SCREENING MUTATIONS IN RYR2 GENE IN A KAZAKHSTANI IDIOPATHIC VENTRICULAR TACHYCARDIA STUDY COHORT: TWO NOVEL MUTATIONS

A. R. Akilzhanova'*, C. Guelly', Z. M. Abilova', S. E. Rakhimova', O. M. Nuralinov', A. C. Abdrakhmanov', M. S. Bekbosynova'

1) Department of Genomic and Personalized Medicine, Nazarbayev University, Center for Life Sciences, Astana, Kazakhstan; *<u>akilzhanova@nu.edu.kz;</u> 2) Center for Medical Research, Medical University of Graz, Graz, Austria; 3) National Scientific Cardiac Surgery Center, Astana, Kazakhstan

Introduction. The human ryanodine receptor 2 (RYR2) is one of the key players tightly regulating calcium efflux from the sarcoplasmic reticulum to the cytosol and found frequently mutated (<60%) in context of catecholaminergic polymorphic ventricular tachycardia (CPVT1)[1].

Materials and methods. We sequenced 35 Kazakhstani patients with episodes of ventricular arrhythmia, two of those with classical CPVT characteristics and 33 patients with monomorphic idiopathic ventricular arrhythmia, for variants in the hot-spot regions of the RYR2 gene. Additionally, samples of 192 Kazakh individuals (KazCG) and samples of 96 unrelated breast cancer patients from the Kazakh population were sequenced as a control group (Kazakh Breast Cancer Study Cohort (KazBCSC). To predict the possible impact of amino acid substitutions, the following prediction tools were used: SIFT, v.4.05 [3], PolyPhen-2, v2 [4], Grantham Score [5], MutationTaster2 [6], and Conservation. In addition, the databases of the 1000Genomes and the Exome Sequencing Project and the Human Genome Mutation Database were queried to further evaluate and/or validate the variants in a second dimension.

Results and discussion. This approach revealed two novel variants; one de-novo *RYR2* mutation (c.A13892T; p.D4631V) in a CPVT patient and a novel rare variant (c.G5428C; p.V1810L) of uncertain significance in a patient with VT of idiopathic origin which we suggest represents a low-penetrance or susceptibility variant. In addition we identified a known variant previously associated with arrhythmogenic right ventricular dysplasia type2 (ARVD2).

Conclusions. Combining sets of prediction scores and reference databases appeared fundamental to predict the pathogenic potential of novel and rare missense variants in populations where genotype data are rare.

References.

- 1. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, DeSimone L, Coltorti F, Bloise R, Keegan R, Cruz Filho FE, Vignati G, Benatar A, DeLogu A (2002) Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106:69-74.
- 2. Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, Hofman N, Bikker H, van Tintelen JP, Mannens MM, Wilde AA, Ackerman MJ (2009) The RYR2 encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol 54(22):2065-74.
- 3. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073-81.
- 4. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248-9.
- 5. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4154):862-4.
- 6. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates diseasecausing potential of sequence alterations. Nat Methods 7(8):575-6.