integer DV	Done

Helped benchmark and develop new and existing

MDO architectures.

A problem repository can help:

- Develop new approaches and benchmark existing ones
- Understand **which architecture to use** on a given new problem

Repository Problems

Problem	Des. Vars	Res. Vars	Architecture	Decomposition	Algorithms Used	Model Type	Sim. Framework
Notional Example	4 (C)	2 (C)	AAO, Bilevel, Alt. (both)	Monolithic	Trust-Region	Equations	Stand-alone
Pandemic Management	N/A	6 (C)	AAO	Monolithic	Differential Evolution	Dynamic	Stand-alone
Cooling Tank	2 (C)	54 (D)	Bilevel, Alt. (with C_R)	Monolithic	Powell's (D)/EA (R)	Dynamic	fmdtools [51]
Drone	3 (D)	2 (D)	AAO, Bilevel, Seq. (no C_R)	Monolithic, Scenario-Set	Exhaustive Search	Dynamic	fmdtools [51]
EPS	14	N/A	AAO	Scenario-Set	Line search	Static	IBFM [52]
Monopropellant System	N/A	12 (D)	AAO	Monolithic	EA	Static	IBFM [52]

<u>This work:</u>

- Collects 3 problems from previous work (in [2])
 - Monopropellant System: First problem used to demonstrate resilience optimization
 - EPS Problem: Used to demonstrate resilience model decomposition strategy
 - Drone Problem: Used for initial comparison of IRO architectures in exhaustive search

Adds 3 new problems:

- Notional Example: Simple IRO problem not requiring a detailed simulation
- Pandemic Management: Demonstrates a more complex lower-level —(in development)
- Cooling Tank: Demonstrates a domain with different problem types at each level

Architecture Comparisons

Notional Example (Cont. Trust Region)

- **Bilevel:** orders of magnitude slower than AAO because each design gradient point requires a full lower-level re-optimization
- Alternating: most efficient but needs C_R in upper-level to be effective

Architecture Comparisons

Notional Example (Cont. Trust Region)

- **Bilevel:** orders of magnitude slower than AAO because each design gradient point requires a full lower-level re-optimization
- Alternating: most efficient but needs C_R in upper-level to be effective

Cooling Tank Example

- Powell's Method in design model, evolutionary algorithm in resilience model
- Even with C_R in the upper-level, the alternating approach is ineffective compared to the bilevel architecture

Why do we have contrary results?

Differing levels of **Coupling:** the level to which design $(\mathbf{x}_{D/O})$ and resilience (\mathbf{x}_{R}) variables depend on each other.

Uncoupled: direct path from $x^*_{D/O}$ to x^*

Loosely coupled: unobstructed path that can be followed to x^{*} in alternating directions

Fully coupled: joint steps $dx=[dx_{D/O}, dx_R]$ must be taken to reach x^*

Overall Repository Theory/Findings

Appropriate Architectures				
Fully Coupled	Bilevel, AAO	Bilevel, AAO		
Loosely Coupled	Alternating (with C _R), Bilevel, AAO	Alternating, Bilevel, AAO		
Uncoupled	Sequential (with C _R), Bilevel, AAO	Sequential, Bilevel, AAO		
	Unaligned	Aligned		

Inde	pende	Resilience Problem ent Coupling	Appropriate Solution Approach
_	↑	Scenario Independence	Two-stage approach
		Independent Scenario Sets	Lower-level decomposition
-	\checkmark	Fully Coupled Scenarios	Monolithic lower-level
Со	upled		

The applicability of Design/Resilience Level Decomposition Architectures depends on **couplings** between levels

Within Alternating and Sequential architectures, the use of a C_R in the upper level depends on the **alignment** of the Design and Resilience problems.

The applicability of scenario-based decomposition depends on the **couplings** between scenarios (i.e., whether a resilience variables map directly to scenarios/sets or not)

Conclusions, Limitations, Future Work

Conclusions

- Developed a resilience optimization problem repository
- Compared optimization architectures for Integrated Resilience Optimization
- Applications help us understand when optimization architectures apply to given problem formulations

Limitations:

- Still developing pandemic problem
- Does not cover all previous resilience optimization approaches/formulations (e.g., two stage, etc...)

Future Work:

- Include and develop more problems/formulations
- Study other problem/architecture attributes (e.g., resilience model execution parallelism)

Paper Link

ti.arc.nasa.gov/publications/20210010232/download

Repository Link

github.com/DesignEngrLab/resil_opt_examples

Contact

Daniel Hulse Hongyang Zhang Christopher Hoyle

daniel.e.hulse@nasa.gov zhangho2@oregonstate.edu

chris.hoyle@oregonstate.edu

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.