
Illinois Institute of Technology

School of applied Technology

Universidad Politécnica

de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Master of Information Technology and Management

Data Analytics and Management

Máster Universitario en Ingeniería Informática

Research Project

Factor: Web Repository of Transcribe
Online Classes

Author: Pablo Ángel Álvarez Fernández
Project director IIT: Jeremy Hajek
Project director UPM: Damiano Zanardini

Chicago, 05/2020

i

Abstract
With a proliferation of Cloud based Speech-to-Text Services, from the major
Cloud providers as well as several Opensource Speech-to-Text projects available,
it can be difficult to decide where to start and how to make use of these
technologies relating to the handling of recording artifacts that are the by-
product of Online Education.

The fact that so many resources are available means that the computing, and
technical barriers for applying speech recognition algorithms has decreased to
the point of being a non-factor in the decision to use Speech-to-Text services.
Other barriers such as price, time, and access to the services source code
(software freedom) now can be factored into the decision of which platform to
use.

This case study provides a beginning to developing a test-suite and guide to
compare Speech-to-Text libraries and their out of the box accuracy while
integrating these libraries into a single test application. Our initial test suite
employs two models a Cloud model employing AWS S3 using AWS Transcribe
while the on-premises Opensource model relies on Mozilla’s DeepSpeech. We
present our findings and recommendations based on the criteria discovered.

Moreover, beyond comparisons of Speech-to-Text libraries we also investigate
the artifacts produced by high quality Speech-to-Text and examine and report
what new features become available in relation to text transcripts. The decision
based on our requirements will be used to deploy a full-stack educational
system. This system aims to develop a service that will facilitate student learning
and help teachers create publications derived from their own classes, improving
learning in general.

In order to deliver this test-suite, we also conducted research into the latest web
development technologies to accomplish with emphasis on the security in order
to produce a reliable and secure development process and to provide open
access to this proof of concept for further testing and development.

Finally, the Kubernetes technology will be investigated to create a cluster and
organize the services as an auto-scale single product.

Keywords
Speech-To-Text, Algorithms, FLOSS, Kubernetes, DeepSpeech, Cloud,
Subtitles, Automatic Speech Recognition, Test Suites, Full-stack, Node,
Angular, Mongo, Google Oauth 2.0, AWS, Containers, Pod, Replicas, Docker.

ii

Resumen
Con la proliferación de servicios de voz a texto basados en la nube, de los
principales proveedores Cloud, así como la aparición de varios proyectos de
código abierto, puede resultar difícil decidir por dónde empezar y cómo hacer
uso de estas tecnologías relacionadas con el manejo de artefactos de grabación
que son el subproducto de la educación en línea.

El hecho de que haya tantos recursos disponibles significa que las barreras
informáticas y técnicas para aplicar los algoritmos de reconocimiento de voz
han disminuido hasta el punto de dejar de ser un factor en la decisión de
utilizar los servicios de voz a texto. Otras barreras como el precio, el tiempo y
el acceso al código fuente de los servicios (libertad de software) pueden ahora
tenerse en cuenta en la decisión de qué plataforma utilizar.

El presente caso de estudio es el comienzo de la elaboración de un conjunto de
pruebas y una guía para comparar las bibliotecas de voz a texto y su precisión
inmediata, integrando al mismo tiempo esas bibliotecas en una sola aplicación
de prueba. Nuestro conjunto de pruebas inicial emplea dos modelos: un
modelo basado en herramienta cloud que emplea AWS S3 usando AWS
Transcribe, mientras que el modelo de código abierto ejecutado en la red
interna se basa en DeepSpeech de Mozilla. Presentamos nuestros hallazgos y
recomendaciones basados en los criterios descubiertos.

Además, más allá de las comparaciones de las bibliotecas de Voz a Texto,
también investigamos los artefactos producidos por la alta calidad de Voz a
Texto y examinamos e informamos de las nuevas características disponibles
en relación con las transcripciones de texto. La decisión basada en nuestros
requisitos se utilizará para desplegar un sistema educativo completo. Este
sistema tiene como objetivo desarrollar un servicio que facilite el aprendizaje
de los estudiantes y ayude a los profesores a crear publicaciones derivadas de
sus propias clases, mejorando el aprendizaje en general.

Con el fin de entregar este conjunto de pruebas, también llevamos a cabo una
investigación sobre las últimas tecnologías de desarrollo web para lograr, con
énfasis en la seguridad, producir un proceso de desarrollo fiable y seguro y
proporcionar un acceso abierto a esta prueba de concepto para su posterior
prueba y desarrollo.

Finalmente, se investigará la tecnología de Kubernetes para crear un cluster y
organizar los servicios como un único producto automáticamente auto
escalable.

Keywords
Speech-To-Text, Algorithmos, FLOSS, Kubernetes, DeepSpeech, Cloud,
Subtítulos, Reconocimiento Automático de Voz, Test Suites, Full-stack, Node,
Angular, Mongo, Google Oauth 2.0, AWS, Containers, Pod, Replicas, Docker.

iii

Contents
1 Introduction ..1

1.1 Motivations .. 1
1.1.1 E-Learning ... 1
1.1.2 Transcriptions .. 2

1.1.2.1 Methods .. 3
1.2 Large-Scale applications ... 4

1.2.1 Challenges ... 4
1.3 Application architecture patterns ... 5

1.3.1 Monolithic architecture .. 5
1.3.2 Microservice architecture ... 6

1.4 Objectives ... 7
1.4.1 Gantt ... 9

2 Speech-To-Text .. 13
2.1 Selection .. 14
2.2 Analysis Factors ... 14
2.3 AWS Transcribe Methodology ... 14
2.4 DeepSpeech Methodology ... 16

3 Design and Infrastructure .. 18
3.1 Requirements ... 18
3.2 Requests processing ... 19

3.2.1 Kubernetes stream ... 19
3.2.2 Angular stream .. 20
3.2.3 Node stream ... 22

4 Deployment and Implement ... 23
4.1 Angular .. 23

4.1.1 Models ... 23
4.1.1.1 Router Module .. 23
4.1.1.2 Globals ... 24

4.1.2 View ... 26
4.1.2.1 Navbar .. 26
4.1.2.2 Footer ... 27
4.1.2.3 Log In ... 28
4.1.2.4 Student ... 29
4.1.2.5 Professor ... 30
4.1.2.6 Admin ... 31
4.1.2.7 Edit Video ... 31
4.1.2.8 Show Video ... 32

4.1.3 Controller ... 33

iv

4.1.3.1 Authentication guard .. 33
4.1.3.2 HTTP service ... 33
4.1.3.3 File service .. 34
4.1.3.4 Video phrase pipeline .. 34

4.2 Node ... 35
4.2.1 Auth... 35
4.2.2 DeepSpeech integration ... 37
4.2.3 STT Method Comparation .. 37
4.2.4 Selection Criteria ... 38
4.2.5 Results ... 39

4.3 MongoDB ... 40
4.4 Testing ... 41

5 Reliable Delivery Process ... 43
5.1 Deployment .. 43
5.2 Kubernetes ... 44

5.2.1 Infrastructure as code .. 46
5.2.2 Final Resource Infrastructure .. 47

5.3 Jenkins .. 48
6 Conclusions ... 50

6.1 Future Improvements ... 51
7 Bibliography .. 52
8 Annex .. 54

8.1 Node code structure ... 54

v

Figures
Figure 1 Task overview Gantt .. 9
Figure 2 Meeting task ... 9
Figure 3 Scope stage ... 10
Figure 4 Research stage .. 10
Figure 5 Design stage .. 10
Figure 6 Deployment stage .. 11
Figure 7 CI/CD and Document drafting .. 11
Figure 8 Hours distribution Gantt ... 12
Figure 9 Kubernetes request processing .. 20
Figure 10 Angular MVC patern ... 21
Figure 11 Node code structure. Source: [15] .. 22
Figure 12 SPA Routes ... 24
Figure 13 Navbar view ... 27
Figure 14 Professor footer ... 27
Figure 15 Student footer ... 28
Figure 16 LogIn Test Suit .. 28
Figure 17 Hint languages .. 28
Figure 18 Student home site ... 29
Figure 19 Video accordion ... 29
Figure 20 Professor home site ... 30
Figure 21 Video card professor .. 30
Figure 22 Admin home site ... 31
Figure 23 Edit video site ... 31
Figure 24 Show video view .. 32
Figure 25 Edit transcripts ... 32
Figure 26 AWS measures .. 38
Figure 27 Deepspeech measures ... 38
Figure 28 Kubernetes cluster .. 45
Figure 29 Kubernetes cluster description .. 45
Figure 30 Kubernetes control plane. Source [28] ... 45
Figure 31 Yaml pod and service Kubernetes .. 46
Figure 32 Yaml ingress kubernetes ... 46
Figure 33 Web access to ingress endpoint ... 47
Figure 34 Pods description, running node detail ... 47
Figure 35 Console access to ingress endpoint ... 47
Figure 36 Complete CI/CD pipeline for microservices in azure. Source: [31] . 49
Figure 37 CI/CD pipeline Test Suite ... 49
Figure 38 Example view video transcriptions .. 50

vi

Listings
Listing 1 ffmpeg command AWS Transcribe .. 15
Listing 2 AWS Transcribe JSON transcribe structure 16
Listing 3 Reading router params Angular .. 24
Listing 4 Global variables .. 25
Listing 5 Global classes ... 26
Listing 6 Footer fixed bottom ... 27
Listing 7 Example HTTP request ... 34
Listing 8 Mongoose functions for setting and validating a password 36
Listing 9 GRPC service proto description ... 37
Listing 10 Nested schemas MongoDB .. 41
Listing 11 Basic Angular component test .. 42
Listing 12 Basic Node.js test ... 42
Listing 13 Test Suit IaC Kubernetes .. 47

1

1 Introduction
1.1 Motivations

Online education has been in our lives for a while, it has been a good option for
people that cannot access to presential education due to time requirements,
price or other personal problems. Now it’s being an increasing number of web
services offering reliable online courses with real certifications like Udemy,
coursera or edX. This last one is the first integration between online courses
companies and some top university institutions. And each day more companies
invest more on online courses to instruct their workers.

This service will both facilitate student learning and help teachers create
publications derived from their own classes, enhancing learning. It is focused
on IIT students and uses their authentication service, but it could be
extrapolated to any university with the necessary video systems, effortless.

I believe that Speech-to-Text technology have become stable at the current time
of the writing of this paper. We can find both private and open-source options.
So, I will compare them and find the most suitable for the final service.

What is offered to IIT students is the ability to transcribe and search for
keywords in their course videos, in addition to being able to export them as class
notes.

On the other hand, professors would also increase their performance, when
observing the sessions. They can reorganize the subject with more emphasis on
the terms that have not been dedicated enough time to them, while reviewing
their transcripts. And even paraphrase ideas from the transcripts of those
lessons to create a book.

This application is going to emphasize on the security section, since these videos
and transcriptions represent the most important assets of the university as a
company.

1.1.1 E-Learning

Most of this online learning methods can be sub-divided on two main groups
asynchronous and synchronous. While asynchronous learning is an approach
centered on the student allowing more schedule flexibility, synchronous
learning is a teacher-centered approach allowing more instant interaction with
the students and a feeling of class group.

The system deployed follows the asynchronous style as it gives the students
independency with unlimited access to the resources shared by the professors
anywhere. They also can access to the resources in a linear or freeform way.
The negative point its lack of direct interaction with the professor and other
students.

 Pablo Ángel Álvarez Fernández

2

David Leaser from IBM shows some e-Learning benefits:

- Reduced cost: the amount of time spent away from work is reduced.
- Efficient: an instructor can support multiple students in multiple

locations.
- Globally consistent: e-learning provides a global solution to synchronize

worldwide skills.
- Scalable: bandwidth expense and the infrastructure for transmitting data

are the key variable costs to scale.
- Trackable: provide tracking mechanisms that record attendance,

completion and time spent.
- Convenient: e-learning solutions allow a student to learn at their

convenience, unique location and/or during their time preference.
Students may pause and resume training.

He also provides method to measure the company’s return on investment (ROI)
for training, based only on employee productivity gains. “A productivity gain of
just three minutes per employee per day could save a company with 1,000
employees at least $240,000 USD.” [1]

This project tries to urge universities to claim their place over those profits. Any
medium university has all the resources required to provide e-Learning, they
just need to go a step forward and share their knowledge online.

1.1.2 Transcriptions

Indexing and transcribing are extremely useful ways of identifying the main
themes of a recording and the approximate point at which they occur in the
recording. This reduces the time needed to identify the content. In addition, they
help researchers quickly determine if a recording is related to a selected topic.

While persons watch a video, they are using the senses of sight and hearing.
The sight is considered an important sense as it is very tied to mobility and give
us a huge amount of information of our environment. It is also tied to memory,
as our minds capture images to reinforce the rest of the senses. This
reinforcement over the hearing sense, help the understanding of the speech
adding context as for example hand movement information or the lips movement.
However, the most crucial information is sent via the hear sense. You still can
understand most of the video closing your eyes. Sometimes it is even the unique
source of information as it happens on the radio or static image videos.

What can be achieve by retrieving the transcriptions from their videos, is to
show that text synchronized with the image can reinforce the most crucial
source of information. As it will be received over two ways. Lastly, the heard
sense also receives music or sound effects but in a class case, this is usually
considered as noise. The main source of information is the professor voice who
gives the speech to their students. Having the support of the transcriptions will
also help in noise reduction and with difficulties to heard low sounds.

 Pablo Ángel Álvarez Fernández

3

The Factor test suite has an application initially in the academic higher-learning
arena relating to the concept of learning management systems. Most
Universities in America use an LMS to contain recorded or ad-hoc class videos
for students to watch or re-watch. Universities host additional video on YouTube
or other streaming channels. Factor targets the captured audio and video for
use in Speech-to-Text conversion in order to produce an internal written corpus
for an education institution. This written or transcribed corpus can be
presented back to a University body for additional works such as:

- Subtitling of streaming video
- Search engine capability with timestamp correlation (a modern Card

Catalog) [2]
- Confidence scoring in closed captioning [3]
- Custom markdown capabilities and dynamic text creation for ebook

creation (digital library)
- Public API access for historical research purposes

There is an additional hidden cost of using Speech-to-Text on a large corpus of
video. Once a video has end up their useful lifetime, it is too big to be stored
indefinitely. What I am proposing is to store only that piece of information that
summarizes the file. Taking as an example a video 2:24:49 hours long with a
quality of 720p, it will use approximately 1.3 GB of storage size or
1,352,497,909 bytes. While the text transformation would only require a size of
86,542 bytes. This minimization means a decrease of 99.993601% on the long-
term storage requirements.

1.1.2.1 Methods

Analyzing financial facts, there are three different strategies while approaching
the transcript of a video. [4]

First, use a professional transcription service. Standard rates for a professional
North American transcriptionist range from $1.50 to $3 per minute of audio
($90-180 per hour of audio), depending on the audio quality and number of
speakers. In addition, transcriptions require a minimum one-day wait. As we
will see, this is the system with the highest cost and the slowest. But the quality
of the results will be 99% of accuracy.

Secondly, choose software to do it. The price range for this setting would also
include the hardware costs to about $1.44 per hour of text to transcribe. The
higher the price services represent cloud services, in this case AWS Transcribe.
[5] Furthermore, for example AWS gives other advantages such as more
languages, no need of expertise training models, options to add vocabulary
terms or large variety of file formats.

Thirdly, do it yourself with software and crowdsourcing. Build your own
application, run your own Speech-to-Text library and use your audience
(students, members, viewers) do work in conjunction with the library to perfect

 Pablo Ángel Álvarez Fernández

4

the transcripts and machine errors. This method does not have an upfront or
per hour cost outside of acquiring hardware and the cost of electricity to tun the
servers. The main disadvantage is the accuracy of the work, it may never be
ended or even deliberately introduce mistakes. This model will require extra
monitorization of the services.

The application is going to use a mix of second and third methods to create
transcriptions on a cost-effective manner, creating a fast first prototype and fix
them giving a small task to qualified users.

1.2 Large-Scale applications

Nowadays, as complexity in technology is increasing, you must step back and
get an overview of the whole structure before addressing the issue. It is difficult
to make a big invest on new large applications so initially these may not afford
expensive systems to manage all the complexity. The problem comes while
predicting the increase on requests that the application has to take care. If the
predictions are too low, the application won’t be able to respond to every request,
resulting in long waits for users, which will stop using the service and if the
predictions are too high the expenses won’t meet the revenues.

1.2.1 Challenges

When building a large-scale application, the architect has to deal with some
serious challenges upfront or the whole system could collapse. The first
challenge is performance, these applications need to handle a large number of
requests and users reaching our service simultaneously. This requires high
performance to decrease the clients’ waiting time on their queries. Another
challenge which improves the performance is the scalability, creating more than
one process to respond these queries is a way to increase that performance. The
problem arises from connecting these independent processes and trying to make
them behave as a single application, which is known as abstraction.

This large number of requests also promotes larger issues. They end up
producing a large volume of data, with many different types. Because
applications not only need to store user information or the product they offer,
these applications also track logs or behavior over the time, for example.
Another issue came from the fact that we live in a global world, there is a need
of availability every day at every time, and these requests can come from
multiple locations. The long distance a request travels, the more time it takes.
This challenge can be fixed having several nodes in different locations. But that
also increases the managing complexity.

Managing these difficulties require the application of some technologies which
make our deployment process and posterior maintenance more reliable. [6]

 Pablo Ángel Álvarez Fernández

5

1.3 Application architecture patterns

Most new companies today run their business processes in the cloud. Newer
startups and enterprises which realized early enough the direction technology
was headed developed their applications for the cloud.

Not all companies were so fortunate. Some built their success decades ago on
top of legacy technologies - monolithic applications with all components tightly
coupled and almost impossible to separate, a nightmare to manage and
deployed on super expensive hardware.

Having a defined structure is very important while creating a Large-scale
application. This kind of application has many points of failure and are usually
developed by a team of programmers that may not interact every day, but they
need to be able to allow standardized connections between the components that
form the application. They have to produce a legible code in case another
programmer has to follow the deployment or at the end, allow an easier
maintenance within the application lifetime. [7]

As Douglas C. Schmidt states on his book Pattern-Oriented Software
Architecture, “A pattern is a recurring solution schema to a standard problem
in a particular context. Patterns help to capture and reuse the static and
dynamic structure and collaboration of key participants in software designs.
They are applied to resolve common design and implementation problems.” [8]

What these patterns end up adding to the whole structure are an increased
clarity of roles, responsibilities, and relationships to one another.

1.3.1 Monolithic architecture

The applications that are supported over this architecture are mostly called
legacy systems. This name is used to describe outdated or obsolete software
programs. They mostly use old technologies and standards and may become
more unstable as the company introduce new paths.

A monolith requires an expensive investment in hardware. Being a large and
unique piece of software that is continuously growing, it has to run on a single
system that has to meet your computing, memory, storage and networking
requirements. Hardware of such capacity is both complex and expensive.

Since the entire application of the monolith is executed as a single process, the
scaling of certain individual features is almost impossible, the monolith must
be scaled together. Internally it supports an encrypted number of connections
and operations. However, scaling the entire application means manually
deploying a new instance of the monolith on another server, typically behind a
load balancing device. This means doubling the cost and wasting some
computing power.

 Pablo Ángel Álvarez Fernández

6

In addition, during upgrades, patches or migrations of the monolith application,
downtime occurs, and maintenance windows must be planned. Because, service
interruptions will affect customers. It is true that there are solutions to minimize
customer downtime by configuring monolith applications. One such
configuration would be the active/passive high availability configuration.
Although this can still be a challenge for system engineers. It requires keeping
all systems at the same patch level.

If you consider a legacy system, written in older programming languages like
Cobol or Assembler, it may be more economical to rebuild it from scratch as a
native cloud application. A poorly designed legacy application should be
redesigned and rebuilt from scratch following modern architectural patterns for
microservices and even containers. Applications closely tied to data warehouses
are also poor candidates for refactoring.

However, if the application is in suitable shape, companies can use an
incremental refactoring approach. This ensures that new features are developed
and implemented as modern microservices. These new pieces of code will be
able to communicate with the monolith via APIs. But, the need to add code to
the monolith is eliminated. This will slow down the degradation of the monolith.
Meanwhile the monolith is slowly fading away while all or most of its
functionality is being modernized into microservices. This incremental approach
provides a gradual transition from a legacy monolith to a modern microservices
architecture and enables the phased migration of application features to the
cloud.

Once an enterprise chooses the path of refactoring, there are other
considerations in the process. As the choice of which enterprise components
should be separated from the monolith to become distributed microservices, a
decision must be made on how to decouple the application databases to
decrease the data complexity of the application logic, and how to test the new
microservices and their dependencies. These are just some of the decisions an
enterprise faces during refactoring.

The refactoring phase slowly transforms the monolith into a native cloud
application that takes full advantage of the cloud's features, coding in new
programming languages and applying modern architectural patterns. Through
refactoring, a legacy monolithic application is given a second chance at life: to
continue living as a modular system adapted to fully integrate with today's cloud
automation tools and services.

1.3.2 Microservice architecture

These legacy apps need to be refactorized to break the highly interconnected
structure. It will be turned into some smaller services before been moved to the
cloud.

 Pablo Ángel Álvarez Fernández

7

When thinking about a microservice, we can think about each of the pieces that
make up a legacy application. These microservices are loosely coupled, each of
which performs a specific business function. All the functions grouped together
form the overall functionality of the original monolithic application.
Microservices are easy to select and group based on color, size, shape, and
require minimal effort to relocate when necessary.

The microservices based architecture is supported by the principles of Event
Driven Architecture and Service Oriented Architecture (SOA), where complex
applications are composed of small independent processes that communicate
with each other through APIs over a network. APIs allow access to other internal
services of the same application or external services and applications of third
parties.

Each microservice is developed and written in a modern programming language,
selected to be most suitable for the type of service and its business function.
This offers great flexibility in matching microservices to specific hardware when
needed, allowing deployments on inexpensive commodity hardware.

While the distributed nature of microservices adds complexity to the
architecture, one of the greatest benefits of microservices is scalability. As the
overall application becomes modular, each microservice can be scaled
individually, either manually or automatically through demand-driven self-
scaling.

Continuous improvements and patching processes are other benefits of
microservice architecture. There is virtually no downtime or service interruption
for customers because upgrades are performed seamlessly, one service at a time,
rather than having to recompile, rebuild and restart an entire monolithic
application. As a result, companies can develop and deploy new features and
upgrades much faster, in an agile approach, having separate teams focusing on
different features, thus being more productive and cost-effective.

Management of large-scale applications has changed and evolved in huge steps
during the last few years. When hardware level virtualization first gained
traction, it quickly became the standard model for application deployment

1.4 Objectives

I have observed these three following problems in our society. One is that since
2007 drastic content shift from printed and book format to digital media leading
to social platforms. For example, YouTube has their own media generators on
an exclusive basis, but also provide content taken from outside the social
network like news, TV shows or music festivals. Another problem is that these
platforms control the embodiment of human knowledge. They lack on content
freely “text” searchable as you can only search by title or description and the

 Pablo Ángel Álvarez Fernández

8

content of these social platform is owned by these single companies. Last, this
media is restrictive and don’t allow the creation of text-based derivative works.

What I propose to deal with these problems:

1. Speech-to-text technology is now capable and cost-effective to produce
text searchable transcripts of digital media.

i. Through these providers as AWS Transcribe.

2. Project Factor platform allows.
i. Content freely “text” searchable.
ii. Maintain ownership of your digital media and speech-to-text

searchable transcripts.

3. The community can own this platform and create text-based derivative
works.

Project Factor will be able to:

- Produce text searchable transcripts of media.
- Search “text” freely.
- Maintain media ownership.
- Help to create text-based derivative works.
- Offer both Cloud and OpenSource models.

To sum up, the completion of the project consists on the design and deployment
of a Large-Scale client-server application. All sustained over a reliable
integration and delivery process to provide online classes anywhere, anytime.

The above requirements would demand high scalability and availability,
transparently delivered and consistency. With the creation of a tool that tackles
the problem, I want to see an increase on performance of students and
professors.

To deal with the typical problems of a Large-Scale application, I am going to
support the hole application on the Kubernetes engine. As the problem requires
to support a big amount of people and resources at the same time, this setup
will orchestrate all the containers and will provide the scalability and stability
needed.

Kubernetes brings software development and operations together by design. By
using a declarative way to describe the decoupled infrastructure that constructs
to describe how applications are composed, how they interact, and how they are
managed.

The transcription service is where the value resides, I make use of the AWS
Transcript solution from Amazon to translate the video and store the plain
information on the database. As I make use of microservices, it could be
changed to run in any other commodity as the open-source platform named
DeepSpeech. There will also be a comparation and examples between the

 Pablo Ángel Álvarez Fernández

9

execution of both solutions. This service can be abstracted to an endpoint that
will take a video from the user and will return the extracted words alongside the
timestamps from when the word was said.

1.4.1 Gantt

Project Factor has been developed following the following summary tasks and
ends with the milestone regarding to the presentation of the project at Illinois
Institute of Technology.

As can be seen in the image bellow, it starts with the weekly meeting of one-
hour duration. Then, the development of the application divided into and
analysis of the scope of the problem, the further research of new technologies
needed to succeed in the system building, the design of the infrastructure
according to the needs, followed by the construction of the software and lastly
surrounded by good coding practices such as testing and the continuous
integration and continuous delivery pipeline.

 Figure 1 Task overview Gantt
To further analyze each of these phases, a short subdivision of each of these
tasks will be shown.

The meetings consider the presentation and selection of the project, the time
required to present the project on an innovation challenge celebrated at the IIT
and an hourly weekly meeting that has been represented by 0.2h per day or 5%
of the daily schedule.

 Figure 2 Meeting task

 Pablo Ángel Álvarez Fernández

10

The first tasks while developing a project is determine the scope. I was given a
video showing the basic work of another old solution.

 Figure 3 Scope stage
Then I started the research on technologies that I had never used like
Kubernetes and Speech to text technologies as the main driver of this innovation.
I had a little more background in front-end and back-end frameworks, so that
took less time for me to decide. Finally, I has also been my first time working
with docker and I spent some time making tutorials.

 Figure 4 Research stage
Following with the draft of the front-end views, the back-end routes
requirements, the object models and the interconnection of all these pieces.
Firstly, with docker-compose and then deploying the git repositories in Docker-
hub and then seeing then deployed automatically on Kubernetes.

 Figure 5 Design stage

 Pablo Ángel Álvarez Fernández

11

This is the core problem, the design of the software, this could have taken longer
but as far as I where more familiarized in these technologies we are not getting
deeper here, only show the time was mostly spent on the transcription process.

 Figure 6 Deployment stage
The final days before the project submission I have been working on the hole
automatization process alongside with the document drafting.

 Figure 7 CI/CD and Document drafting

 Pablo Ángel Álvarez Fernández

12

This result on the following hourly distribution numbers.

 Figure 8 Hours distribution Gantt

13

2 Speech-To-Text
As the Gutenberg printing press become a revolution to text media, nowadays,
a branch of machine learning known as automated-speech-recognition (ASR) or
speech-to-text (STT), represents a dramatic change in the effectiveness and
efficiency of transcription systems.

This branch of machine learning has made a big progress over the past years.
Even though it has been monopolized by large corporation due to a couple of
reasons. The high compute requirements were a high entry barrier and followed
by its requirement of large speech data sets with a diverse vocabulary and a
variety of accents for each language.

This companies started developing private services applied to their own devices
like assistants as Siri, Alexa or Cortana, which improved their neural networks
and increased their variety of data sets.

Assistants have been sent to the background and companies has started to sell
their extra computing times for these advanced deep-learning neural network
algorithms as cloud services like AWS transcribe or Google Speech API. This
APIs allows users to send real-time or recorded audio or video files and return
the text associated. These services are now offering accuracies up to 95% or
higher. [9]

Taking a look at the example provided by Matthew Loxton where she presents
itself transcribing a 30-minute audio file, taking several hours. Then comparing
three voice to text services transcribing nine videos, two of them based only on
machine learning methods with a mean cost per minute of $0.17 with an
accuracy of 98% and the third one with a cost of $1.00 per minute and 100% of
accuracy mixing both machine and human methods. She founds that machine
alone transcriptions only needed edits, of typically for similar-sounding words
such as “IV” vs “IB”, or “wake” vs “wait”, and it didn’t make a significative
advance to their needs. [10]

With the application of these techniques we will provide universities with
indexing and transcribing capabilities. These are extremely useful ways of
identifying the main themes of a recording and the approximate point at which
they occur in the recording. It would reduce the time needed to identify the
content. In addition, they help researchers quickly determine if a recording is
related to a selected topic over a big set of media.

As we will be talking about transcriptions played alongside the class video, it
will be required to have adequate timestamps to keep the synchronicity between
voice and transcription text.

All this done on purpose of accessibility, ability to research and collection of key
words as data. A final process will identify the main topics that have been
covered to create that indexing over the final transcripts.

 Pablo Ángel Álvarez Fernández

14

2.1 Selection

In order to develop a proper examination of Speech-to-Text libraries the research
settled on comparing initially two models, a cloud based closed source service
and an on-premises opensource software.

The current major Speech-to-Text cloud platforms considered were:

- Google Speech-to-Text
- Azure Speech-to-Text
- IBM Watson
- Amazon Web Services Transcribe

The two major opensource Speech-to-Text libraries considered were CMU
Sphinx and Mozilla DeepSpeech.

Though there are no doubt more libraries available, in order to begin to
understand the usefulness of Speech-to-Text as a whole only AWS Transcribe
and Mozilla DeepSpeech were selected. This will leave room for additional
libraries and comparative research. AWS Transcribe was selected because of
the size of AWS and its available computing power. Mozilla DeepSpeech is a
relatively new library available not only with promising results, but also the
largest crowdsourced corpus of transcribed audio that can be used as a test-
suite for any Speech-To-Text library called Common Voice. [11]

2.2 Analysis Factors

In addition to basic computational factors as accuracy, we wanted to examine
factors of cost in using these services as well as examine the Software Freedom
of each solution. The source and background of software freedom is important.
Many people view the ability to control their own data and control their own
software/computer as more valuable than pure features and straight cost. In
an academic setting where learning is valued above all else, Software Freedom
should be considered. The term Software Freedom should not be confused with
Privacy which is another issue all together but can be conflated. A research
group out of University of Wisconsin-Madison did a similar research project
using DeepSpeech, but their focus was on privacy alone. [12]

2.3 AWS Transcribe Methodology

Amazon Transcribe is an automatic speech recognition (ASR) service that makes
it easy for developers to incorporate speech-to-text capability into their
applications. Using the Amazon Transcribe API, after storing the media in a S3
bucket. The service will return a text file with the transcribed voice.

The application created is supported on a Node.JS and we have made use of the
AWS-SDK available on NPM to integrate with it remotely. We can call via API the

 Pablo Ángel Álvarez Fernández

15

AWS servers from our code. It requires two keys, accessKeyId and
secretAccessKey for authentication. In the transcription case, it also requires
setting a region, because the transcription service is only available in 15 regions
worldwide. In our case, the servers were closer to “us-east-1” region, and the
AWS S3 bucket used has to be in that same region.

Because of the long transcription times, after finalizing the processing of the
video, a response will be sent to the client. This will end the request-response
cycle and allow us to submit the transcription job at background.

First, the audio will be extracted as it is the only meaningful piece and this will
decrease the transmission requirements, in terms of time and size. In this case,
the best audio format will be extracted with ffmpeg, here is an example of which
command line provide the best acceptable format. Although, AWS transcribe is
prepared to accept many formats.

ffmpeg -i video.mp4 -acodec pcm_s16le -ac 1 -ar 8000 audio.wav

 Listing 1 ffmpeg command AWS Transcribe
It will output an audio file using the codec pcm_s16le, in a single audio channel
and with a sampling frequency of 8000Hz.

Then, the output audio will be sent to a S3 bucket, located in the same
geographic localization as the consequent launched transcription job. This job
name parameter doesn’t allow duplicates. Therefore, the timestamp will be
added to this parameter for a unique URI as per S3 naming requirements.

This S3 bucket URI will be sent to AWS Transcribe and the transcription job
will be loaded and start on the AWS services. In our case, a timeout will trigger
every ten seconds and keep it running while the response displays
“IN_PROGRESS” as status.

Once the transcription job has finished, the output JSON URI will be stored
within the last response and we will be able to access those transcripts via an
S3 bucket.

Our application retrieves the transcript and stores it in our server’s database
and we will delete all the information from the S3 bucket to retain our assets
inside our barriers.

At the end of the AWS transcription job, the transcript retrieved will follow the
next JSON structure.

jobName: {type: String},
accountID: {type: Number},
result: {
 transcripts: {type: String},
 [
 start_time: {type: Number},
 end_time: {type: Number},
 alternatives: [{

 Pablo Ángel Álvarez Fernández

16

 confidence: {type: Number},
 content: {type: String}
 }],
 type: {type: String}
]
},
status: {type: String}

 Listing 2 AWS Transcribe JSON transcribe structure
AWS has the capability to do transcription on single and multiple speaker audio
inputs. For the sake of our test-suite we opted for single speaker 5-minute
lecture clips.

Here we are using the basic parameters to compare the starting accuracy for
both methods. AWS only lacks in a model to avoid active waits. As you can see
in the code, we have to trigger a request each ten seconds, asking if the
transcription job has been completed.

With the transcript output in our hands, and without much effort, when we look
at our results, we can see correct punctuation and text-formatting. The results
even formatted “one point two” to “1.2” [2]. Also, the system adds timestamps
for each word in the text. So, we will be able to match each word in the text to
the corresponding place in the audio file. The next feature is the recognition of
multiple speakers and label their voices in the text. And finally, the possibility
of providing a word dictionary. it can be seen multiple errors identifying
acronyms like SSH, getting outputs as “S s H” or “s s h” that might be solved
with this feature.

2.4 DeepSpeech Methodology

For the Free and Opensource model we have deployed DeepSpeech behind a
python service in our test suite. In this case we will be using the inference model,
which refers to the process of using a trained machine learning algorithm to
make a prediction [1]. Secondly, there will be a necessity to continually
optimizing our own model. This involves the use of a deep-learning framework
such as TensorFlow, which is the one used by DeepSpeech and training datasets.

Application wise, DeepSpeech provide inference methods in their NodeJS SDK.
However, the second part, training the dataset can only be done using Python
code as this is the case.

The first actions required by this solution are the same. After finalizing the
processing of the video, a response will be sent to the client. This will end the
request-response cycle and allow us to submit the transcription job at
background.

Again, we will need to extract the audio from the video. In this case, this step is
fundamental as DeepSpeech do not provide any media transformation before its
processing. Then, a gRCP call will be made from the core Node.JS service as the

 Pablo Ángel Álvarez Fernández

17

client to the server Python as the microservice that handles the transcriptions.
The client only transmits a path as they share access to the same storage.

At the server site, the last model and scorer will be loaded to proceed to the
transcription process. The basic DeepSpeech model weights almost 2GB.
DeepSpeech as an open-source solution, is only prepared to transcribe small
chucks of audio. From now on, DeepSpeech can only transcribe correctly pieces
of audio with a length lower than 10 seconds or the quality highly deceases.
That’s the reason why they provide an example code called “Voice Activity
Detector” or VAD.

This was the main missing piece in the starting stages of project that used
DeepSpeech in the past. It is used to split the WAV file into smaller chunks
process each chuck and finally save a complete transcript. This piece of code
detects the silent moments to safely divide the audio. It also returns the number
of seconds with sounds in each chuck. It also provides a parameter called
“aggressiveness” to smooth the results.

After transcribing each chuck, a complete transcript will be handled to the client.
This response will be stored in the database to make it available on next
requests.

Among some of the problems of deepspeech is that this “vad_segment_generator”
only support 16000Hz input WAV files for now. It also fails if we pass more than
one audio channel.

The problem with adopting DeepSpeech as your main Speech-to_Text library is
at the moment it is highly American English centered. There are French and
Russian pretrained models with other language support just beginning with
much training work to follow. DeepSpeech currently lacks the ability to place
timestamps in the transcript. This could be easily provide modifying the VAD
tool.

18

3 Design and Infrastructure
The methods presented before will be tested with a test suite designed with the
purpose of validating its accuracy. It will also provide a real use case where
these technologies would increase value of the assets after their transformation.

The test suit has been chosen to be structured as a web framework, accessed
from a user web browser. It is a full-stack solution structured with Angular as
the display tier, Express, and Node.js as the application tier and MongoDB as
the database tier. [13]

Web-based applications consist of two main components:

1. Client-side, also known as front-end, which includes the browser and the
mobile web app client. It will be defined and controlled by Angular and
supported on the MVC framework as will be exposed latter.

2. Server-side that includes all back-end functionalities (database,
validations, authorizations and authentications). While Node.js provides
the fundamental platform for development, it will be supported on
Express to define the webserver and in mongoose to access the Mongo
database. Notice that this is not a relational database and its main
language is JavaScript.

To bring the reader closer to the initial requirements and the way they have
been addressed, we first need to explain the movement of data in the different
subsystems. This makes it easier to understand the routing of HTTP requests
from the front-end to the back-end, all inside subnetwork running in the
Kubernetes cluster. Allowing us to generate many versions of each one of the
different services working as a unique system.

3.1 Requirements

We need to create a system that:

- Reliable service: The use of Kubernetes will ensure high availability and
scalability of services to handle a high number of requests.

- No registration form: we will extract basic profile information thanks to
Google Oauth 2.0, with the limitation of using of university Google
accounts. This limitation also allows us to avoid fake accounts and to
distinguish students from professors.

- Multi-language view: Considering Angular i-18n feature, we can
distribute the same views in multiple languages.

- Generate video transcriptions: As presented before, we have chosen the
AWS transcribe service to meet this requirement.

 Pablo Ángel Álvarez Fernández

19

- Secure system: Starting over a secure design of the components, there
have being inserted guards to guide the correct flow of the requests.

- Create multi-user level accounts: users, admins, superusers.

o Administrators require:
 Adding courses to users.
 Overview of system data.

o Professors require:
 Uploading videos.
 Edit and view videos.
 Edit and view transcriptions.

o Students require:
 View videos.
 View transcriptions.

3.2 Requests processing

The user interacts with the browser and it will one have one global entry point
that will use English language and many language entries points that will
redirect the user the selected entry point. These requests will only be allowed to
the front-end, not to the back-end.

3.2.1 Kubernetes stream

Once the user sent the request, as we are using a Kubernetes cluster, the
request will arrive to the master node. This node will encapsulate the package
through the internal flannel network to the ingress service. There, if the route
is allowed, the package will be pushed forward to one of the replicated front-end
pods, it could be present in any of the slave nodes. Then, the back-end can be
found the ingress in the route “/api”.

While the back-end and the database will share a link name to make the
requests without exiting the flannel network. Finally, we can see a last
microservice called transcription service. This can be called from the back-end
through gRPC messages, although the request is unidirectional, the
transcription service is allowed to respond the request with an object carrying
the output transcription. As we are using a cloud service, the transcription
service will be the only one allowed to connect Amazon servers.

 Pablo Ángel Álvarez Fernández

20

 Figure 9 Kubernetes request processing

3.2.2 Angular stream

The present project is part of a set in which the user only sees the front-end,
hiding the functioning of the rest of the structure.

Internally, the design of this service consists of reusable modules throughout
the application. Looking at the next picture, each of these modules can be part
of the following types. On the right we can see the components, they are the
elements that implement the necessary functionality along the interfaces. The
central modules represent the global interfaces of the system and should be
consistent with the types used in the integration with other parts of the project.
Finally, the service module implements the application-specific business logic,
it doesn’t have a view and contain the most complex decisions.

 Pablo Ángel Álvarez Fernández

21

 Figure 10 Angular MVC patern
The decision to structure the HTTP service in the front-end came about in order
to encapsulate in a single reference all the requests in the direction to the
backend. This is based on the singleton pattern.

Due to the use of Angular framework, we ensure the follow of MVC or Model-
View-Controller pattern. This is a design pattern composed of three parts that
help improve the uniqueness of the components and generate logical
separations over the whole code.

In Angular each component forms its own MVC between the dynamically formed
view or template, model or HTML and the controller or TypeScript. [14]

The view is the result of relating the data that both share through the binds or
links between the template and the controller.

Apart from the MVC at component level, the whole front-end follows this
structure.

- Model: This part benefits from Typescript to define the data structure.
This will be helpful for programming since, through the definition of
global classes, a complete definition of the front-end is unified. At the
same time, it allows the static checking of types.

- View: Allows to display the state of the component. Using the bindings or
links with pipes, properties and/or events, to link data from the
controller that are in turn modelled through the template. Or also,
iterations on an array, *ngFor, and visualization conditions, *ngIf.

- Controller: These code sections are not shown to the client, although they
offer most of the functionality to change the state of the model. It is
important that the internal controller of the component is only in charge
of defining the properties and methods available in the template.
Therefore, global services explained before should extract duplicated
functionalities to discharge each component controller.

 Pablo Ángel Álvarez Fernández

22

3.2.3 Node stream

One of the weak points of employing JavaScript at the server is that it doesn't
need any structure, you could run the whole service from a single file. As we are
dealing with a REST API and one API receives a request and returns a response,
we are going to follow that request from the point where it reaches our
application, travels through our layers, and a response is returned by the
application. Our core backend service has the following folder structure to
differentiate the responsibilities for each part of the code.

 Figure 11 Node code structure. Source: [15]
As James Kolce states in his book, “In a non-trivial application, the architecture
is as important as the quality of the code itself. We can have well-written pieces
of code, but if we don’t have a good organization, we’ll have a hard time as the
complexity increases. There’s no need to wait until the project is half-way done
to start thinking about the architecture”. [16]

A big map of the final structure can be seen at the annex. The column at the
left represents the HTTP request, response flow. The middle column represents
the business logic to extract the audio from the video, following with the
extraction of the transcripts using both methods and then compute the
similarity. Finally, the last column at the right provide abstractions to external
features as is the case with AWS-SDK to the business logic.

23

4 Deployment and Implement
From here, the way in which the requirements presented in the previous chapter
have been fulfilled will be shown. The possible continuation of the project by
other people has been considered and the refactoring of the code has been
emphasized.

4.1 Angular

As Angular framework focuses its architecture on the use of the design pattern
called MVC or model-view-controller, the functionality will be presented
according to these existing divisions in the code.

4.1.1 Models

While the whole system communication had been created, we had extracted
general designs pieces that are similar across the application. These pieces in
Angular are represented as global variables, classes and a router which makes
the system accessible to the client.

The TypeScript compiler will warn us if at any time we don't respect these types
of data, helping in development time and avoiding hidden errors.

4.1.1.1 Router Module

This element of Angular allows to simulate the navigation of the user inside
the web as a SPA or Single-Page-Application. It allows to perform actions as if
it was a normal web, but instead of selecting the path of a different file, it only
reorganizes the components to be shown in a virtual way.

By loading the only web page with the full weight of the application, it avoids
making extra requests to the server. It is true that the first load requires more
time. But between the cache system and the deferred loading managed by the
router, Angular has managed to eliminate the initial overload. This deferred
load comes from the lazy loading concept and consists of postponing the
loading of certain pages that are not going to be visited until their route is
activated. This ensures that initially the non-visited pages do not increase the
loading time.

Each path is composed by an address or path that activates a parent
component. Once the user hit one of these paths, activated component shows
depending on the Boolean output of the guard routers assigned to that
particular route.

These guards control access attempts which meet certain specific conditions
for each route. In our case, it mainly checks the authentication level necessary
to each route.

In addition, thanks to these routes, we can send data from one component to
another as if it were a form. The data that can be used for internal

 Pablo Ángel Álvarez Fernández

24

transformations of the component, are preceded by the character ":" and it is
possible to access them as shown below.

this.router.params.subscribe(params => {
 this.ID = params['id']; // id as route output
}

 Listing 3 Reading router params Angular
The actual model for the SPA router is the following.

 Figure 12 SPA Routes
It has been considered that this can generate access to resources without the
need for permissions, but all this is controlled at both ends depending on the
user who has logged in. The back-end will not return the data and the front-end
will block the entry to that address with the resource to be mentioned below.

4.1.1.2 Globals

These elements make up the core of the application and allow greater
granularity of the block that makes up the application by dividing the tasks to
be performed. We are going to expose the global ones that direct the correct
operation of the application besides offering a separation of the model within
the model-view-controller pattern. It also covers the need to fix a model in
Typescript.

On the one hand, we have the global variables of the system. They contain
static variables that are used throughout the application. They allow changes
to be made to the environment in which the system is used in a simple way.

 Pablo Ángel Álvarez Fernández

25

This allows us to change the path in which the back-end is located or its
version, by replacing a single line.

export class ModelsComponent {
 static version = '/api/'; //future
 static api = 'http://192.168.1.125:3000'; // s ToDo
 static staticsURL = 'assets/';
 static languages = [
 { code: 'en', label: 'English', img: 'english'},
 { code: 'es', label: 'Español', img: 'spanish'},
 { code: 'fr', label: 'Français', img: 'french'}
];

 constructor() { }

 logout() {
 sessionStorage.removeItem('token');
 }
}

 Listing 4 Global variables
On the other hand, it also holds the classes that define the objects used to
correctly relate the application and the definitions of the elements that make
up these objects. It has been decided to use classes instead of interfaces so as
not to have to initialize complex objects before associating them to the answers
of the requests.

The application is formed by “users” that can be students or professors. This
will be distinguished by their authentication level. However, as we are
measuring 127 level of authentication, we can add extra checking levels. For
example, this will be use while promoting a student to Teacher Assistant role.
The application could add 3 point per correct transcription correction while it
can reduce it as a mistake appears. By elevating or degrading the student
authentication level, we will speed up corrections by adding power to good
students or stop the irresponsible corrections over the transcripts.

Each of these “users” will have access to zero or more “courses”. Following to
the next natural division that assets that each course will have zero or more
videos. It represents the media content that is related to a transcript once the
process has finished.

export class Error {
 resNum: number;
 resText: string;
 resBool: boolean;

 constructor() {
 this.resBool = false;
 }
}

export class Course {
 _id: string;
 name: string;
 number: number;
 professorID: string;
 professor: User;

 constructor() {
 this.professor = new User();
 }
}

 Pablo Ángel Álvarez Fernández

26

export class User {
 _id: number;
 token: string;
 email: string;
 family_name: string;
 given_name: string;
 locale: string;
 picture: string;
 verified_email: boolean;
 coursesID: string[];
 courses: Course[];
 authlvl:number;

 constructor() {
 this.picture = "";
 this._id = 0;
 this.courses = [];
 }
}

export class Video {
 _id: string;
 name: string;
 url: string;
 duration: string;
 class: number;
 thumbnail: string;
 courseID: string;
 course: Course;

 constructor() {
 this.course = new Course();
 }
}

 Listing 5 Global classes

4.1.2 View

The main advantage of Angular is that the view is always updated with the
variables you have defined in the controller. For example, if you create a string
variable and when you click on a button you decide to change its value,
automatically the new value is reflected in the view, without you having to do
anything.

This responsiveness work in two ways by using a virtual DOM, instead of
updating the DOM when your application state changes, you simply create a
virtual tree or Virtual Tree, which looks like the DOM state that you want. It
allows that you don't have to worry about refreshing the view when you
change a value or do an operation.

As angular make use of reusable elements called components, each view is
composed of one to several components. We will take a look inside each of
those child views. They have their own model-view-controller to extend the
reusability concept.

4.1.2.1 Navbar

This is a child component that will receive two input parameters, the
authentication level and the picture for the current user. The authentication
level is needed return users to its main site, “/professor” or “/student”, linked
to the university logo.

 Pablo Ángel Álvarez Fernández

27

<app-header [auth]="userInfo?.authlvl"
[picture]="userInfo?.picture"></app-header>

As we can see, the parent component keeps the parameter about the
information of the user optional while waiting for the requests.

 Figure 13 Navbar view

4.1.2.2 Footer

This component will present at the bottom of the site. It will provide
information about usage of the application and provide links to guide sites.

It will not only require the parent component to set the authentication level of
the current user to present the right information. But also, surround the other
main content of the parent component inside the next DOM element.

<div
[ngClass]="(userInfo?.authlvl >= 64)?'bodyprofessor':'bodystudent'"
class="container-fluid">MAIN CONTENT</div>

This will trigger the next global styles:

.footer {
 position: fixed;
 left: 0;
 bottom: 0;
 width: 100%;
 background-color: #f5f5f5;
 max-width: unset;
}

.bodyprofessor {
 margin-bottom:120px;
}

.bodystudent {
 margin-bottom:160px;
}

 Listing 6 Footer fixed bottom
The current example of a professor footer is the next one:

 Figure 14 Professor footer

 Pablo Ángel Álvarez Fernández

28

While the one for a student would be:

 Figure 15 Student footer

4.1.2.3 Log In

This component represents a complete view, it has capabilities to Log in and
Sign up users into the application. This component queries the back end if the
user has been already Sign up. If it is the user first time using the system, it
also registers users with the Google technology, Oauth 2.0 to Sign up them
and retrieve their basic profiling.

As this component was likely to connect with each university registration
system, the implementation provides both fields to the backend. It currently
stores the password entered on the first time Log in, generally called Sign up.
More information on this subject will be given in the following Node
development section.

 Figure 16 LogIn Test Suit
The second utility provided at the bottom right site of this view is the ability to
change the site language. It will also regard on Nginx configurations reading
the field “$http_accept_language”, triggered when the user calls to the “/”
route.

 Figure 17 Hint languages

 Pablo Ángel Álvarez Fernández

29

4.1.2.4 Student

Although this application serves multiple proposes, students represent the
majority of users. They will see this parent component which represents the
main professor site after log into our system. Here we can identify the navbar
and the footer stated before. This view also contains a third component
represented by a card accordion. It shows the courses to which a user is
subscribed.

 Figure 18 Student home site
When a user clicks on any of the courses, the accordion will open and show
the classes associated with that course.

 Figure 19 Video accordion

 Pablo Ángel Álvarez Fernández

30

4.1.2.5 Professor

Their initial page after logging in contains the same components, like navbar,
footer and courses accordion, as the student site. However, this page has two
main differences.

 Figure 20 Professor home site
First, the possibility to upload a course video to the system. And second, the
ability to edit some of the parameters related to a video from their courses.
Changing the video card to the next model.

 Figure 21 Video card professor

 Pablo Ángel Álvarez Fernández

31

4.1.2.6 Admin

There will only be one user with administrator privileges. It will use the same
logging method as the rest of the users. Although, this user can only access to
the “/mockcourses” site. This site allows the administrator to create new
courses and add professors and students to those courses. This information
needs to be mocked at this moment. However, it will come from a certain
university API which contains all this information.

 Figure 22 Admin home site
In the current implementation the professor assigned to the course creation,
gets registered automatically into that course. The second form gives the
opportunity to add students to that courses and also to add extra professors to
a course.

4.1.2.7 Edit Video

This view allows the professor to change the course or the name assigned to a
particular video. It also allows professors to remove the video from the
platform.

 Figure 23 Edit video site

 Pablo Ángel Álvarez Fernández

32

4.1.2.8 Show Video

Finally, this is the place where all the users will spend most of their time. It
can be seen from the student and professor perspective with only one change.
This is the possibility to directly edit the transcriptions. The actual
implementation promotes students to TA, after three accepted as correct
editions. Before this promotion, students will only be able to make suggestions
that have to be accepted by a TA or a professor before seen the changes.

 Figure 24 Show video view
This view contains four things at first eye view. The video, the current speech
of the video at the current time between punctuation symbols, the complete
transcripts and the keywords assigned to the video.

At the bottom of the page we will find the option to make suggestions or if the
authentication level is enough, to directly correct the transcriptions.

 Figure 25 Edit transcripts

 Pablo Ángel Álvarez Fernández

33

4.1.3 Controller

The controllers oversee and handle the view and creating all the logic of that
component. They have all the variables and information that the view needs to
be painted are created. It also takes care of the interactivity of the component,
that is, specifying what is done when rendering the component, when
removing the component from the view, or when clicking on an element of the
HTML.

In the Angular vocabulary, there are other things apart from components like
guards, services and pipelines that are strictly controllers. They aren’t linked
to a template view.

4.1.3.1 Authentication guard

Angular’s route guards are interfaces which can tell the router if the current
user should be allowed to a requested route or not. Its decision is defined by a
true or false return value from a class which implements the given guard
interface.

They give the possibility to redirect the user before he creates conflicts. By
avoiding these shortcuts, unnecessary complexity will be removed from the
code.

In the current case, we found that if a student changed the browser path after
logging in with his account to a professor path, it could upload videos to his
courses. Several solutions were proposed:

- The back-end would control what type of user was logging in and would
cut off access to certain routes. This proposal is necessary, the problem
is that it adds complexity to the back-end. But it does not solve
anything in the front end as it could pass through the administration
paths undetected until a blocked request is made for a user.

- Check the authorization level in the components of all paths.
Something undesirable and rigid.

- Checking the authorization level on an isolated service that would
decide whether to activate the route or perform other behavior. It is up
to the router to guard.

The last solution was taken for its independence and flexibility. By the
addition of router guards to the routes controlling the authentication token
stored into the browser local storage, the system gains the desired security.

4.1.3.2 HTTP service

Most front-end applications need to communicate with a server over the HTTP
protocol, in order to download or upload data and access other back-end
services. By using this element, we avoid using the "HttpClient" dependency of
Angular in the rest of the application and centralize the HTTP requests in a
single file that presents the required back-end functionality.

 Pablo Ángel Álvarez Fernández

34

This allows us:

- Perform quick adjustments in case of errors.
- Mask any request to the back-end by joining view and control.
- Easier migration.

This service is exported as an injectable element accessible from any part of
the application by importing it as "providers: [HTTPService]". Most requests
follow this style.

- return to send the observable to the component that made called the
function.

- The method: GET, POST, PUT or DELETE.
- The server path attached to the address activated in the Api-REST of

the back-end.
- To send the cookie we use the "withCredentials" parameter, set to true.

getUserAct(id:string): Observable<User> {
 return this.http.get<User>(
 ModelsComponent.api + ModelsComponent.version + 'users/' + id,
 {withCredentials: true});
 }

 Listing 7 Example HTTP request

4.1.3.3 File service

This service provides several abstractions to process the upload of a video file.
First it provides a general validator of the file type, in case that the format
changes. Secondly, it offers another method to transform the form data into a
real body and finally it binds the upload progress value to an Angular variable.

It has been designed following good practices to split these particular methods
into a separate service, even though it is only used in the professor upload
function. This allow us to encapsulate the code as one limited purpose,
enhancing reutilization.

4.1.3.4 Video phrase pipeline

Pipelines are elements made to reduce the complexity in the templates making
transformations on objects, variables or simply text.

They are declared through "@Pipe({ name: pipeName})" and arguments can be
passed to them, tolerating some modifications in their normal operation.

In this case, a PipeTransform has been created to which is passed the second
in which is the reproduction of the video. It shows the corresponding phrase
between the previous, to the next punctuation symbol found in the
transcripts.

 Pablo Ángel Álvarez Fernández

35

4.2 Node

NodeJS is a JavaScript based environment that is placed in the server layer as
a tool for building applications easily scalable.

It facilitates the performance of several tasks at the same time and allows a
great deal of control from the server side. It also allows to fast handle high set
of tasks developed in real time.

As a for the core development, we have made use of Express. It is a module
that wraps the functionality of the Node.js http module to provide a simple to
use interface. It also extends the functionality to make easer the handler of
server routes, responses, cookies and statuses of the http requests. [17]

Another meaningful module is grpc. Node.js will use it from a client
perspective. It allows us to connect the separated transcription microservice
independent of the language used. It performs calls over the open source
remote procedure call (RPC) framework that can run anywhere. It enables
client and server applications to communicate transparently and makes it
easier to build connected systems. [18]

4.2.1 Auth

This is a core component to separate the capabilities of each user and blocking
illegal access. At login time a token will be exchanged with the web server and
it will be checked each time the user asks for some data to the backend. This
component also had to meet the requirement of not ask for any information from
the user.

In order to achieve this capability, first we have centered on the no registration
form needed. This make the user believe that he isn’t leaving our organization
and allow us to collect correct information.

While registering new users in a world-wide open platform, we had to take extra
considerations like two-factor authentication or anti-spam account creation.
However, in this development we will only accept accounts previously shipped
by our own organizations, blocking all other accounts. This limitation also
works in our favor while defining the division between students and professors
as they have different domain names.

We had to create an assumption while the call to the university account service
isn’t fulfilled. It is to store the first time or sign up typed password as the fixed
password for that email. Within the assumption of been creating a world-wide
open platform, storing personal information always involves risks.

This risk comes greater while speaking about core information as password.
Since a password don’t need to be presented back to the user, we don’t need a
two-way function as encryption it is. That’s why this solution is supported by
the hash salt method.

First, hashing is meant to verify that a file or piece of data hasn’t been altered.
While it’s technically possible to reverse-hash something, the computing power
required makes it unfeasible. Hashing is one-way and makes every hash value
unique. If two different files produce the same unique hash value this is called

 Pablo Ángel Álvarez Fernández

36

a collision and this force to change of algorithm to prevent attacks. That’s what
happened with SHA-1. [19]

Then, if two users use the same password, they will have the same hash. This
isn’t an algorithm hashing error, it’s the way it works. To fix it we will add salt.
Salting is a concept that typically pertains to password hashing. Essentially, it’s
a unique value that can be added to the end of the password to create a different
hash value. This adds a layer of security to the hashing process, specifically
against brute force attacks.

Following this method, we ensure that we don’t store the real password, and
any password will be repeated. However, since rainbow table attacks appeared,
the next protection step is to create a different salt for each user and store it
within its model.

This is how the hash and salt creation and validation look using crypto library
and an extension of the SHA-2 algorithm.

userSchema.methods.setPassword = function(password){
 this.salt = crypto.randomBytes(16).toString('hex');
 this.hash = crypto.pbkdf2Sync(password, this.salt, 1000, 64,
'sha512').toString('hex');
};

userSchema.methods.validPassword = function(password) {
 var hash = crypto.pbkdf2Sync(password, this.salt, 1000, 64,
'sha512').toString('hex');
 return this.hash === hash;
};

 Listing 8 Mongoose functions for setting and validating a password
After managing the password, we need to retrieve other user data like first, last
names or an account picture. This will be covered by the use of the Google API
linked with the standard Oauth 2.0. Even though this authentication involves
the client, we have encapsulated it in the back-end to make it exchangeable.
For example, this could be achieved with the use of passport module, which
provides connections with multiple Oauth API like Google, Facebook or GitHub.
Since we will one use Google API, no extra complexity is required.

The registration process will be transparent to the user. The first time a user
enters its email into our system, it will be detected as unregistered. This will
result in the return of our own connection URL with Google Oauth API. The
front-end will redirect the user to that URL where Google will ask the user to
confirm the revelation of personal information to our suit. This confirmation will
be limited to accounts within the organization limits.

After the confirmation has been successful, Google will redirect the user to a
previous determined callback. This callback URL needs to be a public DNS or
localhost and return a code within other parameters. Now the user will be again
in our scope and with the use of that code, the new account will be processed
directly querying Google from the back-end.

The query from Google will return the parameter “hd” which contain the domain
name of the email account. It will be used to give the initial authentication level,
1 for students and 64 for professors, as students accounts always finish on
“hawk.iit.edu” while professors account finish on “iit.edu”.

 Pablo Ángel Álvarez Fernández

37

Finally, the new user will be stored into our database and a token will be
returned to the front-end to continue to the user site.

4.2.2 DeepSpeech integration

Besides this method hasn’t been integrated in the test suit because of the
criteria presented on the next points. It is integrated in the comparation tool
as a callable microservice as a proof of concept. Extraction the transcription as
a whole service allow us to scale it horizontally, increasing the number of
containers or vertically, giving it more computational power, in case of usage
peaks. All this without translating this impact to the hole system.

This tool has a grpc client in the Node.js side and a grpc server in the Python
side. Even though Python is single threaded because of GIL (Global Interpreter
Lock), thanks to this service we expand its capabilities creating and
expandable number of workers and communicating different programming
languages.

Both will communicate following this proto message structure. It configures a
TranscribeService that receives the route of a file and returns the output
transcripts.

syntax = "proto3";
package transcriber;

service TranscribeService {
 rpc getTranscription(fileRoute) returns (transcripts) {}
}

message fileRoute {
 string fileRoute = 1;// number order of attribute
}
message transcripts {
 string jsonTranscript = 1;
}

 Listing 9 GRPC service proto description

4.2.3 STT Method Comparation

We have created meaningful set of tests, getting hand transcriptions of
different academic scenarios to test the both private and open-source options
and finally show a measure of each output accuracy with the application of
string similarity algorithms as Levenshtein Distance, Cosine Similarity or Jaro
Wrinker thresholds. [20] [21]

The data tested we used 7 five-minute length recordings of 3 types. Our first
was a two-person technical conversation going over a class introduction. The
next three samples were five-minute class lectures from a male voice and final
three samples were class lecture samples using a female voice. The content of
each recording is not the same, but we tested each sample in our test-suite on
both the AWS Transcribe service and using DeepSpeech.

 Pablo Ángel Álvarez Fernández

38

We felt these scenarios were a real test of an actual record with invariant noise
as well as ambient sounds like sound from the back of the class were students
may introduce noise, multiple speakers in a conversation. These class
situations are likely to happen. Without forgetting to represent both equal
number of male and female voices as the tone of voice changes and the
transcription technology must take this into account. However, as we will see
in the results, the outputs are mostly accurate.

4.2.4 Selection Criteria

Be aware that DeepSpeech technology require a CPU with support of AVX/AVX2
instruction, it shouldn’t be a high entry barrier as AVX extensions were
introduced on Intel CPUs in June 2013.

Despite the fact that cloud-based services have had a longer development term,
we will first compare both selected methods to give a better view of their
performance based on the most important measures: time and accuracy based
on our sources. [22]

The AWS method here includes in the time category the latency for upload and
retrieval of data. And lists the cost to render a 5-minute audio clip.

 Figure 26 AWS measures
While, the DeepSpeech method has output the following performance measures:

 Figure 27 Deepspeech measures

 Pablo Ángel Álvarez Fernández

39

4.2.5 Results

We started on the presumption the cloud tools are more accurate. However,
depending on the project and the desire to retain control of the transcripts, the
cloud service might not be the best option. Also, in the case of a university,
the production of media is very fast. This will be transformed into more than
half of the monthly application budget spent on the cloud technology chosen.
However, with the open source technologies, the own project would begin to
feed back with its own videos improving the accuracy.

Comparing figure 3 and 4 and looking at the results we find some initial
outliers. Female2 results are highly irregular. With the AWS test for the time
category having a standard deviation of 15.45 and a mean of 96.66, we can
discard this result as being greater than 1 standard deviation.

The same results happen in the DeepSpeech tests as there is a standard
deviation of 35.31 with a mean 184.01. Female2 is outside of one standard
deviation.

This result is due to a prevalence of white noise or silence in the recording,
which reflected in the increased accuracy. Taking this into consideration our
results are as follows:

- We see the time value of each test essentially doubled on DeepSpeech
- We see a marked difference in the results of the conversation sample

between AWS Transcribe and DeepSpeech—113 vs 200 seconds due to
multiple speakers

- We see similar accuracy percentages on the remaining six tests per
speech library (internally consistent)

- The means are averages of all of the results per category and per test
- Most accurate was female2 using Cosine Similarity and Male1 Cosine

Similarity for AWS Transcribe
- DeepSpeech most accurate was Female3 Cosine Similarity and Male2

Cosine Similarity
- The quickest render time was Female2 was most accurate (due to much

whitespace) then followed by Female3 for AWS Transcribe
- The quickest render time for DeepSpeech was Female2 (white space

again) Male3

With the current results, we can say that Speech-To-Text cloud services at
this time are enough advanced to provide an adequate accuracy to the
problem presented by this project. Along with the fact that we can combine the
final output with small fixes made by professors, teachers assistants and even
students to stand that mostly 100% of accuracy.

The AWS transcribe cost was $0.0004 per second and can be extrapolated out
consistently. For comparison sake a final category entitled: Freedom, for
Software Freedom was included in the decision matrix for those that value this
aspect of technology.

 Pablo Ángel Álvarez Fernández

40

4.3 MongoDB

As any application that needs data to work, we will need a database. The first
concern is whether or not to choose a relational database. We can ask this
question since our application doesn’t support critical consistent decisions like
medical treatment which should support ACID (atomicity, consistency, isolation,
durability) principles. As an example, our application will create the video
document before the transcriptions has been processed, which could take
minutes, and the student will see a video without transcription at that time. The
student can deal with the lack of transcription for some minutes.

There are a few main differences to be familiar with when deciding which
database works best for your needs.

- Relational databases historically have worked well, when data structures
were much simpler and more static. In the last decade, the non-relational
offers a more flexible, scalable, cost-efficient, alternative.

- NoSQL databases feature dynamic schema and allow you to use what’s
known as “unstructured data.” This means you can build your
application without having to first define the schema. In a relational
database, you are required to define your schema before adding data to
the database. Changing the schema structure in a relational database
can be extremely expensive

- Relational databases are table-based. NoSQL databases can be document
based, graph databases, key-value pairs, or wide-column stores. Today,
we know that data is much more complex.

- Relational databases are vertically scalable but typically expensive. Since
they require a single server to host the entire database, in order to scale,
you need to buy a bigger, more expensive server. Scaling a NoSQL
database is much cheaper, compared to a relational database, because
you can add capacity by scaling horizontally over cheap, commodity
servers.

- NoSQL databases tend to be more a part of the open-source community.
Relational databases are typically closed source with licensing fees baked
into the use of their software. [23]

For the purpose of the test suit and looking at the statements defined before,
we have determined the use of a non-relational database. The decision main
drivers regard on this application as an open-source suit and also refer to the
complexity of our data. As for the open-source licensing we need to be flexible
and cost-efficient. For the complexity, even though we have decided to provide
the transcription with an Amazon service, we leave the door open to change it
to a different model as DeepSpeech has. Using a non-relational database
would let our suit continue its work and additional enhances over DeepSpeech
service could bring more changes to that model. Also, we can understand that
complexity by look at the three different models active right now for storing
AWS transcription service output.

const itemSchema = new mongoose.Schema({
 start_time: { type: String },
 end_time: { type: String },
 alternatives: [{ confidence: String, content: String}],
 type: { type: String }
},{collection: 'item'});

 Pablo Ángel Álvarez Fernández

41

const resultSchema = new mongoose.Schema({
 transcripts: { type: String },
 item: [{type: mongoose.Schema.Types.ObjectId, ref: 'item'}]
},{collection: 'result'});

const transcriptSchema = new mongoose.Schema({
 jobName: { type: String },
 accountID: { type: Number },
 result: { type: mongoose.Schema.Types.ObjectId, ref: 'result'},
 videoID: { type: String }
},{collection: 'transcript'});

 Listing 10 Nested schemas MongoDB
There are some additional features that reinforce our decision on MongoDB
like the use of JSON objects throughout the application, the possibility to
interact with the database without changing the programming language, the
possibility to make updates faster or having a flexible data model that doesn’t
need to be immediately defined.

For development purposes, we have made use of the docker image called
mongo-express. It provides a web interface over a mongo database or cluster.
It has been used as an administrator view while the administrator user wasn’t
available. It allows us to perform all CRUD operations and see the current
database schemas allowing us to mock the courses assigned to a user. Then,
this feature was moved to and Angular view.

4.4 Testing

The main objective for this phase is to review whether the test suit developed,
and specifically the code, meets the requirements that at the beginning of this
project were proposed as an objective to achieve.

We have created the first level of software testing as it is unit test for both the
front-end and the back-end mocking the relation between other components to
ensure a correct deployment. unit test applies to individual units/
components of a software tested. The purpose is to validate that each unit of
the software performs as designed. A unit is the smallest testable part of any
software. It usually has one or a few inputs and usually a single output. [24]

Something important while development following agile methodologies is to
maintain a test structure that allows us to detect the failures introduced when
implementing some new functionality or when refactoring the code. If good
unit tests are written and if they are run every time any code is changed, we
will be able to promptly catch any defects introduced due to the change.
Another benefit is the generation of easier reusability code.

Between the tests, an object is always generated that simulates the behavior of
the component, which is called MOCK so they must import and compile
themselves the modules that the component or service they represent will
need.

 Pablo Ángel Álvarez Fernández

42

For the Angular front-end, the test has been written using Karma, a test suit
created directly to suit Angular testing. Angular is a test-driven framework,
they always provide initial test in a different file while creating any new
component. Due to the execution of this test within the boundaries of a
Jenkins pipeline, we had to change the initial GUI configuration for the
puppeteer module. This module has in its packets, his own chromium
distribution and it allows to run chrome headless and without a sandbox.
Because a testing process cannot depend on having a view or Chrome
installed in the server which runs Jenkins.

When performing these tests, we check that both the template and the
controller work in coordinated and generate the view correctly, as it’s expected
by the basic test.

it('should be created', () => {
 expect(component).toBeTruthy();
});

 Listing 11 Basic Angular component test
This are the actual number of test running. It covers more than the 50% of
possible paths across the code.

For the Node.js tier, the current dependencies are mocha and supertest
modules that allow us to mock the mongo database for testing purposes.

For example:

describe('GET /', function() {
 it('respond with array', function(done) {
 request(app).get('/courses').end(function(err, res) {
 expect(res.statusCode).to.equal(200);
 expect(res.body).to.be.an('array');
 done();
 });
 });
});

 Listing 12 Basic Node.js test

43

5 Reliable Delivery Process
This test suit is pretended to be distributed to the academic circle in order to
wait for next contributions in order to achieve larger progress adding
contributions to the overall deployment and it should be adapted to each
university necessities. That is the reason why it has been planned to deploy a
universal installation mechanism where the new client can select its
configurations. Independently from the results that has been shown on the
transcription selection process, a following study group could take more
importance on the privacy section or could decide to train a new DeepSpeech
model and see its results.

For any of these possible reasons. The ability to support the entire test suit over
a fail-save process is considered crucial. This deployment should be aligned with
the classic engineering cycle of design, construction, testing and validation.

5.1 Deployment

Containerized systems have been selected as they provide a way to build, test
and deploy applications in multiple environments from a developer's local laptop
to an on-premise data center and even the cloud, all producing the same result.

We will also take advantage of their benefits as its better support for
microservices architectures, which can be more easily isolated, deployed, and
scaled, or its DevOps support for continuous integration and deployment
(CI/CD) like we will show later in the document.

As we are getting involved in container environments. We are likely to hear
about two popular tools and platforms used to build and manage containers.
These are Docker and Kubernetes.

Docker is a runtime environment used to create and build software inside
containers. It packages up code and all its dependencies, so the application
runs quickly and reliably from one computing environment to another. A
Docker container image is a lightweight, standalone, executable package of
software that includes everything needed to run an application. in the case of
Docker containers, images become containers when they run on Docker
Engine. [25]

The first step on the deployment of the test suit made use of three different
containers, one for the Angular front-end service, one for the Node.js back-end
and the last one for the Mongo database. All this was initially controlled with a
docker tool called Compose.

This tool helps to define and run multi-container Docker applications. With
Compose, you use a YAML file to configure your application's services. Then,
with a single command, you create and start all the services from your
configuration. [26]

It allows to see the test suit as a unique application which runs with the hit of
only one terminal command, “docker-compose up”.

However, containerized applications can get complicated. This starts to get
pictured when you want another container to manage and view the current

 Pablo Ángel Álvarez Fernández

44

database data. Then, you want to add some replication to the database tier,
which involves some more containers, or you want to subdivide each tier
creating a microservice structure. Finally, you get to the production deadline
and depending on the quantity of the requests expected by the system, in our
case the whole university, you realize that only one container for front-end and
back-end tiers won’t be enough. When in production, many applications might
require hundreds to thousands of separate containers. Then when you realize
the need of other tools that orchestrate or manage all that different containers.
This is when Kubernetes takes in place.

5.2 Kubernetes

This is a container orchestrator that admits multiple container runtime
environments, including Docker. According to its own website, Kubernetes
(K8s) is an open-source system for automating deployment, scaling, and
management of containerized applications. It handles areas within the
underlying infrastructure resources for containerized applications such as the
amount of compute, network, and storage resources required. Orchestration
tools as K8s make it easier to automate and scale container-based workloads
for live production environments. [27]

Kubernetes has a big number of features that make it the perfect platform to
operate high amounts of containers. Some of them are:

- Service discovery so that each container can find and communicate
with another.

- Horizontal scaling and load balancing to distribute the network traffic
so that the deployment is stable.

- Storage orchestration local storages, public cloud providers, and more.
- Automated rollouts and rollbacks to create new containers for your

deployment, remove existing containers and adopt all their resources to
the new container.

- Automatic bin packing for the best use of CPU and RAM over a cluster
of nodes.

- Self-healing (restarts crashed containers, reschedules pods to healthy
hosts etc.)

- Secret and configuration management [28]

To apply all these abstractions to manage our container-based application,
first we need a Kubernetes cluster. This cluster consists of one or more worker
machines, in its notation called nodes. In our case, we have deployed a
Kubernetes cluster with a master node, which only runs the control plane and
route the requests to three slave nodes communicated over a Flannel network.

We have copied the kubeconfig file because it has the cluster credentials to the
development computer, independent from been IOS, Windows or Linux. If we
run in a console the next command “kubectl get nodes”, we will get the actual
status of the cluster.

 Pablo Ángel Álvarez Fernández

45

 Figure 28 Kubernetes cluster
We can add the parameter “-o wide” to get more information.

 Figure 29 Kubernetes cluster description
As we said, the master node takes care of the services shown on the next image
while the slave nodes run the container images. The control plane's components
make global decisions about the cluster like scheduling or starting up a new
pod when a deployment's replicas field is unsatisfied.

 Figure 30 Kubernetes control plane. Source [28]
However, bare-metal environments lack on load balancers available on-
demand requiring a slightly different setup to offer the same kind of access to
external consumers. That’s why we required to set MetalLB, it is a software
load balancer solution that provide a single external ip to the NGINX Ingress
controller, allowing us to connect external clients with any application running
inside the cluster. This IP relays on the kubernetes port type NodePort, which
is usually ranged between ports 30000 and 32767. This was modified adding a
list of allowed external IPs, the IP of all cluster nodes. Achieving the
visualization of this internal applications over known ports as 80 and 443
from any of these IPs.

 Pablo Ángel Álvarez Fernández

46

5.2.1 Infrastructure as code

To test the correct function of the cluster, we have created an example
application. It consists of two containers, one is a nginx image with the
index.html file showing “apple” and another showing “banana”. On the
Kubernetes side, we have a three yaml file which describes infrastructure as
code. The first yaml describe the apple site. After running it, K8s will initialize
the apple nginx container, in Kubernetes called Pod and a service that select
this pod.

 Figure 31 Yaml pod and service Kubernetes
The second yaml will do the same for the banana site and the last one will
describe an ingress. It will route the user request to the services depending on
the requested URI.

Figure 32 Yaml ingress kubernetes

 Pablo Ángel Álvarez Fernández

47

Both Pods can now be accessed from the browser using the master node IP.

 Figure 33 Web access to ingress endpoint
We can also see that the nodes run on the slave nodes running the following
command.

 Figure 34 Pods description, running node detail
If we are inside the network, we can query a slave node directly. We will see the
same response which was managed by Kubernetes before.

 Figure 35 Console access to ingress endpoint

5.2.2 Final Resource Infrastructure

This are the objects infrastructure relevant to this test suit. It can be created
with just one command and will maintain the whole environment.

Tier Pod
manager

Number
replicas

Persistent
Volumes Service External

Ingress
Front-end Deployment 3 No Yes Yes /*

Back-end Deployment 2 1 shared Yes Yes /api(/|$)(.*)

Database Statefulset 3 3 detached Yes No

 Listing 13 Test Suit IaC Kubernetes

We have decided to use a stateful set for mounting the mongo replicaset because
a StatefulSet maintains a sticky identity for each of their Pods while
Deployments create random Pods.

The number of replicas can be increased at any time in case of necessity or it
would be positive to configure an automatic horizontal scaler.

Finally, although the back-end handles requests on the “/api*” route our
ingress controller rewrite all these routes erasing the “/api” and redirecting
them to the port 3000.

 Pablo Ángel Álvarez Fernández

48

5.3 Jenkins

Once the production cluster is prepared to receive the latest production version,
we are able to automate the whole testing and delivery process automatically.
This process will be managed by Jenkins leaving our automation instructions
on a Jenkinsfile. The end purpose of adding all this complexity is to allow us to
distribute our last reviewed versions to the public, by just using the command
line “git push”.

According to its own documentation, “Jenkins is a self-contained, open source
automation server which can be used to automate all sorts of tasks related to
building, testing, and delivering or deploying software.”. [29]

We'll build a complete Continuous Integration/Continuous Delivery (CI/CD)
pipeline with automated builds, deployments to a dev environment, testing of
the image, and if everything follows the correct path, deliver the changes to the
production Kubernetes cluster.

The first part, the CI is a developer practice that requires integrating the code
changes continuously with the rest of the team. It works in three simple
stages, push, test, and fix. As the integration test are performed automatically,
once a developer gets a test failed warning, its first priority will be correcting
its code. In case the purpose of the code has changed, test changes should be
changed prior to code changes.

The second part, the CD is the process to update those changes to production.
It is a critical environment which should be protected from errors as it will be
the communication bridge with our clients. However, by introducing
automation on this labor, we increase the sustainability of the process.

This automation involves on the coordination of several practices. In our case,
we will use pipeline-as-code and infrastructure-as-code. Pipeline-as-code is
stored on a Jenkinsfile at each service repository. It allows to manage and
execute Jenkins jobs as code. Infrastructure-as-code use YAML files from that
pipeline to update changes on the Kubernetes infrastructure. These last
practice helps to dynamically provision and tears down environments. [30]

A complete pipeline in a complex project managed between different teams
would look like this. It has a manual approval of the submitted changes due to
the presence of a QA team. It could be interesting while introducing new
testing patterns as blue-green deployments or canary strategies. Those
strategies help to show the new changes to a reduced number of requests and
see if the modification is accepted by that reduced size of clients before
gradually replacing previous versions. [31]

 Pablo Ángel Álvarez Fernández

49

 Figure 36 Complete CI/CD pipeline for microservices in azure. Source: [31]
In our case, due to time and employee restrictions, we had to change the
assumption that there’s only one developer and production changes will be
automatically accepted if tests pass. Which end up on the creation of this
pipeline.

 Figure 37 CI/CD pipeline Test Suite
All these steps are described in a Jenkinsfile uploaded to the Github
repository. This will be the pipeline-as-code side. Due to the fact that our
Jenkins is only available from the internal university VPN, adding
“triggers{ cron('H/15 H(9-16) * * 1-5') }” will detect changes on the Github
repository each 15 min while in working hours. Allowing us to notice if
something had stopped working without affecting the production environment.

The “Test/Coverage” stage allow us to run puppeteer as we had specified in
the testing paragraph. This will output an HTML coverage report that will be
published on Jenkins. Finally, the build command is executed and the
distribution files are inserted into a Nginx image an push it to DockerHub
making it globally available.

Developers
commit code

changes to Git
Jenkins detect

changes
Pipeline

launched

Unit Test
/Coverage
performed

Deployed to
Dev

environment
Integration

Test performed

Dev
environment

cleaned

Deployed to
Production

environment

Update
Kubernetes

pods

50

6 Conclusions
This case study provides a beginning to developing a test-suite and guide to
compare Speech-to-Text libraries and their out of the box accuracy while
integrating these libraries into a single test application.

After comparing both cloud an open-source methodology, we can state that
the cloud option provides higher accuracy and lower processing time in its
initial configurations. Nevertheless, there is not a clear answer for the best
Speech-to-Text library.

It is cliché to say, “It depends,” but it does, depending on you and or your
institutions values. If cost is a constraint that is one factor. If Software
Freedom and the ability to control your own software is important, that is one
factor. If you are willing to trade percentages of accuracy in order to reduce
costs, that is one factor. Finally, if you have a large group of members or
students willing to crowdsource and fix transcriptions then using an
Opensource library such as DeepSpeech may be an appealing factor. It is
important to test the results and compare the factors to make the most
informed decision that is right for you. We believe our test suite is the first
step in helping make that decision. We will allow next researchers to choose
its transcription option on the environment settings.

The prototype is currently available for IIT students and regards on AWS
transcribe to process the media files and Google Oauth 2.0 to limit the usage
to these college accounts. It divides students, teachers and teacher assistant
with a 2^7 number regarding to the authentication level. Its final propose is
leading students to a view similar to one shown below.

 Figure 38 Example view video transcriptions
The test suit value not only comes from its features. It also establishes a
uniform deployment and delivery process to make it more stable and failure
probe. We see that deploying a Kubernetes infrastructure is complex, but
these are crucial tools to be prepared to the end-user delivery within a large
project, which specs further improvements.

 Pablo Ángel Álvarez Fernández

51

6.1 Future Improvements

The test suite is currently outfitted for only two Speech-To-Text frameworks.
More research needs to be done to make a larger matrix comparison of the major
services and Opensource libraries. In addition, options could be added to
prevent of lockout non-freedom respecting software libraries. A larger shared
corpus of sample videos would help to smooth out the initial proof-of-concept
as well, by generating new and enhanced inference models.

In the application side, the promotion of a student account to teacher assistant
feature hasn’t been able to be provided. The authorization structure is set, on
the back-end side it would only require the video site a way to handle the
increase of authentication level. In the frontend side, it is required to allow
student to propose modification and then, professors would accept them as a
way to promote the account. While uploading a video, it could be also added a
dictionary text box to support an enhance transcription parameters. Finally, the
DeepSpeech WAD system provided by Mozilla, could be also enhanced to match
the AWS transcribe output parameters, which has more details.

We invite collaboration and extension of this existing test suite.

52

7 Bibliography

[1] IBM, «IBM White Paper,» 8 2010. [En línea]. Available:
ftp://public.dhe.ibm.com/ftp/lotusweb/IBM_White_Paper_-
_Value_of__eLearning_-_2Q2010_-_FINAL.pdf.

[2] V. N. H. H. M. H. M. S. M. a. S. N. Sonal Shetty, «Content Based Audiobooks
Indexing using Apache Hadoop Framework,» Proceedings of the Third
International Symposium on Women in Computing and Informatics - WCI '15,
2015.

[3] L. Berke, «Displaying Confidence From Imperfect Automatic Speech
Recognition for Captioning,» SIGACCESS, 2017.

[4] E. Vinson, «opaltranscriptionservices,» [En línea]. Available:
https://www.opaltranscriptionservices.com/transcription-rates/. [Último
acceso: 2 2020].

[5] «AWS Transcribe,» [En línea]. Available:
https://aws.amazon.com/transcribe/pricing/. [Último acceso: 2020].

[6] B. Prajapati, «medium,» 20 4 2018. [En línea]. Available:
https://medium.com/tribalscale/6-things-to-consider-when-building-
large-scale-web-applications-237816d11b68.

[7] M. Richards, Software Architecture Patterns, O’Reailly Media.

[8] M. S. H. R. F. B. Douglas C. Schmidt, Pattern-Oriented Software
Architecture, Wiley, 2000.

[9] thegradient, «Towards an imagenet moment for speech-to-text,» 28 3 2020.
[En línea]. Available: https://thegradient.pub/towards-an-imagenet-
moment-for-speech-to-text/.

[10] M. Loxton, «How to Use AI Transcription Services with MAXQDA,» MAXQDA
Research Blog, vol. 4, nº 29, 2019/4.

[11] Mozilla, «Why Common Voice?,» Mozilla, 2020. [En línea]. Available:
https://voice.mozilla.org/en/about.

[12] A. R. C. K. F. R. Shimaa Ahmed, «Prεεch: A System for Privacy-Preserving
Speech Transcription,» 18 Feb 2020. [En línea]. Available:
https://arxiv.org/pdf/1909.04198.pdf.

[13] mongodb, «Mean stack,» MongoDB, [En línea]. Available:
https://www.mongodb.com/mean-stack.

[14] M. Sultan, «Angular and the Trending Frameworks of Mobile and Web-
based Platform Technologies: A comparative analysis,» Future Technologies
Conference (FTC) , 2017.

[15] C. Cleary, «coreycleary,» 2018. [En línea]. Available:
https://www.coreycleary.me/project-structure-for-an-express-rest-api-
when-there-is-no-standard-way/. [Último acceso: 11 2019].

[16] J. Hibbard, J. Kolce, L. White y J. Wi, 9 Practical Node.js Project.

 Pablo Ángel Álvarez Fernández

53

[17] B. D. C. D. Brad Dayley, Node.js, MongoDB and Angular Web
Development, Pearson Education, 2018.

[18] grpc, «FAQ,» grpc, [En línea]. Available: https://grpc.io/faq/.

[19] P. Nohe, «thesslstore,» 18 12 2018. [En línea]. Available:
https://www.thesslstore.com/blog/difference-encryption-hashing-
salting/.

[20] T. L. a. E. Merlo, «An accurate estimation of the Levenshtein distance using
metric trees and Manhattan distance,» IWSC, 2012. [En línea]. Available:
https://dl-acm-
org.ezproxy.gl.iit.edu/doi/pdf/10.5555/2664398.2664399.

[21] S. H. H. a. I. K. Matthew F. Dabkowski, «Improving record linkage for
counter-threat finance intelligence with dynamic Jaro-Winkler
thresholds,» WSC, 2019.

[22] Andler, «Predicate path expressions ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages,» ACM Press, New York, NY, 226-
236..

[23] mongodb, «nosql vs relational databases,» mongodb, [En línea]. Available:
https://www.mongodb.com/scale/nosql-vs-relational-databases.

[24] softwaretestingfundamentals, «unit-testing,»
softwaretestingfundamentals, [En línea]. Available:
http://softwaretestingfundamentals.com/unit-testing/.

[25] docker, «what container,» docker, [En línea]. Available:
https://www.docker.com/resources/what-container.

[26] docker, «docker compose,» docker, [En línea]. Available:
https://docs.docker.com/compose/.

[27] kubernetes, «Index,» kubernetes, [En línea]. Available:
https://kubernetes.io/.

[28] kubernetes, «what is kubernetes,» kubernetes, [En línea]. Available:
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[29] jenkins, «jenkins,» [En línea]. Available:
https://www.jenkins.io/doc/book/pipeline/syntax/.

[30] C. Melendez, «stackify,» 30 04 2019. [En línea]. Available:
https://stackify.com/what-is-cicd-whats-important-and-how-to-get-it-
right/.

[31] microsoft, «Building a CI/CD pipeline for microservices on Kubernetes,»
microsoft, 04 11 2019. [En línea]. Available:
https://docs.microsoft.com/en-us/azure/architecture/microservices/ci-
cd-kubernetes.

54

8 Annex
8.1 Node code structure

