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ABSTRACT

Fish morphological phenotypes are important
resources in artificial breeding, functional gene
mapping, and population-based studies in
aquaculture and ecology. Traditional morphological
measurement of phenotypes is rather expensive in
terms of time and labor. More importantly, manual
measurement is highly dependent on operational
experience, which can lead to subjective
phenotyping results. Here, we developed
3DPhenoFish software to extract fish morphological
phenotypes from three-dimensional (3D) point cloud
data. Algorithms for background elimination,
coordinate normalization, image segmentation, key
point recognition, and phenotype extraction were
developed and integrated into an intuitive user
interface. Furthermore, 18 key points and traditional
2D morphological traits, along with 3D phenotypes,
including area and volume, can be automatically
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obtained in a visualized manner. Intuitive fine-tuning
of key points and customized definitions of
phenotypes are also allowed in the software. Using
3DPhenoFish, we performed high-throughput
phenotyping for four endemic Schizothoracinae
species, including Schizopygopsis younghusbandi,
Oxygymnocypris stewartii, Ptychobarbus dipogon,
and Schizothorax oconnori. Results indicated that
the morphological phenotypes from 3DPhenoFish
exhibited high linear correlation (>0.94) with manual
measurements and offered informative traits to
discriminate samples of different species and even
for different populations of the same species. In
summary, we developed an efficient, accurate, and
customizable tool, 3DPhenoFish, to extract
morphological phenotypes from point cloud data,
which should help overcome traditional challenges in
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manual measurements. 3DPhenoFish can be used
for research on morphological phenotypes in fish,
including functional gene mapping, artificial
selection, and conservation studies. 3DPhenoFish is
an open-source software and can be downloaded for
free at https://github.com/lyh24k/3DPhenoFish/tree/
master.

Keywords: Fish; Phenomics;
Point cloud; 3D scanning
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INTRODUCTION

Fish morphology provides valuable data for fishery
conservation management, genome association research, and
artificial breeding (Lopez-Fanjul & Toro, 2007). In association
studies, both genotypes and phenotypes are important data in
functional gene identification. The emergence and
development of high-throughput genomic sequencing has
made it easy to obtain the genotypes of millions of fish;
however, phenotyping based on traditional manual
measurement is a limiting step in such studies and costly in
terms of labor and time. More importantly, phenotyping results
may be subjective as manual measurement requires training
and experience. The lack of monitoring during and after
manual measurement can also lead to potential phenotyping
batch effects and biases (Fernandes et al., 2020). Therefore,
there is great demand for a high-throughput and intelligent
technique to automatically extract morphological phenotypes
for fish studies.

The advancement of computer vision technology enables
morphological phenotypes to be obtained from two-
dimensional (2D) images using a monocular camera
(Hartmann et al.,, 2011). Imaging techniques have been
applied in fish recognition (Spampinato et al., 2010) and
counting (Aliyu et al., 2017; Spampinato et al., 2008) using
limited 2D morphological phenotypes (mainly body length)
(Hao et al., 2015; Shah et al., 2019). For more comprehensive
morphological information, IMAFISH_ML (Navarro et al.,
2016) uses multiple cameras to capture images from two
directions for morphological phenotype measurements. Still,
this requires the fish to be frozen and fins to be trimmed,
causing irreversible damage to the fish. However, several non-
invasive methods have been developed for living fish. For
instance, Wang et al. (2019) developed a contour-based
method for measuring the length of living fish in water.
Fernandes et al. (2020) used a monocular camera and
computer vision technique to measure body area, length, and
height in tilapia. However, these studies were designed for
specific fish species using 2D images, and morphological
phenotypes extracted via these tools are still limited.

Although 2D features provide valuable data for phenotypes,
fish are three-dimensional (3D) in nature and exhibit more
elaborate and complex phenotypes, such as head volume and
body conformation, which are difficult to capture by 2D
imaging processes. These 3D traits provide informative
phenotypes to describe conformation features (Zermas et al.,
2020). However, 3D phenotypes, such as surface area and

volume, are difficult to measure manually. With the continued
development of computer vision technology, sensor-based 3D
reconstruction methods have been increasingly used in life
sciences and agriculture (Comba et al., 2018), as well as in
plant and livestock research. For example, mango and apple
size measurement (Gongal et al., 2018; Wang et al., 2017)
and guava detection and pose estimation (Lin et al., 2019)
have been solved using 3D computer vision techniques. In
addition, several techniques have been applied in livestock.
For example, Le Cozler et al. (2019) scanned 3D images of an
entire cow’s body and estimated six phenotypes: i.e., height,
heart girth, chest depth, hip width, backside width, and ischial
width, which showed high correlation with manual
measurements. Light detection and ranging (LIDAR) and
cameras with depth information have been used to construct
3D images and calculate body conformation phenotypes in
cows (Pezzuolo et al., 2018), cattle (Batanov et al., 2019;
Huang et al., 2018), and horses (Pérez-Ruiz et al., 2020).
These studies highlight the feasibility of using 3D information
to obtain more comprehensive phenotypes for animals;
however, the application of 3D imaging for morphological
phenotypes in fish is limited, largely due to the lack of fish-
specific tools to provide comprehensive 2D and 3D phenotype
data.

In the current study, we developed 3DPhenoFish software
for morphological phenotype extraction using 3D point cloud
information for fish species. Its structured pipeline includes
background filtering, fish segmentation, key point recognition,
and phenotype extraction. Both 2D and 3D morphological
phenotypes represented by body length, surface area, and
volume, can be automatically extracted. In addition,
3DPhenoFish also allows users to adjust key points and
define new phenotypes in an intuitive visualized manner. We
used endemic Schizothoracinae fish species from Tibet to
validate the 3DPhenoFish phenotyping, which showed high
correlation (>0.94) to manual measurements. This software
could be used to discriminate samples of different species and
even different populations of the same species.

MATERIALS AND METHODS

3DPhenoFish extracts the morphological phenotypes of fish
from 3D point cloud data. The following points (Figure 1)
describe the main data analysis pipeline steps integrated in
3DPhenoFish:

1. Data acquisition: This step uses an industrial 3D scanner
to obtain OBJ or PCD files as input for 3DPhenoFish.

2. Data pre-processing: This step removes background and
outliers.

3. Semantic segmentation: This step deals with the
segmentation of the fish head, body, and fins.

4. Morphological phenotype extraction: This step recognizes
key points and extracts morphological phenotypes.

5. Phenotype management: This step involves defining
custom phenotypes and key points, which are then stored in
the database.

Data acquisition
The first step in using 3DPhenoFish involves scanning 3D
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Figure 1 Workflow scheme in 3DPhenoFish for point cloud
analysis and morphological phenotype extraction

Whole pipeline includes data acquisition, data pre-processing,
semantic segmentation, phenotype extraction, and data management.

point cloud data of fish samples. Many industrial 3D scanners
can produce a full-color point cloud with an accuracy of 0.1
mm or higher, which satisfies the input data requirements for
3DPhenoFish. We used a GScan 3D scanner (http://en.zg-
3d.com/fullcolor/131.html), which uses white-light grating
stripe projection technology for surface scanning to obtain
original point cloud data of fish (Supplementary Figure S1).
Marking labels were applied to a yellow board that served as a
scanning background. After anesthetization with MS-222, fish
were placed on the board for scanning (see Supplementary
Figure S1).

Data pre-processing
Point cloud filtering: Point cloud filtering is the first step in
3D point cloud pre-processing and influences subsequent
semantic segmentation and morphological phenotype
extraction. This step involves point cloud down-sampling,
planar background removal, and outlier elimination (Figure 2).
First, point cloud down-sampling is performed to reduce
point cloud density and computational burden while
maintaining conformation features. In 3DPhenoFish, down-
sampling is performed with the voxel grid filter method (Orts-
Escolano et al., 2013). In brief, 3D voxel grids, i.e., collections
of 3D cubes in space, are generated from the point cloud data,
and the geometric center of the points in one voxel is used to
represent the voxel overall. The default size to generate the
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Figure 2 Point cloud filtering for fish point clouds
Process includes point cloud down-sampling (A), background filtering
(B), outlier filtering (C), and final fish point cloud (D).

3D cubes is 1 mm3.

Second, sparse and discrete non-fish outliers are removed
from the point cloud data. The Statistical Outlier Removal
Filter (SORF) (Balta et al., 2018) is used to calculate the
average distance from each point to its adjacent points.
Assuming the average distances follow Gaussian distribution,
points with an average distance beyond the threshold are
regarded as outliers and eliminated.

Third, point data from the background plane are removed.
As background points are in the same plane, the background
can be removed using Random Sample Consensus
(RANSAC) (Schnabel et al., 2007), with the number of random
extractions of the point cloud sample set to 100 and the
distance between the target point and plane set to 0.8.
However, as the tail fin is close to the background plane,
RANSAC-based fitting to the plane may result in tail fin
removal. To solve this problem, the boundary of the fish point
cloud is detected, and points on the boundary are used as
seed points to grow outward based on constraints of normal
difference, color difference, and spatial distance difference,
thus making segmentation of the background and tail fin more
accurate. Finally, taking advantage of the weak connections
among sparse and discrete noisy points after removal of the
background plane, distances between the target point and its
neighbors are calculated, and Euclidean clustering (Wu et al.,
2016) is employed to eliminate these sparse and discrete
point data.

Coordinate normalization: After background and noisy point
filtering, the point cloud coordinates of target fish are
normalized. As the coordinate system may influence
subsequent phenotype extraction, the normalized coordinates
for the fish point cloud are defined as follows: the geometric
center of the fish point cloud is the coordinate origin; and the
X-, Y-, and Z-axes, conforming to the right-hand rule, are
consistent with the directions of body length, body height, and
body width, respectively. The Z-axis is perpendicular to the
background, the Y-axis points to the dorsal fin, and the X-axis
points to the fish tail, as shown in Figure 3. The Z-axis is the
axis with the smallest angle to the normal vector of the plane
point cloud extracted above. Principal component analysis
(PCA) of point coordinates is employed for automatic
coordinate normalization (Pezzuolo et al., 2018), and the X-
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Figure 3 Coordinate normalization for fish point cloud

Normalization process involves two steps: transferring point cloud of
fish head from positive X-axis (A and B) to negative X-axis (C and D),
and then transferring point cloud of fish dorsal fin to positive Y-axis

D).

axis is the axis represented by the feature vector with the
largest eigenvalue. A transformation matrix from the local
coordinate system to the global coordinate system is obtained,
and initial coordinate normalization is performed (Figure 3).

Although the above normalization could lay fish length along
the X-axis, we still need to normalize the orientation of the
head and dorsal fin. First, the point cloud is transferred so that
the X-axis points to the fish tail. As the tail fin is generally
closer to the background plane, the point cloud for the head
shows a higher standard deviation of the Z-axis coordinate
compared to that for the tail fin. Therefore, we can distinguish
the head and tail by comparing coordinates of cloud points
within two 15% end regions along the fish’s total length; the
point cloud with a larger standard deviation of the Z-axis
coordinate is the fish head. In this way, the fish coordinates
can be normalized so that the X-axis points to the fish tail
(Figure 3C, D). Second, the point cloud is transferred so that
the Y-axis points to the dorsal fin. Given that the fish body
near to the dorsal fin is darker than the belly of the fish, body
colors of the cloud points can be compared in the positive and
negative Y-axis regions. The larger average gray value is in
the direction of the dorsal fin, and thus the fish coordinates
can finally be normalized on the Y-axis (Figure 3D).

After the background is eliminated and fish coordinates are
normalized, we can take advantage of symmetric features to
complement the fish model. 3DPhenoFish scans the fish in
planes perpendicular to the X-axis with a step size of 1. For
each plane, two end points on the Y-axis are selected, and a
plane that crosses two end points and is parallel to the X-axis
is used as the plane of symmetry to complete the fish point
cloud model. Finally, point cloud data are generated to
construct a symmetric complement to the fish model.

Semantic segmentation

Head segmentation based on template matching: After
data pre-processing, the fish head is recognized in the point
cloud. The template matching method (Bar et al., 2012) is then
applied for fish head segmentation. First, we randomly choose
the head of a fish of the same species as a template. The fish
head template is aligned to the target point cloud using the
Sample Consensus Initial Alignment (SAC-IA) algorithm (Chen
et al., 2017) and lterative Closest Point (ICP) algorithm (Besl

& McKay, 1992) for coarse and fine registration, respectively;
thus, we obtain the approximate orientation of the head.

Fish eye segmentation based on curvature: Based on the
fish head segmentation above, we can calculate and obtain
200 points with the top curvature value in the fish head region.
Considering the circular shape of the fish eye, RANSAC is
applied to segment the circular part of the fish as the eye.

Fin segmentation based on super voxel region growth: A
super voxel-based region growth segmentation method is
used to separate the point cloud for fish fins. As an initial step,
the super voxel method (Li & Sun, 2018) is used to pre-
segment the point cloud. First, the point cloud is voxelized to
obtain a voxel cloud. We can then construct a mesh of the
voxel space using resolution Rg.eq and select the voxel closest
to the center of the mesh as the initial seed voxel. We then
calculate the number of voxels in the neighborhood radius
Rsearch Of the seed voxel, and seed voxels with a number less
than the threshold (four as default) are deleted. Distance D of
a seed voxel to its neighboring voxels within the radius of
Rseeq is then calculated using equation 1, where D, is the
Euclidean distance in normalized RGB space, Dy is the
Euclidean distance between two voxels, D, is the normal
angle between two voxels, and w,, wg, and w,, are the weights
for distances. The neighboring voxel with the smallest D value
is considered as the super voxel, and the neighboring voxels
of this voxel are added to the search queue. All other seed
voxels are grown simultaneously using the above method until
the number of super voxels exceeds the threshold (1800 as
default), or all neighboring points have been clustered. Finally,
we obtain a pre-segmentation result for the point cloud
(Figure 4A).

2
D= %NCDCZ + W‘—D‘Z + w,D,2 (1)
seed

Based on the pre-segmentation results, the fins are
segmented by an adaptive weighted region growth
segmentation method (Vo et al., 2015). First, we select the
super voxel with the smallest mean curvature as the seed
facet and build a seed facet queue. We then calculate the D,
between the seed facet and its neighboring facets according
to equation 2, where G;is the difference in average gray value
between two super voxels, D is the difference in normal angle
difference between two super voxels, and A and yu are weights.

Dm = AGf + uDs 2)

If the D, of a facet is smaller than the threshold, the facet is
clustered with the seed facet, marked as used, and queued as
a seed facet. The facets in the seed queue are used until the
seed queue is empty and all facets are marked as used. In
addition, the color weight threshold and normal angle weight
threshold need to be set. If the difference in spatial features
between two facets is very large, the value of y should
increase; if the difference in spatial features is small but the
difference in color features is large, the value of A should
increase. The pseudocode for facet region growth is
presented in Algorithm 1. The segmentation results are shown
in Figure 4B.
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Figure 4 Semantic segmentation for fish point cloud

A: Pre-segment point cloud using super voxel method. B: Fin segmentation is performed using adaptive weighted region growth segmentation. C:
Head, eye, body, and fins are segmented from point cloud, then used for following key point recognition and morphological phenotype extraction.

Algorithm 1 Adaptive weighted super voxel region
growth segmentation

Contents

Input: Collection of super voxels F.

Parameters: o, o,

Output: Segmentation results with labels

1. for each unused super voxel in F do

2. seed facet f; with the smallest mean curvature in F and
unused

3. create seed queue Q

4. Q.push_back(f,), and mark f, as used

5. repeat

6 f;=Q.pop_front()

7 for each neighboring and unused super voxel f; of f; do
8 If Ds < 0,and u > A then

9. swap(u,A)

10. end if

1. If D, < 0 then

12. Q.push_back(f;), and mark f; as used
13. Grow f; to f;

14. end if

15. end for

16. until Q=NULL

17. end for

Based on the fish body segmentation, the semantic
assignment of the tail and dorsal fin is accomplished using
their relative spatial coordinates. The clusters with the largest

496 www.zoores.ac.cn

average X-coordinate and largest average Y-coordinate are
recognized as the tail and dorsal fin, respectively. The cloud
points between the tail and dorsal fin are analyzed, and the
cluster with the smallest average Y-coordinate in the region is
recognized as the anal fin. For semantic assignment of the
pectoral and ventral fin, the belly of the fish is defined as the
cloud points between the head and anal fin with a negative Y-
coordinate. The top 100 points with the largest curvatures are
then clustered into two groups using the K-means method;
these clusters are assigned as the pectoral and ventral fin,
according to their relative position to the head.

Morphological phenotype extraction

Based on the semantic segmentation results, key points on
the fish body are recognized according to their relative
position on the fish point cloud. Thus, we obtain 18 key points
on the fish point cloud (Figure 5A). Here, we summarize these
key points.

The snout point (A) is the point with the smallest X-
coordinate of the head. The front point of the eye (B) and back
point of the eye (C) are the points with the smallest and
largest X-coordinates, respectively. The external point of the
opercular (D) is the point closest to the right-middle point of
the head bounding box. The starting point of the pectoral fin
(E) is the point closest to the left-top point of the pectoral fin
bounding box. The end point of the pectoral fin (F) is the point
with the largest X-coordinate of the pectoral fin. The lowest
point of the ventral margin (G) is the point with the smallest Y-
coordinate of the fish body after the fin is removed. The
starting point of the ventral fin (H) is the point closest to the
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Figure 5 Key point recognition and phenotype extraction

Caudal peduncle arc

A: Main 2D phenotypes determined from distances among key points estimated directly on background plane of fish point cloud. B: Main 3D
phenotypes estimated from point cloud conformation of fish, including arc length, surface, and volume. C: 3D phenotypes for head. Key points
recognized in point cloud include snout point (A), front point of eye (B), back point of eye (C), external point of opercular (D), starting point of
pectoral fin (E), end point of pectoral fin base (F), lowest point of ventral margin (G), starting point of ventral fin (H), end point of ventral fin base (I),

starting point of anal fin (J), end point of anal fin (K), lower point of caudal peduncle (L), end point of coccyx (M), end point of tail fin (N), upper point

of caudal peduncle (O), end point of dorsal fin (P), starting point of dorsal fin (Q), and highest point of dorsal margin (R).

left-top point of the ventral fin bounding box. The end point of
the ventral fin (I) is the point closest to the right-top of the
ventral fin bounding box. The starting point of the anal fin (J) is
the point with the smallest X-coordinate of the anal fin. The
end point of the anal fin (K) is the point closest to the right-top
of the anal fin bounding box. The upper (O) and lower points
of the caudal peduncle (L) are the points with the largest and
smallest Y-coordinates, respectively. The end point of the
coccyx (M) is the point closest to the left-middle point of the
tail fin bounding box. The end point of the tail fin (N) is the
point with the largest X-coordinate of the tail fin. The key
points of the caudal peduncle (O and L) are the two points
with the smallest difference in the Y-coordinate under the
same X-coordinate of the caudal peduncle. The end point of
the dorsal fin (P) is the point with the largest X-coordinate of
the dorsal fin. The starting point of the dorsal fin (Q) is the
point with the smallest X-coordinate of the dorsal fin. The
highest point of the dorsal margin (R) is the point with the
largest Y-coordinate of the fish body after the fin is removed.
Traditional 2D morphological phenotypes are defined and
calculated as distances among these key points. Figure 5A
shows the full length (SV), body length (SU), dorsal snout
distance (SX), head length (ST), body height (WY), anal
ventral distance (HJ), caudal peduncle height (OL), caudal
peduncle length (ZU), dorsal length (QP), pectoral length (EF),
ventral length (HI), anal length (JK), tail length (UV), snout
length (AB), eye diameter (BC), head behind eye length (CD),
and dorsal tail distance (XU). In addition, 3D phenotypes from
the point cloud are also calculated, such as body surface (BS),

head volume (HV), body volume (BV), height of head arc
(HAy), width of head arc (HAy), length of head arc (HA),
height of dorsal arc (DAy), width of dorsal arc (DAy), length of
dorsal arc (DA,), height of caudal peduncle arc (CAy), width of
caudal peduncle arc (CAy), and length of caudal peduncle arc
(CA\) (Figure 5B). The Poisson surface reconstruction method
and VTK library are used to construct the closed triangular
mesh model and calculate the surface area and volume,
respectively.

Phenotype management

After calculating the phenotypes, the user can click the
“phenotype management” icon in the toolbar to call up the
phenotype management dialog box. This module stores the
phenotype computing time, file path of the segmented point
cloud, typical key points, and phenotypic information. Key
point coordinates and morphological phenotypes can be
downloaded as a CSV file for subsequent analysis and data
sharing. (Supplementary Figure S2)

Main interface development

3DPhenoFish has an intuitive user interface embedded with
the aforementioned analytical functions and enables the user
to visualize the point clouds, key points, and phenotypes. The
interface was written in Visual C++ in Microsoft Visual Studio
2015 and runs under Microsoft Windows 10. The core
algorithm was based on the open-source Point Cloud Library
(PCL) (Rusu & Cousins, 2011) and Open-Source Computer
Vision Library (OpenCV) (Bradski & Kaehler, 2008). The
graphical user interface (GUIl) was created with Qt 5.12
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framework (The Qt Company Ltd.). Functions of 3D
visualization and view rendering were based on the open-
source Visualization Toolkit (VTK) (Schroeder et al., 2000).

Key point and phenotype customization

Although system-default key points and phenotypes are
automatically recognized and extracted in 3DPhenoFish, we
added functions to customize key points and phenotypes for
greater flexibility. For key points, a user can adjust their
precise location and even add new key points by simple
mouse operations. The user can also double-click on the key
point name in the key point list (Figure 6; Supplementary
Figure S3); the corresponding key points in the visualization
window are then highlighted in green. The position of a key
point can be moved by mouse while holding down “shift” on
the keyboard. Modified points are colored blue. 3DPhenoFish
also allows the user to customize a phenotype definition by
the “custom phenotype” function listed in the toolbar (Figure 6;
Supplementary Figure S3). New phenotypes can be defined
by assigning the system-default and user-defined key point
name in the combo box. Length between two points, angle
between three points, and area among three points can be
defined as new phenotypes in 3DPheoFish.

3DPhenoFish validation

To validate the accuracy and feasibility of 3DPhenoFish, we
compared phenotype automatically extracted from the
software to manual measurements for identical samples. To
this end, 119 fish from four major genera in Schizothoracinae,
i.e., 59 Schizopygopsis younghusbandi, 11 Oxygymnocypris
stewartii, 19 Ptychobarbus dipogon, and 30 Schizothorax
oconnori, were collected from the Lhasa and Yarlung Zangbo
rivers in Tibet. The 3D point clouds for these samples were
obtained using GScan and the above 2D and 3D phenotypes
were extracted using 3DPhenoFish. In addition, the 2D
phenotypes were also manually measured by traditional
methods. Correlation analysis for the 3DPhenoFish and
manual measurements was performed to evaluate the
accuracy of automatic phenotype extraction. The 2D and 3D
phenotypes were used to discriminate samples in terms of
species and populations using linear discriminant analysis
(LDA) (Balakrishnama & Ganapathiraju, 1998) in Python
(Qliphant, 2007). The significance of phenotype differences
was tested using student t-test in the R package.

RESULTS

According to the flow chart in Figure 1, we collected point
clouds and extracted morphological phenotypes for 119 fish
from four major genera in Schizothoracinae. The 3D point
clouds for the same fish samples were obtained using GScan.
As a result, the data obtained for each fish consisted of about
0.7 million vertices and 1.4 million faces, which were used to
verify the feasibility of 3D data model construction and
automatic extraction of morphological phenotypes.

First, 30 fish samples were randomly selected to evaluate
the accuracy of the extracted phenotypes. Eighteen key points
were automatically recognized for all samples, and 2D
morphological phenotypes were extracted and compared to
traditional manual measurements (Supplementary Table S1).
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Figure 6 Main interface of 3DPhenoFish
A: Main point cloud image viewer. B: List of point clouds that need to

be processed. C: Properties of current point cloud. D: List of key points
for fish point cloud. E: List of morphological phenotypes for fish point
cloud. F: List of operation records. G: Toolbar used to open and save
files, adjust visual interface of point cloud, and automatically segment
fish point cloud. Morphological phenotype extraction in the software
must be executed strictly by down-sampling ( I ), background removal
(IT'), and key point recognition (III).

The Pearson correlation coefficient (r) between the calculated
and measured phenotypes was higher than 0.94 (Figure 7;
Supplementary Table S1), thus verifying the reliability of the
extracted morphological phenotypes by 3DPhenoFish.

Using the 19 default morphological phenotypes extracted by
3DPhenoFish, we then performed fish sample clustering
analysis. As shown in Figure 8A, the O. stewartii and S.
oconnori samples were obviously separated; however, the S.
younghusbandi samples exhibited significant overlap with the
P. dipogon samples. To improve the resolution of species
separation, we added 3D phenotypes for sample clustering,
which resulted in more obvious discrimination between
samples from different species (Figure 8B). We also observed
that morphological traits related to the head and dorsal fin
exhibited significant differences among species. The head
height and head length ratios of O. stewartii and P. dipogon
were significantly smaller than those of S. younghusbandi and
S. oconnori (P<2e-16 based on analysis of variance (ANOVA),
Figure 9A), thereby indicating that the head is relatively
narrow for O. stewartii and P. dipogon. In addition, the dorsal
snout distance and body length ratio for O. stewartii and S.
oconnori was significantly larger (P<2e-16 for ANOVA,
Figure 9B), indicating that the position of the dorsal fin in these
two species was significantly different from that of S.
younghusbandi and P. dipogon. Interestingly, we found that
2D and 3D phenotypes extracted from 3DPhenoFish could
also discriminate S. younghusbandi samples from populations
in the Lhasa River, Yarlung Zangbo River Saga section, and
Yarlung Zangbo River Zhongba section (Figure 8C, D).
Remarkably, several phenotypes, e.g., dorsal arc width and
caudal arc width ratio (P=3.6e-11 for ANOVA, Figure 9C) and
head volume and head length ratio (P=0.0026 for ANOVA,
Figure 9D), exhibited significant differences among
populations. For instance, the dorsal and caudal arc width
ratio was higher for S. younghusbandi samples from the
Yarlung Zangbo River than from the Lhasa River, indicating
that S. younghusbandi from the Lhasa River is slimer.
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Figure 7 Linear correlation analysis of morphological phenotypes from 3DPhenoFish and manual measurement

2D phenotypes were extracted from 3DPhenoFish and manual measurements were collected and compared for 30 randomly selected fish samples.

Correlation coefficients of 17 morphological phenotypes were calculated (Supplementary Table S1), including full length (A), body length (B), dorsal

snout distance (C), body height (D), caudal peduncle height (E), and head length (F).

Whether the phenotype differentiation is related to adaptation
to the local environment requires further investigation.

DISCUSSION

In this work, we developed a practical application,
3DPhenoFish, to extract fish morphological phenotypes from
point cloud data. The features of 3DPhenoFish are
summarized as follows:

1. Easy to use: The structured pipeline for point cloud data
analysis was developed and embedded in the 3DPhenoFish
interface, thereby lowering the barrier to morphological
phenotyping for users without programing skills or biological
backgrounds.

2.0bjective: The automatic phenotyping ensures objective
results and prevents inconsistency in phenotype definitions
across users.

3.Efficient: Whole scanning and phenotyping for a
Schizothoracinae fish usually takes 40-50 s, which is
significantly faster than the 5-6 min required for traditional
manual measurements. This efficient phenotyping also
alleviates stress on the fish.

4.Accurate: Comparison of 3DPhenoFish and manual
measurements confirmed the accuracy of the automatic
phenotyping result.

5.Customizable: The automatically recognized key points
can be adjusted, and new key points can be added.
Customized phenotypes from the relative position of existing
key points can also be defined.

6.Accessible: The phenotype and sample data are
accessible by the phenotype management module, which can
be downloaded and shared for the further analysis.

Here, 3DPhenoFish application for Tibetan
Schizothoracinae fish species exhibited good performance for
phenotype extraction. We showed that 2D and 3D phenotypes
could be obtained in a throughput manner and could be used
for species and population discrimination in wild fish resource
management. The 3D phenotypes provided data for sample
discrimination, and morphological traits related to the head
and dorsal fin exhibited significant differences among species.
However, 3DPhenoFish is still under development, and there
remain several limitations in its application. Firstly,
3DPhenoFish only supports OBJ files and PCD files
containing full-color information. In addition, point cloud
scanning requires fish to keep still on the plane background,
and therefore, anesthetization may be necessary for stress-
sensitive fish species. Finally, 3DPhenoFish provides a
general framework for fish species; therefore, it is necessary
to validate image segmentation and phenotyping results
before large-scale application to other species.

CONCLUSIONS

In this paper, we proposed a novel strategy to extract
morphological 2D and 3D phenotypes from 3D point cloud
data. To achieve intelligent phenotyping, algorithms for point
cloud pre-processing, semantic segmentation, key point
recognition, morphological phenotype extraction were
developed. As an easy-to-use visual tool for fish phenotype
analysis, 3DPhenoFish was developed by embedding those
functions in a user-friendly interface. Basic phenotype
extraction in 3DPhenoFish requires no user knowledge of
programming or biology. Advanced functions for fine-tuning
key points and defining new phenotypes are available for
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Figure 8

Phenotype-based clustering of sample classifications of species and populations using linear discriminant analysis

Samples from Schizopygopsis younghusbandi, Oxygymnocypris stewartii, Ptychobarbus dipogon, and Schizothorax oconnori were used for
analysis. Clustering of samples using traditional 2D morphological phenotypes (A) and 2D and 3D morphological phenotypes (B). Clustering of S.
younghusbandi samples using traditional 2D morphological phenotypes (C) and 2D and 3D morphological phenotypes (D).
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Figure 9 Morphological phenotypes exhibited significant differences among species and Schizopygopsis younghusbandi populations
Distribution of head height/head length (A) and dorsal snout distance/body length (B) for Schizothoracinae species and dorsal arc width/caudal arc
width (C) and head volume/head length (D) for S. younghusbandi populations. Significant differences are shown by labels above bars, samples
sharing no label letter indicate significant difference between two groups (P<0.05).

expert users.
We employed the proposed technique for phenotype

analysis of Tibetan endemic fish species: i.e., S.
younghusbandi, O. stewartii, P. dipogon, and S. oconnori.
Comparing our results to manual measurements,
3DPhenoFish exhibited high accuracy for traditional

morphological phenotypes. The phenotypes were used in
clustering analysis of the fish samples. We demonstrated that
the 2D and 3D phenotypes enabled good discrimination
among species and even samples for the same species but
from different populations.

3DPhenoFish presents an efficient and accurate technique
to obtain 2D and 3D phenotypes for fish species. The point
cloud scanning is easy and fast, reducing the stress on fish
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during operation. More importantly, the strategy requires no
knowledge of programing or biology; therefore, it could be
applied in large-scale fish phenotyping surveys in aquaculture
and conservation studies.

SUPPLEMENTARY DATA

Supplementary data to this article can be found online.
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