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ABSTRACT 

 Evaluating the effect of Synthetic Estrogen (17α-Ethinylestradiol) Contamination upon 

Fountain Darter (Etheostoma Fonticola) Population 
 

Andrew Richardson 

Department of Civil Engineering 

Texas A&M University 

 

Research Advisor: Dr. Hsiao-Hsuan Wang 

Department of Fishery and Wildlife Services 

Texas A&M University 

 

 

Found in the headwaters of the Comal and San Marcos River, the Fountain Darter 

(Etheostoma fonticola) is on average a three-centimeter length fish that feeds upon small 

invertebrates. Considered endangered by the United States and the International Union for 

Conservation of Nature (IUCN), the darter has been controversial due to its location in the Edwards 

Aquifer in south-central Texas. This aquifer is recognized worldwide for its aquatic species of 

flora and fauna, many of which are endangered or threatened like the Fountain Darter. The 

Edwards aquifer is also the sole water source supporting the industrial, agricultural, municipal, 

and recreational needs of nearly 2 million people. The endangered darter are generally poor 

competitors and are the first species affected by habitat disruption, making them a focal point for 

controversies involving the Endangered Species Act, State of Texas Groundwater Law, and Private 

Property Rights. An age and sex-structured population model for the Fountain Darter will be 

created using pharmaceutical data and initial darter population dynamics. The model will also 

extend to include population dynamics under scenarios of increased contamination that could 

occur as a result of an environmental spill or increased urban construction.  
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CHAPTER I 

INTRODUCTION 

 

The Edwards Aquifer is famous for its exotic flora and fauna as well as the many 

endangered animal and plant species that live within it. Located in central Texas centered 

around San Antonio and covering 1,250 square miles, the Edwards is a vital and sole source 

supporting the industrial, municipal, agricultural and recreational needs of 2 million people 

(Earl and Wood, 2002). Managing the demand of an ever-increasing population and a limited 

surface water supply is of great concern to the federal and state agencies charged with 

protecting this aquatic system. The aquifer supports the headwaters and rivers containing 

many endangered and threatened species including: The Comal salamander (Eurycea 

neotenes), the Peck’s Cave Amphipod (Stygobromus pecki), the Texas Blind salamander 

(Eurycea rathbuni), the Barton Springs salamander (Eurycea sosorum), the Comal Springs 

dryopid beetle (Stygoparnus comalensis), the Comal Springs riffle beetle (Heterelmis 

comalensis) and the Fountain Darter (Etheostoma fonticola) (USFWS 2015). While detailed 

population demographic parameters have not been conducted there have been noted 

decreases in Fountain Darter population that coincided with a decrease in primary food 

sources, namely filamentous algae (Schenck and Whiteside 1976). The indication that the 

darter’s population fluctuates significantly in poor habitats  suggests the need for more 

research into how the Fountain Darter will respond to other changes in habitat. 

 As humans and society continues to progress through the technological and computer 

age, advancements in medicine and treating the sick and wounded have increased 

exponentially. However, with the dissemination and availability of pharmaceuticals, the 
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concentrations and variety of pharmaceuticals that are found in surface water sources have 

also increased, bringing about possible unknown consequences to the natural flora and fauna 

that call these sources home. Recent studies have shown that only portions of active 

components in prescribed drugs are actually metabolized (Ternes 1998). The non-

metabolized components will enter the natural water environment as waste discharge. This 

leads to trace amounts of pharmaceuticals, yet still measurable, in our streams, rivers, and 

lakes as well as the groundwater. Since pharmaceuticals are designed to have activity in 

relatively low concentrations, trace amounts could have serious ramifications on aquatic 

species and humans. The Environmental Protection Agency (EPA) requires pharmaceutical 

companies to perform environment assessments for new drugs entering the market (U.S. FDA 

2009), with predicted effluent concentrations based on both high-end sales and worst case 

discharges. However, pharmaceuticals are not regulated, meaning that even after the 

wastewater is treated the same amounts of pharmaceuticals will be present and will enter into 

the natural water environment. In the early 2000s, the United States Geological Survey 

studied this nation’s streams and found many pharmaceuticals in the water, including 

antibiotics, antidepressants and oral contraceptives (Rodriguez-Mozaz and Weinburg 2010). 

One of the most common pharmaceuticals is 17α-Ethinylestradiol (EE2) which is found in 

human, livestock and even aquaculture environments (Aris 2014). Initial studies have linked 

EE2 to altering sex determination, delaying sexual maturity, and decreasing secondary sexual 

characteristics (Aris 2014).  

 For the federal agencies in charge of regulating the many waterways of Texas, 

managing the quality of the water is not only important for the many people who rely on 

the rivers to survive, but also for the many species of flora and fauna that call the 
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waterways their home. The Fountain Darter is unique in that it has been identified for 

having a low potential for full recovery and delisting (USFWS 1995). With a limited 

distribution, specific habitat requirements and difficulty rebounding after harmful event s 

necessitates the need to properly study the Fountain Darter and any factor that could affect 

its population or survivability. With such low population numbers to begin with, an 

estimated 45,900 in 1993 (Linam 1993), knowing whether EE2 will have an effect upon 

Fountain Darter populations is crucial to ensure that the Fountain Darter population is kept 

stable and sustainable. This study will focus on estimating the effect of the introduction of 

pharmaceuticals on the Fountain Darter population. 

 

 

 

 

 

 

 

 

 

 

 

 



7 

CHAPTER II 

METHODS 

 

Research Area         

The area in question centers on the Edwards Aquifer, a vibrant and unique aquifer with a 

1250-square mile recharge zone. More specifically, the Fountain Darter is found almost 

exclusively in San Marcos River Watershed, a 522-square mile area found in the Edwards Aquifer 

in south-central Texas. Sourced by the San Marcos Springs, the river itself runs 75 miles Southeast 

through Luling, Texas before flowing into the larger Guadalupe River (Figure 1). With an 

elevation of 575 feet at the source, the river drops 300 feet to 275 feet at its mouth into the 

Guadalupe (San Marcos Source 2015, San Marcos Discharge 2015). 
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Figure 1: Location of study area in Texas (Mora et al. 2013) 

The Comal River itself begins and ends within the city limits of New Braunfels, Texas. 

Sourced at the Comal Springs in Landa Park, the river flows only 2.5 miles before flowing into 

the Guadalupe River (Comal Source 2016, Comal Discharge 2016). The river only drops 45 feet 

in its entire length, going from 645 feet at the source to 600 feet at the mouth (Comal Source 2016, 

Comal Discharge 2016). The Comal river resides in a highly urban area, completely within the 

New Braunfels city limits; a city that boasted the second highest growth rate of all cities with over 

50,000 residents in 2015 (Quesada 2016). The San Marcos River runs through both urban and rural 

areas, beginning in the industrialized San Marcos city, running through Texas State’s campus, 
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through rural south Texas, and finally flowing into the Guadalupe River. San Marcos is no stranger 

to rapid growth as well, with its 2012 census showing an 8% growth (Solomon 2014).  

Both rivers maintain a moderate climate, maintaining an average year-round temperature 

of about 72 degrees Fahrenheit (GBRA 2013). For the San Marcos River, the median pH is 7.67, 

median dissolved oxygen 9.35 mg/l, and the median chloride and sulfate concentrations were 19.2 

and 25.3 mg/l respectively (GBRA 2013). 

 

Fountain Darter 

 The Fountain Darter (Etheostoma fonticola) is a small aquatic freshwater fish that is 

generally 1-inch long (Whiteside et. al 2013). The Fountain Darter generally has 6-7 dorsal fins 

and less than 77 scales in a lateral line (Whiteside et. al 2013). It is only found in the headwaters 

of the Comal and San Marcos rivers, mostly spending its time in the filamentous green algae beds 

found at the bottom of the rivers (Whiteside et. al 2013). Fountain Darters mainly feed on small 

aquatic invertebrates that also live in the filamentous green algae. Generally living 1-2 years, the 

Fountain Darter females can lay eggs all year round, but generally have peaks of egg production 

in the early spring and fall (Whiteside et. a l 2013).  

Consistent water temperature is required for successful and consistent reproduction and 

survival in early life stages (Bonner et al., 1998). Consistent water discharge is also needed order 

to maintain population as well. The Fountain Darter population remains unaffected by low spring 

flow up until 2.8 m3/s and reduces sharply at 1.68 m3/s (Mora et. al 2012). The lower water 

discharge can have an effect on the filamentous green algae and reduce habitable area for the 

surviving darters as well (Saunders et al., 2001). 
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17α-Ethinylestradiol     

 17α-Ethinylestradiol (EE2) is a synthetic estrogen derived from the natural counterpart, 

estradiol (E2). From the properties of synthetic estrogens, it should be noted that compared to its 

natural counterparts, EE2 is more resistant to biodegradation and has a higher bonding affinity to 

the estrogen receptor, up to one to two times higher in humans and up to five times higher in 

certain fish species (Aris et al. 2014). For these reasons, EE2 is of the most commonly used 

chemicals in contraceptive pills (Delclos et al. 2009).  Also, EE2 showed the highest estrogenic 

potency compared to other estrogens; in vitro tests in fish showed EE2 was 11-30 times more 

potent than E2 (de Mes et al. 2005).   

EE2 can enter the environment from several different human, industrial, and livestock 

wastes, including from wastewater treatment plants, septic systems, industrial sources, or 

agricultural runoff when manure is used as a fertilizer (Aris et al. 2014). While the primary 

source of EE2 is human urine, recent studies have suggested that livestock waste was at the same 

magnitude or even higher than concentrations from human sources (Aris et al. 2014, S. Liu et al. 

2012). Even when human waste are processed through an activated sludge wastewater process, a 

widely used wastewater treatment design, activated sludge is ineffective in reducing EE2 

concentrations (Forrez et al. 2009). While EE2 concentration reduces by half 25 kilometers 

downstream from a wastewater treatment plant, possibly due to EE2’s low solubility, it can still 

be detected up to 100 kilometers downstream (Barel-Cohen et al. 2006). Table 1 shows detected 

EE2 concentrations at several sites around the world. Although most concentrations shown are 

single recordings and do not show the change in EE2 concentration over time, it does show that 

high EE2 concentrations are found in surface water systems around the globe.  
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Table 1: detected natural and synthetic estrogen concentrations in surface waterways around the globe (Aris et al. 2014) 

 

 

Model Formulation 

The model represents the effect of synthetic estrogen (17α-Ethinylestradiol) on the 

Fountain Darter in the egg, larval, juvenile and adult stages of its life. An age-structured population 

model was created to model a control life cycle and multiple cycles when synthetic estrogen (EE2) 

is introduced. The duration of each stage is defined by: egg (6 days), larval (60 days), juvenile 

(120 days) and adult (550 days) (Mora et al. 2013). Due to the lack of available data on Fountain 

Darter and the effect of aquatic contamination on their lifecycle, a similar surrogate species, the 

Fathead Minnow (Pimephales promelas) and its lifecycle response to several EE2 concentrations 

was used. Using the four-stage structure, the corresponding population matrix A, is shown below. 



12 

 

A         =     
 

 

Pi  is the probability of surviving and staying in stage i, Gi  is the probability of surviving 

and growing from stage i to stage i+1, and Fi is the recruitment of stage i. 

 To represent a normal population with no exposure to EE2, the normal matrix An is shown 

below. 

 

An        = 

 

 

The probability that an egg survives and becomes a larval (G1 = .116) was estimated from 

the overall survival percentage converted into survival per day percentage. P1 is then estimated as 

P1= 1 – G1 - M1 where M1 is the mortality rate of the egg stage per day. The subsequent Gi  and Pi 

probabilities were found in the same method. P4 is considered .999, or 99.9% probability of 

survival in the adult stage, however we assume death after the 550 days. To find the recruitment 

of the adult, the average eggs per female per day is multiplied by the proportion of females 

producing eggs per day. Since the Fountain Darter produces eggs throughout the whole year, a 

proportion of producing females per month is found (Mora et al. 2013). These two numbers 

multiplied together gives the recruitment for the specified EE2 exposure. The probability shown in 

P1 0 0 F4 

G1 P2 0 0 

0 G2 P3 0 

0 0 G3 P4 

0.872 0 0 0.340 

0.116 0.987 0 0 

0 0.0105 0.994 0 

0 0 0.00514 0.999 
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the F4 location uses the average proportion of producing females for the whole year (.0179; Mora 

et al. 2013). 

To represent the effect due to the EE2 concentrations, specifically 0.2 ng/l, 1.0 ng/l, and 4.0 

ng/l were used (Länge et al. 2001). Larger concentrations of EE2 of 16 ng/l and 64ng/l were initially 

studied, however, in those concentrations the Fathead Minnow was unable to survive through 

adulthood and all study fish in these high concentrations were killed before the tests were finished 

(Länge et al. 2001). For this reason, those concentrations were ignored. Representing the 0.2 ng/l 

concentration, a second population matrix A.2  is shown below. 

 

 

A.2     = 

 

 

The probability that an egg survives and becomes a larval (G1 = .111) was estimated from 

the overall survival percentage converted into survival per day percentage. P1 is then estimated as 

P1= 1 – G1 - M1 where M1 is the mortality rate of the egg stage per day. The subsequent Gi and Pi 

probabilities were found in the same method. P4 is considered 1, or 100% probability of survival 

in the adult stage, however we assume death after the 550 days. To find the Fountain Darter egg 

production (13.09), a proportion was applied that was found from the decrease of egg production 

in the Fathead Minnow due to EE2 (Länge et al. 2001). Since the Fountain Darter produces eggs 

throughout the whole year, a proportion of producing females per month is found (Mora et al. 

2013). These two numbers multiplied together gives the recruitment for the specified EE2 

0.869 0 0 0.234 

0.111 0.988 0 0 

0 0.0108 0.994 0 

0 0 0.00531 1.0 
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exposure. The probability shown in the F4 location uses the average proportion of producing 

females for the whole year (.0179; Mora et al. 2013).    

The 1.0 ng/l concentration population matrix, A1, is shown below. 

 

 

A1      = 

 

  

The Pi and Gi probabilities are found using the same formulas as the 0.2 ng/l concentration 

above. For the recruitment F4, the modified Fountain Darter egg production was found to be 11.49 

when exposed to 1.0 ng/l (Länge et al. 2001). 

For the 4.0 ng/l concentration, the population matrix A4 is shown below. 

 

 

A4   =   

 

 

 The Pi and Gi probabilities were found using the same method as the 0.2 ng/l concentration 

except for the P4 variable. From the Fathead Minnow research, adult survivability was not 

calculated. However, since Pi and Gi probabilities did not change with increasing EE2 concentration 

the 1.0 ng/l P4 variable was chosen. The fertility rate F4 was parameterized as zero due to EE2 effect 

on sex determination. After 172 days post hatching, females were found with appropriate sexual 

0.872 0 0 0.206 

0.115 0.986 0 0 

0 0.0098 0.993 0 

0 0 0.00491 0.999 

0.870 0 0 0 

0.1134 0.9876 0 0 

0 0.0108 0.9926 0 

0 0 0.00527 0.999 
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characteristic however, no males were found (Länge et al. 2001). This effect reduced the effective 

reproduction to zero.  

 In order determine the 4.0 ng/l scenario with a return to control conditions, a special control 

matrix must be created. Due to the 4.0 ng/l concentration, even after minnows were depurated in 

non-contaminated water, only 50% of the fish were functionally reproductive (Länge et al. 2001). 

Therefore, the control matrix An4 was created to represent this fact. 

 

 

An4     = 

 

 

  

 All Pi and Gi probabilities are taken from control conditions, while the F4 variable is taken 

as half of the egg production of fish within the 4.0 ng/l concentration.  

To evaluate the model, a time-step of one day (Δt=1 day) was selected. This small time-

step was chosen so the short duration of the egg cycle could be modeled. An initial population 

vector, n, of 11 larvae, 28 juveniles, and 61 adults was chosen (n(0) = [0, 11, 28, 61]) (Bio-West 

2006). 

 In order to discover the effect of EE2 on the Fountain Darter population, a two-year 

simulation (730 days) will be used for the control, 0.2 ng/l, 1.0 ng/l, and 4.0 ng/l concentrations. 

Separately, at the one year mark, the 0.2 ng/l, 1.0 ng/l, and 4.0 ng/l will be returned to control 

concentrations to determine whether the Fountain Darter population could rebound after exposure 

to EE2. 

0.872 0 0 .0857 

0.116 0.987 0 0 

0 0.0105 0.994 0 

0 0 0.00514 0.999 
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n(730)=An
730n(0) 

n(730)=A.2
730n(0) 

n(730)=A1
730n(0) 

n(730)=A4
730n(0) 

n(730)=A.2
365An

365n(0) 

n(730)= A1
 365An

365n(0) 

n(730)= A4
365An4

365n(0) 
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CHAPTER III 

RESULTS 

 

Assumptions 

With every model, certain assumptions must be made about system components of the 

model. The main assumption involved the use of the surrogate species (the Fathead Minnow) in 

order to parameterize the matrix. The Fathead Minnow is a temperate freshwater fish found in 

most of North America waterways and is one of the most prevalent fish species in the eastern 

section of North America (Sommer 2011). The Fathead Minnow is often used as test species due 

to its ability to survive in poor conditions, like high temperature, low oxygen levels, or high 

turbidities (Texas Parks & Wildlife). This competition is much higher than the Fountain Darter, 

which requires a very specific habitat in order to survive. This difference could lead to an 

overestimation of the Fountain Darter’s ability to survive in a habitat with EE2 concentration. In 

order to normalize the data to Fountain Darter population dynamics, the Fathead Minnow data 

was appropriated to Fountain Darter stage durations and the fertility rate was normalized to 

Fountain Darter due to the difference in egg production between each species. Even with these 

differences, the Fathead Minnow was chosen as the surrogate species due to its similar size, diet, 

and ideal habitat.  

The model also assumed constant concentrations of EE2 in the water supply. The 

existence of synthetic estrogen in the watersupply through wastewater (Länge et al. 2001) could 

result in variable concentrations depending on location to the wastewater outlet or up-network 

condition changes. If the human population contributing to the wastewater increases its 

consumptions of synthetic estrogens over time, an increasing concentration gradient within the 
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rivers would likely be seen.  From tests in the world’s waterways, EE2 concentrations were 

varied over time, but more tests need to be completed in order to understand the change over 

time (Aris 2014). 

 

Results 

After calculation, the long-term population growth rate for each of the five scenarios is 

depicted in Figure 2. In the 4.0 ng/l scenario, the population growth rate drops below 1, signifying 

a drop in population.  

Figure 2: Population growth rate for each scenario 

For the 0.2 and 1.0 ng/l rebound scenarios with one year possessing a higher EE2 

concentration and the second year possessing no EE2 concentrations, the population growth rate is 

within .1% for the 0.2 ng/l scenario and .25% for the 1.0 ng/l scenario.  The 4.0 ng/l rebound 
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scenario difference is more significant with a difference of 1.25%. Even still, the population 

growth rate stays above one.   

In order to understand the accuracy of our population matrix, the elasticity was calculated 

for every parameter. Shown in Figure 3, the elasticity of the control matrix was found. We see that 

the population growth rate is more affected by the later-stage parameters and most affected by the 

survival probability of the adult stage at 2.12×10-4.  

Figure 3: Elasticity of Control Population matrix 
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The elasticities of the several scenarios were calculated as well. In Figure 4, we see that 

the 0.2 and 1.0 ng/l scenario’s elasticities match the format of the control elasticity matrix. The 

values of elasticity for the P4 parameter were slightly higher, with the highest elasticity for the set 

occurring in the 1.0 ng/l rebound scenario (Figure 3d) with a value of 3.07×10-4. This value is a 

37% change from control elasticity on the P4 parameter, but only an 8.32×10-5 overall difference.  

 

Figure 4: Elasticities of 0.2 and 1.0 ng/l EE2 concentration scenarios. a) 0.2 ng/l concentration; b) 1.0 ng/l 

concentration; c) 0.2 ng/l concentration with rebound; d) 1.0 ng/l concentration with rebound 
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Finally, in Figure 5 the elasticities of the 4.0 ng/l and 4.0 ng/l are shown. These elasticities 

vary from the other scenarios with the population growth rate being only affected by the adult 

survivability parameter. The magnitude increased as well, with the highest occurring in the 4.0 

ng/l scenario at 0.0014. This is a significant increase of over 520%, even if it is a 0.00116 overall 

change. 

Figure 5: Elasticities of 4.0 ng/l EE2 concentration scenarios. a) 4.0 ng/l concentration; b) 4.0 ng/l concentration 

with rebound 
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CHAPTER IV 

DISCUSSION 

 

Survivability in Adult Stage 

 In each scenario, it is seen that the survivability of the adult stage is unusually high, never 

reducing below 0.999. This is due to several factors. First, through normalizing the data to fit 

Fountain Darter life stages, the long adult stage of the Fountain Darter (550 days) trends the 

survivability to one. Secondly, this could be an over-estimation of the Fountain Darter survivability 

due to the Fathead Minnow’s ability to survive wide ranging environmental conditions and habitats 

(Texas Parks & Wildlife). While it is not known if a study has been completed testing the Fathead 

Minnows response to EE2 concentrations with other similar aquatic species, it is possible that the 

Fathead Minnow can survive in higher concentrations of EE2 than other species, especially against 

the Fountain Darter which requires a very specific habitat to survive. Finally, this could be due to 

the highly controlled environment in which the study was performed. In the study, each test tank 

was supplied with a tightly controlled flow rate including magnetic stirrers to ensure mixing of the 

EE2 concentration (Länge et al. 2001). The Fountain Darter population drops once the spring flow 

drops below 2.8 m3/s, and drastically reduces once flow drops below 1.68 m3/s (Mora et al. 2013). 

If an increase in EE2 concentration were to coincide with a reduction in spring flow, the Fountain 

Darter’s population could be severely affected.     

 

Physical Mutation of Fish Anatomy 

 Over the multiple test groups exposed to EE2 concentrations, varying levels of mutation 

or retarded growth was seen. Stunted growth was seen in the larval life stages in concentrations 
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as low as 1.0 ng/l and more obviously in the 4.0 ng/l and above concentrations (Länge et al. 

2001). This reduced growth could also indicate long-term effects as well, like gonadal 

development in sexually mature Fountain Darters. As for the adult life stages, reduced growth 

was once again seen in the 1.0 ng/l concentrations, but it is unknown whether this is due to the 

initial effect on the larval life stage or if EE2 can affect growth throughout the entire life cycle. At 

the 4.0 ng/l concentrations, gonad development was affected as well. In the 4.0 ng/l 

concentrations, no male secondary sexual characteristics were found at any age; when test fish 

were dissected to study their anatomy further, no ovarian tissue was found (Länge et al. 2001). 

Slight male gonad degeneration was even seen as low as 1.0 ng/l, which is supported by the 

reduced fertility rates seen in the 1.0 ng/l matrix (Länge et al. 2001).  

 In Länge et al. (2001) Fathead Minnows were studied at 16 ng/l and 64 ng/l 

concentrations. Due to the minnow’s inability to survive long-term in those concentrations, those 

tests were terminated and no modeling could be performed. However, during the minnow’s 

exposure to these high concentrations severe deformities were found, among which included anal 

protrusion, distended abdomens, curvature of the spine, and hemorrhaging. These abnormalities 

extend far beyond the effects of genital anatomy, signifying that higher concentrations are able to 

reduce survival probabilities in all life stages and not just the fertility rates.  

 

Reduction in Fish Fertility after Exposure 

 As explained above, fish exposed to 4.0 ng/l EE2 concentrations saw no male gonadal 

development, with the sex ratio 100% female once the adult stage was reached. After                

re-exposure to control conditions and control male fish, the females previously exposed to 4.0 

ng/l EE2 concentrations had a 50% reduction in fertility rate compared to their control 
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counterparts (Länge et al. 2001). However, this data is difficult to interpret because visual 

identification of fish sex is impossible since no male characteristics are seen in the fish exposed 

to EE2.  While all traditional males developed ovarian tissue during its exposure to 4.0 ng/l of 

EE2, at this time it is unknown if these fish have any reproductive ability at all. Further study of 

depurated fish at possible lower concentrations are necessary to see if permanent reproductive 

effects on the female and male populations are seen.  
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CONCLUSION 

 

This model is a static life stage structured population model on the Fountain Darter 

(Etheostoma fonticola) attempting to model future darter populations under the effect of 

synthetic estrogen (17α-Ethinylestradiol).  In order to parameterize the several matrices, 

available data on EE2’s effect on the Fathead Minnow (Pimephales Promelas) was used and 

normalized to the Fountain Darter’s lifecycles and egg production to represent the reaction that 

an individual Fountain Darter population would have when exposed to EE2.The Fathead Minnow 

was chosen due to its similar life stages (egg, larvae, juvenile, adult), similar anatomy and size, 

and similar habitat and food (Sommer 2011).  

After parameterization, seven different scenarios were evaluated based on varying levels 

of EE2 concentrations. The population growth rates of these scenarios were calculated to 

determine in which scenarios the Fountain Darter population would decrease. Through 

calculations, in the 4.0 ng/l scenario, a decaying population growth rate was found.  In order to 

verify the matrices themselves, the elasticity of each matrix was found. The elasticities of each 

matrix was found to be relatively low, signifying changes to matrix parameters would not 

drastically change the population growth rates.  

With available lifecycle and egg production data, this model could be used to represent 

the effect of EE2 on other small freshwater fish due to the use of a surrogate species. The model 

could also be related to available past Fountain Darter population data (Schenck and Whiteside, 

1976; Linam et al. 1993) to predict total Fountain Darter populations currently and in the future 

under EE2 concentrations. A study into the effect of EE2 on the next generation of fish within the 

contaminated habitat could be conducted with available data (Länge et al. 2001) in order to fully 
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understand successive years and populations with sustained EE2 concentration. All of these 

separate model modifications could describe the Fountain Darter within their delicate habitat.  

LID practices and designs should be incorporated in San Marcos and effluent wastewater 

parameters should be stringent in order to reduce the amount of contaminant reaching the San 

Marcos River. The increase in contamination reaching the San Marcos and Comal Rivers is not 

only detrimental to the Fountain Darter, but all unique aquatic flora and fauna that live within 

these waterways. With the new knowledge from this model, decline of these unique species can 

be reduced as well as accurately passing regulations limiting the amount of EE2 and other 

synthetic and natural estrogens from entering Edwards Aquifer’s surface waterways. 
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