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A complete quantitative analysis is presentéd of changes in the shape of the spectral absorptance
curve of any Beer’s-law pigment solution (or other Bouguer’s-law material) as concentration of the
pigment, or thickness of the solution layer, is varied. The relative absorptance curve, normalized to
unit maximum, is taken as defining the shape of the absolute absorptance curve, and the index of
shape change is taken to be the difference between the normalized curves. All concentration changes
from infinite decrease to infinite increase are covered, with some extreme cases requiring limit methods.
Formulas and graphs are given for determining, as a function of concentration change and peak absolute
absorptance of the original curve, where along the curve the shape change is greatest, and how large
the maximum change is. Implications for color vision theory are discussed and it is shown that the
assumption of low peak absorptances (< 10%) for the visual photopigments accounts for the constancy
of the color-matching functions for moderate luminances, but not, in itself, for the breakdown of
matches at high luminances: while the assumption of high peak absorptances (= 80%), although it
contradicts recent microspectrophotometric measurements, seems to account for both phenomena.
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1. Introduction

The theory that chromatic adaptation is explainable by changes in the concentrations of the
visual photopigments has lost some adherents in recent years to the notion that adaptation is a
neural or synaptic phenomenon [1, 2, 3].' One of the objections which has been raised [3] to the
pigment-concentration theory is that a change in the concentration of a pigment in solution neces-
sarily changes the shape of the absorptance curve of the pigment solution, because of the nonlinear
(exponential) character of Beer’s Law. A sufficient change in shape of the absorptance curves of
the visual photopigments would be behaviorally detectable, since the color-matching functions
would be altered. On the other hand, the empirical evidence indicates that the color-matching
functions are independent of chromatic adaptation [4] over an unlimited range of chromaticities
and a wide, but not unlimited [5, 6] range of luminances, the implication being that the shapes of
the absorptance curves of the photopigments do not vary significantly with nonextreme changes
in the adaptive state.

It appears to be generally understood [7] that the changes in shape of the absorptance curves
are not significant if the initial (dark-adapted) concentrations of the photopigments are sufficiently
low. The purpose of this paper is to specify quantitatively the nature and extent of the shape
changes induced in the absorptance curve of a layer of pigment by changes in the concentration
of the pigment (or the thickness of the layer). Although the final treatment will be completely

*A portion of this work (specifically, the single limiting case of complete bleaching) was presented orally at the Spring 1965 meeting of the Optical Society of
America in Dallas, Texas [J. Opt. Soc. Am. 55, 604A (1965)].
! Figures in brackets indicate the literature references at the end of this paper.
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general and will apply to any real pigment, there are two basic decisions to be made in advance
that are determined by the primary purpose of the study, which is investigation of visual photo-
pigments.

The first decision is what is to be meant by the ““shape” of a curve. The definition to be devel-
oped is based on the convention that multiplying the ordinates of a curve by a constant does not
change its ““shape.” As applied to visual photopigment absorptance curves or the color-matching
functions of a colorimetric system, this convention is the appropriate one, because the facts of
metamerism (that is, which spectral radiance distributions match in color) would be left unchanged
if the spectral absorptance curve of any of the visual photopigments were to be changed by mul-
tiplication by a constant factor: and, correspondingly, the predictions of metamers of a colorimetric
system are invariant under any scale-factor change in any of the color-matching functions.

These same considerations determine the other basic decision as well: what specific measure
of amount of light absorption by a pigment should be used. It is absorptance that counts directly
in color vision, not any other measure, such as optical density, commonly used in other contexts.

2. Beer's Law

Given a layer of pigment in solution, Beer’s Law [7a] permits us to calculate the spectral
absorptance, a),’ of the layer. If ¢ is the concentration of the pigment in the solvent, x is the thick-
ness of the solution layer, and B, is the spectral absorption coefficient of the pigment, then the
expression for a) is:

ax=1—exp (—Bacx), (1)

provided we neglect surface reflections, scattering, and the absorptance of the solvent: in other
words, if we assume that all light not transmitted by the layer is absorbed by the pigment. In the
case of the visual photopigments, the solvent is presumably a clear gel and these simplifying
assumptions probably do not introduce too much of a distortion in the analysis.

Now suppose that the action of a bleaching light reduces the concentration of the pigment
(or, equivalently, the thickness of the pigmented layer)® to 1/n times its original value. Then the
new absorptance, a{", is given by:

aV=1—exp (— Brcx/n). 2)

In the case of the visual photopigments, it is possible that significantly absorbing breakdown prod-
ucts are produced by bleaching, but this investigation will be confined to consideration only of the
absorptance of the original pigment.

If we isolate the exponential term in eq (1) and raise both sides to the power 1/n, the result is:

(1 —an)"=[exp (— Brcx)]''" = exp (— Brcx/n); (3)
and, from (2) and (3), we see that

exp (—Bacx/n)=1—aP=(1—an)"'". (4)

2 In current international practice, a subscript A denotes a spectral concentration: a dimensionless function of wavelength like absorptance is properly denoted
a()). However, in order to avoid complicating the many equations in this paper with another level of parentheses, the subscript notation will be used throughout.
No ambiguity can arise, since no quantity referred to in the paper is a spectral concentration.

3 This parenthetical alternative should be understood implicitly wherever *concentration” is referred to in the remainder of this paper. Although this paper is
phrased in terms of a pigment solution, it should also be understood that all results apply to any pigment suspension, whether a true solution or not, as long as the

suspension follows Beer’s law: and also to any transmitting substance whatever that follows Bouguer’s law.
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Thus we conclude from (4) that
aW=1—(1—ay)V. (5)
The transformation (5) from a) to " is order-preserving. That is, if for wavelengths u and v,
>y, (6)
it is also true that
el @ (all n).* (7)

The proof of this property is equivalent to proving that o{” is a monotonically increasing function of
ax, for any n, and this is in turn equivalent to showing that the derivative of oy ‘with respect to ax

is always positive.

Differentiating (5), we find that

1
(”a(}\n)f (] __a}\)n
P : (8)

da n

=1l

We see that the derivative (8) is indeed always positive, for any (positive) n and any a) < 1. (The
fact that the derivative reaches zero at ay=1, for n < 1, is irrelevant to the order-preserving prop-
erty, since no a, can be greater than unity.)

The fact that the transformation preserves order implies in particular that at any wavelength
at which a) has a maximum or a minimum, " has a corresponding maximum or minimum. Thus
we know that whatever distortions in the absorptance curve may be produced by a change of
pigment concentration, there is no shifting of the wavelengths at which the peaks and valleys
occur.

3. Normalized Absorptance Curves

The object of this analysis is to deal quantitatively with the “shapes’ of functions.” In discus-
sions of vision, and in other contexts where functions are known only to within a scale factor (or
where the absolute size of the ordinates is irrelevant to the purpose at hand), it is commonly said
that the shape of a function—let us say of wavelength —is unchanged if we multiply the function
by a fixed constant at every wavelength. This convention can be used as the basis for formulating a
definition of “‘shape.” If we want to find out whether two given functions have the same shape, it is
clear that what we want to do is to divide each function by some constant so that both sets of values
are reduced to the same scale. The original curves have the same shape if the adjusted curves are
identical.

A familiar way of reducing curves to the same scale is to divide each curve by its own maximum
value. Another way of describing this procedure is to say that we are “normalizing” each curve so
that it will have a maximum of unity.

* Naturally, negative values of n are excluded as meaningless. Normally, it should be understood that n > 0, but the limiting case n=0 (an infinite increase in
pigment concentration) will be considered where appropriate. It will prove helpful to keep in mind that n is the factor by which the original concentration is divided —
not multiplied — so that reductions of concentration (“‘bleaching”) are implied by the range 1 <n < « and increases of concentration by the range 0 < n < 1. This choice
of meaning for n was dictated by the relatively greater interest in bleaching than in concentration increase in the field of visual pigments.

5 Technically speaking, it is the curves representing the functions that have shapes, but it is convenient to speak interchangeably of the shape of the curve or

the function.
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If we let M be the (or a) wavelength at which ) has its maximum value, «y;, then we have shown
previously that the maximum value of o is, for all n, the value of a{? at that same wavelength M.
In short, taking note of (5), we may write:

max ofV= af’ = 1—(1 —awn)"/". )
Now let us define a normalized function, &y, as the function oy divided by its maximum value:
o = ax/ou, ay # 0. (10)

Similarly, we define a normalized function, &, by:

A I —(1— o)

(X&"’ = a&"’/max aS{" = W, ay F 0. (11)
The case ay =0 represents a pigment that does not absorb at all (ay = 0). There is little to be gained
by defining the normalized functions in this degenerate situation (one can argue for choosing either
a constant value of unity or of zero), and it will be assumed tacitly from here on that ay > 0. For
the sake of completeness, however, we will consider later the limiting behavior of certain functions
as ay approaches zero.

The normalized functions &) and & are equal to unity (and consequently to each other) at all
wavelengths at which ) takes on its maximum value. Moreover, the functions are also equal (to
zero) at all wavelengths at which ay, =0. The question we are interested in pursuing is how different
are &y and & at other wavelengths?

Before developing an answer to this question, let us first investigate a few important properties
of the normalized absorptance curve &’ definéd by (11).

In Appendix A it is proved that

ap) < a\? for p>gq (12)

[except for wavelengths for which the absorptance, ay, is 0 or the maximal value, auy, in which cases
an equality sign replaces the less-than sign in (12)|. In other words, as n increases (concentration
decreases), the values of &Y become smaller and smaller: the sequence of curves &{” is monoton-
ically decreasing. Since all the curves of the sequence &{" have a common maximum of unity at
the same wavelength(s), a simple statement of the situation is that the normalized absorptance
curve (or the shape of the absorptance curve) “narrows’ as pigment concentration decreases; or,
more precisely, the half-peak width of the primary absorption band covers a smaller wavelength
range.

No matter how much the concentration is reduced, the normalized absorptance curve con-
tinues to narrow, but the decreases in the values of & become smaller and smaller as n grows
larger. In fact, the sequence of curves &{" approaches a limiting curve, &§*, as n becomes indefi-
nitely larger (concentration approaches zero). If we try to evaluate this limit by letting n approach
infinity in the expression (11) for &\, we are initially frustrated by the fact that both the numerator
and denominator approach zero, the result being indeterminate. The limit can be evaluated, how-
ever, by an application of L’Hospital’s rule, which says that in such an instance, the limit is un-
affected by differentiation of both numerator and denominator. Thus:

S 1—-AQ—a) . (1—a)1In (1—an)
M) =1;i o) = lim 13
a& ,}Lllxl a& ,111_,x = (1 —a”)l/n ,,l_,x (l_a“)lln In (1 Oéj[) ( )
or
R b (Ol =)
g S 14‘
o In (1—ay)’ s B ool (14)
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If any amount of pigment is present, the normalized absorptance curve is broader and greater
than the limiting curve defined in (14). For sufficiently low concentrations, however, the curves
become insignificantly different from the &\ curve. It should be stressed that this conclusion
applies to any absorptance curve whatever.

When any ay=1, it follows that also ay = 1, since no absorptance can be greater than unity.
In that case, it is clear from (11) that

AV=1, for ax=1 (all n); (15)
so that also the limit
=1, for anx=1. (16)
Finally, when ay = 1:
aAW=1—(1—ay)l», for ayy=1; (17)
and
=0, for ay=1, an # 1. (18)

‘Equations (16) and (18) together indicate that if there is any wavelength at which absorptance
is complete —if ay=1—then the limiting normalized absorptance curve, a4, takes on a discon-
tinuous line or rectangular form which is unity where the original absorptance curve, ay, is unity,
and is zero everywhere else. This is the ultimate in narrowing, and is not seen unless there is a
wavelength at which absorptance is total.

It is also of interest to consider what happens when the concentration of the pigment becomes
much greater than the initial value. Physically, the increase in concentration is limited by the
solubility of the pigment in the solvent, but for theoretical purposes, we can consider the con-
sequences of letting n approach 0. (If we consider the physical dimension being varied to be the
thickness of the solution layer, rather than the concentration of the pigment in the solvent, the
case of infinitesimal n becomes operationally meaningful.) We see from (11) that

= {(ll=@g))e 1l

0I=3] A= 13 - @AM =
o lnan“ al l"an“ = (—ay) ™ 1 1, for ay # 0. (19)

When a) =0, we have:

=0, for ax=0. (20)

0
o9=1lim aiW=lim ————M =~
n%()a&‘ nlﬁ()l _ (1_(1‘”)1/'1 1

Thus, as the pigment concentration is greatly increased, the normalized absorptance curve (in
other words, the shape of the absorptance curve) approaches a rectangular, discontinuous function
which is zero wherever ay =0, and is unity wherever ay > 0. This is the ultimate in broadening, and
is associated with infinitely dense layers of any pigment whatever.

Most of the relationships discussed above are illustrated in figure la, which represents the
variation of the normalized spectral absorptance of macular pigment with concentration or thick-
ness. Similar families of curves have been published previously for other visually significant
pigments, such as visual purple, by Dartnall [8]; and the hypothetical cone pigments based on the
Judd [9] primaries, by Terstiege [10].

The curve taken as the original a) [that is, a{"] for the construction of figure la is the equiv-
alent of the macular pigment density curve given by Wyszecki and Stiles [11], with an arbitrary
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extrapolation by the present author down to 340 nm, based on Wald’s [12] indication that the ab-
sorptance of the macular pigment is essentially zero by 350 nm. Figure la confirms that as concen-
tration increases, the absorptance curve broadens, progressively obscuring the fine structure, and
approaches a rectangular form covering the entire wavelength range over which the pigment
absorbs at all.

On the other hand, the most conspicuous aspect in figure la of the changes occurring with
decreasing concentration is the quite limited extent of these changes. The curve for infinite de-
crease of concentration is indeed the narrowest and lowest of all, but it is not much narrower or
lower than the original curve. The curve representing a mere halving of the concentration is already
about half way from the curve for the original concentration toward the curve for an infinite de-
crease in concentration. Concentration decrease will be seen to cause some sharpening of the fine
structure. Because the peak absorptance of the original absolute curve is only 0.684 (density=0.5),
the limiting curve for infinite concentration decrease does not even approach the line spectrum
required by eqs (16) and (18) when the absorptance is 1.0 at one or more isolated wavelengths (or
the rectangular curve resulting when the original absorptance is 1.0 over a continuous range of
wavelengths).

Figure 1b illustrates the approach to a line spectrum for a fictitious pigment having as its
absolute spectral absorptance curve the normalized curve for one layer of the macular pigment on
which figure la is based. In other words, the new absorptance curve is simply the absolute curve
for one layer of macular pigment divided by the constant 0.684 (actually, 1-10-"?) so as to have a
peak absorptance of 1 instead of 0.684.

Such an absorptance curve would be difficult to find in any real pigment. For one thing, an
absorptance actually equal to 1 (infinite density) at any given concentration requires an absorptance
of 1 at all concentrations, but all real pigment layers become quite transparent at all wavelengths
if the concentration or thickness is made sufficiently small. Secondly, even if the peak absorptance
is only near 1 (say 0.99999) instead of equal to 1, the absorptance would not drop off from the peak
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FIGURE la. Variation in the shape of the spectral absorptance curve of macular pigment (normalized to unit maximum)
as the pigment concentration changes.

The curve labeled ““1” is the original curve (peak absolute absorptance=0.684), **x 2" denotes a doubling of concentration (or thickness), and /2"

denotes a halving of concentration. The right sides of the x 200 and X 500 curves are omitted for clarity.
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as rapidly as in our fictitious example. A real pigment layer with such a high absorptance anywhere
within the interior of its absorption spectrum would have to either be very thick (compared to a
layer that transmits substantially at all wavelengths) or contain an extremely high concentration of
pigment. Therefore its absorptance curve would be of the flat, near-rectangular form characteristic
of high concentration multiples. The curve for such a layer does not come close to reaching the
“spike” form, no matter how much the concentration is reduced. In fact, the ““X10” curve in figure
la, corresponding to a layer of macular pigment 10 times thicker or more concentrated than the
standard layer, does represent a peak absolute absorptance of 0.99999. Obviously the bleaching of
such a layer would follow the course represented by the curves below it in figure la, and the limiting
curve for infinite bleaching is the very same curve as the ““/>” curve in that graph. While the /™
curve is considerably more spiky than the “X10" curve, it is very far indeed from being a line
spectrum.

Except for the limiting top (n=0) and bottom (n= %) curves in figures la and 1b, the other
curves were generated by use of eq (11) in a computer program. In order to obtain a rough picture
of how much the shape of any absorptance curve changes for any specified change in concentration
of the pigment, it is sufficient to make use of figure 2, which is based on eq (5) and gives the relation-
ship between the absolute absorptances o\ and «, for various values of n. When the absolute ab-
sorptance curve has been sketched out through the use of figure 2, it is easy enough to divide by
the maximum value to obtain the normalized curve.

The parameter numbers on the curves in figure 2 do not represent n, the concentration reduc-
tion factor, but instead represent P, the percentage bleach. The relationship between these quan-
tities is given by the equations

P=100 (1 —%): (21)
100
"0 P (22)

(n)
A

A
a

NORMALIZED ABSORPTANCE,

l NEAREEA
420 440 460 480 500 520 540

X (nm)

FIGURE 1b. Same type of plot as figure la, but here the “I” curve (identical to that in fig. l1a) corresponds to a fictitious
macular-like pigment with a peak absolute absorptance of 1.
The right sides of the x 100 and X500 curves are omitted for clarity.
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FIGURE 2. Variation of (absolute) absorptance with pigment concentration (or thickness). This graph applies to any pig-
ment solution layer that follows Beer’s law, or to any material that follows Bouguer’s law.
Negative values of the parameter refer to percentage concentration increases. All the curves converge on and reach the point (1,1); despite appearances,
none of the curves for P # —x reaches u‘;"=l until ax=1. Also all the curves converge on and reach the point (0,0), although this is not evident because the
graph is a log-log plot.

Thus, halving the concentration (n=2) produces a 50 percent bleach (P=>50), while leaving the
concentration unchanged (n=1) results in a 0 percent bleach (P=0). Concentration increases
(n < 1) correspond to negative percentage bleaches (P < 0). The limiting values are n=0, P =— o;
and n=0o, P=100. In some contexts, P is a more natural measure than n, while in other frames of
reference the reverse is true. The reason for preferring P in the present work will emerge later.

In figure 2, an at least approximate symmetry around the diagonal (P=0) is evident. It is
easy to prove that the curve for n= £ is actually symmetric to the curve for n=1/k. For any function
y=f(x), the curve symmetric to f(x) with respect to the 45° line y=x has the equation x= f(y).
If we define

y=fulx) =1—(1—x)"* (23)
[the function of eq (5)], then the equation of the symmetric curve is representable as
=Ry =T, (24)
Solving eq (24) for y yields:
y=1=(1—-x)¥, (25)

and this is precisely fu)(x), as was to be proved.
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Since the curves for n and n' in figure 2 are symmetrical when
n==—, (26)

we know from (22) that the curves for P and P’ are symmetrical when

100 100—F"
100—P 100

27)

or

pr—_ 100/ .
ST 100—P (28)
The curves in figure 2 were selected to have simple values of P, and the pairs of approxi-
mately symmetric curves are related according to (28) closely but, in most cases, not precisely.
The symmetry is therefore not exact, although a perfectly symmetrical set of curves could be
produced if desired.
4. Changes in Shape

We are now ready to deal with our basic problem: the extent of the difference between the
shapes of a) and a{V. Definition of a quantitative index of shape difference is the first requirement,
and since we identify the shapes of absolute absorptance curves with the corresponding normalized
absorptance curves, it is tempting to define the index simply as:

8 =l — a. (29)

This measure is not an overall index of shape difference between two curves, but rather a definition
of shape difference at each wavelength.

In (29) the index is defined specifically for the case of interest here: namely, two different
concentrations of a single pigment; but the difference between the normalized curves is meant to
be a measure of shape difference applying generally to any two absorptance curves. Brief con-
sideration reveals that this index behaves with intuitive reasonableness at the extremes. If two
normalized curves are equal at a given wavelength, then the curves have the same shape there;
that is, there is a 0 percent shape discrepancy. The most extreme possible shape difference at any
particular wavelength exists when one absorptance curve has its maximum at that point and the
other is zero. In terms of the normalized curves, this is a difference between 1 and 0, or a shape
change of 1 (100%). It should be emphasized that if we are comparing two absorptance curves at a
wavelength where one curve is 2 percent of its peak value and the other is 1 percent of its peak
value, the shape difference according to the index we have defined is 1 percent and not 50 percent;
it is the difference and not the ratio that counts. Clearly, the amount of shape difference in this case
is intuitively more comparable in significance to the shape difference where one curve is 80 percent
of its peak and the other 79 percent of its peak, than it is to the shape difference where one curve
is 80 percent of its peak and the other 40 percent. The point of view here is of course directed
toward the relevance of absorptance-curve shape changes to detectable changes in color-matching
behavior, and the difference in the relative rates of light absorption by a receptor system with two
different absorptance functions depends on the arithmetic difference in the normalized absorptance
curves at each wavelength.

By substituting into (29) the expressions for &, and &{” given by (10) and (11), we obtain the
formula:

— e e 1/n
8(}\'1):M_9ﬂ.. (30)

1—(1—am)™  au
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Various measures of overall shape difference between the curves ay and o{V can be defined in
terms of the index for shape difference at individual wavelengths specified in (29) or (30). If K and
L are the lower and upper limits, respectively, of the wavelength range of interest, we might for
different purposes be interested in any one of a number of measures such as the following:

1 L 1 L
mﬁ [8]PdN: L—Kf,\- |8 dA: max |&0]. (31)

Since our interest here is primarily in determining upper limits of change, let us choose the
simple measure listed last in (31). Let

SW=max |8{"| =max |a}) — ay| A=K to L). (32)"
A

A
In the remainder of the paper, any indication of a maximum over A refers to the wavelength range

A=K to L.

5. Location of the Maximum Discrepancy
Since 8" =0 for n <1 and 8 < 0 for n = 1, we can write the first equality in (32) as:

S(m:m)‘ax [ié‘)\’"], (33)

the plus sign applying when n <1 and the minus sign when n=1. Since, in general, for any
function f,

max [ —f{\)]=— minf(A). (34)
an equivalent of (33) is:
S§n) = m):\ax & n<l; (35a)
S0 =— min §u, 2 1. (35b)
A

For any n, then, the maximum absolute discrepancy, S?”, between the normalized curves,
occurs at a critical point of the function 8", and hence in all cases we can find the value of ax
yielding the greatest discrepancy by setting the derivative of 8" with respect to ax equal to zero.

We have from (18) that

1
1

Y (l—a)" 1 (36)

dan n[1— (1—au)'"] OL\I‘

Setting the derivative equal to zero to obtain the critical point and solving for ax, we conclude
that

n

e ay =t
D {n[l—(l—a,u)”"]} 37)

: : A
for maximum discrepancy between &\ and .
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To convert the absolute absorptance in (37) to a normalized absorptance, we need only divide

through by ay, the result being:
n

o g 1 ay Lal
(n) = c | =—= — = .
AN e = for n}fx 341 e <l {n[l—(l—a,u)' 2 } > (38)

Equation (38) tells us that at the wavelength(s) where the original absolute absorptance curve,
ay, has dropped to that fraction, A" (am), of its maximum value, ay, specified by the right side
of (38), the greatest discrepancy in shape between ax and of" exists: that is, the magnitude of the
difference between the curves & and & is greatest. This result applies to any absorptance curve
whatever, the normalized form of which contains the critical &, value, A" (ay), defined by (38).
For the treatment of exceptions —a) curves that fail to contain the value A" (ay) over the wave-
length range of interest—see appendix B. The actual wavelength where the maximum [8{"| occurs
depends, of course, on the shape of the particular absorptance curve being considered.

The expression (38) is not defined for four special cases: ay =0, n=0, n=1, and n==. These
cases, and their various combinations, have all been worked out by defining the value of (38) as the
value of the limit of (38) as the special values are approached. In evaluating the limits for the three
special n values, it emerges that ay =1 is also a special case in combination with these n values
only. To avoid circumlocution, further reference to the “special’ or “limiting” values will include
this fifth case of ay=1.

The evaluation of the various limits is discussed in appendix C. Table 1 gives a complete sum-
mary of the formulas for all cases. A graphical representation of all the results is given in figure 3,
which plots 4™ (ay), the @, for maximum |5{"

, as a function of the peak absolute absorptance,
ayy, of the original curve, with percent bleach, P, as the parameter.

A number of significant features can be observed in the family of curves of figure 3. To begin
with, a bleach of —100 percent —that is, a doubling of concentration — plays-a unique role (although
the case n =3 is not “‘special’ in the sense of requiring the use of limit methods). The graph shows
that if the concentration of any pigment is doubled, the maximum shape change occurs where the
original absorptance curve has exactly half its maximum value, regardless of what that maximum
absolute absorptance may be. For no other concentration change is the location of the point of
maximum shape change independent of the peak absolute absorptance of the original curve.

TABLE 1. Formulas for calculating A™(a), the normalized absorptance (ay) for which the greatest amount of shape change, |8\ |, occurs when
the pigment concentration is reduced by a factor of n

The maximum absolute absorptance for the original pigment concentration is ay,.

Increases of concentration Decreases of concentration
"“‘l'nl) 0<n<l * n=%h "liﬂl] l<npn<wo 2 ,}lglx
o 0.5 0.5 0.5 0.5 0.5 0.5
1 n[l—(l_a,u)‘"]}: 1 [ 1/e ] 1 { an }— | 1
SN c ] e Ay e Ao
O0<ay<l1]o0 ay 1 { - 0.5 au v ] lay n[1—(1—awn)'"] i = (=g
(I —ay) o
1/e = 0.367879441
I 0 | .
it 0 1— s 0.5 = L 1
nnfl
=~ 0.632120559

#These are the ordinary ranges of values of n, and the same formulas apply in both cases. In each case, the formulas have been expressed in a form that makes the exponents positive,
but either of the equivalent forms is valid over both ranges.

i W S5 3
"The case n ?E is tabulated here because of its uniqueness, but it is not a limiting case.

“No limits are involved in these cases: simply set ay =1 in the regular formula (0 < ay < 1).
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For concentration increases of less than 100 percent and for all concentration decreases—
even infinite decrease —we see that 4™ (ay) is not much greater than 0.5, as long as the peak
absolute absorptance, ay, is not too great. When ay is very close to 1 and the bleach is very severe,
the critical &\ value approaches 1: that is, the greatest discrepancy occurs where the curve is
close to its peak height. This result corresponds to either of two previously discussed situations:
the absorptance curve of a pigment that absorbs completely at some wavelength approaches a
spikelike form as bleaching is carried toward completion (see fig. 1b); or, if the limiting curve is
not close to a spike, for an original curve with a peak absolute absorptance just less than 1, the
original curve must be flat around the peak —that is, very close to its peak height over a consider-
able wavelength range (compare the “X10” and ““/*” curves in fig. la).

For concentration increases of more than 100 percent, the critical &, value, 4™ (ay), is seen
from figure 3 to be always less than 0.5. For very great increases of concentration, A™ (ay) ap-
proaches 0 for any except very low ay values; that is, the greatest discrepancy occurs near the
end of the absorption range. This result corresponds to the previously discussed fact that the
absorptance curve of any pigment approaches a rectangular form as the concentration is increased
enormously. Figure la provides a clear picture of why the greatest discrepancy occurs near where
the curve drops to zero when the concentration increase is carried very far.
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FIGURE 3. Location of the point at which the shape of the spectral absorptance curve of a pigment solution layer changes
most as concentration (or thickness) varies. These results apply to any pigment solution obeying Beer’s law, or to any ma-

terial obeying Bouguer’s law.

“Shape” change is defined as the difference between the normalized absorptance curves. The critical point is specified (ordinate) in terms of the normalized
absorptance, &, of the original pigment layer. The critical &, is shown as a function of (abscissa) the peak absolute absorptance, ay, of the original pigment layer.
The circles along the right edge of the graph indicate the termination points of the curves.
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One aspect of figure 3 is particularly non-intuitive: the curve for no bleaching at all (P=0;
n=1) indicates that the location of the maximum discrepancy varies with the peak absolute
absorptance, ay. of the original pigment. Obviously, when there is no bleaching there is no dis-
crepancy, so the maximum discrepancy, zero, occurs everywhere along the curve. In particular,
it does occur at the &, values indicated in the =0 curve, so that the curve is not incorrect, only
incompletely informative. (The true complete function for =0 covers the entire area of the graph.)
The reason for choosing the particular curve presented in figure 3 to represent P =0 is to preserve
continuity: the curves for very slight bleaching and very slight concentration increase approach
the P=0 curve as the amount of concentration change becomes smaller and smaller. The pro-
cedure of defining the funciion in (38) to be equal to the limit at those values of n and ay; for which
the expression is not defined is the source of this continuity.

6. The Size of the Maximum Discrepancy

Since we now know where the maximum discrepancy, S, occurs, we need only substitute
the expression for the critical a, given in (37) into eq (30) to obtain the amount of this largest
shape difference. The result, which unfortunately does not seem to be expressible in an appre-

ciably simpler form, is:

n

(837]

n—1
] _{ = } =1l
S"‘)=m5x|6&'"|: 11[1_(1—“\1)‘ ] _(L) <]_{ (3] } > (39)

IS St R ay nl=(1—ay)"

The expression in (39), like that in (38). is not defined for the special cases ay=0, n=0,
n=1, n=2=, and, in combination with the latter three cases, ay,=1. Here, too, the function ap-
proaches a limit in each special case, and can conveniently be defined as equal to the limiting
value in each of these cases. The evaluation of these limits is discussed in appendix C. Table 2
provides a complete summary of the formulas for all cases, but the functions tabulated are not the

TABLE 2. Formulas for calculating D™(ay), the shape change [8\™] of maximum size* produced when the pigment concentration is
reduced by a factor of n

The maximum absolute absorptance for the original pigment concentration is ay.

Increases of concentration Decreases of concentration
i ¢ - ) li
al.l,mo 0 0 0 0 0 0
o L
I_{n[l— (l—a_\l)llr'}l~:l 1—{ ay }u—l
(%Y pll=({1=cm)a)|
1—(1—ay)" o 1—(1—ay)n
0<au<l1f1 4(2—an) 0 1—In ay+In [—In (l—m,)]_i
- o —In (1—ay) yy
_(ix]_[n[l—(l-au)'"]}""> _(i)<]_{ ay }” '>
ay ay ay n[1—(—ax)'"]
. : (n_ l) d
i) 1 x 025 |0 e =
(==ninist iy

. : e max . . ! - ot . q
“Note that this table does not list S/ = A [80]. but gives D"(ay). the corresponding 8{" with the correct algebraic sign. The sign is negative for concentration
decreases and positive for increases. (To obtain the absolute value, change the sign of all the formulas for concentration decreases.)
"These are the ordinary ranges of values of n, and because the algebraic sign has been retained. the same formulas apply in both cases. In each case, the formulas
have been expressed in a form that makes the exponents positive, but either of the equivalent forms is valid over both ranges.

. 1= : Y
“The case n= 218 tabulated here because of its uniqueness, but it is not a limiting case.

9 No limits are involved in these cases: simply set ay=1 in the regular formula (0 < ay < 1).
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absolute values specified in (39); instead the algebraic sign is retained, so that the formulas for
decreases of concentration produce immediately recognizable negative numbers. On those occa-
sions that the absolute value is desired, it is only necessary to change the sign in all of the formulas
for concentration decreases: the quantities generated by the concentration-increase formulas
are already positive.

It will be convenient to have a separate symbol, D"(ay), to denote the signed 8\ value of
maximum absolute size, as listed in table 2. Thus,

S = lD(")(Olle. (40)

A warning is necessary concerning the numerical evaluation of the function in (39), or its
limiting forms given in table 2. The two quantities between which the difference is taken in (39)
are in many cases equal for the first several significant figures, so that the value of S™ is deter-
mined by differences existing out as far (in the very worst instances) as the ninth or tenth signifi-
cant figure. An attempt to evaluate S by the use of tables of logarithms (to assess the exponential
expressions) is almost certainly doomed to failure, unless a table with extraordinarily many places
of both the argument and the function is available. If a particular n is chosen, and an attempt to
evaluate S for a number of values of ay is made, the values obtained by the use of tables may
form a reasonable, smooth curve, but the curve may deviate quite badly from the true curve,
especially at the ends.

The only practical method of generating values directly from (39) is through the use of a digital
computer. It was found that for extreme values of ay (near 0 or 1), and extreme values of n (near
0, %, or the “special” value 1) even the 8-place arithmetic of an ordinary digital computer may
generate significantly erroneous values of S", so that recourse to double-precision (16-place)
computer arithmetic was required in some cases. To insure accuracy, therefore, the curves of
ficures 4 and 5, which graphically summarize the relationships embodied in eq. (39), were all
obtained by means of such 16-significant-figure calculation. Analogous considerations, it must be
pointed out, are applicable to the functions in (38), table 1, and figure 3.

Figure 4 is a plot of S®, the maximum amount of shape change at any wavelength, against
oy, the peak absolute absorptance of the original a) curve, for bleaching (n>1); figure 5 is
the corresponding plot for concentration increases (n < 1). The numerical parameter identifying
the curves on each graph is not n, but the percentage bleach, P, defined by (21). Because a wide
range of P values is of interest for different purposes, as well as a wide range of ay values, it seemed
most useful to plot figures 4 and 5 on log-log coordinates, so that several orders of magnitude
of each variable can be represented.

Nothing shown in figure 4 seems intuitively unreasonable. The maximum shape change in-
creases with the degree of bleaching, and approaches a limitin g value for total bleaching (P =100%;
n=®). For any particular degree of bleaching, the maximum shape change is an increasing func-
tion of ay, the initial peak absolute absorptance. Because the origin is at infinity in a log-log plot
it is not clear in figure 4, but is nevertheless a fact, that all the curves pass through the point
(ayy =0, S®W=0). Thus, as is obvious, pigment that does not absorb at all undergoes no shape
change whatever, no matter how much ‘“bleaching” occurs. (This is again a matter of be-
havior in the limit, if we consider lower and lower densities of any pigment at all.) Finally, the
greatest possible shape change —S"=1—occurs only for the single case of infinite bleaching
of a pigment that absorbs completely at some wavelength (), = 1), this case being again a matter
of behavior in the limit. [The perfect absorber (ay = 1), as well as the other exceptional cases
discussed in appendix B, of course are not covered by table 2 or figs. 4 or 5.]

For concentration increases, shown in figure 5, a few additional considerations arise. As
expected, the maximum shape change increases with the extent of the concentration increase,
and approaches a limiting value for infinite increase in concentration (P=—o; n=0). The limit-
ing value for P=— is the greatest possible value, S =1, and is constant for any ay > 0. For
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FIGURE 4. The amount of the greatest change, as concentration (or thickness) is reduced, in the shape of the spectral ab-
sorptance curve of any pigment solution layer obeying Beer’s law, or of any material obeying Bouguer’s law.

The maximum shape change is given (ordinate) in terms of the difference between the normalized absorptance curves for the original and reduced con-
centrations. The abscissa variable is the peak absolute absorptance, ay, of the original pigment layer. The circles along the right edge of the graph indicate
the points at which the curves terminate. All the curves reach the point (0,0), which is not shown because both scales are logarithmic.

anything less than infinite concentration increase, S™ is an increasing function of ay. All the curves
in ficure 5, as in figure 4, pass through the origin. The limiting curve for P=— = is thus of a rectan-
gular form, in linear coordinates, with the discontinuity at ayy = 0, just as the “X %™ curves in figures
la and 1b are analogously discontinuous.

It can be observed in table 2 that the curve for n=1/2 (P=—100%) in figure 5 is of unique
form. In linear coordinates, this one curve is a portion of a rectangular hyperbola, but because
the origin is not the center of this hyperbola, the use of log-log coordinates in figure 5 does not
rectify the curve. If instead of plotting S against ay, as in figure 5, we had plotted S™ + 1/4
against 2— ay, in log-log coordinates, the curve for n=1/2 would have been a straight line (and
the only straight line).
®The final aspect of figures 4 and 5 to which attention will be drawn here is the marked simi-
larity between figure 4 and the diagonally lower half of figure 5 (the curves for P =—100). It will
be found that the curve for P in figure 4 is virtually the same curve as that for — P in figure 5, not
merely in shape but in actual value. For small absolute values of P, the corresponding curves in
the two figures appear to be quite identical, and even for large percentage changes in concentra-
tion (P), the lower parts of the curves (ay < 1) are indistinguishable. However, observation of
the upper limits of the curves, for ay; =1, reveals some discrepancy for the highest few curves,
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FIGURE 5. Same type of plot as figure 4, but for increases in concentration.
The terminations of the five curves for —500 000 < P < — 20000 are omitted for clarity; all of these terminal S values are slightly less than 1, and only for

P=—2 does S"=1.

and, in fact, the correspondence between P and — P is really only approximate, the approximation
being better for values of P or ay near 0.

It was this close correspondence between the maximum shape changes for a given percent-
age bleach and for the same percentage increase in concentration (negative bleach) that dictated
the choice of P as the most informative parameter for these curve families. It is interesting to
observe in figure 3 that an approximate correspondence between P and — P exists for the locations
of the maximum shape changes as well. In figure 3, however, the correspondence does not involve

an identity or a mirror symmetry of curve shape, but rather equal distances above and below the
upward bending curve for P=0.

7. Implications for Vision

The information summarized in figure 4 constitutes a set of restrictions to which any theory
of color vision based on the idea of photopigments in solution must conform. The constancy of
metameric matches under nonextreme levels of adaptation implies that within the applicable
luminance range, the shape changes produced in the pigment absorptance curves by bleaching
are so small as to be not behaviorally detectable. It is difficult to say how large a maximum shape
change [S™)] in these absorptance curves would have been noticed in the various experiments
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that have been conducted, but a maximum shape change of 1 percent seems likely to be safely
below the threshold of detectability. In other words, the new color-matching functions determined
by such a change in the pigments would not differ from the initial functions by amounts greater
than the experimental uncertainties customary in color-matching data.

Figure 4 reveals that even if bleaching were virtually total (P=100%), the maximum shape
change from the absorptance curves of the unbleached pigments can be kept below 1 percent
provided the peak absorptances of the dark-adapted pigments are no greater than 7Y2 percent.
As it happens, this is just about the order of magnitude of the peak absorptances found by the
recent microspectrophotometric measurements of the absorptances of single cones [13, 14, 15].
Thus a sufficient explanation for metamer constancy is an upper limit of, say, 10 percent on the
maximum absorptances of the photopigments, regardless of how much bleaching of the pigments
occurs during adaptation.

On the other hand, the low-absorptance explanation is by no means necessary. If chromatic
adaptation actually involves only limited degrees of pigment bleaching, over the constant-metamer
range of luminance, then much higher initial peak absorptances are allowable. Rushton’s work
[16] with fundus reflectometry indicates that a considerable degree of light adaptation can occur
in the cones with little bleaching of pigment. If no more than a 5 percent bleach occurs, for ex-
ample, figure 4 indicates that shape changes can be limited to a maximum of 1 percent even when
the peak absorptances are as high as 84 percent. It should be pointed out in this connection that
there is a minority of workers in color. who still support (or at least, until recently supported) the
notion of high-absorptance pigments. Brindley [6] hypothesized an absorptance peak of nearly
70 percent and Walraven [17] estimates the peak absorptances at 80 percent. These researchers,
and others [18], are evidently somewhat dubious about the low absorptance peaks claimed in the
microspectrophotometric work. They presumably suspect some sort of artifact or misinterpreta-
tion leading to spuriously low estimates of the absolute absorptance levels of the curves, but no
specific statement of their suspicions seems to have appeared in print. In any event, it is clear
that high absorptance peaks are not inconsistent with metamer constancy if not much bleaching
occurs during light adaptation within the applicable range of luminance.

An important fact of color vision, that has been stressed particularly by Walraven [19] in
recent years, is the breakdown of metameric matches that does occur with very high retinal
illuminances (above 10* trolands) [5, 6, 20]. It is not yet known what the cause of this breakdown
is, but if it is shape changes in the pigment absorptance curves brought about by relatively extreme
degrees of bleaching, figure 4 provides some quantitative restrictions. Walraven’s [21] analysis
of Brindley’s [6] data on changes in the Rayleigh match with very high levels of adaptation led him
to the conclusion that the spectral character of the changes in color-matching behavior are indeed
what would be expected on the basis of bleaching of the photopigments: namely, a narrowing
of the absorptance curves (particularly the red curve).

Just as we had to choose 1 percent more or less arbitrarily as an amount of maximum shape
change that would almost surely be behaviorally nondetectable, we are also faced with choosing
a figure to represent a degree of maximum shape change that would in all likelihood produce
evident behavioral consequences; 10 percent seems a reasonable round number that is probably
not much, if at all, above the minimum detectable level. The question now is: what is the lowest
peak absorptance that will allow for shape changes at least as great as 10 percent?

Figure 4 tells us that if the pigments are nearly completely bleached (P = 100%) when the
metamer breakdowns occur, the peak absorptances of the photopigments must be at least 55 per-
cent to allow for maximum shape changes of 10 percent or more. Rushton [22] regularly refers
to “complete bleaching’” after adaptation to very bright lights, so this estimate must be taken
seriously. If, on the other hand, 5 percent bleaching were the most extreme attainable for even
dazzling luminances (a seemingly unrealistic assumption), then we would have to abandon the
hypothesis that the high-luminance breakdown of metameric matches is due simply to pigment
bleaching, since the most extreme shape change possible for 5 percent bleaching is only 1.9 per-
cent, no matter how high the initial peak absorptance (ay) is. In fact, it is impossible to reach
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a 10-percent shape change unless the bleach is greater than about 30 percent, and then only
in the extreme case of ay=1. Figure 4 indicates that if there are levels of adapting luminance
high enough to produce a maximum photopigment shape change of 10 percent —that is, a clearcut
disturbance of metameric matches —but which entail no more than a 50-percent bleaching of the
pigments, then the pigments must have ay = 0.82.

The conclusion that must be drawn is that if the breakdown of metameric matches at high
luminances is due to bleaching changes alone, and if a maximum shape change of at least 10
percent is necessary to make the breakdown experimentally evident, then the visual photopig-
ments must have peak dark-adapted absorptances greater than 55 percent, and might possibly
have peaks over 80 percent. If, therefore, any researcher’s overall view of all the relevant evidence
leads him to reject the hypothesis of high-absorptance pigments, it appears to be necessary also
to reject the notion that the high-luminance breakdown of metameric matches can be attributed
solely to changes in shape of the photopigment absorptance curves due to bleaching. An alter-
native explanation then becomes necessary and the most obvious candidate is the accumulation
of significant quantities of one or more spectrally selective breakdown products.

One might imagine these products diffusing relatively uniformly over the retina and playing
a role similar to that of the macular pigment; that is, acting as a filter in front of all the receptors.
Brindley [6] interprets his data on high-luminance metamer breakdown as refuting this “screening
pigment” model. Another possibility is that the breakdown products do not leave the receptors
at all, but accumulate and regenerate in the individual cones in which they are formed. In that
case, each of the three cone types can be thought of as covered by a filter the density of which
is a direct function of the rate of absorption of the incident light by that class of cone. A still more
complicated variant of this hypothesis allows for differences in the kinds of breakdown products
formed from each of the cone pigments, so that the filters over the three types of cones vary not
only in density but also in the gross spectral form of their absorptances.

Finally, there is even the possibility that it is not the products of the photopigment degenera-
tions that accumulate, but that the extremely intense illumination of the eye causes spectrally
selective changes in one of the normally photostable, nonvisual ocular pigments such as the
macular or lens pigment. Brindley’s [6] rejection of any “‘screening pigment”” hypothesis of course
applies to this explanation as well as to the hypothesis of photoproduct diffusion. Goldstein and
Williams [6a], on the basis of extensive direct computations of the effect, also consider a sig-
nificant role in human vision by screening pigments unlikely, provided the peak absorptances of
the dark-adapted photopigments are sufficiently low. If in fact the breakdown of metameric matches
at high luminances cannot be ascribed to any screening-pigment accumulation, the believers
in low-absorptance photopigments face the challenge of providing a less obvious but more plausible
hypothesis.

Those workers who believe in high-absorptance photopigments need not concern themselves
with any of these alternative explanations for high-luminance breakdown of metamers: their
belief is consistent with the simple bleaching model. One problem they do face is to show quanti-
tative experimental evidence that the degree of pigment bleaching produced in the upper reaches
of the constant-metamer range of luminance is low enough to produce shape changes of a size con-
sistent with the nondetectability of the changes in the color-matching functions.

If we take 10* trolands as approximately the upper end of the constant-metameter range [4],
and consult Rushton’s measurements [16] of percentage cone pigment bleached as a function
of the adapting retinal illuminance, we find that during steady-state adaptation to 10* trolands,
only about 20 percent of the pigment is bleached away. We see in figure 4 that 20 percent bleach-
ing of a pigment having a peak absolute absorptance of 80 percent yields a maximum shape change
of only about 4 percent, a change quite possibly below the threshold of behavioral detectability.

Thus, if Rushton’s data and his interpretation of them are substantially accurate, the assump-
tion of photopigment absorptance curves with maxima of 80 percent accounts for both the con-
stancy of metameric matches at moderate luminance levels and the breakdown of these matches
at higher luminance levels. The most serious challenge to the high-absorptance theory, then,
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would seem to be finding a flaw in the claimed absolute absorptance scales of the single-cone
microspectrophotometric measurements that find low absorptance peaks for the pigments. Al-
though parsimony makes the high-absorptance model logically attractive, it must be recognized
that there is a definite possibility that in this case nature did not choose the simplest way. How-
ever, the very latest word available to the author as this article goes to press is encouraging for
the high-absorptance theorists: MacNichol [23] has stated that the current estimate in his lab-
oratory is that the peak absorptance of the cone pigments is of the order of at least 1.8 percent
per single micron of receptor length. This measure would make the total absorptance of a cone
with a pigmented length of 40 um equal to nearly 52 percent at the peak [calculated from eq (5)
with n=1/40], in marked contrast to the 3 to 6 percent peaks mentioned in the work from Mac-
Nichol’s laboratory published in 1964 [13]. It remains to be seen whether similar re-evaluations
emerge from the other two laboratories that have published [14, 15] this type of measurement.

8. Appendix A. Proof of Inequality (12)
Given p > g, we wish to show that
alti < ol (41)
in the range

O<ar<au(=<l). (42)

By formula (11), we can write (41) as:

Il = (=@ )" I_(]”‘a)\)"’.

43
= (=) ? 1= (1—aw)' )
In order to simplify the analysis, let us introduce new variables v and b defined by:
el'=1l—a et=1—qy. (44)
By virtue of (42), we can see that
O=selt<evr<l (45)
or
O0<v<b<oo, (46)
Substituting (44) into (43), we have:
L S
A p— (47
Because p > ¢ =0, it follows that
I/p <llq: (48)
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and it is therefore sufficient, for the purpose of establishing (47), to prove that the function

1—ewr

fo)=i—05  (0<v<b) (49)

is monotonically increasing for positive x.

To establish monotonic increase, we will demonstrate the positivity of f'(x). Since f(x) is
obviously positive for positive x, we can choose equivalently to show the positivity of /' (x) - [x/f(x)],
a maneuver that simplifies the algebra in the present case. From (49) we derive that

xf (x)  wx bx
f(x) T evr—] ebr—1

(0<v<d). (50)

To show that the expression in (50) is positive, it is sufficient to demonstrate that the function

g(z) = (51)

ee—1

is monotonically decreasing for z > 0, since the right side of (50) is g(vx) — g(bx). with 0 <wvx < bx.
We proceed by showing that g’ (z) is negative for positive z. Since

&' (2) Ee_z_((%—__z;;_l (52)

we need to prove that
e*(1—z)—1<0 (z>0): (53)

or, defining

h(z) =e*(1—2), (54)

we must establish that
h(z) <1 (z>0). (55)

Since

h'(z) =—ze* <0 (z>0), (56)

we know that h(z) decreases monotonically from its value at z=0. Thus the proof of (55) is con-
cluded by simply noting that A(0)=1.

9. Appendix B. Treatment of Special Cases: Discontinuous Absorptance Curves

and Curves Maintaining High Absorptance to the Ends of the Spectral Range
Considered

There are several situations in which the &, curve fails to take on at any wavelength the
value specified by the expression (38). Only two basic cases need be distinguished: (a) all &, values
in the interval K <\ < L are greater than the critical value specified by (38) because the absorp-
tance simply has not dropped off far enough at the ends of the specified wavelength interval;
or (b) the &, curve contains absorptance values both greater than and less than the critical value,
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but not equal to it because the curve has discontinuities in the form of either absorption lines
(zero bandwidth) or vertical edges representing jumps from one continuum level to another.
In case (a), the maximum [8{"| will occur at the wavelength(s) at which &, is minimum —
and hence closest to the critical value. This result follows because |8%| has but a single maximum
(over the &, range 0 to 1) and decreases monotonically to zero as &, progresses from the critical
value toward either 0 or 1. It is irrelevant whether the &, curve possesses discontinuities or not.
A unique example of this case deserves separate mention: the perfectly nonselective absorber.
If, over the wavelength range K to L, ax = ¢, where 0 < ¢ < 1, then the flat curve has its maximum
(and only) value everywhere, so that &, = 1, &% = 1 (all n), and 6% = 0 (all n). In short, as is obvious,
the shape of the absorptance curve of a nonselective pigment does not change with concentration.
Case (b) is physically nonexistent, since all “lines,” whether absorption, transmission, or
emission, have finite width according to quantum theory: and no abrupt transition from one level
of absorptance to another can be literally discontinuous. However, because real measurements
cannot be made with infinite resolving power, one can be faced with effectively discontinuous
curves. Mathematically, this situation can be treated by restricting attention to only two ¢, values:
the least upper bound ¢ (l.u.b.) of the values less than the critical value and the greatest lower
bound (g.1.b.}of the values greater than the critical value. Since in general the falloff of |8‘>\'"| from
its maximum value is not symmetrical with respect to variation of &, above and below the critical
value, one cannot simply see which of the aforementioned two significant &, values is closer
to the critical value. It is necessary actually to evaluate |8"| for both &, values by use of eq (30).
If the function values are sufficiently different, it may be possible to make the decision by using
ficure 2 appropriately.
Although in case (a) the location of the point on the curve for which [8{"] is maximum is
simple, the evaluation of 8" at that point must also be accomplished by the use of eq (30), or,
if a rough estimate is satisfactory, by the use of figure 2.

10. Appendix C. Evaluation of Limits

As was pointed out earlier, the fundamental expressions (38) (plotted in fig. 3) and (39) (plotted
in figs 4 and 5) are indeterminate for several special values of the variables n and ay. We have
already made use of L’Hospital’s rule [see eq (13)] to evaluate a limit that took the form 0/0. With
appropriate rearrangements of terms, the same device is sufficient to evaluate the limits of (38)
and (39) as all the special values are approached, with the exception of the limits as ay approaches
0. In the latter case, it was found necessary to use the technique of replacing part of the function
by its power series expansion: this procedure will be illustrated later.

As an example of the method of application of [.’Hospital’s rule, let us develop the limit of
the expression for A" (ay) in (38) as n approaches infinity (complete bleaching). Let

n

n—1
() l. (64 } . ;
ity {n[l ~U—an) ] ©7)

n—x

The exponent, n/(n—1), approaches 1 as n approaches infinity. The part of the overall limit
in (57) that requires manipulation is the limit of the denominator. Let

C= = lim nl[1— (11— anr) 17 (58)

The expression (58) approaches the indeterminate form «-0. Whenever L’Hospital’s rule
is to be used, the core of the problem is to rearrange the expression into a fraction to which the

6The use of the Lu.b. and the g.l.b. allows for open intervals of &, values, which can arise if there is either a locally nonconstant absorptance continuum
with a peak on which an absorptance line is superimposed or a jump discontinuity between locally nonconstant continua. Those not familiar with or interested in this,

fine point can read “largest” for “least upper bound™ and “smallest™ for “greatest lower bound.”
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rule can be successfully applied. The requirements are that the fraction approach a limit of the
form 0/0 or /% and be of such a form that differentiation simplifies, rather than complicates,
the limit evaluation. In the case of the limit in (58), a suitable expression is:

—_ —_ 1/n
C(») = llim l(lia”) (59)

n—=>% l/n

which is of the form 0/0.
[."Hospital’s rule yields:

— = 1/n — 5 {— 2
C(x): Jlm (1 D(_\I) ln (1 CUI) ( l/ll ) - lirnx_ (1 _ OlM) 1/n ln (1 — aJl)- (60)

= _1/nl n—

As long as ay # 1 (it being kept in mind, of course, that 0 < ay < 1):
lim (1—a)'"=(1—au)’=1; (61)
S0
C*=—In (1—au), oy # 1. (62)
By applying (62) to the original limit (57), we conclude:

apm

(o)) = S P
B —ln (1 — a_\[) d i # l (63)
Thus, finally, the limit of (38) as n—> « is seen to be:
A (o) = & for max | 8 | = L [1 _L]
. A L2} - ln (l — a.\l)
S S
P ey S N (64)

The uppermost curve in figure 3 is a plot of the function given in (64).

Since the second term of (39), which corresponds to the critical &, is given by (38), we know
that once (38) has been evaluated for any of the special arguments, the problem of evaluating
(39) reduces to evaluating the first term, which corresponds to the critical &". In the case under
consideration, n — o, we have already found the general expression for &‘f) in eq (14). We could,
therefore, obtain the critical ay by multiplying (64) by @) and then simply substitute into (14)
to obtain the critical &{* as a function of ay. However, to prove that the single expression (39)
really does give rise to all the special cases, let us evaluate the first term of (39) directly as a limit.

Let

A

1_{ o }H*l
Il[l = (1 - Clu) ”"]

o) — T
G jl_r)nx Il = (Il =@gy) W2 (65)
1
a.” .”_1
1= { (ac)}
—lim - (66)

,,_.x] - (1“‘&,\1)1/'“

330



where C*), defined by (58), is given explicitly by (62). Thus

_{ ay }:i—l
G — lim —In (1 —ay) )

e Il = (1l = @z e

(67)

As n—> o, the exponents in both the numerator and denominator of (67) approach 0, so that,
as long as ay # 0 or 1, the exponential terms both approach 1. The expression in (67) therefore
approaches the form

1-1_0
=1 @

(68)

and is consequently eligible for direct application of L.’Hospital’s rule. The result of the dif-
ferentiation of the numerator and denominator of (67) is:

_{ ay }'T:Il { o }[ = | ]
—In (1—ay) i —In (1—ay) (n—1)2

G = lim - (69)
—(I=a)"" In (1 — ) - <”__,>
n
In { Qy }
o —ln(]—a_u) :ln a,u—ln [—ln(]—au)]
In (1 —ay) In (1 —au) ’
ay #0, 1. (70)

The complete evaluation of (39) as n— % can now be obtained by combining (70) and (64),
the result being:

In ayy—In [—ln(l—a.u)]_[i I :||

(A= || [P, = max | §) | = i
S)=| D) (aw) | =max | & | In (1—aw)

ay —In (1—aw)

|l=lhaytIn[=In(I-aw)] 1
—In (IE=tary) Qay

‘, ay #0, 1. (71)

The function (71) is plotted as the uppermost curve in figure 4, and D®)(ay) (the function
with the absolute value signs omitted) is listed in table 2.

As has been mentioned, all of the limiting-case formulas were derived by methods similar to
the [’Hospital’s-rule manipulations employed above, except for the case ay— 0, for which a
different method was found necessary. It is possible that some sequence of imaginative rearrange-
ments of terms could allow this case, too, to be treated solely by L.’'Hospital’s rule, but in the
absence of such a derivation, the proof to be given here is based on a series expansion, namely:

(1—x)'f"=1—5—<"_1)x2+1<3(x) e (72)

n i

where the remainder series R3(x) is of order x* (that is, the leading term contains x? as a factor
and all succeeding terms contain higher powers of x).
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We apply the series (72) by letting x= ay., and replacing (1 —au)"" in (38) by the resulting
expression. With suitable regrouping of terms, the new form of (38) is then:

R
=1

1 1
(n) —_= .
A" (ayr) C(u<] I:l . (n— l) . - (13)
5, ) Qv 2 ()

where R,(ay) is a series of order GE

Straightforward rearrangement allows (73) to be written in the form:

n

—1 n—1
[1 + (% ")’C\’-A\t - Rz(au)] =1l 1
: = (74)

17 = || i
v [l L (112” ) - —Rz(a.u)]" I

We now make use of the fact that as «ay approaches 0, each term of R;(ay) (for any i = 1)
approaches 0, so that the sum of the entire R; series also approaches 0. Thus, letting ay; approach
0, we see that the second factor in (74) approaches 1/1 =1 (as long as n # 0 or 1), so that the overall
limit is equal to the limit of the first factor. The first factor approaches (1—1)/0=0/0, so that
L’Hospital’s rule can be applied. Differentiating numerator and denominator, we obtain:

/4(")((131) =

n

n n—1 ol n—1
(g an—Retan ] |(*50)~Hotaw
AMWO)zlmlAmwau)=1hn<"_l>[ 20 ) el 28 e

: : (75)
ay—0 ay—0 ]
where R, (ay) is a series of order ay.
Finally, letting ay approach 0 in the numerator of (75), we find that the final limit is:
A(u)(())=< n ) (1] ["—l]zl (n#0,1). (76)
n—1 2n 2 ’

The invalidity of (76) for the two values n=0 and 1 is a reidection of the fact that the original
expression (38) is not defined for those values. Since (76) does hoid for all other values of n, however,
we can evaluate the limit of (76) as n approaches 0 and 1, and also as n increases without limit
(n — ), and define the function values as equal to these limits. Thus

A (0) = lim A®(0) = lim ~ =

1

n—0 n—0 2 (77)

AM(0) = lim A™ (0) = lim Ll (78)
n—1 n—12 2
. 11

A (0) = h_r'n A™(0) = h__nl 575" (79)

In other words, the value of A™ (ay) as ay— 0 may be taken as 1/2 for any value of n.

In order to find D™ (0), the limit as .y approaches 0 of the function in (39) with the absolute
value signs omitted, we have to evaluate the limit of the first term only, since the second term is
the same as (38), which we have just shown approaches 1/2. Let

1

_{ ay } n—1
Lo= lim n[1—(—ay)"]
<0 —

aw—0 Il = (1l = Gz)) "2

(80)
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Again we use the device of series expansion, converting (80) to the form

1— oy n—1
n {l —[l CH (L_T]) af,+R:;(a.tl)]}
. . n 2n? ‘
(I(':o!‘lr—r}o « =1 G
‘ 1—[1—~"’+(_ _,)a§,+R:,(a.u)]
n 2n?

After terms are combined in (81), it is clear that the expression approaches the limit (1 —1)/0=
0/0 (n # 0, 1), so that L’Hospital’s rule can be applied. The result of differentiating the numerator
and denominator and then allowing «y to approach 0 is:

]
Co2n 1
(’”:fzi (n#0,1). (82)
n

Thus as ay approaches 0, both the first and second terms of D" (ay) in (39) approach 1/2,
and hence the difference approaches 0, for any n other than 0 or 1. In short,

DW(0)=0  (n#0,1). (83)

Continuity considerations analogous to those leading to eqs (77) to (79) allow us to make the
definitions

D(0) = lim D™(0) = lim 0=0 (84)
DM (0) = lim] D™(0) = le. 0=0 (85)
D(0) = lim DW(0) = lim 0=0. (86)

In other words, the value of D" (ay) as ay — 0 may be taken as 0 for any value of n.
No further resort to series expansion will be necessary. Let us turn row to the case n=1 and
evaluate (38) as n approaches 1. Let

n

e =t <1—{ Gt v > 87)
) v n=>1 oy njll— (l_a,\l)”"]f
=L (1-BY)  (aw #0), (88)
(03}
where
oy
(1) — |3 Awm . (
BY= lim {,1[1~ (1 -a,‘n"'"]} 69)

In order to convert a limit of the form of (89) into a simple ratio form, it is only necessary to
take the logarithms of both sides:

e T n ay

In B r!l—l}} <n - ]) = {n [1—Q —an)'/"]} ©0)

copgentinasInac o e (el B} - g, ) 1)
N>l II‘_l '
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The expression in (91) approaches 0/0 as n— 1, so .’Hospital’s rule is applicable. The result
is, for ay # 0 or 1:
1/n ]
i (1—au) In (1— o) )
WA——1 +{lnay—Inn—1In[1—(1—ay)""]} -1
n ,
| = (Il =@zy) ™=

In B(”:”lilnl 1 - (92)

As n approaches 1, the second term in (92) vanishes, while the first term approaches

_1_(1_(131) In (1—aw) 93)

(69

Rearrangement of terms then allows us to write:

1—aw
In B®O=n |i€"' (1 _aJI)‘< o )] (94)

Thus, taking antilogs and substituting for B in (88), we have:

o 1—aw

AD () =1 '} _ﬁl/e‘:, (a7 0, 1). (95)
(

1— a”) ay

Evaluating (95) as ay approaches 0 or 1 would complete the calculation of a double limit;
that is, the limit as oy — 0 (or ayy — 1) of the limit as n— 1 of (38). Both double limits happen to
be much easier to evaluate when the limits are taken in reverse order; that is, when the calcula-
tion is of the limit as n—1 of the limit as ay; — 0 (or ayy— 1) of (38). Such interchange of the
order of limits does not change the final value for continuous functions, and, as a check, the limits
were derived both ways to be sure (although the more difficult methods will not be shown here).
The limit as ay— 0 was already found, quite easily, in (78). The case ay =1, for values of n other
than 0, 1, or o, is not a limiting case, and simple substitution in (38) yields the expression:

1

AR =1~ (96)
ni=1
Similarly, setting ay =1 in (39) gives:
=1
Dw(1)=—2"2. 97)
i

Finding the limit of (96) as n— 1 is equivalent to finding the limit as ay — 1 of (95).
By taking the logarithms of both sides and then applying L.’Hospital’s rule, it is easy to derive
that

lim n"T=e. (98)

n—1

With (98) established, it follows directly from (96) and (97) that

1
SEEE (99)
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and
DY(1)=0. (100)

We now complete the case n— 1 by finding D" (ay) corresponding to AV () in (95). We
need only find the limit as n — 1 of the first term in (39), the limit of the second term being equal to
A“)(au). Let

1
1_{ (837] 7=
) 1—(1—aw)'"]
= nl
}xlinl l—(l—aM)l/" (101)

1 — lim <B(1)>1/n
. n—1

= (a0, (102)

where B is defined by (89) and evaluated in (94). We conclude from (102) that

(}“’:aLMU—B‘”) (ap #0); (103)
and (88) establishes that
CV=A4"(an). (104)
Thus, since
DD (ay) =G — AW (ay) (105)

[a special case of eq (39)], (104) implies that
D(”(O(M) =1() (CYM#O). (]06)

We have now shown that for any value of ay, there is no shape change at all for n=1. This
conclusion is obviously correct, since with no change of concentration there is no change of shape.
Although we have proved above by limit methods that eq (39) correctly implies this fact, a much
more straightforward proof of (106) is obtained by simply setting n=1 in (30). [The restriction
ay 7 0 in (30) is tacit, as explained following (11)]. The resulting conclusion,

SMW=0  (am#0), (107)

means that for n=1 there is no shape change anywhere along the curve, so that, in particular, the
shape at the point where &, = A" («y) (that is, the maximum change) is also zero.

Returning to formulas (96) and (97), we can now easily fill in the limits for the case n — o for
ay—> 1. The same values could also have been obtained by the reverse ordering of the limits; that
is, by letting n— o in (64) and (71); these latter derivations are omitted here. By (96), we have:

1
A1) =.lim A® (1) = lim, [1 _L"]: Ly
i > n=1 lim n"-1

n—

(108)
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|et

n

H®) =lim n"-1, (109)

Then, taking logarithms and applying L.’Hospital’s rule, we find that
H®>) =, (110)
and, substituting (110) into (108), we conclude:

1
A‘f’(l)=l—;=1—0=l. (111)

By (97), we have:

D)(1) = lim D(1) =.1"iglx4+ lim : (112)

o= N

nNTl n-1

The second limit in (112) is the reciprocal of H*), defined in (109) and evaluated in (110) as
equal to . Hence the second limit is 1/c=0.
The first limit in (112) is the negative reciprocal of

1

J&@ = lim n*-1. (113)

n—x

Taking logarithms and applying L.’'Hospital’s rule, we conclude that

JE=1. (114)

Thus the first limit in (112) is the negative reciprocal of 1, which is — 1. Therefore

D= (1)=—14+0=—1. (115)

The last limits remaining to be worked out here are those for n — 0. Let

A0 () = lim —— <1 —{ il }*'> (116)

n—0 Qi n[l—(1— ay)t"]

=1 (1—pw) (o # 0), (117)
(037
where
) — T; ay }%
B PE}' {'l = ({1l = @) W] (118)
or

0)— 1 n (23]
Lo l"lino<<n—l> b {n[l— (1—‘(131)"‘"]}> (119)
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= lim lim 2 I [l = (I —eig V5]

n.In ay lim " In n
n— 0. ”-—1 n—>0 ”-—] n—0 n—l

(ay # 0). (120)

The first term in (120) is simply equal to 0 as it stands. To evaluate the second limit, we divide
numerator and denominator by n and apply 1.’"Hospital’s rule, the result being a limit of 0.
To evaluate the last limit in (120) we observe that if
0<an<l, (121)
then also

0<l—ay<l. (122)

If a quantity properly between 0 and 1 is raised to a power that grows larger without limit,
the result approaches 0. Hence

,!i_l.ltl) (I—ay)/"=0 (anr # 0, 1), (123)
s0 that
limln [1—(1—ay)/"]=In [1-0]=In1=0 (ayr #0, 1). (124)

n—()

Thus all three limits in (120) are 0, and
In BO=0—-0—0=0 (ay # 0, 1), (125)
or
BW=1] (ay # 0, 1). (126)

We conclude from (117) that

1
,4“”(01.\,):&—” (l=1) = (cy #0,1). (127)

To evaluate D (ay) we need the limit as n — 0 of the first term of (39). Let

1_{ a },,-1"1
(0) — 1 n[1—(1—ay)'"] |
(l ,,ll_r;n()’ 1— ('1 — (1,\]) 1/n (128)

I 00 S e a.u)”"]}llw

1

ay
ot 129
Jim, = (=) l" &

Taking note of (123), we see immediately that
0[1—0])o

e 1—0' 1

CO= ! & ===1  (am#0,1). (130)

=00, 1 1
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Thus, from (127) and (130) we see that

D(o)(a“) = ()(‘”—A“”(au) =]1—-0=1 (ayy #0, 1). (131)

Obviously, by (127),

AO(1) = lim A (ay) = lim 0=0; (132)
and, by (131),
DO(1) = lim D®(ay) = lim 1=1. L)

Reassuring confirmations of these limits are easily obtained by reversing the order of the
variables. We see from (96) that

mmu):m%mmu)zl———l—<

= ) n_
lim n"1

n—0

(134)

Evaluation of the limit in (134) by the now-familiar procedure of taking logarithms and then
applying L’Hospital’s rule yields a limit of 1, and so we conclude that

A“”(l)=l—%=l—l=(), (135)
in confirmation of (132).
Similarly, (97) tells us that
DO(1) =lim D™ (1) = lim [— n: 1] (136)
n—0 n—0 Il"T
—1 1
= —=AF = (137)
lim n*=1  lim n*1
R0 n—0

The second limit in (137) is the same as that in (134) and is equal to 1. The first limit (denomi-
nator) requires no manipulation, and is directly equal to 0~ = . Thus (137) becomes

-1.1
DO(1)=—+7=1, (138)

in confirmation of (133).

Each of the six limits A= (0), A=)(1), AV(0), AV(1), A9(1), and A©(0), and each of the
six corresponding D limits, can be derived from two different more general formulas. These are the
cases for which one can proceed by taking the n limit first and the ay limit second, or the reverse.
Only for the limits A(1) and D”(1) that have just been discussed have we actually shown the
consistency of the two possible evaluations of such limits, but consistency exists in all the other
cases, too, except for AV(0) and D (0).
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If we define A9(0) as

lim A"(0),

n—0

as we in fact did in (77), we arrive at a limit value of 0.5, the value characterizing ay =0 for all
other n values. If, however, we define 4©(0) as

lim A9 (qy),

ay—0

it is clear from (127) that we would arrive at a limit of 0, the value characterizing n =0 for all other
ay values. Thus, whether we choose to define 4©(0) as 0.5 or 0, we will be violating continuity in
one respect or another. The decision as to which definition to adopt must therefore be made on
some basis other than the simple preservation of continuity.

Inspection of figure 3 reveals the basis for adopting the definition 4Y(0) =0.5. The alternative
definition, A9(0) =0, would preserve the full continuity of the single curve for n=0 (P=—x),
but would destroy the continuity of the entire family of curves. It is obvious that as one moves
downward in figure 3 (n— 0), the vertical and horizontal legs of the curves become progressively
straighter and the bend between these legs becomes progressively sharper. The limiting curve
ought to have a vertical leg, just as all the others do, and the visual impression is compelling that
the limiting curve is the right angle formed by the vertical and horizontal axeés of the graph. It
appears intuitively that it would constitute a more serious violation of the overall scheme to have
the limiting curve of the family be of a grossly different character than all the other curves, than it
would to have that one limiting curve possess a truly vertical leg—that is, a discontinuity. It is, in
fact, precisely this vertical leg that makes the n=0 curve fit in with the rest of the curve family.

As for D®(0), it could reasonably be defined either as 0, as it was in (84), or as 1, as it would
be if it were calculated as

lim D©(ay)

ay— 0

[see eq (131)]. Because figure 5 is a log-log plot, it does not provide a compelling geometrical
impression of what the top limiting curve (P=— =) ought to be; an arithmetical plot would have
shown that the limiting curve appears to be not the upper edge of the graph [the line S®W=1],
but the right angle formed by the upper and left edges [the horizontal line S =1 and the vertical
line ayy=0]. However, a consideration of the meaning of the case ay =0, n=0 leads to the in-
evitable conclusion that D(0) =0 is the reasonable choice. If ay=0, we are dealing with a pig-
ment with a perfectly flat absorptance curve (ax = 0), and the shape of a flat curve stays the same —
namely, flat —no matter how much the concentration of the pigment is changed. Thus the shape
difference everywhere along the curve, and consequently the maximum difference D(0) as well,
is zero.

The argument for D(0) =1 is wholly unconvincing; in fact it turns into an additional argu-
ment for D(0) =0. When n=0, we are dealing with an infinitely increased concentration (or
thickness) of pigment. We know that wherever a pigment has any absorptance at all, it absorbs
completely when infinitely concentrated, so the maximum shape change is infinitesimally different
from 17 for a pigment that contains a continuous range of absorptances including 0 and extending
any finite amount above 0. However, at any wavelength where the original absorptance is actually
0, it remains 0 no matter how much the concentration is increased. Therefore, if an absorptance
curve is 0 everywhere, the reasoning that leads to a maximum shape change of 1 for more ordinary
curves breaks down, and the shape change is 0 everywhere.

"More precisely, the least upper bound (Lu.b.) of the shape changes is 1.
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