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ABSTRACT 

Today, issues pertaining to anthropogenic and climate forcing are threatening available water 

resources on a global scale. For remote alpine regions whose primary water resources are 

seasonally derived from snowmelt and runoff, these issues are particularly threatening. Changes 

in climate, and global population growth, mandate efforts for further exploration and monitoring 

of available water resources. This thesis explores the hydrologic significance of rock glaciers via 

machine-learning methodologies, in the form of a random forest image classifier, to classify rock 

glaciers in the 21,656 km2 study area extent of the San Juan Mountains, CO. A procedural 

estimation of volume was developed and run using ArcGIS®, estimating water and ice volumes 

contained within all predicted rock glacier landcover in the study area. Water and ice volumes on 

the order of 0.94 – 1.41 km3 were estimated for a predicted 69.691 km2 rock glacier surface area 

based on these procedures. In response to the lack of any available validation data in the study 

area, all observable rock glaciers were mapped manually in ArcGIS®, resulting in a total of 1,052 

observed features. The location of all mapped rock glaciers, and the morphometric data for these 

locations, served as validation for the semi-automated machine-learning methods used in this 

thesis. Statistical similarities between manually mapped rock glaciers, with regard to two trial-runs 

of the random forest image classifier, produced positive statistical results indicating the efficacy 

of these methods. The present results suggest that machine-learning decision-tree based image 

classifiers, in addition to the volumetric estimation procedure developed herein, provide a 

potentially effective means of estimating water and ice volumes present in rock glaciers. 
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1. INTRODUCTION

Historically, studies on rock glaciers have primarily focused on age, kinetic mechanics of 

movement, formation processes, and general form and structure (Capps, 1910; Gerhold, 1964; 

Giardino et al., 1984; Haeberli, 1985), with limited attention paid to quantitative measurements of 

water and ice volumes and rock glacier water inventories. Much of the reasoning behind former 

research initiatives was underpinned by the common perception of rock glaciers as general 

geomorphic curiosities. Further understanding of their potential significance as hydrologic 

resources (Bajewsky & Gardner, 1989; Johnson, 1978; Jones et al., 2018; Jones et al., 2019), 

however, makes it necessary to develop a framework for precise remote identification and 

volumetric measurements of rock glaciers so that metrics on available water quantities can be 

readily collected and monitored.   

In the context of water shortage and climate changes, rock glaciers may offer potentially 

valuable unconventional water resource assets. The water-storage potential of rock glaciers is 

unique among cryospheric landforms, resulting primarily from their diagnostic talus debris 

blankets which effectively provide insulation and solar-shielding for the internal permafrost and 

ice-debris matrix. To better understand the contribution of rock glaciers to the global hydrologic 

cycle, it is necessary to first establish a firm understanding of the volumetric water and ice content 

of rock glaciers at a much smaller localized scale. This thesis makes no attempts to establish the 

runoff contribution of rock glaciers on a global scale, but instead provides a preliminary first-order 

approximation of water volumes contained within rock glaciers in the San Juan Mountains, CO.  
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Fig. 1. Rock glacier volume estimation approach, reprinted from Barsch (1996). 

Barsch (1996) provides descriptions of the morphometric and geometric parameters 

dictating the shape and form of rock glaciers (Figure 1). More recent studies (Brenning & Azocar, 

2010; Brenning et al., 2007; Jones et al., 2019; Millar & Westfall, 2019; Munroe, 2018) have 

expanded upon these and other approaches for the estimation of rock glacier water and ice 

volumes. For this thesis, a similar integrated approach to volumetric estimation has been adopted 
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from these studies, in conjunction with semi-automated machine-learning and remote sensing 

methodologies utilized in more current studies.  

These approaches have been shown in various other studies to offer precise quantitative 

water volume estimates in rock and debris-covered glaciers, allowing for important determinations 

to be gathered pertaining to periglacial water resource status and exploration (Xie et al., 2020; 

Zhang et al., 2019; Pfeffer et al., 2014; Jones et al., 2018; Barcaza et al., 2018; Grasser, 2006; 

Brenning, 2009). 

In terms of rock glacier water inventories, the only existing first-order approximation of a 

near-global rock glacier database was demonstrated by Jones et al. (2018), suggesting volumetric 

water estimates of 83.72 ± 16.74 Gt, though these estimates are significantly limited in-part by 

methodological uncertainties, technical limitations, and primarily by lacking study area coverage. 

A different study by Pfeffer et al. (2014), representing the first true glacier and debris-covered 

glacier inventory - the Randolph Glacier Inventory – was created in response to needs posited by 

the Intergovernmental Panel on Climate Change. This database is the culmination of international 

collaboration between climate and Earth scientists, and the integration of a variety of datasets, 

truly highlighting the importance of local studies as they pertain to ultimate global investigations. 

The Randolph Glacier Inventory, however, focuses primarily on clean glacier-ice, which is 

significantly easier to observe and monitor using remotely-sensed datasets. In light of the inherent 

difficulties associated with rock glacier mapping and classification, and in ultimate pursuit of truly 

global-scale rock glacier inventories, it is necessary to first determine rock glacier water volumes 

at a much finer localized scale, and to additionally integrate new methods with existing 

approaches. 
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Estimates of available rock glacier water inventories in the San Juan Mountains of 

southwestern Colorado have only been posited by one study (Brenning et al., 2007). The resulting 

estimates, however, rely solely on analyst interpretation of aerial photography and the fitting of a 

statistical generalized additive model based off 84 rock glacier points. To bolster and add-upon the 

excellent work provided by Brenning et al. (2007), I undertook a detailed investigation and 

analysis of the available water inventories present within the near-entire extent of the San Juan 

Mountains by incorporating modern semi-automatic machine-learning and remote sensing 

approaches. 
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2. PROBLEM 

 

2.1 Problem Statement & Questions: 

 The main emphasis for this thesis stems from global concerns over anthropogenic forcing 

of global climate and hydrology, especially concerning dwindling water resources and worldwide 

water shortages. Specifically, available water inventories are globally finite and dwindling in 

response to anthropogenic impacts on climate and global population expansion, mandating unique 

approaches for water resource exploration and monitoring. 

In response to these concerns, I explored the viability of alpine rock glaciers as effective 

“perched aquifers”, specifically in the San Juan Mountains, Colorado. The objectives and methods 

of this study are driven by the following research questions: 

1. Do rock glaciers in the San Juan Mountains contain hydrologically significant 

water stores? 

2. Can water volumes contained within alpine rock glaciers be estimated using 

remotely sensed data? 
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 2.2 Objectives and Hypothesis: 

 In pursuit of the aforementioned challenges, this study has three objectives: 

 

1. To explore the reliability of modern geospatial approaches, and to expand the 

potential scale of study areas, GIS and remote-sensing methods will be used to 

map the distribution and number or rock glaciers in the San Juan Mountains, CO.  

2. To better enhance random forest classifier accuracy, and to bolster understanding 

of supraglacial talus blankets, physical morphometric parameters and thermal 

characteristics of rock glaciers will be compiled and examined. 

3. To estimate water and ice volumes contained within rock glaciers in the San Juan 

Mountains, non-invasive semi-automated machine-learning methods using 

remotely-sensed data and random forest image classification will be applied. 

 

The primary driving theme of this thesis is an investigation into, and estimation of, the potentially 

available water resources contained within rock glaciers in the San Juan Mountains. The 

hypothesis for this study, with preceding null hypothesis, can be summarized henceforth as: 

 

H0. The water and ice volumes contained within rock glaciers in the San Juan 

Mountains cannot be reasonably estimated using remotely sensed data, machine-

learning, and geospatial approaches. 

H1. The water and ice volumes contained within rock glaciers in the San Juan 

mountains can be reasonably estimated using remotely sensed data, machine-

learning, and geospatial approaches. 
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2.3 Purpose of Study  

 The scope of this thesis is the efficient, systematic understanding and validation of 

estimated water and ice volumes contained within rock glaciers in the San Juan Mountains. By 

incorporating current geospatial technology and methodologies, this thesis aims to explore the 

efficacy of GIS data, remotely-sensed data, and elevation data for the identification of rock glaciers 

in satellite imagery using machine-learning image classification approaches.   

It is clear that the dynamics of cryogenic water storage in rock glaciers are complex, largely 

resulting from meteorologic fluctuations and differences in supraglacial debris thermal properties. 

As such, accurate estimates of available water and ice volumes are time-sensitive, and mandate 

continual monitoring over time. Concrete understanding of the water-storage potential of rock 

glaciers can further highlight their importance as shallow perched aquifers. 
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3. BACKGROUND 

 

3.1  Literature Review 

The study of rock glaciers is a remarkably aged realm of periglacial research. In the unique 

discipline of landform evolution, rock glaciers have long been muzzled in the category of 

geomorphic curiosities. Literature dating back to the 19th and early 20th centuries records early 

observations and interpretations of rock glaciers, glacial mechanics, and their role in periglacial 

geomorphic and hydrologic systems - (i.e. Steenstrup, 1883; Spencer, 1900; Cross & Howe, 1905; 

Capps, 1910; Brown, 1925; Howe, 1909).  

Field methodology for research and observation of these landforms has taken a rather 

comical meandering path ever since rock glaciers were first observed in the late 19th century 

(Steenstrup, 1883). Where once trenches and boreholes were dug to reveal the internal structure of 

alpine rock glaciers (Barsch, 1977b; Brown, 1925; Giardino, 1979; Giardino & Vitek, 1985; 

Haeberli, 1989b; Haeberli et al., 1988), denudation has been cast to the wayside in lieu of non-

invasive methods of structural observation (Barsch & Hell, 1975; King et al., 1987; Rothlisberger, 

1972; Petersen et al., 2020; Xie et al., 2020).  

With increasing interest in the effects of anthropogenic and climate changes on the global 

hydrologic cycle, interest in rock glaciers has been recently revived. Interest has even ventured to 

planetary disciplines with studies being conducted using radar sounding such as the SHARAD 

satellite program to look at the water content and structure of rock glaciers on Mars - (Degenhardt 

& Giardino, 2003; Holt et al., 2008; Plaut et al., 2009). Whether study areas be terrestrial or 

extraterrestrial, a prevalent consistency remains - rock glaciers remain highly-regarded for their 

capacity to store water and ice. 
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Indeed, even early miners in the late 19th and early 20th centuries first noted ice-cemented 

rock slides as fairly commonplace (Brown, 1925). It was not until the early 20th century with the 

famous Hurricane Basin excavation pit by the Golconda Mines Consolidated, however, that Brown 

published his 1925 report on rock glacier structural composition, garnering attention to the 

resource potential of rock glaciers. Soon thereafter, a notable body of research made its way into 

the library of periglacial studies on rock glaciers.  

Excavations and direct field observations of the internal structure of rock glaciers began 

shortly after Brown’s initial Hurricane Basin report. It was noted early on that permafrost material 

could be confronted at depths of under 1 m, and reports of flowing water underneath the bouldery 

sediment-apron layer led to the “ice-core hypothesis” in the early 1970’s (Potter, 1972). The 

excavation into the side of a rock glacier located in the combe de Prafleuri, Swiss alps, was 

reported in an early study by Fisch et al. (1978). Fisch noted that interstitial, ice-cemented material 

was discovered at a depth of roughly 10 m, cementing coarse angular sediment and revealing a 

heavily fine-grained ice-matrix supported composition that differed from nearby local glacial ice 

(Barsch, 1996). Giardino and Vitek (1988a) made unique observations of a rock glacier near 

Mount Mestas, Colorado, performing internal fabric analysis in a 100m-long trench. Their 

observations led to the conclusion that three potential catastrophic depositional events produced 

the feature in question, as opposed to slow plastic-creep, suggesting that the landform was not a 

rock glacier, echoing the shared opinion of Wahrhaftig (1987). Where the utility of excavation and 

boring provided invaluable direct observations of the composition of rock glaciers and other 

similar landforms early on, largely providing their distinct classification as unconventional water 

resources, non-invasive methods of observation quickly, and simultaneously, became preferential. 
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The field of seismology, already well established by the mid-19th century, proved 

immensely effective for early non-invasive studies of rock glaciers. Early studies employed 

traditional geophones, arranged in transverse and longitudinal profile lines, relying on crude 

explosive and percussive vibrational shock waves powerful enough to reach bedrock. Additionally, 

sledgehammer percussion proved effective enough to provide information on the upper 20 m of 

rock glaciers (Barsch, 1996). By 1968, geophysical field work was conducted on the rock glacier 

Macun I, in the Lower Engadin Swiss Alps (Barsch, 1971b). The Macun I study presented the first 

deep-seismic soundings in an active rock glacier, paving the way for non-invasive techniques for 

the observation of buried mountain permafrost. The second deep-seismic survey shortly followed 

in 1971 on the Murtel I in the Upper Engadin Swiss Alps (Barsch & Hell, 1975). An unpublished 

study by Barsch & Schneider (1972) collected the first recorded geoelectric resistivity data on 

several rock glaciers in Upper Engadin, Graubunden, and a later study by Fisch et al. (1978) 

employed their same methodology on rock glaciers in the Wallis Mountains, Swiss Alps.  

Advances in geophysical techniques have seen tremendous improvements since original 

geoelectric resistivity studies, with more advanced methods such as capacitive coupled electrical 

resistivity tomography (CCERT), transient electromagnetics (TEM), gravimetry, radio echo 

soundings, and ground penetrating radar (GPR) constituting more modern approaches for the 

investigation of internal composition and structure in rock and debris-covered glaciers (Barsch, 

1996a, 1996c; Degenhardt & Giardino, 2003; Hauck et al., 2003; Hauck & Vonder Muhll, 2003; 

Janke et al., 2013; King et al., 1987; Kneisel et al., 2008; Maurer & Hauck, 2007; Petersen et al., 

2020; Vonder Muhll & Klingele, 1994; Wagner, 1996). The application of multiple geophysical 

techniques is important to account for potential misinterpretations, and as validation (Janke et al., 

2013; Schrott and Sass, 2008). By incorporating several forms of geophysical methodologies, 
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overwhelming consensus for the ice-rich internal structure of rock glaciers has been demonstrated 

by numerous studies. Thus, the intention of this study is not focused on further investigating the 

internal structure and composition of rock glaciers, and their water-storage potential, but is instead 

interested in utilizing modern geospatial, remote sensing, and machine-learning approaches for 

large-scale regional, and global, rock glacier inventory, analysis, and water budget estimations. 

 

 

3.2 State of Knowledge 

  

 The alpine cryosphere is singlehandedly one of the most important global contributors of 

surface runoff, estimated to provide 32-60% of total runoff discharge globally (Apaloo, 2013). 

Many small mountain communities in southwestern Colorado are almost completely reliant on this 

form of surface water, and with increasing understanding of the hydrologic contribution mountains 

provide there has been a notable increase in attention and research recently. It is well-understood 

that a firm understanding of the actual runoff contribution that mountains provide is mandatory to 

ensure future water allocation for stakeholders and local communities, however the challenges 

associated with accurate runoff estimates require studies to begin at a more local scale. When much 

of this runoff contribution stems from rock glacier meltwater, it would be appropriate to note that 

this is easier said than done.  

Interwoven throughout the lexicon of rock glacier studies, particularly those incorporating 

geospatial and remote-sensing approaches for observation and analysis, are the long-bemoaned 

challenges associated with the identification and observation of rock glaciers and other ice-debris 

landforms using satellite imagery. Periglacial landforms such as these are indeed effectively 

camouflaged by the surrounding denuded talus landscape in which they reside.  
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 As a result of the inherent challenges associated with remote observation of rock glaciers, 

modern approaches incorporating a variety of multispectral data, machine-learning, and deep-

learning methodologies have become quite commonplace. Specifically, the reason for the recent 

reliance on algorithmic image recognition in rock glacier studies is primarily the result of 

similarities in spectral signatures between the supraglacial talus debris blankets that cover rock 

glaciers, and the surrounding talus debris of the eroding mountain landscape (Berta, 1982; 

Brenning, 2009; Brenning et al., 2012; Johnson et al., 2020; Jones et al., 2018; Jones et al., 2019).  

To overcome the problem of rock glaciers camouflaged in mountain terrain, it is necessary 

to view rock glaciers in wavelengths of the electromagnetic spectrum that are beyond the 

capabilities of human eyes (i.e., outside red, blue, and green RGB light). Additionally, textural 

morphometric characteristics of rock glacier surface features, derived from digital elevation 

models (DEMs), can be similarly used to distinguish them from surrounding terrain. Thus, a major 

caveat exists when leveraging these types of remotely-sensed multispectral and textural data across 

large study areas to identify rock glaciers – to avoid discrepancies between analyst interpretations 

of rock glaciers in satellite imagery, and to reduce the time required to process these data, it is 

necessary to rely on machine-learning image classification algorithms to identify and delineate 

rock glacier landcover. Because of these challenges and requirements, machine-learning and deep-

learning approaches to rock glacier studies are very much in vogue (Bhardwaj et al., 2014; 

Brenning, 2009; Janke, 2005; Jones et al., 2018; Khan et al., 2020; Pfeffer et al., 2014; Xie et al., 

2020; Zhang et al., 2019).  

As a result of recent technological advances in the computational power available in 

consumer-grade computers, satellite sensor technology, and open-source machine-learning and 

deep-learning software, several studies have successfully produced image classification maps of 
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rock and debris-covered glaciers in regions including the Parlung Zangbo Basin of the Tibetan 

Plateau (Zhang et al., 2019), the Karakoram and Nepal Himalayas (Xie et al., 2020), the Eastern 

Italian Alps (Kofler et al., 2020), the Hunzu Basin in Pakistan (Khan et al., 2020), the Rocky 

Mountain National Park of Colorado (Janke, 2013), and the Hamtah and Patsio glaciers in India 

(Bhardwaj et al., 2014). Remarkably, Jones et al. (2018) has even leveraged these methods to 

produce a near-global rock glacier water inventory, citing equivalent water volumes of 83.72 ± 

16.74 Gt. Currently, only three studies have looked at rock glacier populations contained within 

the San Juan Mountains (Brenning et al., 2007; Johnson, B. 2017; White, P. 1979). Of these, only 

the study by Brenning et al. (2007) has attempted to estimate rock glacier water volumes in the 

San Juan Mountains using a statistical generalized additive model, estimating a water equivalence 

of 0.5-0.76 km3 for a surface area of 70 km2. By applying modern semi-automated machine-

learning methodologies, and integrating observations of effective band combinations and input 

data at a localized scale, this thesis provides an alternate approach to rock glacier water volume 

estimation in the San Juan Mountains. 

 

 

3.3 Hydrologic Significance of Rock Glaciers 

 As previously mentioned, rock glacier studies have historically focused on depositional 

and geomorphologic processes responsible for these landforms, as they are unique features 

(Barsch, 1971a; Capps, 1910; Cross & Howe, 1905; Mateo, 2017; Spencer, 1900; Steenstrup, 

1883; Wahrhaftig & Cox, 1959; White, 1979). As interest shifted from formation processes to 

ongoing debates of flow characteristics and mechanics of rock glaciers, understanding of the 

water-bearing potential of rock glaciers became a topic of much focus (Baltensperger et al., 1990; 
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Giardino et al., 1992; Johnson, 1981; Outcalt & Benedict, 1965). It was not until these observations 

of water-induced creep, the presence of the unfrozen “active-layer”, and eventual observations of 

rock glacier meltwater chemistry, that the arguably most pertinent and compelling quality of rock 

glaciers (i.e., water-storage characteristics) was fortunately discovered (Azocar & Brenning, 2010; 

Bajewsky & Gardner, 1989; Corte, 1976; Mateo, 2017; Petersen et al., 2020; Potter, 1972).  

 Seasonal discharge patterns have been observed in a variety of studies, with observations 

demonstrating consistent meltwater flow and runoff volumes equal to or greater than clean glacier-

ice meltwater (Caine, 2010; Corte, 1976; Johnson et al., 2020; Mateo, 2017; Millar & Westfall, 

2019). Many of these studies have also made important observations of the seasonally driven 

storage-discharge trends of rock glaciers, noting that necessary storage accommodation space is 

readily supplied as warm-season meltwater is removed from storage. While the presence of 

interstitial ice and water matrices and observations of consistent seasonal meltwater suggest a 

cyclical recharge system in rock glaciers, warming climates have also been observed to cause a 

decline in water storage (Azocar & Brenning, 2010; Jones et al., 2019; Millar & Westfall, 2019; 

Wagner et al., 2020). Multiyear observations by Caine (2010) of rock glacier runoff trends in the 

Colorado Front Range reveal an unexplainable increased discharge despite changes in precipitation 

patterns. Such results indicate the possibility of increased melting of internal ice, and suggest a 

projected decline in meltwater into the future. 

Projections of changing climates in alpine regions certainly indicate an overall decrease in 

the water-storage potential of rock glaciers, however observations of seasonal meltwater patterns 

during droughts still demonstrate reliable runoff contribution, at least for the time being (Wagner 

et al., 2020). Observations of the resilience of rock glacier water storage, owing to their insulating 

supraglacial talus debris cover, highlight the hydrologic significance of these landforms. Indeed, 
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even throughout the summer months dataloggers have recorded rock glacier meltwater 

temperatures near 0 °C in the Uinta Mountains, Utah (Munroe, 2018). Additional observations of 

the thermal buffering provided by supraglacial rock glacier taluses in the Innere Olgrube, Austrian 

Alps revealed fast and slow-flow discharge components owing to suprapermafrost and 

subpermafrost flow paths which are present within active rock glaciers (Wagner et al., 2020). The 

subpermafrost water storage for the observed rock glaciers was attributed to the presence of an 

unconsolidated ice-free sediment layer approximately 10-15m thick, resting above bedrock, which 

provided consistent baseflow discharge even during winter months. This subpermafrost layer 

demonstrated characteristics which were interpreted as activity of a shallow groundwater aquifer. 

Such observations of the radiative buffering provided by supraglacial rock glacier taluses, and the 

consistent baseflow from the subpermafrost layers, indicate that the hydrologic contribution and 

role of rock glaciers should continue to be investigated and considered in larger regional alpine 

hydrologic systems.  

 

  

3.4 Remote Sensing & Machine-Learning Approaches for Rock Glacier Research  

Recent advances in computer and sensor technologies have given rise to semi and fully-

automated approaches to geomorphic research, and particularly have garnered tremendous interest 

in machine-learning methodologies (Bhardwaj et al., 2014; Brenning, 2009; Jones et al., 2018; 

Pfeffer et al., 2014; Xie et al., 2020). Automation and machine-learning approaches truly mark the 

state of the science when it comes to regional-scaled landform studies, as they provide consistent 

reproducibility, eliminating human error, and produce rapid results. In terms of their potential 

applications to rock glacier research, these types of automated approaches offer the ability for 
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exploration and long-term monitoring of these important water resources, especially in the context 

of anthropogenic and climatic changes. While the idea of automated, machine-learning approaches 

to ice-debris landform detection and monitoring is not new, this field of computer-based research 

has seen a wide range of methodologies employed, with an equally wide range of results.  

First-order approximations for a near-global rock glacier inventory have been posited by 

Jones et al. (2018), motivated greatly by a similar near-global glacier and debris-covered glacier 

inventory, The Randolph Glacier Inventory (Pfeffer et al., 2014), though estimates of water 

resources are highlighted by the disclaimer of uncertainties associated with correct land-cover 

identification, and missing study areas. In the San Juan Mountains, limited work has been done 

combining these technologies and methods for rock glacier detection and monitoring (Brenning, 

2009). To date, one available study has been conducted utilizing image classification in the San 

Juan Mountains, Brenning (2009), though the study focuses primarily on comparisons of image 

classifiers and their respective performances. The previous best estimate of rock glacier volumes 

of water by Brenning et al. (2007) provides a reasonable first-order approximation of the water 

resources contained within rock glaciers in the San Juan Mountain study area. His approach, 

however, assumes rock glacier thicknesses of 20 m for all rock glaciers in the study area, and 

additionally relies on analyst interpretations of rock glaciers in aerial photography, and the fitting 

of a statistical generalized additive model, based solely off eighty-four identified rock glacier 

points and their respective morphometric characteristics. This thesis eliminates analyst bias, in-

part, by relying on a machine-learning image classifier. Additionally, the use of raw DEM data, 

and an interpolation procedure used to generate estimated rock glacier bases, provides an updated 

approach to rock glacier thickness estimates over the thickness estimation approach posited in 

Brenning (2005) and Azocar & Brenning (2010). By incorporating novel and successful semi-
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automated machine-learning methods of previous studies it is hoped that similar approaches for 

the study of ice-debris landforms in the San Juan Mountains can be demonstrated as effective. 

Methods of automation applied to geomorphic research typically rely on image 

classification, which itself arguably represents an entire genre of computer-based automation 

approaches for landform studies. Historically, early studies on the topographic controls and 

modeling of rock and debris-covered glaciers focused simply on location and distribution 

(Brenning, 2005a; Brenning & Trombotto, 2006; Brenning et al., 2007; Brenning, 2009; Janke, 

2005). Some early studies applied novel remote-sensing approaches to the detection and mapping 

of rock glaciers (Bishop et al., 2001; Bolch & Kamp, 2006; Bolch et al., 2008; Bonk, 2002; 

Grasser, 2006; Janke, 2001; Paul et al., 2004), though results only provided basic understanding 

of the complications associated with spectral identification of rock glaciers in remotely-sensed 

data. Later novel efforts of combining machine-learning classifiers with remotely-sensed data 

revealed inherent challenges associated with the detection and mapping of these landforms 

(Brenning, 2009), nevertheless standing as noteworthy efforts for the identification and 

classification of rock and debris-covered glaciers.  

Whereas many of these early studies used complex statistical and machine-learning 

classification methods, including logistic regression, support vector machine (SVM), generalized 

linear and additive modeling, and decision tree classifiers such as random forests (RF), lacking 

advancements in sensor and computer technologies presented a major bottleneck to effective 

autonomous classification (Brenning et al., 2007; Brenning, 2009). Since then, major 

advancements in these fields have allowed for greatly improved algorithmic identification and 

mapping of ice-debris landforms, and seen tremendous improvement in validation and accuracy. 

Approaches utilizing high-resolution digital elevation models, multispectral satellite imagery, and 
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supervised semi-automatic machine-learning methodologies have been applied to the study of ice-

debris landform identification and mapping with noteworthy results. The application of artificial 

neural networks (ANNs) was shown to accurately identify and delineate rock and debris-covered 

glacier boundaries in the Karakoram and Nepal Himalaya, with high accuracy when validated 

against glacier-boundary outlines provided by the Global Land Ice Measurements from Space 

(GLIMS) database (Xie et al., 2020). Similarly, the application of ANNs, SVMs, and RF classifiers 

for the identification of debris-covered glaciers in the Passu watershed, Pakistan, presented highly 

accurate results with accuracies >95% using RF classifiers, and >92% using ANN classifiers 

(Khan et al., 2020). Another study strictly relying on the use of automated RF classifiers revealed 

identification and classification results >98% for ice-debris landforms in the Tibetan Plateau 

(Zhang et al., 2019). These results serve as the motivation and emphasis to utilize semi-automated 

machine-learning approaches for the identification and classification of rock glaciers in the San 

Juan Mountains, and the ultimate quantification of water resources contained within them. 
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4. STUDY AREA 

 

4.1 San Juan Mountains, CO.  

 The San Juan Mountains in southwestern Colorado are of geomorphological significance, 

housing upwards of 658-756 documented rock glacier landforms as recorded by White (1973; 

1979). Regionally, the San Juan’s contain 14 peaks exceeding 4,260 meters of elevation (approx.. 

14,000 feet) (Cross & Larsen, 1935). A majority of the rock glaciers observed in this study are 

found above 2500 meters of elevation (approx. 8,202 ft). The landscape alternates between vast 

plateaus and semiarid lowlands, where seasonal meltwater nourishes pastures, farmlands, and 

densely forested areas. The entirety of the San Juan’s span roughly 90 miles from east to west, and 

approximately 70 miles from north to south, covering an approximate area of 25,800 km2 (Atwood 

& Mather, 1932). As a result of no observable rock glacier landforms in certain southernmost 

areas, specifically the southern region spanning into northern New Mexico, the study area extent 

investigated in this thesis covers an approximate area of 21,656 km2 (Figure 2). 

Field observations from the Camp Bird rock glacier, at the northwestern edge of the San 

Juan Mountains, were gathered during late summer 2020, and have been referenced as a form of 

ground-truth validation data. This rock glacier is located within Imogene Basin, near the historic 

Ouray Mining District, and lies on a north-facing slope near the northwestern portion of the San 

Juan Mountains (37.94588, -107.73170) between Ouray and Telluride, Colorado (Figure 2. Red 

dot). The portal of the Upper Camp Bird Level-3 mine, and the proximal Camp Bird rock glacier, 

are located directly off the path of a historic mining trail, now a popular off-roading trail, to 

Imogene Pass. 

 



 

20 

 

 

 

 

 

Fig. 2 - Study area extent (red outline) for the San Juan Mountains, CO. Manually mapped rock 

glaciers shown as blue points. Mapping based off analyst photo-interpretation of satellite imagery. 

Camp Bird field site shown as red star. 
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4.2 Geology of the San Juan Mountains 

 The geologic history of the San Juan Mountains is complex. The oldest rocks in the area 

are Archean gneisses, schists, and amphibolites of plutonic origin (Cross & Larsen, 1935). The 

Algonkian aged Irving greenstone was erupted, deposited, and metamorphosed after erosion of 

preexisting Archean rocks, followed by the highly deformed and folded Needle Mountains group 

which was ultimately injected with Precambrian plutonic rocks. Late Precambrian erosional 

processes regionally smoothed the landscape, and subsequent deposition of Paleozoic, Mesozoic, 

and Tertiary rocks formed much of what now constitutes the San Juan Mountains (Burbank & 

Luedke, 2008; Cross & Larsen, 1935). 

Regionally, a majority of the present geology displays the product of several uplift events, 

crosscutting igneous intrusions, deformational erosional sequences, and volcanic eruptions, 

occurring between Proterozioc to the Paleozoic and Mesozoic. Regional basement rocks 

constituted by the Paleozoic Uncompahgre Formation, consisting of metamorphic quartzites and 

slates, comprise some of the oldest rocks in the region. Near the Ouray district, a significant 

angular unconformity exists between the underlying Uncompahgre Formation and the overlying 

sedimentary limestones, dolomites, sandstones, and shales representing the Paleozoic Devonian 

Elbert Formation, Ouray Limestone, and Mississippian Leadville Limestone. These units are 

further overlain by Pennsylvanian Molas and Hermosa Formations, and the Permian Cutler 

Formation; these formations consist of sedimentary conglomerates, sandstones, limestones, and 

shales. A thick sequence of Mesozoic rocks further overlay these units, resting conformably on a 

dramatic angular unconformity. The Mesozoic rocks are predominantly sedimentary shales, 

mudstones, and sandstones, with occasional limestones, conglomerates, and breccias. These rocks 

fall into a series of formations including the Triassic Dolores Formation, Jurassic formations 
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including the Entrada Sandstone, Wanakah Formation, and the Morrison Formation, as well as the 

Cretaceous Dakota Sandstone and Mancos Shale Formations. Subsequent erosional processes 

occurring during the early Tertiary were followed by a series of volcanic eruptions, covering the 

region in mid-Tertiary volcanic rocks comprising the San Juan Formation. Structural processes 

affecting the region are primarily attributed to uplifting in the early Proterozoic, Paleozoic, and 

Mesozoic with the infamous Laramide Orogeny. The result of igneous laccolithic intrusions 

occurring during these events deposited a rich trove of ores and minerals, giving the area 

considerable notoriety as a successful mining district (Burbank & Luedke, 2008). Aside from the 

noteworthy economic geology of the San Juan Mountains, and arguably of greater significance, 

this region offers rich hydrologic value in the way of abundant surface and groundwater resources, 

in addition to an unknown amount of unconventional water resources contained within rock and 

debris-covered glaciers. 

Rock glaciers are geomorphic features which exist in various forms; however, they can be 

generally classified by their external morphological features (i.e. furrowed longitudinal ridges, 

ogives, lobate form, cirque rooting zone) with classifications of ice-cored and ice-cemented (i.e. 

interstitial-ice) rock glaciers being applied as a diagnostic comparative factor (Janke et al., 2013). 

The first documented occurrence of interstitial ice, and tongue-shaped glacial landforms, in the 

San Juan Mountains was mentioned by Spencer (1900) in an edition of Science, in which he noted 

them simply as a “peculiar form of talus”. Not long after, research in the Silverton Quadrangle of 

Southwestern Colorado marks the first efforts to excavate an active rock glacier, as documented 

in the famous Hurricane Basin study conducted by Brown (1925). While obviously unrefined in 

approach, the study remains a remarkable achievement in rock glacier studies, by providing the 

first ground-truth regarding the internal structure of an active rock glacier.  



 

23 

 

 

 

The depositional formation process of ice-cored rock glaciers occurs in mountainous alpine 

environments (Petersen et al., 2020), and typically results from slope failure and mass-wasting 

events, where pure exposed periglacial ice becomes rapidly buried beneath sediment debris - 

insulating the internal ice structure. The internal structure and composition of ice-cemented rock 

glaciers is the product of similar mass-wasting slope-failure events. Ice-cemented rock glaciers, 

however, are produced after slope-failure occurs, where surface melt-runoff and precipitation 

infiltrate into the porous structure of the lobate rock-glacier debris fans, and become subsequently 

frozen and preserved with time. Ice-cemented rock glaciers have been noted to contain anywhere 

from 30-60% ice content (Barsch, 1996a; Janke et al., 2013; Jones et al., 2019), whereas ice-cored 

rock glaciers have been observed to contain upwards of 60-90% ice content (Mateo, 2019).  

 

 

4.3 Hydrology of the San Juan Mountains  

 In terms of seasonal melt regimes of rock glaciers in high alpine environments, the 

relationship between flow patterns and climatic trends is widely considered the most influential to 

discharge characteristics. Nevertheless, observations of rock glacier melt regimes as a function of 

slope/basin aspects, and geographic distribution, have indicated that the factors affecting flow are 

multifaceted (Mateo, 2017).  

In the San Juan Mountains of southwestern Colorado, local hydrology is largely controlled 

by seasonal snowmelt (Mateo & Daniels, 2019). Regional topographic constraints on hydrologic 

flow behavior are a subsequent result of multiple glaciation events.  

The San Juan Mountains are situated on the eastern edge of the Colorado River Basin, 

diverting seasonal meltwater into a handful of major tributaries. Flow characteristics, as a result of 
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the prevailing landforms, effectively channel meltwater and precipitation runoff into seven major 

tributaries, namely the Uncompahgre River, the Gunnison River, the San Miguel River, the 

Dolores River, the Animas River, the San Juan River, and ultimately the Colorado River (Figure 

3).  

 

 

Fig. 3 - Colorado River basin delineation. San Juan Mountain study area shown by black box. 

Figure adapted from the USGS.  
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Northern-facing slopes generally outsource flow into the Uncompahgre and Gunnison 

rivers, whereas southern-facing slopes generally outsource their flow into the San Miguel and 

Dolores rivers. The Gunnison River is fed by the Uncompahgre River and eventually feeds the 

Colorado River around Grand Junction, whereas the Dolores River is fed by the San Miguel River 

and ultimately feeds the Colorado River near Dewey, Utah.  

The Camp Bird rock glacier, representing the site of collected in-situ data, is situated within 

the Imogene Basin, and feeds Imogene Creek, which ultimately connects with Sneffels Creek 

forming Canyon Creek, which feeds the Uncompahgre River near Ouray. These major tributaries 

span five states, ultimately feeding into the Pacific Ocean near the Baja Peninsula, and provide a 

large majority of the water resources required by many communities (Figure 4). Local Colorado 

communities such as Ouray, Telluride, Silverton, Durango, and Montrose heavily rely on water 

resources that are provided by runoff in high-alpine regions like the San Juan Mountains. 

 

 

Fig. 4 - Generalized meltwater runoff course for San Juan Mountains, CO. Figure provided 

courtesy of the USGS. 
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 Whereas a majority of flow input that is sourced from the San Juan Mountains is a result 

of seasonal snowmelt, an unknown amount of input is directly sourced from local rock glaciers. 

Previous studies in the San Juan region have shown the predominance of ice-cored internal 

structures in many rock glaciers in this area (Giardino et al., 1992).  

 

 

4.4 Climate and Meteorology of the San Juan Mountains   

 Local weather trends in the San Juan Mountains experience significant seasonal 

fluctuations, with topography and elevation acting as primary controls (Mateo & Daniels, 2019). 

Seasonal fluctuation trends in Southwestern Colorado coincide with the North American Monsoon 

System, also known as the Southwest Monsoon, during mid to late summer months, producing 

orographic lift of warm, moist air systems flowing inland from the Gulf of California (Sheppard 

et al., 2002; Mateo, 2017). The effect of these intrusive weather systems produces high-intensity 

precipitation events during the summer months, with cool and dry weather trends following into 

the winter.  

The National Weather Service (NWS) and the National Oceanic and Atmospheric 

Administration (NOAA) record daily, monthly, and annual weather data including temperature, 

precipitation, and snow accumulation with weather forecast offices located around the periphery 

of the San Juan Mountain region; their field office located in Montrose provides weather data 

relevant to the study area. In addition, the Center for Snow and Avalanche Studies (CSAS) 

manages a highly monitored field site at Senator Beck Basin, off the nearby Red Mountain Pass, 

providing access to archived meteorological data in the vicinity of the San Juan Mountain area.  
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The mean annual precipitation value for the period of 2005-2012 recorded by CSAS in the Senator 

Beck Basin study area was recorded to be 1190mm (Landry et al., 2014), whereas the mean annual 

precipitation value recorded by NWS at their nearby Montrose field site for the period of 2010-

2020 was 255.02mm (NWS; NOAA). Snow depth in the San Juan Mountains is quite variable, 

largely because of changes in topography and as a result of wind effects. Maximum recorded snow 

depths measured in one plot area of Senator Beck Basin for the recorded period between 2005-

2012 ranged from 1.37-2.91 m, and 618-1101 mm as measured in an adjoining plot area for the 

same period, yielding an overall mean snow depth of 1499.8mm. Mean hourly air temperatures 

recorded by CSAS at their upper Senator Beck Basin field site ranged from -31.5-22.3°C for the 

period between 2004-2012 (Landry et al., 2014), whereas the mean monthly average air 

temperatures recorded by NWS and NOAA at their Montrose field site for the period between 

2010-2020 ranged from -2.56-23.78°C (NWS; NOAA).  

 

 

4.5 Rock Glaciers in the San Juan Mountains 

 The San Juan Mountains of Colorado are the result of a variety of geologic processes. 

Precambrian and Tertiary volcanics constitute a majority of the landscape, which was subsequently 

reshaped by dominant erosional and glacial processes (Mateo, 2017; White, 1979). Following 

Pleistocene glaciation events, the landscape was denuded creating a dramatic relief of horns, 

aretes, cirques, and U-shaped valleys (Carrara & Andrews, 1975; White, 1979). The eventual 

retreat of valley glaciers following the Late Wisconsin deglaciation event 16,000 years ago, and 

complete melting around 8-9000 years ago, left behind the carved landscape that is still visible 

today (Carrara & Andrews, 1975; Mateo, 2017; White, 1979).  
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 As a result of the prevalence of volcanic rocks in the area, and the historic glacial and 

periglacial forces, a great majority of the landscape spanning the San Juan Mountains is highly 

fractured and broken. As White (1979) noted early on, regions above the timberline (>3550m) are 

almost entirely dominated by periglacial erosional processes, especially mass wasting events. In 

addition, the intrusion of warm moist air regionally compelled by orographic lift, known as the 

Southwest Monsoon, causes summer months in the San Juan Mountains to experience high 

intensities of precipitation. The culmination of these preexisting conditions creates the perfect 

environment for rock glaciers.  

 Some of the earliest recorded rock glacier studies (Brown, 1925; Cross & Howe, 1905, 

Spencer, 1900) were conducted in the San Juan Mountains, each of them providing 

groundbreaking observations and noting their uniqueness among other periglacial landforms. 

Notably, the study by Brown (1925) in Hurricane Basin provided one of the earliest observations 

of the internal ice content of rock glaciers. Following these landmark studies, however, interest in 

San Juan Mountain rock glaciers has only been shown by a handful of other publications (Bailey, 

2020; Brenning et al., 2007; Janke, 2007; Johnson, 2017; White, P. 1973, 1979; White, S. 1971, 

Mateo, 2017; Mateo & Daniels, 2019). Of these, only one (Brenning et al., 2007) has attempted to 

estimate the available water resources contained within San Juan Mountain rock glaciers. The 

study published by P. White (1973) reported 756 observed rock glaciers located at elevations 

between approximately 2975-4109 m in the San Juan Mountains, whereas Brenning (2007) 

statistically estimated 900-1300 rock glacier features above elevation of approximately 3600 m. 

In either case, the population of rock glaciers contained within the San Juan Mountains is 

reportedly one of the largest global populations contained within a single mountain range.  
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5. METHODS 

 

5.1 GIS and Remote-Sensing Approaches to Rock Glacier Mapping 

Quantitative assessments of rock glacier inventories and estimations of their volumetric 

water stores present significant challenges in remote alpine regions where they are located. 

Accessibility presents one of the greatest challenges when studying these landforms, and sufficient 

field observations necessary to produce such inventory estimates and analyses are time and labor 

intensive. In light of these challenges, remotely-sensed satellite data provide valuable resources 

for local and regional scale rock glacier inventory studies, and provide means of rock glacier water 

volume estimation. By utilizing a variety of remote sensing datasets and techniques, this study will 

provide a better understanding of the available water resources contained within rock glaciers in 

the San Juan Mountains. Additionally, this thesis will highlight constraints and challenges posed 

by these methods, as well as the ultimate benefits these methods can offer for understanding rock 

glacier water inventories.  

The major diagnostic property of rock glaciers and debris-covered glaciers (DCGs), jointly 

referred to as “ice-debris landforms” for simplicity (Berthling, 2011), is the talus supraglacial 

debris cover. Unfortunately, this renders their spectral signature difficult to parse from remotely-

sensed spectral indices (Berta, 1982). In efforts to surmount this problem, thermal data have been 

used, with some success, to observe and measure ice-debris landforms. The distinguishing 

characteristic of these landforms from the surrounding terrain is the internal composition, 

consisting of permafrost and ice-lenses, and the behavior of heat emission from the earth’s surface 

is a result of the internal temperature of the underlying soil and rock; thus, it has been posited that 

differences in heat emission of ice-debris landforms and the surrounding terrain can aid in 
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identification and mapping in imagery (Brenning et al., 2011). Because of these observations, this 

thesis utilizes remotely-sensed thermal bands from Landsat-8 to estimate changes in land surface 

temperature (LST) by converting thermal surface radiation emissions to radiant surface 

temperature (Lillesand et al., 2004). Google Earth Engine®, a cloud-based geospatial and remote-

sensing platform, was used to source and manipulate LST data, and ArcMap 10.7® was used to 

overlay these data and perform calculations of thermal emissions.  

Because of the complex and unique structure, composition, and location of alpine rock 

glaciers, it is necessary to integrate a variety of data and methodologies to observe these landforms 

remotely. The research approaches adapted in this thesis combine a large variety of open-source 

data including 10-meter digital elevation model (DEM) data derived from the USGS’ 3D Elevation 

Program, DEM-derived morphometric parameter layers calculated in ArcMap 10.7®, Landsat-8 

multispectral data, ICESat-2 lidar data, 1-meter National Agriculture Imagery Program (NAIP) 

multispectral data, landcover spectral indices including the normalized difference vegetation index 

(NDVI) and the modified normalized difference water index (MNDWI), textural layers calculated 

in Google Earth Engine®, and in-situ field data collected during the Summer of 2020. In addition 

to all open-source GIS and remotely-sensed data analyzed, and as a result of the lacking availability 

of validation data in this study area, all observable rock glaciers within the entire San Juan 

Mountain extent were manually mapped in ArcMap® to provide comparative validation data – 

these positional validation data were ultimately used to assess the accuracy and efficacy of the 

semi-automated and machine-learning methods used later on. A database including morphometric 

parameter values and positional data was also created in ArcMap® based off the manual rock 

glacier point map. For further comparative validation and analysis of elevation measurements, 
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ICESat-2 data was examined and applied towards generalized first-order water volume 

approximations. 

 

 

5.1.1 ICESat-2 Data for Elevation Measurements 

The ICESat and ICESat-2 missions, conducted by NASA, collect Ice, Cloud, and land 

elevation data via Satellite (ICESat). ICESat and ICESat-2 use LIDAR laser altimeter sensors to 

provide updated ice and glacier mass-balance estimates, vegetation indices, and land topography 

information. All data collected by ICESat and ICESat-2 satellites are open-source and managed 

by the National Snow and Ice Data Center (NSIDC), available for download from NASA’s 

interactive cyberinfrastructure data platform OpenAltimetry. ICESat-2 data are primarily used in 

this thesis for comparison of elevation values, however rough, first-order approximations of rock 

glacier water volumes for five miscellaneous rock glaciers in the San Juan Mountain study area 

have been produced by means of a very generalized 3D rock glacier model, henceforth, referred 

to as the Acevedo-Grunau or A.G. rock glacier model.  

While still in their infancy, the ICESat and ICESat-2 missions offer noteworthy advantages 

over traditionally collected lidar data, primarily owed to the precision of elevation measurements 

and the variety of landcover types capable of being measured, including land-ice height, sea-ice 

height, land and vegetation height, ocean surface height, sea-ice freeboard measurements, and 

inland water surface height. The laser altimeter utilized by ICESat is the Geoscience Laser 

Altimeter System (GLAS), capable of performing roughly 40 photon measurements a second. 

Notable improvements were made to the laser altimeter housed on ICESat-2, known as the 

Advanced Topographic Laser Altimeter System (ATLAS), which is capable of performing over 
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10,000 photon measurements per second. Orbital coverage of the ICESat GLAS instrument can be 

observed in Figure 5 for the San Juan Mountain study area, and global coverage of the ICESat-2 

ATLAS instrument can be observed in Figure 6. Datasets were filtered by location, data product, 

and orbital period. 

 

Fig. 5 – ICESat ground tracks over the San Juan Mountain study area. From NASA’s 

OpenAltimetry portal. 
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Fig. 6 – ICESat-2 ground tracks over the San Juan Mountain study area. From NASA’s 

OpenAltimetry portal. 

 

While offering extremely precise elevation measurements, a significant drawback of the 

ICESat and ICESat-2 missions is the very low temporal resolution. The orbital return time for the 

satellite to return to a given location is 91 days, which currently corresponds to the minimal amount 

of available data. The spatial coverage of the ground tracks is also very low (Figures 5-6). The 

spatiotemporal constraints arising from ICESat and ICESat-2 orbital coverage lend to the 

difficulties in finding good elevation profiles in the San Juan Mountains. Good elevation profiles 

require ground tracks to intersect rock glaciers either perpendicular or horizontal to the direction 

of creep (i.e., down-dip). Additionally, the availability of good rock glacier elevation profiles only 

allow very generalized thickness metrics to be manually gathered and incorporated into the A.G. 

model. To investigate the efficacy of using ICESat-2 data to derive generalized rock glacier water 
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and ice volume estimates, elevation profiles from six rock glaciers were used to determine 

thickness measurements, and ultimately were used to estimate water and ice volumes.  

Both ICESat and ICESat-2 datasets used in this report are for the same study area, allowing 

for comparison of data coverage and spatiotemporal resolution. The following ICESat data were 

collected from the NSIDC website using their interactive download interface:  

GLAH06_634_2129_002_0153_4_01_0001.H5 - 2009-03-24 

GLAH06_634_2129_002_0087_2_01_0001.H5 - 2009-03-19 

GLAH06_634_2127_001_0153_4_01_0001.H5 - 2008-11-29 

GLAH06_634_2125_002_0087_2_01_0001.H5 - 2008-10-15 

 

The following ICESat-2 data were similarly collected directly from the NSIDC website using the 

same interactive download interface:  

ATL06_20190913063941_11790402_002_01.h5 – 2019-09-13 

ATL06_20190614105952_11790302_002_01.h5 – 2019-06-14 

ATL06_20190315152016_11790202_002_01.h5 – 2019-03-15 

ATL06_20181214194017_11790102_002_01.h5 – 2018-12-14 

 

The interactive NSIDC dataset for ICESat and ICESat-2 land-ice height data can be respectively 

found at: https://nsidc.org/data/GLAH06/versions/34  ; https://nsidc.org/data/atl06 

ICESat and ICESat-2 data and elevation profiles can also be downloaded directly from NASA’s 

OpenAltimetry data portal, which was ultimately used in lieu of NSIDC data. Elevation profiles 

generated within the OpenAltimetry platform were produced for four different rock glaciers using 

ICESat-2 data, and for one rock glacier using ICESat data. Elevation data for the measured rock 

glaciers were incorporated into a generalized model, the Acevedo-Grunau rock glacier volume 

model (Figure 7, Eq.1), developed for this report and based off the 1996 study by Barsch (Figure 

1).  

https://nsidc.org/data/GLAH06/versions/34
https://nsidc.org/data/atl06
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Fig. 7 – Generalized rock glacier volume model (i.e., A.G. model). Block diagram sketched by 

Grunau, B. 

 

 

The Acevedo-Grunau (A.G.) model for volumetric rock glacier water estimation is 

mathematically expressed as: 

 

 Rvol = ((lwz + (0.5πz2l) + (0.25πz2w) + (0.33πz3))*0.75)*0.9095 Eq. 1 

 

The length, width, and height (lwz) values are taken of a representative elementary volume (REV) 

of a rock glacier, and added to the partial volumes of three quarters of a cylinder, and a quarter of 

a sphere. The addition of the partial volumes with a rectangular prism REV forms what is a very 

rough basic three-dimensional volume closely related to the actual shape of a rock glacier, albeit 
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with some serious shortcomings. For the rock glaciers measured in this study, three dimensional 

measurements of the rock glaciers were made with both ICESat-2 data for height, whereas lateral 

and longitudinal (i.e., width, length) measurements were made using the measuring tool in ArcMap 

10.7®.  

  

 

5.1.2 Rock Glacier Mapping in ArcGIS 

 As previously mentioned, only three available rock glacier inventory studies have been 

conducted within the San Juan Mountains. In each case, the study area extents examined did not 

contain the entire San Juan Mountain region. Additionally, only the studies conducted by Johnson 

(2017) and White (1979) mapped rock glacier locations, however, the specific location data for 

these mapped rock glaciers are still unavailable. Because of the lack of available mapped rock 

glacier location data, all observable rock glaciers contained within the near-entire San Juan 

Mountain extent spanning 21,656 km2 have been mapped in this thesis to serve as validation data 

for the algorithmically classified rock glacier landcover generated by a random forest image 

classifier in Google Earth Engine®.  

 Manual mapping of all observable rock glaciers was performed in ArcMap 10.7®. The 

standard World Imagery basemap provided by Maxar Technologies was the primary imagery used 

for mapping. Additionally, all DEM-derived morphometric parameters including slope, aspect, 

curvature, and hillshade were combined as a stacked-raster which was also useful for visualizing 

areas where terrain was obscured. A preexisting rock glacier polygon dataset created by Texas 

A&M student, Kriti Swami, was also available and referenced for manually mapped rock glacier 

locations.  
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 The identification of landcover constituting rock glaciers was performed based off several 

criteria. Foremost, longitudinal ridges and furrows have long been accepted as diagnostic features 

of rock glaciers distinguishing them from other forms of talus debris, a result of their ice-rich 

internal structure and plastic form of creep (Barsch, 1971a; Giardino, 1983; Giardino & Vick, 

1987; Wahrhaftig & Cox, 1959; White, 1979; Janke et al., 2013). As noted by Barsch (1971a), 

Wahrhaftig & Cox (1959), and White (1979), the element of rock glacier form especially shown 

by the presence of steep frontal slopes is another key feature indicative of active rock glaciers. In 

many cases, steep frontal slopes were easily visible when viewing DEM-derived slope maps 

(Figure 8). 
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Fig. 8 - Morphometric slope map at the Camp Bird field site. Camp Bird shown by red dot on 

inset map. 

 

Their primary location above the timberline, in sparsely to completely unvegetated areas, was also 

a helpful diagnostic feature. Additionally, a majority of the identified rock glaciers were observed 

to have small streams discharging from their toe, and in many cases ponds and lakes were seen to 

accumulate at their base. Whereas color was certainly not a highly indicative characteristic, many 

observed rock glaciers demonstrated a dull gray to tan appearance. Also, many rock glaciers had 
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noticeably large boulder-sized rock fragments entrained on their surface, whereas large boulders 

in surrounding areas were seen to simply roll downhill and accumulate in low points.  

 A point feature-class was created to mark their geographic locations. Points were 

strategically placed away from the headwall, above the estimated centroid of the active layer, 

however due to the wide range of shapes and sizes of local rock glaciers these estimated active 

layer centroid locations are admittedly not precise. In many areas, especially in large amphitheater-

sized cirques, multiple abutting rock glaciers can be observed. In cases where multiple rock 

glaciers are juxtaposed, the delineation of individual features was determined based off the 

presence of separate frontal lobes, and individual sets of longitudinal ridges and furrows. 

Throughout the mapping procedure, no attempt was made to distinguish relict from active rock 

glaciers. 

It is worth noting that there are fundamental drawbacks to geomorphic studies primarily 

conducted with the use of remote-sensing approaches, especially considering that geomorphology 

is a discipline rooted in field observations – the field aspects of geomorphic research cannot be 

ignored, even in the context of exponential advances in computer and sensor technologies 

(Leupold et al., 1964). Because of this, efforts to leverage in-situ observations and manually 

mapped rock glacier point data as a form of ground truth have been made in this study, and it is 

hoped that additional in-situ data can be collected in the future to further bolster the results of this 

work. Nevertheless, in an effort to provide large-scale regional and even global implications, 

remote-sensing approaches are indispensable for the results of this study. Furthermore, 

conceptually, accurate analysis of regional and global water inventories contained within ice-

debris landforms is largely controlled by climate variations, meaning that water budgets are in a 

state of constant flux. To account for these fluctuations, it is necessary to devise methodologies 
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for the continued monitoring of these resources into the future. With time being a major constraint, 

remote observations provide the most viable and effective way to maintain widespread monitoring 

of water inventories, especially those contained within ice-debris landforms. The implementation 

of automated approaches to these methodologies can provide additional standardization, 

reproducibility, and robustness to global water budget monitoring, invaluable in the context of 

climate and population changes.  

 

 

5.2 Rock Glacier Morphometric and Thermal Properties 

 To effectively classify and distinguish rock glaciers remotely using satellite imagery, it is 

necessary to understand the physical morphometric and thermal characteristics of these landforms. 

Moreover, to fully grasp the water and ice-storage potential of rock glaciers, it is important to 

understand the thermal regime and behavior of their internal structure. In essence, rock glacier 

surface textures display diagnostic features from surrounding land surfaces, which greatly aids 

machine-learning image classifier detection of these and other ice-debris landforms. Furthermore, 

the unique thermal responses of rock glaciers can be leveraged using remotely-sensed data to 

further bolster image classifier reliability. 

The majority of these physical textural characteristics can be readily determined from 

simple digital elevation models using software such as ArcGIS® and Google Earth Engine®, 

however traditional field mapping methods can be additionally applied to estimate morphometric 

parameters, providing important in-situ measurements for comparison and validation. For this 

thesis, field mapping was conducted on the Camp Bird rock glacier. 
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5.2.1  Morphometric Field Observations of the Camp Bird Rock Glacier 

Field observations were collected at the Camp Bird rock glacier during late summer, July 

2020, and include: manual morphometric measurements of longitudinal and transverse rock glacier 

profiles, slope aspect measurements, GPS latitude and longitude point measurements, elevation 

point measurements, and manual stream gage measurements of rock glacier meltwater. A 

longitudinal transect was manually obtained by walking from the rock glacier’s rooting zone, near 

the cirque wall, to the tip of the frontal slope. A 100-foot tape measure was used for measuring 

distance, and a Brunton® compass was used to maintain a straight line for the transect. Transverse 

profiles were collected similarly, with three total transects taken, one near the rock glacier toe, one 

near the middle above the active layer, and one near the rooting zone (Figure 9). Additionally, the 

entire rock glacier perimeter was manually measured in similar fashion. Frontal and peripheral 

slope angles were also measured using the Brunton® compass.  
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Fig. 9 - Field work conducted at the Camp Bird rock glacier July 2020. Transverse profile 

measurements were manually collected with GPS data and a 100 ft tape measure. Photograph 

captured by field assistant Jacqueline Rambo, July 2020. 

 

 

Latitude/longitude and elevation data were recorded using GPS data collected from cell 

phones with simple and free surveying apps, and were later imported into ArcMap ®, allowing for 
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the creation of a generalized digital elevation model using the Kriging tool found in the Spatial 

Analyst® package (Figure 10). The generated DEM constitutes the only true in situ field 

observations of this thesis and was eventually used to estimate stored water volumes for the Camp 

Bird rock glacier, which was subsequently compared with estimated water volumes using ICESat-

2 data and the generalized A.G. model.  

 

 

Fig. 10 - Camp Bird rock glacier. Red points represent locations of in-situ field measurements. 

Point measurements collected during July 2020 by author and field assistant Jacqueline Rambo. 
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This in situ DEM also provides a first-order ground-truth comparison of a single rock glacier 

against other open-source DEM data such as those provided by the USGS and ICESat-2. Indeed, 

almost every rock glacier study conducted using remotely-sensed data notes the importance of 

DEM data, primarily as they are necessary to compute important morphometric parameters such 

as slope, curvature, hillshade, and aspect (Bishop et al., 2004; Bhardwaj et al., 2014; Brenning et 

al., 2011; Brenning, 2009; Brenning et al., 2007; Charbonneau & Smith, 2018; Gamache et al., 

2018; Janke, 2013; Janke, 2008; Khan et al., 2020; Rau et al., 2005; Robson et al., 2020; Schmid 

et al., 2015; Xie et al., 2020; Zhang et al., 2019). As noted in the study conducted by Janke (2013), 

satellite-derived LiDAR DEM data were more than sufficient for observing textural and 

morphometric features of rock glaciers located in the Front Range of Colorado, in the northern 

Colorado Rocky Mountain National Park. His study did note, however, that detailed observations 

of micro-topography of rock glaciers were best made using aerial LiDAR data. While aerial 

LiDAR is costly and difficult to acquire, the study indicates that a simple 10m USGS DEM can 

provide meaningful measurements of rock glacier geomorphic features. This thesis similarly 

utilizes a 10 m DEM from the USGS, from which all morphometric parameters and terrain 

statistics for this thesis have been computed. Furthermore, the creation of a generalized DEM using 

field-collected GPS measurements from cell phone app data demonstrates the ability for fine-

scaled localized studies of rock glacier morphometries to be readily performed at low cost.  

 

 

5.2.2 Morphometric Parameters in ArcGIS® and Google Earth Engine®  

The USGS 3D Elevation Program provides publicly available DEMs, with 1 arc second 

(30m), 1/3 arc second (10m), and 1-meter spatial resolutions available in the San Juan Mountain 
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study area. Because 1-meter DEM data are only available in small portions of the San Juan 

Mountains, the lowest available spatial resolution (i.e., 1/3 arc second) was used for this thesis.  

Software such as ArcMap® provides tools through their Spatial Analyst® and 3D Analyst® 

toolboxes to calculate morphometric parameters from imported DEM data, including: slope, 

aspect, curvature, and hillshade. Google Earth Engine® provides similar tools to calculate 

additional morphometric textural parameters such as the gray level co-occurrence matrix (GLCM), 

gradient, direction, entropy, contrast, angular second momentum, and Geary’s C. In addition to 

hyperspectral satellite data, textural morphometric parameters such as these have been observed 

to more reliably distinguish rock glacier and other talus-debris landforms when using image 

classifiers (Bhardwaj et al., 2014; Brenning et al., 2007; Brenning, 2009; Khan et al., 2020; Robson 

et al., 2020; Xie et al., 2020; Zhang et al., 2019). While thermal data have been shown to provide 

some means of identifying rock glaciers using satellite data (Brenning et al., 2011), almost every 

rock glacier study utilizing remotely-sensed data has echoed the importance of rock glacier 

morphometry, each of them noting the use of morphometric parameters as unequivocally necessary 

to distinguish ice-debris landforms from surrounding talus terrain.  

All calculated morphometric parameters in this thesis include normal curvature, profile 

curvature, plan curvature, slope, hillshade, aspect, gradient, direction, the gray-level co-occurrence 

matrix (GLCM), and derivatives of the GLCM including contrast, angular second momentum, and 

entropy. Additionally, a Laplacian edge-detection kernel was used in Google Earth Engine® to 

identify rock glaciers with well-defined form. The calculation of each morphometric parameter 

resulted in individual raster layers, which were eventually combined into a large multi-band 

stacked raster feature which was incorporated into the random forest image classifier.  
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Fig. 11 – Morphometric curvature map at Camp Bird field site. Camp Bird shown as red dot on 

inset map. 

 

 Curvature is one of the most important rock glacier morphometrics, as noted by almost 

every study cited above. It is the second derivative of terrain surfaces, more succinctly noted as 

the slope-of-the-slope. and is a measurement of convexity vs concavity of terrain. Three types of 
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curvature are capable of being calculated in ArcMap, normal curvature, profile curvature, and 

plan curvature. Normal curvature (Figure 11) is computed as stated above, whereas profile 

curvature is measured in the direction of maximum slope, and plan curvature is measured 

perpendicular to the direction of maximum slope. Positive values for both normal and plan 

curvatures indicate the ground surface is upwardly convex, with negative values indicating the 

surface is upwardly concave, and values of 0 indicate the surface is flat. For profile curvatures, 

positive values indicate the surface is upwardly concave, negative values indicate the surface is 

upwardly convex, and values of 0 similarly indicate the surface is flat. The units of curvature are 

1/100th of a z-unit. 

Slope, aspect, and hillshade were also calculated in ArcMap. Slope and aspect use a 3x3 

kernel moving window to calculate topographic values between pixels, and hillshade is computed 

assuming an infinite amount of illumination sources, with brightness values ranging from 0-255. 

Textural properties including gradient and direction were calculated in Google Earth Engine®, and 

represent spatial changes in pixel elevation values akin to the computation of slope. The GLCM is 

a very important textural parameter for understanding topographies, and is computed using a 

matrix of specified dimensions, in this case a 4x4 kernel matrix was used. The GLCM calculates 

the frequency of grey-to-white pixel brightness variations over space, which is extremely useful 

for rock glaciers as their longitudinal ridges and furrows are diagnostic and demonstrate consistent 

patterns of grey-to-white. Brenning et al. (2012) expanded on this idea using Gabor textural filters 

and IKONOS satellite imagery to detect flow structures based off grey-to-white variations 

represented by ridges and furrows. From the GLCM, contrast, angular second momentum, and 

entropy were also calculated. Contrast represents overall local contrast of the imagery based off 

grey-to-white pixel values, angular second momentum is a measurement of repeated pairs of grey 
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and white pixels, and entropy is a measurement of the overall randomness of grey and white pixel 

values. The efficacy of individual bands used in the random forest image classifier was assessed 

iteratively by sequentially adding and removing individual bands upon each classification test run, 

and analyzing the predicted rock glacier surface area and mean slope values in comparison with 

observed mean slope values from White (1979) and Brenning et al. (2007), and predicted rock 

glacier surface area estimates from Brenning et al. (2007). Band combinations with estimated 

surface areas and mean slope values closest to these studies were ultimately chosen for testing in 

the final image classification procedure. 

 

 

5.2.3 Thermal Characteristics of Rock Glaciers 

 Without doubt, the primary characteristic of rock glaciers designating them as 

hydrologically significant, aside from their capacity for water storage, it the thermal insulation 

provided by their supraglacial talus debris cover (i.e., debris blankets). Rock glaciers are relatively 

unaffected by local climate and thermal controls, allowing them to exist as prolonged and insulated 

water stores unlike clean glacier ice (White, 1979). Their insulated thermal properties are 

particularly important as climate changes persist and change alpine landscapes. To better 

understand the temperature characteristics present in the San Juan Mountains, temperature 

fluctuation trends in the study area were derived from Band-10 of Lansdat-8 surface reflectance 

imagery in Google Earth Engine®, based off the locations of digitized rock glacier training data 

used in the random forest image classifier. Additionally, the results and findings of a variety of 

thermal regime rock glacier studies have been compiled and incorporated below. From these 
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findings, a simplified thermal model of rock glaciers in the San Juan Mountains was created, 

demonstrating the efficacy of supraglacial talus insulation.  

The thermal resilience of rock glaciers has been historically heralded by almost every 

study, and more recently an understanding of the mechanics behind their insulating characteristics 

have been examined more in depth. A study conducted by Staub et al. (2015) indicated the 

additional insulating factors of overlying snow cover as proven by various other studies, noting 

that an overlying snow layer of at least 80 cm effectively thermally decoupled ground permafrost 

from the atmosphere, whereas an overlying snow layer of 5-20 cm can lead to the “autumn snow 

effect” during cooler weather, which may intensify ground cooling especially for unconsolidated 

course-grained surfaces by decreasing the thermal insulation (Goodrich, 1982; Hoelzle et al., 1999; 

Ishikawa, 2003; Keller & Gubler, 1993; Luetschg et al., 2008; Staub et al., 2015). The average 

snow cover recorded between two different study plots in Senator Beck Basin, of the San Juan 

Mountains, is 149.98 cm. Another study conducted in the Swiss Alps by Haeberli et al. (1998) on 

the famous Murtel-Corvatsch rock glacier marked one of the longest ongoing thermal studies of a 

rock glacier. In the study, a borehole was drilled to a depth of 58 m in 1987, whereby temperature 

trends were recorded at intermittent depths for a period of over 10 years. At depths of 10 m and 

deeper, mean internal temperatures ranged from -2.6°C to -1.2°C. Another similar study was 

conducted by Vonder Muhll et al. (2003) on the same rock glacier. Thermistor sensors were placed 

in boreholes in 1993, recording temperature trends at similar depths as the study by Haeberli et al. 

(1998). Similar temperature fluctuations were noted, with warm periods around June registering 

warmer internal temperatures ranging from -0.05°C to 0.15°C. The study by Vonder Muhll also 

noted that internal rock glacier temperatures may be governed by mean annual surface 

temperatures and the internal permafrost base.  
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The cooling effects of openwork blocky debris have been noted as a particularly governing 

factor for internal thermal regimes of rock glaciers (Jones et al., 2019; Wicky & Hauck, 2020). 

Several thermophysical mechanisms occur in unconsolidated, openwork blocky matrices such as 

rock glaciers, including: the Balch effect, the chimney effect, continuous air exchange with the 

atmosphere, summer-time evaporation or sublimation of water and/or ice, and conductive heat loss 

via boulder protrusion (Jones et al., 2019). One particular mechanism of cooling, aptly named the 

chimney effect, was proposed in a study by von Wakonigg (1996). The chimney effect describes 

the seasonal thermally-driven circulation of air through rock glacier matrices. During cooler winter 

months, warm air masses move upslope through open rock glacier interstices, allowing cold air to 

build-up in lower areas of rock glaciers. During warmer summer months, the mechanism is 

reversed and cool air is driven downward, exiting at the foot of the rock glacier toe (Wakonigg, 

1996). The discharge of cool air from rock glacier toes has been observed as a gentle breeze exiting 

from the frontal slope (Delaloye & Lambiel, 2005; Jones et al., 2019), and was also observed at 

the Camp Bird rock glacier during field work conducted in this thesis in July 2020. Conductive 

heat loss via boulder protrusion is another effective mechanism of rock glacier thermal regimes, 

as has been observed in the Solen Mountains, central-eastern Norway by Juliussen & Humlum 

(2008). Large boulders entrained in supraglacial rock glacier taluses act as heat bridges, increasing 

surface area and thermally coupling openwork blocky debris with surrounding surface air, 

promoting heat conduction. In their study, Juliussen & Humlum (2008) reported mean annual 

ground surface temperatures of openwork blocky debris cover 1.3-2.0°C lower than surrounding 

till and bedrock surfaces (Jones et al., 2019). Wicky and Hauck (2020) reported similar 

observations of the thermal regimes of openwork blocky debris cover of rock glaciers at the 

Murtel-Corvatsch and Schafberg rock glaciers in the Swiss Alps. Their study modeled heat 
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convection in an openwork blocky, porous media using a Darcy approach based off Darcy’s law, 

and found that in addition to heat conduction resulting from similar mechanisms as the 

aforementioned ‘conductive heat loss via boulder protrusion’, free air convection has a significant 

influence on the internal thermal regime of rock glaciers. The results of the study by Wicky & 

Hauck (2020) demonstrate how highly porous openwork blocky debris cover constituting the 

supraglacial taluses of rock glaciers promote strong air circulation, ultimately leading to increased 

ground cooling. 

While a rigorous understanding of the thermal regimes and thermophysical processes of 

rock glacier taluses is beyond the scope of this thesis, temperature fluctuation data was collected 

from Band-10 of Landsat-8 surface reflectance imagery using Google Earth Engine® for the period 

of March 2013 to November 2020. The overall trend of temperature fluctuations can be shown by 

the raw data in Figure 12. 

 

 

Fig. 12 – Raw Landsat-8, Band-10 surface reflectance temperature data, generated in GEE®. 
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A harmonic oscillatory wave function was ultimately fit to these temperature data, allowing 

trends of temperature fluctuations to be more easily seen (Figure 26). The use of satellite thermal 

bands such as Bands 10 and 11 from Landsat-8 offer potentially valuable data for remote areas 

with little to no existing temperature datasets, or whose study areas area inaccessible. Additionally, 

satellite-derived thermal data provide regional and even global-scale coverage. These types of data 

will likely be extremely valuable in the coming years as climate changes dictate more widespread 

and consistent monitoring of hydrologic resources such as those contained within rock glaciers. 

Based off the results of the previously mentioned studies, a schematic diagram illustrating thermal 

processes in rock glaciers was sketched to demonstrate the interactions, variables, and thermal-

coupling present within alpine rock glaciers (Figure 13).  

Fig. 13 – Generalized schematic diagram demonstrating thermal convective and conductive heat 

distribution processes present within rock glaciers. Diagram illustrated by the author. 
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While still very generalized, schematic diagrams such as these help communicate the hydrologic 

value of ice-debris stores contained within rock glaciers, and may provide more context to 

individuals and entities such as legislators or local communities who are necessary to help protect 

and monitor these important landforms into the future.  

 

 

5.3 Machine-Learning Approach for Rock Glacier Water & Ice Volume Estimation 

 The primary objective of this thesis focuses on the quantitative estimation of water 

resources contained within rock glacier landforms within the entire San Juan Mountain extent. 

Because of the large extent of the San Juan Mountain study area (i.e., 21,656 km2) it was necessary 

to utilize remotely-sensed data. As previously mentioned, the remotely-sensed data used to achieve 

this objective include a USGS 10 m DEM sourced from the 3D Elevation Program database, and 

a variety of multispectral satellite imagery including NAIP, Landsat-8 raw imagery, and Landsat-

8 surface reflectance imagery all sourced directly from Google Earth Engine®. Three different 

spectral indices including the Normalized Difference Vegetation Index (NDVI), the Modified 

Normalized Difference Water Index (MNDWI), and the normalized difference built-up index 

(NDBI), were additionally computed using the multispectral imagery to aid in the identification of 

vegetation, water, and urban landcover; of these, only NDVI was ultimately used. A multi-band 

stacked raster image containing morphometric derivatives of slope, hillshade, normal curvature, 

profile curvature, plan curvature, and aspect, was created in ArcMap® and was imported into 

Google Earth Engine® as an input. Additional DEM morphometric derivatives including GLCM, 
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and GLCM derivatives including gradient, direction, contrast, angular second momentum, 

entropy, and a Laplacian edge detection filter, were additionally utilized and ultimately 

incorporated into a random forest image classifier developed in Google Earth Engine®. 

By incorporating raw DEM data, DEM morphometric derivatives, and multispectral 

satellite data, the structure and spectral response of rock glaciers were more readily identifiable. 

Multispectral satellite data such as Landsat-8 raw imagery, Landsat-8 surface reflectance imagery, 

and NAIP imagery provide thermal bands which measure land surface temperature using long 

wavelengths such as infrared. These types of data have been noted to be useful for characterizing 

thermophysical properties of different types of landcover and landforms, especially rock glaciers 

(Brenning, 2011). Land surface temperatures derived from these types of thermal bands are 

directly measuring surface radiation emissions, which are a function of the internal temperature of 

the landcover being measured. Previous studies have demonstrated the spectral similarity of rock 

glaciers with surrounding terrain in visible wavelengths (i.e., RGB), which has long constituted 

the major challenges associated with image classification of ice-debris landforms (Berta, 1982; 

Brenning, 2009; Brenning, 2011; Jones et al., 2018). Studies such as Brenning (2011), however, 

have shown how land surface temperature can provide a means of distinguishing rock glaciers 

from surrounding terrain based solely off differences in surface radiation emissions. Observing 

regional morphometric and thermal characteristics, and referencing the results of previously 

conducted rock glacier thermal regime studies (Apaloo, 2013; Millar et al., 2012; Millar & 

Westfall, 2019; Wagner et al., 2020), provides a better understanding of the scope of surface 

energy fluxes in the region.  
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5.3.1 GEE RF structure and data 

The random forest image classifier developed and run using Google Earth Engine® 

incorporates all aforementioned data as inputs. Rock glacier training polygons were manually 

digitized in Google Earth Engine®, in addition to training polygons for four other landcover classes 

including: water, vegetation, urban/miscellaneous, and mountaintop ridges. Digitized rock glacier 

polygons constitute the training data inputs required for the training of the random forest image 

classifier, from which the resultant classification map was later compared with manually mapped 

rock glacier point data which were mapped using ArcMap®. In response to the lack of available 

validation data in the San Juan Mountain study area, the comparison of manually mapped rock 

glacier point data with algorithmically generated rock glacier landcover maps created in Google 

Earth Engine® serves as validation of the procedure. By calculating the physical morphometric 

characteristics of rock glaciers in the San Juan Mountain study area, these landforms were more 

easily distinguished and isolated from the surrounding terrain for the determination of number and 

distribution, imparting more effective identification and classification in satellite imagery by 

machine-learning algorithms. 

The random forest image classifier used in Google Earth Engine® is humbly provided as a 

pre-loaded function. Random forest classification is, for lack of a better description, “the child of 

the computer age” (Brieman et al., 1998). The general procedure of regression tress is, for lack of 

a better term, “rooted” in decision tree logic, which itself has roots stemming from the blossoming 

research into computer logic and artificial intelligence that was largely advanced in the 1960’s. To 

posit a humble explanation of random forest decision trees, input data (i.e., training data) are 

ingested by the classifier, whereby the classifier “votes” on subsequent classes in which to place 
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the ingested data (Figure 14). The five landcover classes defined at the beginning of the 

classification procedure (i.e., rock glacier, vegetation, water, ridges/peaks, and 

urban/miscellaneous) constitute the classes that training data (i.e., training polygons) are iteratively 

voted on and placed within.  

 

 

Fig. 14 - Generalized random-forest decision-tree structure, reprinted from Brieman et al. (1998). 

 

Prior to running the image classifier, remotely-sensed data inputs were combined as a large 

multi-band stacked raster, which contained a total of 352 bands. Of these bands, 46 were ultimately 

chosen to be used for model prediction. The final band selection was based off multiple iterations 

of various band combinations, where the total surface area, mean elevation, and mean slope values 

of all classified rock glacier pixels were used as basis for band combination efficacy. The random 

forest (RF) classifier was run multiple times with a variety of band combinations to assess the best 

combination of bands for classifier performance. The ultimate best-performing band combination 

was based off predicted rock glacier surface areas that were close to the 70 km2 rock glacier surface 
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area estimated by Brenning et al. (2007) for the San Juan Mountain study area, as well as predicted 

mean slope values of rock glaciers that fell close to the overall mean rock glacier slope of 17.1° 

that was determined by White (1979) for the San Juan Mountains. An accuracy assessment of 

classifier performance was computed for each run, with all but two band combination trial runs 

achieving accuracy performances greater than 95%. The number of training polygons for each 

landcover class, for the first round of classification, included 45 rock glacier training polygons, 7 

water training polygons, 90 vegetation training polygons, 72 ridge/peak training polygons, and 46 

urban/miscellaneous training polygons. The generalized workflow for the random forest machine-

learning image classifier is shown in Figure 15. 

 

Fig. 15 – Random-forest workflow procedure developed in Google Earth Engine®. 

 

Upon determining the most effective band combination, all pixels contained within the 

resulting classified rock glacier landcover area was isolated and exported as a GeoTIFF image, 

which was ultimately imported into ArcMap® for the final volume estimation procedure. After the 

first volume estimation of rock glacier water content was computed in ArcMap®, the number of 



landcover class training polygons was increased to include 150 rock glacier training polygons, 7 

water training polygons, 90 vegetation training polygons, 87 ridge/peak training polygons, and 46 

urban/miscellaneous training polygons. The resulting classified rock glacier landcover pixels 

predicted by the second trial run were similarly exported as a GeoTIFF image and imported into 

ArcMap® for the final volume estimation procedure as before. To further assess the accuracy of 

the predicted rock glacier pixel locations, the manually mapped rock glacier point data feature 

class was ultimately used as validation.  

5.3.2 Arc methods – GEE data import and final volume calculation 

In addition to using ArcMap® to manually map all observable rock glacier features in the 

San Juan Mountain study area, it was also used for the final estimated volume calculation of rock 

glacier water storage. The final volume estimation procedure involved many steps, and utilized a 

variety of tools provided by ArcMap®. Whereas Brenning (2005) proposed an empirical rock 

glacier thickness model in his dissertation, which has been adopted in other studies to estimate 

rock glacier water volumes (Jones et al., 2018; Millar & Westfall, 2019), this thickness estimation 

approach is based off observations of rock glaciers in the Swiss Alps from a study by Barsch 

(1977). In pursuit of wider applicability, I applied a different and original approach to thickness 

estimations which is based strictly off the use of remotely-sensed data, where the training of a 

random forest image classifier in Google Earth Engine® was used to isolate predicted rock glacier 

locations, and the 10 m USGS DEM previously used to calculate morphometric parameters was 

additionally used to estimate rock glacier thicknesses, and ultimately used to derive water volumes. 
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 The volume estimation workflow (Figure 16) developed for this thesis first requires the 

importation of a binary (i.e., black and white) GeoTIFF image which constitutes the predicted rock 

glacier pixel locations derived from the random forest image classifier results from Google Earth 

Engine®. The imported GeoTIFF is the only input data necessary to estimate water volumes using 

this volume estimation approach. These classified rock glacier landcover pixels are manipulated 

and run through a series of ArcMap® tools including: Raster Calculator®, Majority Filter®, Raster 

to Polygon®, Dissolve®, Int®, Extract by Mask®, Erase (Analysis)®, Elevation Void Fill (raster 

function)®, Zonal Statistics & Zonal Statistics as Table®, and Tabulate Intersection®. An 

exhaustive explanation of the workflow procedure is not included here, but instead a conceptual 

and generalized explanation is sufficient to understand the process. 

 

 

Fig. 16 – Generalized water volume estimation procedure developed and run via ArcMap®. 

Classified RG pixels from GEE used to clip holes in original DEM. Holes filled via interpolation 

procedure, creating a new DEM (i.e., DEM base) with inferred rock glacier bases. Estimated RG 

thickness maps produced by subtracting DEM base from original DEM surface. 
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Using this volume estimation approach, the classified rock glacier pixel locations are further 

isolated from the imported GeoTIFF image, and overlapping polygon features representing these 

locations are generated. The created polygon features are used to cut holes out of the original 10 

m USGS DEM, which are later filled using the Elevation Void Fill® raster function to infer rock 

glacier bases. Elevation values from the DEM are additionally clipped to these polygon features, 

representing the rock glacier surface topography. By clipping rock glacier surface and base values 

to the overlapping polygon features, the two surfaces are subtracted (i.e., surface – base) to 

generate rock glacier thickness measurements for all classified rock glacier landcover pixels; the 

resulting output is saved as a raster image.   

The process of filling all holes previously cut out of the DEM, using the Elevation Void 

Fill® function, is inferential and utilizes a combination of plane fitting and inverse distance 

weighting (IDW). As such, it is less precise when filling larger holes, and when inferring elevations 

over highly variable terrains. As a result, some areas are given negative thickness values resulting 

from the subtraction of rock glacier base raster values from rock glacier surface raster values. To 

eliminate negative thicknesses, all positive thickness values are isolated. These final rock glacier 

thicknesses are used to estimate rock glacier water volumes. The final volume calculation is 

performed by extracting the pixel thickness values (i.e., z-values) contained within respective 

polygons, stored in as an ArcMap® table, and multiplying each polygon by 100 representing the 

surface area of each pixel for a 10 m DEM. The result yields an estimated rock glacier volume in 

cubic meters per respective classified polygon areas, which may be summed together to get the 

total cubic meter volume of rock glacier features in the study area. Estimates of rock glacier ice 
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volumes are simply taken as a 40-60% value of the summed dimensional volume, and estimates 

of water volumes are additionally taken as a 90% value of the ice volumes. 
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6. RESULTS & DISCUSSION 

6.1 ICESat-2 

 Data collected from ICESat-2 were used to derive elevation measurements, and ultimately 

generalized water and ice volume estimates, for six rock glaciers in the San Juan Mountains, 

including the Camp Bird rock glacier (Table 1). In an attempt to assess the accuracy of the 

generalized rock glacier model (i.e., A.G. model) for estimating water and ice volumes, the 

estimated water volume using ICESat-2 data for the Camp Bird rock glacier was subsequently 

compared with the estimated water volume for Camp Bird using in situ field observations and the 

resulting DEM created in ArcMap®.  

 

 

 

Fig. 17 – ICESat-2 ground track intersecting rock glacier RG2-3. The perpendicular intersection 

yielded the best elevation profile of all six rock glaciers investigated. Image provided courtesy of 

NASA’s OpenAltimetry portal. 
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Fig. 18 – Elevation profile for rock glacier RG2-3, representing the best collected elevation 

profile of all six rock glaciers investigated. Profile provided courtesy of NASA’s OpenAltimetry 

portal. 

 

 

 Of the six collected elevation profiles, only two rock glaciers were found with ground 

tracks intersecting horizontal and/or perpendicular to the rock glacier flow direction, namely RG2-

1 and RG2-3. The best elevation profile out of the six rock glaciers came from RG2-3 (Figures 16-

17). The other four rock glaciers were poorly intersected by ground tracks, leading the resulting 

water and ice volume estimates to be very generalized.  

The Camp Bird rock glacier was one such rock glacier with a poorly oriented ground track 

(Figure 18). Coincidentally, the estimated water and ice volumes for the Camp Bird rock glacier, 

as compared with the volumes derived using the in situ-derived DEM created in ArcMap®, were 

very different. The estimated water volumes derived using ICESat-2 data and the generalized A.G. 
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rock glacier model, under conditions of 40% interstitial water content, was 0.0019 km3 as 

compared with an estimated 0.00029 km3 water volume estimated via the in-situ derived DEM and 

the water volume estimation procedure utilized to estimate water volumes for the entire San Juan 

Mountain study area. Thickness values incorporated into the A.G. model were estimated by taking 

the difference between the peak surface elevation at the rock glacier crest, and the inferred rock 

glacier base elevation which was assumed to be a concurrent continuous surface connected to the 

surrounding ground surface. Length and width measurements were determined via the measuring 

tool provided in ArcMap®. The large discrepancies between water volume estimates produced via 

the A.G. model and the volume estimation procedure developed in this study suggest that use of 

the generalized A.G. rock glacier model is inaccurate, and further highlight the difficulty of using 

ICESat and ICESat-2 data to estimate water and ice volumes in ice-debris landforms such as rock 

glaciers. 

 

 

Fig. 19 – ICESat-2 ground track over the Camp Bird rock glacier. This ground track produced a 

poor elevation profile. Image provided courtesy of NASA’s OpenAltimetry portal. 
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Table 1 - First-order rock glacier water/ice volume estimates produced via generalized A.G. rock 

glacier model and ICESat-2 data. 

 
Volume Estimates RG2-1 RG2-2 RG2-3 RG2-4 RG1-1 Camp Bird 

Z (m) 45.5954 65.5 15.5 35.5 53 30.34 

W (m) 1956.82 241.01 115.27 307.48 330 217.67 

L (m) 553.27 727.71 287.26 822.62 1500 632.9543 

Z*W*L 49363850.75 11487742.86 513243.1331 8979341.515 26235000 4180098.43 

Ice Volume (m^3) - 75% 

content 

40848714.41 13123669.12 485475.3333 8219241.527 25303116.11 3961446.591 

Water Volume (m^3) 37151905.75 11935977.06 441539.8156 7475400.169 23013184.11 3602935.675 

Water Volume (km^3) 0.037151906 0.011935977 0.00044154 0.0074754 0.023013184 0.003602936 

Water Volume (acre ft) 30119.57012 9676.663709 357.9625101 6060.411572 18657.11054 2920.950393 

 

 

6.2 Manual Rock Glacier Mapping 

 A total of 1,052 rock glacier features were identified and manually mapped within the 

21,656 km2 San Juan Mountain study area (Fig. 2). As previously mentioned, all mapping of 

observable rock glacier features was primarily done using the default basemap imagery in ArcMap 

10.7® which is provided courtesy of Maxar Technologies. The number of observed rock glaciers 

falls within the range of the study by Brenning et al. (2007), who cited a statistically estimated 

rock glacier population for the San Juan Mountains of 900-1300 features.  

 Rock glacier distribution maps using latitude and longitudes of manually mapped rock 

glacier features were produced in RStudio®. Five separate maps were produced, with rock glacier 

location points colored based off respective elevation, slope, aspect, curvature, and hillshade 

values (Appendix B.1 – B.5). Whereas additional morphometric parameters were computed in 

Google Earth Engine®, including textural aspects such as the gray-level co-occurrence matrix 

(GLCM), angular second momentum, contrast, gradient, and entropy, the most diagnostic 
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parameters of rock glaciers appeared to be slope, elevation, hillshade, and especially curvature. 

The statistical results of these parameters are shown in Table 2.   

 

Table 2 - Summary statistics for 1,052 manually mapped rock glacier features.  

 
Elevation (m) Slope (deg) Aspect (deg) Curvature (*1e9) Hillshade 

Min 2919.245 1.8 0.828 -76.88 86.0 

Max 4012.878 41.18 359.413 85.63 238.0 

Mean 3612.138 17.73 188.79 1.3 195.289 

Std. Dev 183.757 7.29 128.18 13.99 28.389 

  

 

As echoed by several studies, rock glaciers are generally found above the timberline 

(Barsch, 1971a; Brenning et al., 2007; Wahrhaftig & Cox, 1959; White, 1979), as was observed in 

the San Juan Mountain region. The timberline for the San Juan Mountains lies between 3400-3500 

m (Brenning et al., 2007). Of the two rock glacier inventory studies conducted in the San Juan 

Mountains, White (1979) and Brenning et al. (2007), White mapped a total of 756 rock glaciers 

while Brenning estimated an aforementioned population of 900-1300 features. White’s study noted 

the majority of observed rock glaciers to occur at elevations above 3350 m, with the lowest 

observed occurrence at 2975 m and the highest occurrence at 4109 m. Brenning’s study applied a 

statistical predictive generalized additive model, which was applied to areas only above 3400 m 

and based off sampling of 84 randomly selected rock glacier features, noting that elevations above 

3600 m were significant for the formation of rock glacier features – the mean elevation of mapped 

rock glacier features in this thesis was ~3612 m.  
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Azimuthal orientation of rock glaciers in North America have been noted to be 

predominantly north-facing (Wahrhaftig & Cox, 1959; White, 1979). White noted that rock glacier 

orientations in the San Juan Mountains were preferentially north-facing as well, with active rock 

glaciers demonstrating a mean orientation of 1°, and inactive rock glaciers demonstrating a mean 

orientation of 354°. Brenning’s study does not mention a statistically estimated mean rock glacier 

orientation. The mean aspect orientation for all manually mapped rock glaciers in this thesis was 

188.79°, which disagrees with White’s study. All aspect azimuth values were calculated in 

ArcMap 10.7®, based off the 10 m USGS DEM used in this study. The observations of both White, 

Wahrhaftig, and others indicate consistent preferential rock glacier orientations that are generally 

north-trending. The tool used to calculate terrain aspect values in ArcMap® comes from the Spatial 

Analyst® toolbox, and uses a 3x3 cell moving window to calculate aspect values based off eight 

neighboring pixels. Because the required computations for estimating aspect are directly 

dependent on the size and number of pixels in the imagery, the spatial resolution of DEMs is a 

significant factor in the accuracy of aspect values. A spatial resolution of 10 m corresponds to 

10x10 m pixels, which may drastically skew estimated azimuth directions in mountainous regions 

where terrain is greatly variable. Because of the variability of calculated aspect directions 

stemming directly from the low-resolution 10 m DEM data used, the mean aspect orientations 

calculated for rock glacier features in this thesis are considered approximations at best, and 

inappropriate at worst. 
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6.3 Camp Bird Rock Glacier – In situ Field Observations  

 Field observations at the Camp Bird rock glacier were collected during Summer 2020, 

during the Southwest Monsoon season (Figure 19). Morphometric measurements of the rock 

glacier were collected, and were later incorporated into a DEM. One of the most important 

morphometric observations of this rock glacier were the measured frontal and peripheral slope 

values using the inclinometer on a Brunton® compass. The mean frontal slope value was 43°, 

whereas the mean peripheral slope value was 44.17°. These slope values are greater than the angle 

of repose (i.e., >35°), which is highly indicative of an active rock glacier. Observations of surface 

color variations were also made, noting the lighter color of frontal and peripheral slopes and darker 

colors on the upper rock glacier surface, indicating that the frontal and peripheral slopes are less 

weathered than the upper rock glacier surface. While my field assistant and I performed 

measurements of the rock glacier perimeter, a constant cool breeze exiting from the rock glacier 

toe was observed, which was ultimately explained by the chimney effect theory proposed by 

Wakonigg (1996), and additionally described by Delaloye & Lambiel (2005) and Wicky & Hauck 

(2017), (Jones et al., 2019).  
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Fig. 20 – Camp Bird rock glacier field site. Photograph captured by author - July, 2020. 

 

The presence of an observable chimney effect strengthens the argument for an active 

permafrost layer within the Camp Bird rock glacier, as the chimney effect has been demonstrated 

to enhance the preservation of internal ice content (Delaloye & Lambiel, 2005; Wicky & Hauck, 

2017). Stream gauge measurements were additionally taken from two small streams discharging 

from the mid-frontal toe (Figure 20). For each stream, multiple velocity measurements were taken 

at intervals of 0.5 ft for the smallest stream, and 1 ft for the larger stream, from which mean velocity 

measurements were derived ranging from 0.96 fps for the larger stream to 2.3 fps for the smaller 

stream.  
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Fig. 21 - Observed baseflow discharge at Camp Bird rock glacier toe. Photograph captured by 

author - July, 2020. 

 

 

 In addition to morphometric observations and stream gauge measurements, all manually 

collected latitude, longitude, and elevation values recorded from cellular GPS data were ultimately 

imported into ArcMap 10.7® and used to create a generalized digital elevation model of the Camp 

Bird rock glacier (Figure 21). As mentioned earlier, this DEM was used to estimate water and ice 

volumes within the Camp Bird rock glacier which was additionally used as comparison for the 
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volume estimates derived from the use of a generalized rock glacier volume model and ICESat-2 

data. The water and ice volume estimate for the Camp Bird rock glacier was derived using the 

same volume estimation procedure used to estimate water and ice volumes for the entire San Juan 

Mountain study area. The aforementioned liquid water volume estimate produced from the 

generalized rock glacier volume model was 0.0019 km3 – 0.0029 km3 for 40-60% internal 

ice/water content, whereas the estimated liquid water volume derived from the in-situ DEM was 

0.00029 km3 – 0.00043 km3 for 40-60% ice/water content. Based off the extreme differences 

between the water and ice volume estimate derived from ICESat-2 data, and the volume estimate 

derived from the primary DEM volume estimation procedure utilized in this thesis, it is assumed 

that using ICESat-2 data and an overly-generalized 3D-volume model to estimate water and ice 

volumes within rock glaciers results in significant overestimations.  

 



 

72 

 

 

 

 

Fig. 22 - Camp Bird rock glacier DEM based off in-situ GPS measurements. Red dots represent 

GPS measurement locations collected by author and field assistant Jacqueline Rambo, July 2020. 

Created by author using the Kriging® analysis tool in ArcMap®.  

 

 

The primary water volume estimation procedure used in this thesis, as mentioned before, 

calculates some negative thickness values in areas where large DEM voids (i.e., holes) exist and 

where topography is highly variable. This occurred during the water volume calculation for Camp 

Bird. To avoid a final volume estimation calculated with included negative thickness values, only 

positive thickness values were used in the final calculation. As a result, the estimated liquid water 
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volume of 0.00029 km3 – 0.00043 km3 is an underestimate. It is very likely that there is 

significantly more water included in the Camp Bird rock glacier, as well as within other rock 

glaciers in the San Juan Mountain, than was calculated using the volume estimation method 

utilized in this thesis.  

 

 

6.4 Google Earth Engine® Classification Results 

 The random forest image classifier used in Google Earth Engine® was run twice covering 

the entire San Juan Mountain study area extent of 21,656 km2. The number of landcover training 

polygons for rock glacier and ridge/peak landcover classes was increased for the second 

classification run, from 45 rock glacier training polygons to 150 and from 72 ridge/peak polygons 

to 87, based off erroneously classified areas resulting from the first classification. The result of 

each classification run was a predicted landcover map with predicted landcover classes shown by 

color: rock glaciers (gray), ridges/peaks (burgundy), vegetation (green), water (blue), and 

urban/miscellaneous (red) (Figures 22-23). The ridges/peaks landcover class was created primarily 

to isolate rock glaciers from the surrounding cirque areas, and performed quite well following the 

addition of textural input data such as GLCM and particularly GLCM-derivatives such as contrast. 
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Fig. 23 - Trial-1 random-forest landcover classification map produced in Google Earth Engine® 

for the San Juan Mountains, CO. (grey = rock glacier; green = vegetation; blue = water; burgundy 

= ridges/peaks; red = urban/miscellaneous).  

 

 

 

Fig. 24 - Trial-2 random-forest landcover classification map produced in Google Earth Engine® 

for the San Juan Mountains, CO. (grey = rock glacier; green = vegetation; blue = water; burgundy 

= ridges/peaks; red = urban/miscellaneous). 
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Whereas results from the first classification scheme greatly overestimated rock glacier 

landcover surface area, estimated at 76.9550 km2, the addition of extra training polygons for both 

rock glaciers and ridges/peaks greatly enhanced the isolation of predicted rock glacier surface area, 

estimated at 69.6913 km2. The predicted rock glacier surface area for the second classification 

scheme was close to the estimated rock glacier surface area of 70 km2 predicted by the generalized 

additive model from Brenning et al. (2007). The resulting mean slope, aspect, and elevation values 

for the predicted rock glacier landcover area for both classification schemes is shown in Table 3. 

The predicted rock glacier landcover pixels were isolated in Google Earth Engine® using a binary 

thresholding procedure, resulting in a black-and-white GeoTIFF image which was ultimately 

exported, and later imported to ArcMap® for the final volume calculation (Figure 24, 26). 

 

 

 

Fig. 25 - Binary-thresholding map produced in Google Earth Engine®, resulting from random-

forest image classification of the San Juan Mountains. Classified rock glacier landcover pixels 

isolated and displayed in white. 
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Table 3 - Classified rock glacier morphometric parameter pixel results from trial-1 (GEE-1) and 

trial-2 (GEE-2) of the random forest image classifier used in Google Earth Engine®.  

  
Surface Area 

(km^2) 

Mean 

Elevation (m) 

Mean 

Slope (deg) 

Mean Aspect 

(deg) 

Mean Curvature 

(*1e9) 

Hillshade 

GEE-1 76.955 3633.219522 17.190057 196.110348 5.799024948 196.268514 

GEE-2 69.6913 3435.486998 20.31 207.336203 5.861379792 194.9737 

 

 

 In addition to utilizing a random forest machine-learning image classifier to estimate 

predicted rock glacier landcover area, Google Earth Engine® was used to derive land surface 

temperatures based off the locations of digitized rock glacier training polygons. Landsat-8 surface 

reflectance data provide land surface temperature values, from which temperature data for the 

period of March 2013 to November 2020 were collected using Band-10. These Band-10 data were 

originally recorded at 100 m spatial resolution, and were subsequently resampled using cubic 

convolution to a spatial resolution of 30 m. While this thesis is not primarily focused on a rigorous 

thermal analysis of rock glacier insulation as it relates to internal permafrost residence time, and 

subsequently to baseflow discharge volumes, it is still necessary to illustrate temperature trends 

for rock glacier surfaces in the context of climate change – especially considering how the 

hydrologic importance of rock glaciers, as opposed to clean-ice glaciers, is directly related to the 

insulating characteristics of supraglacial rock glacier taluses. To better understand the temperature 

fluctuation trends, an oscillatory harmonic wave function was fit to the data, whereby temperature 

peaks and troughs can be observed with regard to seasonal variations (Figure 25).  
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Fig. 26 - Lansdat-8 (Band-10) raw surface reflectance data (red) and fitted oscillatory harmonic 

wave model (blue) time-series of all 150 rock glacier training polygon locations between March 

2013 to November 2020. Black dotted line represents linear temperature trend. Data and chart 

collected and generated by author using Google Earth Engine®. 

 

 

Based off the temperature trendline for these Landsat-8 land surface temperature data, rock glacier 

surface temperatures for the time period of March 2013 to November 2020 have experienced an 

overall temperature increase of 4.45°C. The availability of remotely-sensed thermal data such as 

those provided by Landsat-8 thermal bands, in addition to the free access to cloud-computing GIS 

and remote-sensing platforms such as Google Earth Engine®, bodes well for future studies of rock 

glaciers and the importance of their water and ice stores. 
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6.5 Ice-debris Volume Estimation  

 The primary objective of this thesis is an investigation into volumetric estimation of water 

and ice inventories contained within rock glaciers in the 21,656 km2 San Juan Mountain study 

area, specifically via the integration of remotely-sensed data and geospatial approaches. This was 

accomplished by incorporating multispectral satellite imagery, LiDAR-derived digital elevation 

model data, textural and morphometric derivatives of DEM data, and a random-forest machine-

learning image classifier run in Google Earth Engine®. Following the classification of landcover 

classes in Google Earth Engine®, and the isolation of predicted rock glacier pixels via a binary-

thresholding procedure, the resultant GeoTIFF image produced from the classification scheme 

constituted one of two necessary data inputs to perform the final rock glacier water volume 

calculation (Figure 24, 26). 
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Fig. 27 - GeoTIFF image of classified rock glacier pixels (white) exported from Google Earth 

Engine®.   

 

  

To ultimately validate efficacy of the machine-learning approach used in this thesis, the 

results of predictive rock glacier characteristics, namely mean elevation, slope, aspect, curvature, 

and hillshade values, for predicted rock glacier pixels were compared against the values of all 

1,052 rock glacier points manually mapped in ArcMap®. Elevation, slope, aspect, curvature, and 

hillshade were chosen as comparative variables based off literature (Barsch, 1996; Brenning et al., 

2007; Giardino, 1979; Giardino & Vitek, 1985; Wahrhaftig & Cox, 1959; White, 1979), as well 
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as the statistical summaries produced in ArcMap®. The results of the two image classification 

schemes (i.e. GEE-1 and GEE-2), yielded predicted rock glacier pixel surface areas of 76.955 km2 

and 69.691 km2 respectively. Additionally, the results of GEE-1 yielded mean slope, elevation, 

aspect, curvature, and hillshade values of 3633.22 m, 17.19°, 196.11°, 5.80, and 196.27 

respectively, while GEE-2 yielded values of 3435.49 m, 20.31°, 207.34°, 5.86, and 194.97 

respectively. Mean elevation, slope, aspect, curvature, and hillshade values for all 1,052 manually 

mapped rock glacier points were 3612.14 m, 17.73°, 188.79°, 1.3, and 195.29, respectively. 

 The predicted rock glacier pixel locations generated for GEE-1 and GEE-2 were run 

through the volume estimation workflow as previously described, where estimated rock glacier 

thicknesses greater than 60 m were initially eliminated from the water and ice volume calculations 

(Table 4). Using the predicted rock glacier landcover areas generated by the random forest image 

classifier in Google Earth Engine®, rock glacier “thickness maps” were produced based off the 

differences between DEM surface terrain, and inferred rock glacier bases estimated in the volume 

estimation workflow as detailed earlier. These thickness maps seldom spanned the entire rock 

glacier extent, as a result of filtering out negative thickness estimates, so it is very likely that final 

water and ice volume calculations are underestimated (Figure 27).  
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Fig. 28 - Rock glacier thickness map demonstrating positive (red) and negative (blue) thickness 

estimates. All negative thickness estimates were eliminated from the final calculations of water 

and ice volumes.  
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Table 4 – Rock glacier ice and water volume estimates from GEE-1 and GEE-2 for rock glaciers 

less than 60 m thick. 

 

RG < 60m 

thickness 

40% ice (km
3
)  60% ice (km

3
) 40% water (km

3
) 60% water (km

3
) 

GEE-1 2.17303892 3.259558385 1.95573503 2.933602547 

GEE-2 0.860429671 1.290644507 0.774386704 1.161580056 

 

As mentioned by Barsch (1996a), rock glaciers are estimated to reach thicknesses up to 100 m, 

and it is estimated that rock glaciers in the San Juan Mountains, particularly in large amphitheater-

cirques, can exceed these thicknesses. To determine a true, unfiltered, estimated water inventory 

based off the semi-automated machine-learning methods used in this thesis, maximum estimated 

rock glacier thicknesses generated by the volume estimation procedure were included in a 

secondary volume calculation. Including maximum estimated thickness values, the secondary 

volume estimates are shown in Table 5.  

 

Table 5 – Rock glacier ice and water volume estimates from GEE-1 and GEE-2 for all predicted 

rock glacier thicknesses.  

  
ice (40%) ice (60%) water (40%) water (60%) Max RG Thickness (m) 

GEE-1 2.357067872 3.535601809 2.121361085 3.182041628 127.3283 

GEE-2 1.046120774 1.569181161 0.941508696 1.412263044 154.6757 

 

Assuming an internal ice/water mixture of 40% - 60%, based off the updated GEE-2 results, the 

estimated water volumes in the San Juan Mountains are 0.94 – 1.41 km3 spanning a predicted 

surface area of 69.691 km2.  
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 The emphasis for important rock glacier characteristics of elevation, slope, aspect, 

curvature, and hillshade were based off aforementioned studies, in addition to the statistical mean 

results of these variables as derived in ArcMap®. Of these five predictive variables, elevation, 

slope, and curvature were noted to be the most diagnostic features. The distribution of elevation, 

slope, and curvature values from GEE-1 and GEE-2 runs were compared against the raw data 

derived from the 1,052 manually mapped rock glacier points (Figures 28 – 33).  

 

 

Fig. 29 - Elevation results from manually mapped rock glacier points. 

 

  

Fig. 30 - Mean elevation results from GEE-1 (left) and GEE-2 (right).  
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Fig. 31 - Slope results from manually mapped rock glacier points.  

 

 

 

 

Fig. 32 - Mean slope results from GEE-1 (left) and GEE-2 (right).  
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Fig. 33 - Curvature results from manually mapped rock glacier points.  

 

 

 

 

Fig. 34 - Mean curvature results from GEE-1 (left) and GEE-2 (right).  

 

To fully demonstrate the clustered relationship between slope, curvature, and elevation as 

predictive rock glacier variables, mean values from all 1,052 manually mapped rock glacier 

points were plotted against one another on a series of 3-axis graphs in Rstudio® (Figures 34 - 36). 
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Fig. 35 - Raw data from 1,052 manually mapped rock glacier points. Predictive rock glacier 

variables of curvature (x-axis), slope (y-axis), and elevation (z-axis) demonstrate significant 

clustering especially for curvature values.  
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Fig. 36 - Raw data from 1,052 manually mapped rock glacier points. Predictive rock glacier 

variables of curvature, slope, and elevation showing clustered relationship. Orientation-1. 

 

 

 

 

Fig. 37 - Raw data from 1,052 manually mapped rock glacier points. Predictive rock glacier 

variables of curvature, slope, and elevation showing clustered relationship. Orientation-2.  
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Furthermore, to fully express the statistical distribution of raw elevation, slope, and curvature data, 

and to represent the outlier data present between all datasets, box-and-whisker plots were created 

in Rstudio® (Figures 37 – 39). Mean data values from GEE-1 and GEE-2 for all five predictive 

rock glacier variables including elevation, slope, curvature, aspect, and hillshade were later 

graphically compared against mean data values from all 1,052 manually mapped rock glacier point 

data. 

 

 

Fig. 38 - Raw elevation data results for GEE-1, GEE-2, and manually mapped rock glacier point 

data.  
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Fig. 39 - Raw slope data results for GEE-1, GEE-2, and manually mapped rock glacier point 

data. 
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Fig. 40 - Raw curvature data results for GEE-1, GEE-2, and manually mapped rock glacier point 

data. 

 

 

The results of the box-and-whisker plots reveal a large amount of outlier data for both 

GEE-1 and GEE-2 trial runs. It is assumed that the primary reason for the outlier data is a direct 

result of using a machine-learning image classifier in Google Earth Engine®. In several areas 

throughout the San Juan Mountains study area, especially during the GEE-1 trial run, the random 

forest image classifier became confused by the surface terrain, resulting in misclassified rock 
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glacier landcover. In areas where the image classifier performed poorly, misclassified rock glacier 

landcover was predicted sporadically at very small, sometimes pixel-sized scales. While a large 

majority of these misclassified pixel-sized areas were removed during the speckle-filtering step of 

the volume estimation workflow, many areas retained small clusters of predicted rock glacier 

pixels, which ultimately yielded small triangular polygons produced after converting the initial 

GeoTIFF raster image to a series of polygon features (Figure 40). 

 

 

Fig. 41 - Misclassified rock glacier landcover from GEE-1 trial run. Purple polygons represent 

predicted rock glacier pixel areas.  
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By iteratively performing the speckle-filter procedure several more times, it is likely that a majority 

of the misclassified rock glacier polygons constituting the large number of outlier data would be 

removed. Additionally, by incorporating minimum-contributing rock glacier surface area 

information into the random forest classifier, it is possible that predicted rock glacier landcover 

could be contained within a range of predicted surface areas. Regardless, however, mean elevation, 

curvature, and slope values results for GEE-1, GEE-2, and all 1,052 manually mapped rock glacier 

points are in rather noteworthy agreement as demonstrated in the box-and-whisker plots in Figures 

37-39. As a final step to demonstrate similarities between manual analyst rock glacier mapping 

procedures, and machine-learning image classification procedures, the mean value results for all 

five predictive rock glacier variables (i.e., elevation, slope, curvature, aspect, hillshade) generated 

by GEE-1, GEE-2, and manually mapped rock glacier point data were graphically compared 

against each other, shown in Appendix A. R-squared values produced from these graphical 

comparisons range from 0.896 – 0.99, suggesting that the use of machine-learning image 

classifiers such as decision-trees (i.e. random forest) can provide an effective means of classifying 

rock glacier landcover using remotely-sensed data.  

Overall, the results generated from the random-forest image classifier run in Google Earth 

Engine® were better than previously expected. As a final measure of validity between predicted 

rock glacier landcover areas produced in GEE-1 and GEE-2, and manually mapped rock glacier 

point data, the percentage of overlapping points versus predicted rock glacier area polygons was 

calculated, with a 90.3% overlap between GEE-1 and manually mapped rock glacier points, and 

an 85.64% overlap between GEE-2 and manually mapped points. It is assumed that the decrease 

in overlap percentage for GEE-2 is a direct result of the lower predicted rock glacier surface area 

of 69.691 km2 for GEE-2 versus the predicted rock glacier surface area of 76.955 km2 for GEE-1.  
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As mentioned before, of the three studies that have examined rock glacier populations in 

the San Juan Mountains, (Brenning et al., 2007; Johnson, B. 2017; White, P. 1979), only the study 

by Brenning et al. (2007) attempted to estimate rock glacier water and ice volumes using a 

predictive statistical generalized additive model. The study by Brenning statistically modeled 

morphometric parameters, incoming solar radiation, and contributing surface area from a stratified 

random sample of five landcover classes including 84 rock glacier points, 329 debris points, 1154 

grass/shrub points, 663 forest points, and 677 exposed bedrock points. Brenning’s study 

additionally included an accuracy assessment for the predictive power of the generalized additive 

model (GAM) used. The accuracy assessment was performed via the area under the receiver-

operating characteristic curve (ROC or AUROC), which bases accuracy on a 0.5-1 scale, with 

values closer to 1 demonstrating an “excellent” measure of fit for the GAM model. The results 

from Brenning’s study produced an AUROC value of 0.91, suggesting that the estimated rock 

glacier population of 900-1300 features, the estimated total rock glacier surface area of 70 km2, 

and the estimated rock glacier water volumes of 0.5-0.76 km3 (40-60% internal content) are 

reasonable estimates. The results of this thesis confirm the estimated rock glacier population of 

900-1300 features via the manually mapped population of 1,052 rock glaciers, and additionally 

confirm the validity of an estimated 70 km2 rock glacier surface area by reproducing a similar 

surface area of 69.691 km2. The estimated water volumes generated by the volume estimation 

procedure developed in this thesis are higher than the water volumes estimated in Brenning’s 

study. Major differences in estimated water volumes are almost certainly the direct result of an 

assumed thickness of 20 m for all rock glaciers in Brenning’s study, whereas rock glacier 

thicknesses used in this thesis are estimated based off differences in rock glacier surface elevations 

and interpolated rock glacier base elevations produced via the use of a 10 m USGS DEM and the 
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aforementioned volume estimation procedure. Because estimated rock glacier thicknesses in this 

study are directly derived from LiDAR elevation data and interpolated rock glacier base elevations, 

these results asuggest that a significantly larger water inventory of 0.94 – 1.41 km3 may be more 

reasonable. By utilizing raw DEM elevation data in lieu of the empirical area-thickness power-law 

relationship proposed by Brenning (2005) and Azocar & Brenning (2010) for estimating rock 

glacier ice-debris thicknesses, based off observations of rock glaciers in the Swiss Alps by Barsch 

(1977b), this thesis proposes an alternate approach towards volumetric water and ice estimation 

for rock glaciers in the San Juan Mountains.  
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7. CONCLUSION 

 This primary motivation for this thesis stems from global concerns of water availability 

as it relates to climate change and population expansion. The implications of these methods and 

results pertain to alpine regions, where many communities are almost entirely reliant on seasonal 

meltwater runoff. It is hoped that by addressing water availability issues at more localized scales, 

water budgets can be more effectively monitored and protected, ultimately lending towards 

better management of global water resources.  

 A variety of estimation approaches for rock glacier water volumes were examined, 

including the combination of a generalized rock glacier volume model and ICESat-2 data, the in-

situ collection of rock glacier morphometric and GPS data and manual creation of digital 

elevation models, and the ultimate integration of a machine-learning random forest image 

classifier and volume estimation procedure. The results of integrating the generalized rock 

glacier volume model with ICESat-2 data were compared against the results of an in-situ derived 

DEM and subsequent volume estimate for the Camp Bird rock glacier. It was shown that ICESat-

2 data, and the use of a generalized rock glacier volume model, greatly overestimate water 

volumes as compared against estimated water volumes produced via the use of in-situ field data 

and a manually generated DEM.  

Ultimately, the combination of a random forest image classifier, a 10 m USGS DEM, and 

a volume estimation procedure developed for this thesis, yielded estimated rock glacier surface 

areas, mean morphometric values, and estimated water volumes of great similarity to those 

produced by a similar study by Brenning et al. (2007) in the same San Juan Mountain study area. 

Brenning’s study constitutes the only proposed water volume estimation for all rock glaciers in 

the San Juan Mountains. To further validate predicted rock glacier landcover, classified by the 
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random forest image developed in Google Earth Engine®, all observable rock glaciers in the 

near-entire San Juan Mountain extent of 21,656 km2 were manually mapped in ArcMap 10.7®, 

with a total of 1052 rock glaciers observed. Validation of predicted rock glacier landcover 

generated by the random forest image classifier was assessed by comparing mean elevation, 

slope, curvature, aspect, and hillshade values for GEE-1 and GEE-2 trial runs against raw 

elevation, slope, curvature, aspect, and hillshade values from the 1,052 manually mapped rock 

glacier point data. The results of these comparisons are shown via box-and-whisker plots 

(Figures 37 – 39) with mean values for GEE-1, GEE-2, and manual point data graphically 

compared (Appendix A). 

While all results in this thesis may still be considered first-order approximations, the 

strong statistical similarities between morphometric values like elevation, slope, curvature, 

aspect, and hillshade between GEE-1, GEE-2, and all 1,052 manually mapped rock glacier point 

data, suggest that machine-learning image classification approaches for rock glacier landcover 

predictions may be effective. Furthermore, the similarities of predicted rock glacier surface area, 

mean morphometric values, and estimated water and ice volumes between the results presented 

herein, and the results of Brenning et al. (2007), suggest that the volume estimation 

methodologies proposed in this thesis may offer a different approach for estimating water and ice 

volumes contained within rock glaciers, especially those contained within the San Juan 

Mountains, CO. In light of these findings, the proposed hypothesis of this thesis is considered 

valid. 

Lastly, the results of this thesis highlight many shortcomings of these methods, namely 

the inaccuracies that arise from inferring rock glacier bases by means of interpolation, the 

uncertainties that exist from using coarse spatial resolution DEM data such as the 10 m USGS 
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DEM utilized in this thesis, and the water/ice volume underestimation that results from the rock 

glacier thickness estimation procedure. It is expected that bolstering the predictive power of the 

random forest image classifier via the addition of landcover class training polygons, and by 

incorporating higher spatial resolution DEM data, the estimation of water and ice volumes 

contained within rock glaciers can be greatly improved. For now, I consider the estimation of 

rock glacier water and ice volumes an important step towards understanding the water resources 

available to alpine communities, a step which may further provide means of allocating water 

resources as climate changes persist. Perhaps, one day similar methodologies may even be 

employed for the exploration of water resources contained within Martian rock glaciers for 

future colonies.  
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APPENDIX A 

GRAPHICAL RESULTS 

 

Fig. A.1 - Validation results showing min, max, and mean elevation results from GEE-1 

predicted rock glacier landcover versus manually mapped rock glacier points. 

 

 

 

 

 

Fig. A.2 - Validation results showing min, max, and mean elevation results from GEE-2 

predicted rock glacier landcover versus manually mapped rock glacier points. 
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Fig. A.3 - Validation results showing min, max, and mean slope results from GEE-1 predicted 

rock glacier landcover versus manually mapped rock glacier points. 

 

 

 

 

 

 

Fig. A.4 - Validation results showing min, max, and mean slope results from GEE-2 predicted 

rock glacier landcover versus manually mapped rock glacier points. 
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Fig. A.5 - Validation results showing min, max, and mean hillshade results from GEE-1 

predicted rock glacier landcover versus manually mapped rock glacier points.   

 

 

 

 

 

 

Fig. A.6 - Validation results showing min, max, and mean hillshade results from GEE-2 

predicted rock glacier landcover versus manually mapped rock glacier points. 
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Fig. A.7 - Validation results showing min, max, and mean curvature results from GEE-1 

predicted rock glacier landcover versus manually mapped rock glacier points. 

 

 

 

 

 

 

Fig. A.8 - Validation results showing min, max, and mean curvature results from GEE-2 

predicted rock glacier landcover versus manually mapped rock glacier points. 
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Fig. A.9 – Validation results showing min, max, and mean aspect results from GEE-1 predicted 

rock glacier landcover versus manually mapped rock glacier points. 

 

 

 

 

 

Fig. A.10 – Validation results showing min, max, and mean aspect results from GEE-2 predicted 

rock glacier landcover versus manually mapped rock glacier points.  
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APPENDIX B 

ROCK GLACIER DISTRIBUTION MAPS  

 

 

 

Fig. B.1 - Rock glacier distribution map displaying all 1052 manually mapped rock glaciers in 

the San Juan Mountains, CO. Points colored by respective aspect values. 
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Fig. B.2 - Rock glacier distribution map displaying all 1052 manually mapped rock glaciers in 

the San Juan Mountains, CO. Points colored by respective curvature values. 
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Fig. B.3 - Rock glacier distribution map displaying all 1052 manually mapped rock glaciers in 

the San Juan Mountains, CO. Points colored by respective elevation values. 
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Fig. B.4 - Rock glacier distribution map displaying all 1052 manually mapped rock glaciers in 

the San Juan Mountains, CO. Points colored by respective hillshade values. 
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Fig. B.5 – Rock glacier distribution map displaying all 1052 manually mapped rock glaciers in 

the San Juan Mountains, CO. Points colored by respective slope values. 

 

 

 

 

 

 

 

 

 

 


