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Generalization of S. Bernstein's Polynomials to the 
Infinite Interval 

By Otto Szasz · 

Let.P(u, x )=e- xu ::t (u~)' f( !!.. ) ,u> o. 
v=1 v. u 

The paper studi es t he convergence of P (u, x) to f (x) as u -> 00 . The resul ts obtained 

are generalized anal ogs, for the interval 0 ::::; x::::; 00 , of known properties of S. Berns tein 's 

approximation poly nomi als in a finite in te rval. 

1. With a function j et) in the closed interval 
[0,1], S. Bernstein in 1912 associated the poly
nomials 

Bn(t) = ± (n) to( l -t) n- 'j(vln), n = l , 2,3" .. 
v-o v 

(1) 

He proved that if j et) is continuo us in the closed 
interval [0 ,1], th en B n(t) ---'?j (t) uniformly , as n---'? co . 

This yields a simple constructive proof of W eier
s trass,s approximation theorem. 

More generally the following theorf'ms hold : 

Theorem A. If jet) is bounded in [0, 1] and 
continuous at every point of [a, b], where ° ~ a< 
b~l, then B n(t) ---'?j(t) uniformly in [a,b]. (See 
[6], p. 66) 1. 

Theorem B . If jet) is bounded in [0 ,1] and 
continuous at a point r , th en Bn (r) ---'? F ( r). (See 
[3], p. 112) . 

Theorem O. !fj(t) satisfies a Lipschitz-Holder 
condition 

Ij (t) - J(t') I <c It - t' I \o<,,~ 1, 

then Ij (t) - B n(t) I <C2n- A/2,C1,C2 constants (see [7], 
p . 53 ;4) . Bn(t) is a linear transform of the func
tion j et) ; for the infinite interval (0,00 ) we define 
an analogous transform: 

00 1 
P (u;}) = e- ux 'L, f (ux)'j(vlu), U> 0·2. (2) 

v=o v. 

1 Figures in brackets indicate the literature references at the end of this 
paper. 
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We shall prove corresponding theorems of approx
imation for this transform; U---'? 00 corresponds to 
n ---'? ro in eq 1. W e also sharpen theorem B to 
unijorm convergence at the point r. 

Definition: A set of continuous functions P (u, x) 
is said to converge uniformly to the value S at a 
point x= s, as U---'? ro if P (un,xn) ---,?S, whenever 
x,, ---'? s and u n---'? ro, as n---'? ro . An equivalent for
mulation is: to any ~> O there exists a o(e) and an 
7) (o, e) so that IP (u,x)-SI<e £01' Ix-sl< o and 
U> l1 · 

2. In this section we introduce some lemmas 
fo[, later application. 

Lemma 1. For ,,> 0, u> O, 

(3) 

The following identity is easily verified: 

00 u' 'L, (v-u)2 _- = ueU ; 

v= o vI 
(4) 

it follows that 

u' 00 u' ,,2 'L, - ,> 'L,(v-u)2, = ueU • 

Iv-u l !l;A v. v=U v. 

This proves lemma 1. 

Lemma 2. For u~ 0 

00 u' 
'L, Iv-ul --:j ~ .Jueu • 
o v. 

(5) 

l M. Kac also considered tbe translorm (2) independentl y. from a simili ar 
poInt of v iew . 



By Schwarz's inequality and by eq 4 

( '" U")2 {'" U"} ( '" U") ~ Iv-ul , 2 ~ (v-u)21 ~ , =ue2U; 
o v. 0 v. 0 v. 

th is proves lemma 2. 
Observe that 

'" u" 
~ (v-u) , = 0 , 
0=0 v. 

thus, if u is a positive integer 

'" u" u" u" 
~ Iv-ul ,= ~ (u-v) , + ~ (v-u) , = 
o v. v;:i;u V • v~u V • 

u" u" u" 
2 ~ (u -v) , = 2u ~ ,-2u ~ , = 

v;:i;u v . v;:i;u V . v;:i;u-1 V. 

(6) 

by Stirling's formula. Thus the estimate (5) is 
the sharpest possible, except for a constant factor . 

3 . Theorem 1. Suppose thatf(x) is bounded in 
every finite interval; iff(x) = O(x k ) for some k > O 
as X ----7 ro and jf f(x) is continuous at a point t , then 
P (u;.!) converges uniformly tof(x) at x= t. 
Consider 

'" 1 
eUX{ p (u;.f) -j(x) } = ~ {.f (v/u) -f(x) } (ux)" V1 = 

and assume that Ix-tl<lJ. 
Let 

for 
max If(x)-fWI= m(IJ,~) = m(IJ), 

I x- ~ I ~IJ, 

then m(IJ) ----7 0 as 0 ----7 0 . Now 

and 

f(v /u) -f(x) = f(v /u) -f(t) + fCt) - f(x) , 

v v 
- -t= - -x+ x-t. u u 

hence, from eq 7 

Iv/u-t l ;o;;21J 

and 

If(v /u) - f(x) 1;0;; m(21J) + m(o);o;; 2m (2/J) . 

(7) 
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Hence 

Next write 

Then 

18 31< ~ (uv~)" lf(v/u)-f(x) l . 
v< u(x-o) • 

Let 

sup If(x) 1= U(IJ) , for x;o;; lJ . 
Then 

Applying lemma 1 with A= UIJ, we get 

Finally, assuming l1'(X + O) > k , 

84 =0 ~ - ,- - = 0 ~ Xk _-( (ux) " (V)k) ( (UX)v-k ) 
v>u(x+o) V. u v> u(x+o) (v-k) ! 

We apply again lemma 1, with A= ulJ-k > O, 

then 

Summarizing, we find 

Letting U ----7 ro for a fixed IJ , 

lim sup IP (u;j(x) )- f(x ) 1 2 0 (m(21J)) , U ----7 ro, Ix- t 121J, 

from which our theorem follows. 
It can be shown easily that uniform convergence 

at each point of a closed set D implies uniform 
converg(-'llCe over the set D, A similar argument 
applies to the transform (1), thus sharpening the 
theorems A and B . 

4. Theorem 2. If fex) satisfies the Lipsuhi tz
type condit ion 



h 'Y, P constants, O< p;;; 1, 

th en 

IP (u;f(x))-f( x) 1;;;'YU - p/2 , 

uniformly for O< x< ro, as U-o> ro. 

vYe have, for p= 1 

'" 1 I P (u;.f) - j(x) I ;;; e-ux ~ (1IX) " VI Ij(v/u ) - f (x) I 

Assume that 

then 

This completes the proof of theorem 2. 

< - ux ~ (ux) " Iv/u -x l e- ux '" (ux) " Iv-ux/ 
e -y ~ - ,- 1 -y --~ - ,- -'----'

o V. (v/u +x)?: U 0 v. (v+ uxH 

'Ye-UX '" (ux) v 'Y <- -- ~-,- I v-ux l ;;; --, 
u,lx 0 v. .fU 

by lemma 2. This proves theorem 2 for p= l. 
Now from Holder's inequality, for O< p< 1 

'" (ux) v(l -p) (ux)p 
eUX IP (u ' j) -j(x) I =~ -lj (v/u)-j(x)1 

' 0 (V!)l -p (v !)p 

;;; (:t (UX) V)l-P) {~ (ux)V Ij (v/u ) - j (x) Il/P} P. 
o vi vi ' 

L('t p= 1, and j(x) = c-x, for 0;;; x;;; C, c a positive constant; f (x) = 0 for x~ c. Now the condition (8) 
is satisfied. Furthermore 

(u c) v 1 (uc) v 
P (u ; j ) - j (c) = P (u ; j ) = e- UC ~ - (c-v/u ) = - e- UC ~ (uc-v) - . 

v;;iuc v! u v ;;iuc vi 
Let [ue] = k , then 

k lc" 
u" P (u,c» u-"e- k - 1 ~ (k -v) I' 

v= o v. 
and, from section 2 

k k" kk+1 (k ) " ~ (lc -v) - , =- , '" - ek • 
1>= 0 v. k . 271' 

Thus 
1 

lim infu?: P (u,c» O. 

This proves that for p= 1 the order of the estimate 
in theorem 2 is the sharpest possible. IN e do 
no t know of a similar example for p< 1. For 
Bernstein' s polynomials an exact result has been 
given by M. !Cac [4]. 

5. Suppose that f(x) is continuous in the infinite 
interval (0, ro). 

Let 
1 

x = log t' 0 ;;; t;;; 1, 

j (x) = j (log 1/t) = cfJ(t ) is continuous 111 0;;; t;;; 1. 
n 

Given E> O, we can find a polynomial ~ aktk=Pn(t) 
o 

so that I cfJ (t)-p ,,(t) I <E. It follows that 

Ij (x) - Pn(e" X ) ! <E, O<x< ro. 
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Now 
'" (ux) v 

P (u;j) =e-XU ~ V! j (v /u) , 

_ n '" (ux exp (- lc /u»V 
= e xu ~ ak ~ --""'-7'--'--'-'-

o 0 vi 
n 

=e-XU ~ ak exp (u x exp (- lc ju)) 
o 

n 
= ~ a ke-UX (l -e xP-· k / U). 

o 

Clearly for U-o> ro ,P (u ; Pn) -o>pn (e- X ) uniformly in 
(0, ro); furthermore 

~~~~-~-------- --- - -



and 

H ere 

hence 

IP (u;j) - j (x) I<E+ IP (u; Pn) - j (x) 1 ~ E+ 
IP (u; Pn) - Pn(e- Z ) 1 + Ip n(e-Z) - j (x) I· 

Thus, th e theorem: 

Theorem 3. If j (x) is continuous in (0, co) th en 
P (u ;j)---7j (x) uniformly in (0, co ) . 

6. Theorem 4. If .f(x) is r- times differentiable, 
j'r)(x) = O(x k ) as X---7 00, for some K > O, and if 
Pr)(x) is continuous at a point t , then P (r)(u;j ) 
converges uniformly to P T) (x) at X= r 
We write l /u = h , and introduce the notation 

~j (vh ) = j (v + Ih )-j (vh) . 

~2j (vh ) =~~j(vh) = j (v + 2h ) - 2j(v+ Ih ) + j (vh) . 

~Tj (vh ) =~~r- lj(vh) 

r (r) -=~ (_ I )k k j(v+ kh ), r~O . 

'" (X)" P (l / h;j ) = Q(h ;j) = e- z/h ~ l /v! h j (vh). 

L emma 3 . We have 

Differen tia tion gives 

d '" 1 (X)"-l 1 dx Q (h; j) = e-z /h~ (v_ l ) ! X Xj(vh)-

1 '" 1 (X)" - e- z/h ~ - - j(vh) 
h 0 v! h 

1 '" 1 (X)" =- e- z/h ~ - - ~j(vh) . 
h 0 v! h 

The lemma now follows by induction. 
It is known that 

~T j(vh) j (T ) ( ) 
h' 71 , 

where 

Now 

D rQ(h;j) _PT) (x) 

= e- Z/h ~ {h- r ~1(v~ _ p rJ (x) } (X)" 

=e- Z /h{~ + ~ }, 
I v h -zl ~. Ivh- xl>o 

where we assume that Ix-tl<o. Using the same 
device as in the proof of theorem 1, we get theorem 
4. For Bernstein's polynomials see G . Loren tz 
[5], and his r eference to Wigert 's work. 

For p = 1 . th eorem 2 and formula (6) sugges t the 
following proposition: 

Theorem 5. If j (x) is b ounded in every fini te inter
val, if it is differen tiable at a point t > O, and if 
j (x) = O(x k ) for som~ k > O, X---7 00 , then 

u~ { p (u; j(m - j et ) }---70, U---7 co. 

Let 

max Ij (t + hl-j (t ) - j' (t) 1 = jJ. (o, t) = jJ. (0) , 

then jJ. (0) ---70 as 0---70. We may write 

where 

Now 

P (u ;j (\)) - j en = e-ut ~ (U~)" {(~- t)j'm + 

(~-t) E.(U) } , 

where 

IE"(U) 1 ~!L ( /j ) for !£- t l ~ o. 

Utilizing formula (6) we get 

=-e-ut ~ +~ . 1 { } 
U l o-ut l ~.u Iv-utl> .u 

Using the same device as in th e proof of th eorem 
1, and employing lemma 2, we can complete the 
proof of theorem 3. 

The result can be gener alized to higher deri va
tives . We res trict ourselves h ere to the case th at 
j " (t ) ex is ts. Thus, 

j(t+ h) - j en = h}' m +~ h2{j" en + E(r, h)} , 

242 



where 

Now 

P {u;f(t) }-jW = e- ut i: (uP" {(~-t)j' (t) + 
o v. u 

where 

(9) 

It follows from formulas 4 and 6 that 

P (u;j W) - j (t) = iu j" (0 + 
e- ut '" (-ut) " 2 
-2 2 ~ - ,- (v - un ~ D(U), 

U 0 V. 

or 

u {P (u;j)-j(n} =~ U"W + 

We write 

From (9) and (4), 

(10) 

Hence, 

Next write 

and note that 

1 (V )2 (v) "2 -u- t ~" (u)=j u -j(t )-(v/u-nf'(n-

~(~-tyf"m. 
Let 

sup Ij(x) I =Mm,x ~t 

then 

11'31< {2M(0 + t lj' (t) 1 +~ t 2 Ij"(n!} 

~ uze ~ (un ' , 
ut- v>ui v. 

We now employ the formula (see e. g. [2], p. 200) 

~ e-u u; = 0 (exp ( - -31 02U))' u ---7 co 
1,.-ul>6u v. , 

It follows that 

e ut ~ --=0 exp - -- u , _ (unv ( ( 1 02 )) 

ur-v> u6 v! 3 t 
so that 

e:r 1'3= 0 {u exp ( - ~ f u)}. 
Finally, in view ofj(x) = O(x k ), we have for v> ut 
and k?,2 
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hence 

T - 0 (~ (un" Vk ) _o (~ 2 (Ut)V- k) 
4- v-ur> u6 v! Uk - v- ur> u6 U (v- k ) ! 

=o( ~ U2(U~)V)=0 {u2 exp(ut-~u)} . 
v- ur>u6-k v. 3t 

Thus, 

(J 1) 

Summariz ing, from (10) and (11 ), 

lim sup l u{p(u;jm -jW } -~ U"m l ~o. 

But 0 is arbitrarily small, hence the theorem : 
Theorem 6. If j(x) is bounded in every finite 
interval, if it is twice differentiable at a point 
t > O, and if for some k > O.f (x) = O(xk ), X---7 co, then 

1 
u{ P (u;.f (t» -j (r) } ---72 tj" (t), U ---7 00 • 

Analogous theorems for Bernstein's polynomi
als were given in [1] and [8]. 

8. In the terminology of probability distri
bution the Bernstein polynomial corresponds to 
the binomial distribution. The distribution func
tion is 



the linear functional B n (t;j) is 

Similarly, P (u;}) corresponds to the Poisson 
distribution ; the distribution function is 

and 

( '" '" (ux) " 
P (u;j) = Jo f (r ju)clG(r,ux) = "f5 e- ux -----v! f (v/u ); 

here the term with the largest weight has the 
ind ex v"-'ux. Tn the Bernoulli polynomial the 
term with the largest weight has the index v "-'tn. 

If instead of a functionf we consider a sequence 
8 0, 8 1 , 8 2, • • • , then to the transform (1) cor
responds 

which defines the generalized Euler summabilit.v, 
and to the transform (2) corresponds 

'" x" e- X L: , 8 ., X---7 co , 
v=O v. 

which gives Borel's summability method. 
9. To approximate a function f (x) over the 

whole real axis, we write 

obviously 

Now 

here 

and if we change x into -x, u into - u, we get 

so that our previous result,s are directly applicable. 
Similarly, 

P ( -u ;jz( -x)) = - P (U;j2(X)); 
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thus for negative values of x we need only change 
u into -u, and revert to our previous results. 

10 . It follows from a well-known property of 
the Beta function that 

hence 

( 1 1 n 
) 0 B n(t) clt= n+ 1 ~ f(v/n) , 

so that for any Riemann integrable function 

fa1 B n (t) clt---7 fa' f(t )clt. 

Similarly, at first formally 

fa '" '" u" fo '" P (u;.f)dx= L: , j (v/u ) e-XUx"dx= 
o 0 v. 0 

1 '" _. L:f(v /u ) . 
u 0 ' 

the interchange of integration and summation is 
legitimate if the series L:f(v/u) is convergent. 
Thus, the formula 

f '" 1 '" P (u;.f) dx=- L:f (v/u ) 
o u 0 

is valid if both sides exist. However, it is a deli
cate question under what conditions 

1 '" !C '" lim - L:f (v ju) ---7 f (x) dx. 
U -->'" u 0 0 

An extensive literature deals with this question. 
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Numerical Determination of Characteristic Numbers 
By W . E. Milne 

This p aper represents a co ntribut ion to the problem of characte ristic valu es and charac
teristic solu t ions of ordinary lincar d ifferential eq uat ions. The problem is co nceived as a 
vibration problem in x and t. The partial differential equation is t he n approximated by a 
difference eq uat ion in both e ntries . The problem is now to find t hose frequencies in whic h 
a separatio n in x and t takes place. This is done by find ing t he roots of a t rigonometric 
expansion of certain order. The method is applied to a number of in teresting cases that 
illustrate various types of sit uat ions encoun tered in problems of physics and enginee ring. 

An improved method for obLaining th e latent 
roots of a matrix has been devised by Cornelius 
Lanczos of this Bureau. He has shown further 
how t.his process may be used to secure the char
acteristic numbers (eigemvel'te) belonging to a 
boundary value problem associated wi th an ordi
nary linear differential equation. The purpose of 
this note is to present a procedure for calculating 
characteristic numbers, based essentially on this 
m ethod of Lanczos, but modified in such a way 
as to provide a simple numerical routine for the 
computation. A number of numerical examples, 
'worked in full , illustrate the procedure and give 
an indication of the accuracy attained. The 
exposition is limited to the case of differential 
eq nations of the second order, but the method is 
capable of extension to cases of higher order. 

1. The problem. Let 

The problem before us is to find those characteris
tic values of }.. for which the differential system 

L (U) + }..2U='= O ") 

du 
u+O dx = 0 at x= a (1) 

du 
u + G dx = 0 at x= b 

possesses nonzero soluLions 111 the interval 
a;£x;£b. 

Problems of this type arise in many different 
ways in mathematical physics. For example, 
they may occur in connection wi th the heat 
equation 

oV 
25t= L (V), 

if we assume particular olutions of the form 

or in connection with the wave eq uation 

I The preparation of this paper was sponsored (in part) by the Office of Naval Rese.rch. 
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