
9568 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

Multi-Task Y-Shaped Graph Neural Network for
Point Cloud Learning in Autonomous Driving

Xiaofeng Zou , Kenli Li , Senior Member, IEEE, Yangfan Li ,

Wei Wei , Senior Member, IEEE, and Cen Chen

Abstract— Point cloud, an efficient 3D object representation,
plays an indispensable role in autonomous driving technologies,
such as object avoidance, localization, and map building. The
analysis of point clouds (e.g., 3D segmentation) is essential to
exploit the informative value of point clouds for such applica-
tions. The main challenge remains to effectively and completely
extract high-level point cloud feature representations. To this end,
we present a novel multi-task Y-shaped graph neural network to
explore 3D point clouds, referred to as MTYGNN. By extending
the conventional U-Net, MTYGNN contains two main branches
to simultaneously perform classification and segmentation tasks
in point clouds. Meanwhile, the classification prediction is fused
together with the semantic features as the scene context to make
the segmentation task more accurate. Furthermore, we consider
the homoscedastic uncertainty of each task to calculate the
weights of multiple loss functions to ensure that tasks do not
negatively interfere with each other. The proposed MTYGNN is
evaluated on popular point cloud datasets in traffic scenarios.
Experimental results demonstrate that our framework outper-
forms the state-of-the-art baseline methods.

Index Terms— Graph neural networks, multi-task learning,
point clouds, Y-shaped architecture.

I. INTRODUCTION

W ITH the continuous growth of market demand
for autonomous driving, traffic monitoring, seman-

tic high-definition maps, and smart cities, mobile laser
scanning systems have attracted widespread attention from
many researchers [1]. The system can effectively collect
high-precision and high-density three-dimensional (3D) point
cloud data in complex urban road environments, which can
help self-driving vehicles achieve localization and obstacle

Manuscript received 30 April 2021; revised 7 September 2021 and 6 January
2022; accepted 19 January 2022. Date of publication 17 February 2022;
date of current version 8 July 2022. This work was supported in part
by the National Key Research and Development Programs of China under
Grant 2020YFB2104000, in part by the Cultivation of Shenzhen Excellent
Technological and Innovative Talents (Ph.D. Basic Research Started) under
Grant RCBS20200714114943014, in part by the Basic Research of Shenzhen
Science and Technology Plan under Grant JCYJ20210324123802006, and
in part by the National Natural Science Foundation of China under Grant
61902120. The Associate Editor for this article was S. Wan. (Corresponding
author: Kenli Li.)

Xiaofeng Zou, Kenli Li, and Yangfan Li are with the College of Computer
Science and Electronic Engineering, Hunan University, Hunan 410082, China
(e-mail: zouxiaofeng@hnu.edu.cn; lkl@hnu.edu.cn; yangfanli@hnu.edu.cn).

Wei Wei is with the School of Computer Science and Engineering,
Xi’an University of Technology, Xi’an 710048, China (e-mail: weiwei@
xaut.edu.cn).

Cen Chen is with the Institute for Infocomm Research (I2R), Singapore
138632 (e-mail: chenc@i2r.a-star.edu.sg).

Digital Object Identifier 10.1109/TITS.2022.3150155

Fig. 1. The comparison between 2D image and 3D point cloud. Compared
with 2D images, point clouds can provide more rich geometry, shape and
scale information, and is not easily affected by changes in light intensity and
other objects occlusion.

tracking. 3D point cloud data has been broadly used in various
domains, including 3D object detection on urban roads, object
classification, object tracking [2], semantic segmentation [3],
etc. To meet the important demands of intelligent transporta-
tion in smart cities, it is crucial to devise the methods that can
capture valuable information from point clouds. In this work,
we focus on the theoretical and fundamental problem of point
cloud segmentation in autonomous driving scenarios.

As an efficient representation of 3D data, point cloud
can accurately represent arbitrarily shaped objects and the
surrounding environment in 3D space. Fig. 1 presents the
comparison between 3D point cloud and 2D image. Compared
with 2D images, it has incomparable advantages. Because it
can provide rich geometry, shape, and scale information, and
is not easily affected by changes in light intensity and other
objects occlusion. Thus, 3D point clouds can help self-driving
cars reconstruct their 3D environment and better understand
the complex traffic environment. However, the disorder and
irregularity of point clouds pose a great challenge to research.

With the great breakthrough of convolutional neural net-
works (CNNs) in 2D images [4], [5], many studies [6]–[8]
attempt to explore deep learning approaches to directly analyze
and understand point clouds. Qi et al. [7] proposed the famous
PointNet, which employs multi-layer perceptrons (MLPs)
for point-wise feature learning and utilizes symmetric func-
tions (e.g., maximum pooling) to aggregate global features.
However, this approach processes each point individually,
regardless of the local structure message for the point cloud.

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5823-6345
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0003-3640-5088
https://orcid.org/0000-0002-7566-2995
https://orcid.org/0000-0003-1389-0148

ZOU et al.: MULTI-TASK Y-SHAPED GRAPH NEURAL NETWORK FOR POINT CLOUD LEARNING IN AUTONOMOUS DRIVING 9569

To address this issue, PointNet++ [8] developed a hierarchical
architecture to capture multi-scale features. Nevertheless, the
dependency relationships between the points are still not
considered.

Recently, the graph neural network (GNNs) [9]–[11] have
applied CNNs to irregular graph data, which has attracted
widespread attention. The key idea is to aggregate the features
from neighbor nodes according to the graph topology, thereby
can mine the relationships and interactions among graph
nodes. Since sparse and irregular point cloud data can be
naturally represented as graph data, some recent works have
developed GNN-based methods [12]–[15] for point clouds.
GNN models require graph structure and node features as
input. To be suitable for unstructured point cloud data, these
methods utilize the k-nearest neighbor (k-NN) algorithm to
build the graph structure, and then the generated graph struc-
ture and the coordinates of the point cloud are fed into graph
convolution layer for feature learning. Despite these methods
have significantly improved performance, there are still some
issues worth considering: (1) These methods generally do
not consider multi-task learning and only focus on a single
task. Multi-task learning [16] can explore the commonalities
among tasks by joint learning to obtain better generalization.
(2) The graph convolutional layer in the point cloud be
further improved. Since the k-NN graph only considers the
positional relationship between points, ignoring the potential
structural information. (3) It is necessary to design an efficient
down-sampling method for disordered point clouds. Existing
down-sampling methods [8], [17], [18] do not study the
importance of points in the point cloud, which may cause some
important points to be deleted, thereby affecting performance.

To address these issues, we propose a novel multi-task
Y-shaped graph neural network to process point clouds,
referred to as MTYGNN. By extending the traditional
U-shaped framework [19], MTYGNN performs classification
and segmentation tasks in the point cloud simultaneously.
It consists of three key parts: a top-down shared encoder,
classification branch, and segmentation branch. We integrate
classification prediction as the scene context into the fea-
tures extracted by segmentation branch for better perfor-
mance. To extract the potential structural information in
the point cloud, we develop a graph attention convolutional
(GAConv) layer, which utilizes the attention mechanism [20]
to dynamically assign appropriate attention weights to different
neighbors. We further develop a novel graph adaptive pool-
ing (GAPool) layer, which adaptively retains important points
based on the potential feature and structure message of the
point cloud. To support the up-sampling operation in the point
cloud, we adopt the graph unpooling (PUnpool) layer proposed
in [11], which effectively recovers the reduced graph to raw
size. Finally, we consider the homoscedastic uncertainty [21]
of each task to compute the weights of multiple loss functions
to ensure that tasks do not negatively interfere with each other
in multi-task learning.

To our knowledge, this is the first multi-task graph neural
network designed for point clouds, which can explore com-
monalities among multiple point cloud-related tasks. The main
contributions of this work are summarized as follows:

• We propose a new MYTGNN, which can exploit the
commonality between multiple tasks to improve the gen-
eralization ability of the model.

• We develop a GAConv and a GAPool to extract better
feature representations for point clouds. The proposed
GAConv utilizes attention mechanisms to explore the
underlying structural relationships of the point cloud,
while GAPool considers both feature and topological
information of the point cloud to achieve the pooling
operation.

• We explore a weighted loss function to ensure that tasks
do not interfere with each other.

• Our MTYGNN outperforms various state-of-the-art meth-
ods on two common point cloud datasets in traffic scenar-
ios, which effectively proves the excellence of MTYGNN.

II. RELATED WORK

A. Deep Learning on Point Clouds

Recently, analyzing and understanding point clouds has
become a hot research topic, and a series of deep
learning-based methods have been proposed. These studies can
be divided into two main categories: CNN-based approaches
and Graph-based approaches. Moreover, we review some
down-sampling approaches in graphs.

1) CNN-Based Approaches: PointNet [7] was a pioneering
work to directly employ deep learning models to original point
clouds. It adopted MLPs to extract the point-wise feature,
and then the symmetric functions were used to summarize
the global features. Nevertheless, this approach processes each
point individually, regardless of the local structure message for
point clouds. To this end, Qi et al. [8] developed Pointnet++,
which extracts multi-scale local features by constructing a
hierarchical framework. Since PointNet and PointNet++ are
simple and efficient, many researchers [22]–[24] develop more
powerful models based on these two models. However, the
series of models ignore the topology relationships between
points.

2) Graph-Based Approaches: The vigorous development of
graph neural networks (GNNs) [9], [10], [25] has brought
great opportunities for irregular point cloud feature learning.
Specifically, GNNs aim to extend the neural networks to
irregular graph data. The key idea is to aggregate the features
from adjacent nodes based on the graph structure. While sparse
and irregular point cloud data can be naturally expressed
as graph data, some recent work [12]–[15] has developed
GNN-based methods to explore point clouds. Since the GNN
model requires graph structure and node features as input,
these methods first generate graph edges for unstructured point
cloud data. Te et al. designed RGCNN [12], which dynami-
cally constructs graphs by exploring the similarity of feature
spaces. Wang et al. [13] developed DGCNN, which utilizes
EdgeConv to dynamically construct k-NN graphs in each layer
of the network. LDGCNN [14] further improved DGCNN,
which connects hierarchical features from multi-levels in a
residual manner to improve performance Nevertheless, these
above methods generally do not consider multi-task learning
and only focus on a single task.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

9570 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

3) Down-Sampling Methods on Point Clouds: The down-
sampling operation can generalize the hierarchical features
and expand the receiving field to obtain better generaliza-
tion. Some researches [8], [17], [18], [26] have started to
extend the down-sampling operation to point cloud data
processing. Pointnet++ [8] employed farthest point sam-
pling (FPS) to down-sample point clouds. However, this
sampling method only considers the spatial location of points
in the input point cloud, not their feature representation.
Alternative research [17] utilized graph-based max-pooling
to perform the downsampling operation. The limitation of
this method is that it does not ensure that the points with
significant contributions are retained during sampling, which
can bring troubles to downstream feature learning. Following
this line, [18] further proposed a sampling strategy based on
the deep learning approach, which utilizes a neural network
to generate a reduced point cloud from the original dataset.
However, this method is not placement-invariant. It generates a
new point set during down-sampling, which changes the order
of the input point cloud and makes it difficult to track each
selected point node, resulting in the reduced point cloud that
cannot be restored to its original size.

B. Multi-Task Learning

Multi-task learning (MTL) [16] is an effective learning
paradigm in deep learning, which utilizes the commonality
among tasks to improve the generalization capability of the
model. Specifically, it mines useful information between tasks
by extracting shared features with sufficient expressive ability.
Recently, MTL-based models have been broadly used in many
domains, including object detection, image segmentation, and
image classification. However, MTL on graph neural networks
has not attracted much attention, and only few studies [27],
[28] mainly focus on the multi-head architecture. However,
the research [27] found that direct training of the multi-head
architecture model resulted in a performance loss for a single
task. Thus, we design a novel Y-shaped framework for multi-
tasking learning, which can learn generalize node embedding
across tasks.

III. METHODOLOGY

In this section, we introduce the definition of multi-task
learning problem in point clouds, and describe the proposed
MTYGNN in detail.

A. Problem Formulation

As depicted in Fig. 2, the point cloud P is composed of a
set of 3D points: {pi = (xi , yi , zi) |i = 1, 2, . . . , n}, where n
is the number of points, and pi is a point in the point cloud and
consists of 3D coordinates (xi , yi , zi). We utilize X ∈ R

n×3

to represent the feature matrix of P .
1) Point Cloud Classification: Given a point cloud P ,

we classify the class of the entire point clouds. Therefore,
we need to develop a mapping function fc that maps point
cloud features to probability distributions over each category:

fc ({p1, p2, . . . , pn}) → Nc, (1)

Fig. 2. Illustration of point clouds in intelligent transportation.

where Nc is the object category of point cloud (e.g., car, motor,
airplane).

2) Point Cloud Segmentation: In this setting, each point
pi should be classified as a specific semantic category. Thus,
a segmentation function fs needs to be developed to compute
the probability distribution of each category on each point pi :

{ fs (pi) |i = 1, 2, . . . , n} → Ns , (2)

where Ns is the semantic labels for each points.
In this work, we design a graph neural network based

on multi-task learning to simultaneously perform point cloud
classification and segmentation tasks. These two problems are
usually solved separately in previous work. However, we have
observed that the object category and semantic labels are
interdependent in the point cloud. For instance, the category
of the entire point cloud can serve as a global context to help
identify the category of each point. Therefore, it is desirable to
couple point cloud classification and point cloud segmentation
into a single task.

B. Overall Architecture of MTYGNN
As illustrated in Fig. 3, MTYGNN explores a novel

Y-shaped architecture, which includes a shared encoder for
feature extraction and two parallel branches for classification
and segmentation tasks, respectively. It takes the original point
cloud as input and extracts hierarchical feature information
through a shared encoder. The two parallel branches then
obtain the learned feature representations and perform their
subsequent predictions separately.

The shared encoder aims to project the point clouds into
a new high-dimensional feature space to encode more local
information than the raw space. Inspired by the classic
U-shaped model, the shared encoder part is a top-down
encoder, which includes several encoding modules, each con-
sisting of a proposed GAConv layer and a proposed GAPool
layer. GAConv layer employs the attention mechanism to
mine the hidden topological information between points in the
point cloud, and exploits neighborhood aggregation to capture
local information. GAPool layer adaptively performs graph
coarsening to summarize hierarchical features for the point
clouds.

In the classification branch, we employ the feature extrac-
tion module consistent with the encoder to further learn

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: MULTI-TASK Y-SHAPED GRAPH NEURAL NETWORK FOR POINT CLOUD LEARNING IN AUTONOMOUS DRIVING 9571

Fig. 3. Overall framework of the proposed MTYGNN. It consists of three main parts: a shared encoder, a classification branch and a segmentation branch.

the point-wise feature representation, and then adopt the
max-pooling operation to extract effective global features,
and finally utilize the MLPs to perform the final point cloud
classification. To maximize the learned multi-scale features,
we combine hierarchical features to obtain better representa-
tion ability. In specific, we apply a max-pooling operation after
each encoding module to acquire a global feature, and then
combine these hierarchical features for the final classification.

In the segmentation branch, we adopt a bottom-up decoder
to restore the original size of the point cloud to achieve point-
wise prediction. The decoder consists of several decoding
modules, the number of which is the same as the encoding
module in shared encoder. Each decoding module consists of
a GAConv layer and a PUnpool layer. GAConv layer is respon-
sible for extracting local information, while the PUnpool layer
is responsible for recovering the reduced features. Following
the traditional U-shaped network, we add skip-connections
between encoding and decoding modules of the same level,
which can effectively combine low-level node features and
high-level features for more expressive features. Finally, the
global features extracted by the classification branch will
be incorporated into the feature representation extracted by
the decoder as the scene context information to improve the
representation capability of the model.

MTYGNN is an extension of the traditional U-shaped
model (e.g., Graph U-Net [11]) to jointly perform segmen-
tation and classification tasks. The main distinctions between
MTYGNN and Graph U-Net in the following ways: (i) Dif-
ferent from Graph U-Net that only supports a single task,
MTYGNN adopts a Y-shaped model framework that supports
multi-task learning. It can exploit the commonalities among
multiple point cloud-related tasks to improve performance.
(ii) GAConv proposed in MTYGNN is different from the
GCN. GAConv assigns appropriate attention weights to dif-
ferent neighbor points through the attention mechanism, and

Fig. 4. Illustration of GAConv on a subgraph of a point cloud.

selectively gathers the most relevant neighbor information to
dynamically capture local information. (iii) The differences
between GAPool and gPool in Graph U-Net are significant.
gPool only utilizes feature messages of the point clouds during
graph coarsening, while GAPool adaptively retains important
points based on feature information and structural messages.

C. Graph Attention Convolution for Point Clouds
Since the previous graph neural networks [9], [10] require

graph structure and feature matrix as input, while point cloud
data only contains geometric features, and graph structure is
unknown, these approaches cannot be directly extended to
point clouds. To resolve this issue, we specially design a graph
attention convolutional (GAConv) layer for unstructured point
clouds, as depicted in Fig. 4. It mainly includes two processes:
(1) graph construction, (2) graph feature aggregation.

1) Graph Construction: An appropriate graph structure
has a great impact on the quality of feature representation
learning, thus we need to choose a suitable graph construction
method. A simple and efficient method involves employing the
k-nearest neighbor (k-NN) algorithm to build a directed graph
Gl . However, the k-NN algorithm only considers the positional
relationship between points, which may cause the loss of
hidden structural information. To optimize the constructed
k-NN graph Gl , we adopt the attention mechanism to explore

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

9572 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

Algorithm 1 The Computing Process of MTYGNN

Input: Raw point clouds features X0, shared encoder network
depth L1, classification branch network depth L2.

Output: Object category label Nc , semantic labels Ns .
1: Shared encoder:
2: X0

e = X0; # Xe is the feature representation extracted by
the shared encoder.

3: for l = 0 to L1 do
4: Feature extraction Xl

e + 1 via GAconv;
5: Pooling operation via GAPool
6: l = l + 1;
7: end for
8:

9: Classification branch:
10: X0

c = X L1
e ; # Xc is the feature representation extracted

by the classification branch.
11: for l = 0 to L2 do
12: Feature extraction Xl

c via GAconv;
13: Pooling operation via GAPool
14: l = l + 1;
15: end for
16: compute the category label Nc by MLP
17:

18: Segmentation branch:
19: X0

s = X L1
e ; # Xs is the feature representation extracted

by the segmentation branch.
20: for l = 0 to L1 do
21: Up-sampling operation via PUnpool
22: skip-connections;
23: Feature extraction Xl

s for point clouds via GAconv;
24: l = l + 1;
25: end for
26: compute the semantic category Ns by MLP;
27: return Nc ,Ns

the pairwise dependencies in the feature space. Specifically,
the attention mechanism is used to adjust the weights of the
graph edges in Gl :

el
i j = α

�
wxl

i , wxl
j , w

�
xl

i − xl
j

��
, j ∈ N (i) , (3)

where the sharing attention mechanism α (·) is a single-layer
neural network, xl

i and xl
j mean the feature vectors of

point i and j in layer l, j ∈ N (i) is the neighborhood
of point i . Different from GAT, we extra incorporate fea-
ture differences among node pairs

�
xl

i − xl
j

�
in the attention

mechanism, which can help the model pay more attention to
similar neighbors. ei j indicates the attentional weight between
point i and j . w is the trainable weight parameter. After
obtaining the pairwise relationship between the points, we nor-
malized them with softmax function to get the final edge
weights αl

i j , i.e.,

al
i j = softmax

�
el

i j

�
=

exp
�

el
i j

�
�

k∈N(i) exp
�
el

ik

� . (4)

2) Graph Feature Aggregation: After obtaining the graph
structure, we utilize the neighborhood aggregation to extract
the local graph features. Specifically, we aggregate neighbor
information based on the attention values to form a new node
representation. the feature aggregation function of point i is
defined as follows:

xl+1
i = σ

⎛
⎝ 	

j∈N(i)

al
i j W x j

⎞
⎠ , (5)

where σ is the activation function, xl+1
i is the updated node

feature of point i . Since the feature aggregation function
operates the same for all points, the feature representation for
each point can be updated in parallel.

Although both our proposed GAConv and GAT utilize
the attention mechanism to learn better representations, our
GAConv has significant differences: (1) GAT is not directly
applicable to point cloud data with unknown structure, while
GAConv is specifically designed for the properties of point
cloud data. (2) GAConv incorporates feature differences to
learn attention weights, which can extract more precise node
interaction relationships.

D. Graph Adaptive Pooling for Point Clouds
Recently, graph pooling layers [11], [29] have received

widespread attention. These methods are used to reduce the
size of the graph, and summarize abstract features to achieve
better generalization. Nevertheless, the current research on
point cloud pooling is not thorough enough. The previous
approaches [8], [17], [18] are mostly static and sensitive to
abnormal points. Since they only sample the points in the
input point clouds based on their spatial positions, instead
of based on their feature representations. Furthermore, these
methods are not permutation-invariant. Since they summarize
the original nodes into a new set of coarsened nodes during the
down-sampling process, rather than selecting a subset of the
input points. In this manner, it is difficult to restore the reduced
point cloud to its original size, which in turn cannot be
extended to point cloud segmentation tasks.

To solve the mentioned issues, we explore a novel graph
adaptive and permutation-invariant pooling (GAPool) layer for
point clouds, which exploits the feature representation and
structure information of the point cloud to adaptively retain
important points for down-sampling. In particular, we trans-
form the pooling problem into a node sampling problem.
The importance of points is learned by considering the graph
topology and feature representation jointly, and retains K most
important points to generate a new graph. Fig. 5 depicts
the process of GAPool, which is mainly divided into a
topology-aware attention phase and a node sampling phase.

1) Topology-Aware Attention: The attention mechanism
[20] can drive the model to focus on the most relevant parts
of the task. Inspired by this, we develop a topology-aware
attention scheme to measure the importance of points. Unlike
previous methods [11], our approach explicitly combines
graph topology and node features. To be specific, we gather
the neighborhood information for each point depending on

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: MULTI-TASK Y-SHAPED GRAPH NEURAL NETWORK FOR POINT CLOUD LEARNING IN AUTONOMOUS DRIVING 9573

Fig. 5. Illustration of the graph adaptive pooling layer (GAPool). There are two main phases in GAPool: : topology-aware attention and node sampling.
Topology-aware attention aims to learn the importance of points atts by exploiting graph topology Al and node features Xl . Then K points with highest
scores are selected for the down-sampling operation.

the graph structure to generate a new feature representation
with structural information. Self-attention [30] is then used
to explore the importance of each point in the whole graph.
Given the graph G = �

Xl , Al
�

with the feature matrix Xl and
adjacency matrix Al , the importance of points is obtained as:

X̂ = D̂−1 Âl X,

atts = softmax
�
σ

�
ws X̂

��
, (6)

where atts ∈ R
n×1 is the importance score of points, Âl =

Al + I , D̂ is the degree matrix of Âl , and 1n = [1, . . . , 1]T,
ws ∈ R

h×1 is the learnable parameter.
2) Graph Node Sampling: After obtaining the importance

scores of points, we perform node sampling to keep points
with higher scores. The graph nodes are re-ranked according
to the node information scores atts, and K important nodes
are sampled to form new node features Xl+1 and graph
structure Al+1.

idx = topk (atts, K) ,

Al+1 = Al (idx, idx) ,

Xl+1 = Xl (idx, :) , (7)

where K is a hyper-parameter to determine the number of
points reserved in the new graph, topk (atts, K) function
performs node sampling and it returns the indexes of the K
maximum values in atts. Al (idx, idx) and Xl (idx, :) perform
the column or row extraction operation based on the indexes
idx. With indexes idx, we obtain the new adjacency matrix
Al+1 ∈ R

K×K and new feature matrix Xl+1 ∈ R
k×F .

In this manner, we can adaptively retain the points with
significant contributions to achieve the down-sampling opera-
tion. Moreover, our proposed GAPool is permutation-invariant.
This is because GAPool utilizes the features of the point cloud
for importance ranking and selects directly among the set of
input point based on the importance without generating new
points. It does not change the permutation of the input points,
i.e., order-independent, which allows subsequent upsampling
operations to easily keep tracks of each selected node.

E. Point Cloud Unpooling (PUnpool) Layer

The unpooling operation can restore the reduced feature
matrix to the original size. However, the previous unpooling

operation is not available due to the irregularity of the
point clouds. In MTYGNN, we developed a graph pooling
(PUnpool) layer to perform up-sampling operation, which
is the inverse operation of GAPool. During GAPool, idx
preserves the indexes of the reserved node in the raw feature
matrix. In PUnpool, we put the selected nodes back to their
original places in the graph based on idx, and produce a new
feature matrix Xl+1. Formally, PUnpool can be represented as

Xl+1 = D
�

0n×h , Xl , idx
�

, (8)

where 0n×h is the initially empty matrix, and D function
employs the indexes idx to fill the selected node features Xl

in GAPool into 0n×h .

F. Multi-Task Loss Function

There is a common problem in multi-task learning: it needs
to optimize the proposed model for multiple objectives. In our
work, the proposed MTYGNN uses a Y-shaped model frame-
work to support multitask learning. It contains two branches
to perform two tasks: predict the object label of the point
cloud, and perform pointwise forecasts of 3D points in the
point cloud. To avoid mutual interference among subtasks in
multitask learning, we need a suitable multitask loss function
to ensure the quality of model training. Here, we denote the
classification and segmentation objectives as Lclc and Lseg ,
respectively. A simple idea for defining a multi-task objective
is to perform a weighted linear combination of the losses for
two tasks:

Ltotal = w1Lclc + w2Lseg, (9)

where w1 and w2 are the task weight parameters, which
can normalize the gradient gradients of different tasks to a
common scale. The appropriate weight values directly affect
the quality of model training. If the correct balance between
tasks is not found, the task gradient will conflict, thereby
affecting the model performance. A naive approach is to assign
weights to the two tasks in the manual manner. However, this
approach is heavily dependent on experience and the search
for the optimal weights is tedious and expensive. Therefore,
it is necessary to find an efficient way to automatically learn
the optimal weights.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

9574 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

In this work, we adopt the homoscedastic uncertainty [21]
of each task to determine the weight of different task loss
functions. Homoscedastic (task-dependent) uncertainty [21]
can describe the relative confidence between different tasks,
which is independent of the model input data and is not
the prediction of model. Therefore, it can be used to design
the loss weight terms for different tasks. Here, we apply
homoscedastic uncertainty to automatically learn the weights
before the classification branch and the segmentation branch.
The loss function is defined as follows:

L = 1

2σ 2
1

Lclc + 1

2σ 2
2

Lseg + log σ1σ2, (10)

where σ1 and σ2 are two learned parameters, which represent
the homoscedastic uncertainty of the segmentation task and the
classification task, respectively. We automatically update σ1,
σ2 through the backpropagation of the loss function Equ. 10.
From Equ. 10, we can observe that the loss of each task is
inversely proportional to σ1, σ2, so that tasks with smaller
uncertainty are assigned larger weights. In addition, the loss
of each task is constrained by the uncertainty regularization
terms log σi , which effectively ensures that the model does not
predict infinite uncertainty (i.e., zero loss).

G. Complexity Analysis

We first analyze the complexity of each operation in
MTYGNN. Given a point cloud with n points, each point con-
tains f features. (i) The computational complexity of GAConv
is O

�
n f + n f f � + ξ f ��, where ξ is the set of edges and f �

is the hidden feature channel. Compared with GAT, GAConv
increases the computational cost of graph construction O (n f).
However, with ξ � n � f ≈ f �, the time complexity of
GAConv is similar with the general GNNs (e.g., GCN, GAT).
(ii) The cost of GAPool is O (ξ f + n). Since GAPool can
effectively reduce the size of the input graph, which allows the
computational complexity of the downstream GAConv layers
to greatly decrease. After down-sampling through multiple
GAPool layers, subsequent GAConv can even be ignored.
(iii) The time complexity of PUnpool is O (n + ξ).

Compared with the existing GNN-based model [13], [15],
although MTYGNN introduces an extra classification branch,
it does not increase too much computational complexity. The
reason is that the down-sampling operation can reduce the
complexity of GAConv which is computationally expensive.
In particular, the increased computational cost of the classifi-
cation branch is negligible after multiple down-sampling.

IV. EXPERIMENTS

In this section, we evaluate our MTYGNN on an outdoor
dataset in a large-scale urban environment: Paris-Lille-3D.
To further test the scalability and robustness of MTYGNN,
we utilize the commonly used dataset, ShapeNet.

A. Paris-Lille-3D

1) Dataset: Paris-Lille-3D1 [31] is traffic point cloud data
collected from two largest cities in France, Paris, and Lille,

1https://npm3d.fr/paris-lille-3d

TABLE I

TWO LEVELS OF SEMANTIC CLASSES FOR THE PARIS-LILLE-3D DATA
USED IN OUR EXPERIMENTS

by a mobile laser scanning system. In particular, the dataset
includes 2 kilometers of urban roads, totaling more than
140 million points. This completely hand-labeled data set
contains 50 categories. We follow the guideline in [31] to map
the original categories to 9 semantic categories: Ground, Build-
ings, Poles, Bollards, Trash Cans, Barriers, Pedestrians, Cars,
and Natural, for a total of 2479 object instances. To satisfy the
multi-task setting, we further divide the semantic categories
into two classes: foreground and background objects. The
details of these staging classes are shown in Table I.

2) Baselines: To evaluate the effectiveness of MTYGNN,
we compare with some state-of-the-art methods, including:
PointNet [7], Pointnet++ [8], DGCNN [13], HDGCN [32],
MS-PCNN [3]. Furthermore, we develop a variant to further
analyze MTYGNN: MTYGNNsingle, which removes the clas-
sification branch and performs only the segmentation task.

3) Implementation Details: Our MTYGNN is implemented
in PyTorch and trained on 4 NVIDIA Tesla P100 GPUs.
We adopt Adam optimizer to optimize the model, the learning
rate is 0.01, and the batch size is 16. For the shared encoder,
we stacked two encoding modules. We set the nearest neighbor
k in the GAConv layer to 20, and set the pooling rate in
GAPool to 0.5. The dimension of hidden embedding and
dropout rate are 128, 0.5, respectively. In the segmentation
branch, we stack two decoding modules to restore the original
point cloud size. For the classification branch, we use the
same settings as the segmentation branch to support the scene
classification. Finally, we feed the features learned by the two
branches into an MLP layer for the final prediction scores.
To facilitate comparison, we apply the training/validation/test
setting consistent with [3].

4) Evaluation Metrics: We utilize two metrics to quantita-
tively evaluate performance, including the mean intersection
over union (mIoU) and the mean accuracy (mAcc).

5) Performance Study: Table II presents the results of
our MTYGNN compared with other baselines on the
Paris-Lille-3D dataset. Since the baseline methods are all
single-task frameworks, the mean accuracy (mAcc) of these
methods is not available. From the table, we can observe
the following points: (i) We can easily observe that the
proposed MTYGNN and the variant MTYGNNsingle have
superior performance to all baseline methods. In particular,
the mIoU of MTYGNN (75.7%) is 5.2% higher than that
of MS-PCNN. These results verify the superiority of our
proposed MTYGNN. (ii) The variant MTYGNNsingle outper-
forms all baseline methods, which effectively indicates that
the proposed GAConv and GAPool can capture better feature
representations for point clouds. And MTYGNN further out-
performs MTYGNNsingle. This demonstrates that MTYGNN

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: MULTI-TASK Y-SHAPED GRAPH NEURAL NETWORK FOR POINT CLOUD LEARNING IN AUTONOMOUS DRIVING 9575

TABLE II

EXPERIMENTAL RESULTS ON PARIS-LILLE-3D BENCHMARK

Fig. 6. Visualization results on Paris-Lille-3D dataset. (a) Ground truth. (b) Our MTYGNN.

can explore the commonality between two tasks to improve
the model performance through multi-task learning. Fig. 6
presents the segmentation results of MTYGNN in detail.

B. SemanticKITTI

1) Dataset: SemanticKITTI2 [33] is a challenging
large-scale driving scene point cloud dataset. It consists of
22 sequences, including 43, 552 scans. Following the setting
in [26], we utilize sequences 00 to 10 as the training set (where
sequence 08 is used as the validation set) and sequences 11
to 21 as the test set. To meet the multi-task setting, we split
the 19 valid categories into 6 classes based on [33]: Ground,
Structure, Vehicle, Nature, Human, Object. The detailed infor-
mation is presented in Table III.

2) Baselines: We compare MTYGNN with some base-
lines to validate its superiority, including: PointNet [7],
PointNet++ [8], SPLATNet [34], PointASNL [26] which is
an end-to-end point cloud processing network based on down-
sampling operations, PointConv [35].

3) Implementation Details: For SemanticKITTI, we utilize
a similar experimental setup as Paris-Lille-3D. We still use

2http://www.semantic-kitti.org/dataset.html

mIoU and mAcc as metrics, where mIoU is used to evaluate
the performance of the segmentation branch and mAcc is used
to evaluate the performance of the classification branch.

4) Performance Study: The experimental results on the
SemanticKITTI dataset are presented in Table IV. From the
table, we can observe that our MTYGNN achieves the best per-
formance compared to other single-task baselines. Meanwhile,
MTYGNN also outperforms the baseline approach in most
categories. It indicates that adopting the multi-task learning
framework can explore the commonalities among multiple
tasks to learn a better representation for the point cloud. More-
over, the variant MTYGNNsingle outperforms PointASNL.
It demonstrates the superiority of our GAPool developed for
point clouds, which retains points with significant contribu-
tions by fully considering the structure information and feature
information of the point cloud.

C. ShapeNet

1) Datasets: ShapeNet3 [36] is a common 3D object
segmentation benchmark. It contains 16681 objects in 16
categories, with a total of 50 parts (each category contains 2-6

3https://shapenet.cs.stanford.edu/media/

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

9576 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

TABLE III

TWO LEVELS OF SEMANTIC CLASSES FOR THE SEMANTICKITTI DATA USED IN OUR EXPERIMENTS

TABLE IV

EXPERIMENTAL RESULTS ON SEMANTICKITTI BENCHMARK

TABLE V

EXPERIMENTAL RESULTS ON SHAPENET DATASET

parts). For reasonable comparison, we apply the experimental
settings same as [13].

2) Implementation Details: In the segmentation branch,
we stack two decoding modules to restore the original point
cloud size. For the classification branch, we use two encoding
modules to further extract features. Finally, we feed the
features learned by the two branches into an MLP layer for
the final prediction scores. To facilitate comparison, we apply
the training/validation/test setting consistent with [13].

3) Evaluation Metrics: We utilize two metrics to quan-
titatively evaluate performance, including the overall accu-
racy (OA) and the intersection over union (IoU) of each
category.

4) Performance Study: Table V and Table VI demonstrate
the comparison results of the proposed MTYGNN with other
baseline methods. It can be seen from Table VI that our
proposed MTYGNN achieves the best performance. Mean-
while, MTYGNN also outperforms other baseline methods in
most categories. Fig. 7 presents the segmentation results of
MTYGNN on ShapeNet dataset in detail.

D. Ablation Studies
1) Effectiveness of the Y-Shaped Architecture: We explore

some variants to evaluate the effectiveness of the Y-shaped
Architecture: MTYGNNMH that applys the multi-head archi-
tecture consistent with [27]. Table VII shows the experimental

Fig. 7. Visualization results on ShapeNet dataset.

results on Paris-Lille-3D and Shapenet datasets. The results
show that MTYGNN outperforms MTYGNNMH in all evalu-
ation metrics. It demonstrates that that the Y-shaped Architec-
ture can hierarchically capture the multi-scale local features.

2) Effects of GAConv: We explore two variants to eval-
uate the effects of GAConv. (1) DGCNNGAConv denotes
utilizing the proposed GAConv instead of EdgeConv in the
DGCNN [13]. (2) MTYGNNEdgeConv indicates that EdgeConv
is used to extract features in MTYGNN.

Table VIII presents the experimental results on
Paris-Lille-3D dataset. We can easily observe that
DGCNNGAConv and MTYGNN outperform the variants
without GAConv, i.e., DGCNN and MTYGNNEdgeConv.
It effectively validates that GAConv can effectively capture
the hidden topology in the point cloud. In particular, GAConv
can dynamically capture the structural information through
the attention mechanism for better node representations.

3) Effects of GAPool: In this subsection, we explore the
effects of the proposed GAPool on the performance of
MTYGNN. Some variants are explored: (1) MTYGNNRP
indicates removing all GAPool layers in MTYGNN. (2)
MTYGNNgPool denotes applying gPool instead of the pro-
posed GAPool.

Table IX shows the comparison results on the ShapeNet
dataset. We can observe that MTYGNN and MTYGNNgPool
are better than MTYGNNRP, which shows the effectiveness
of developing pooling methods for point clouds. Furthermore,

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: MULTI-TASK Y-SHAPED GRAPH NEURAL NETWORK FOR POINT CLOUD LEARNING IN AUTONOMOUS DRIVING 9577

TABLE VI

EXPERIMENTAL RESULTS FOR EACH CLASS ON SHAPENET BENCHMARK

TABLE VII

EFFECTS OF THE Y-SHAPED MODEL ARCHITECTURE ON PARIS-LILLE-3D
AND SHAPENET DATASETS

TABLE VIII

EFFECTS OF GACONV ON SHAPENET DATASET

TABLE IX

EFFECT OF GAPOOL ON SHAPENET DATASET

the performance of MTYGNN. Moreover, the performance of
MTYGNN is superior to MTYGNNgPool. It indicates that
GAPool can effectively summarize better representations by
considering both structural information and feature represen-
tations during pooling.

4) Effects of Weighted Loss Function: We design several
variants to evaluate the effect of loss functions with weights on
model performance: (1) MTYGNNAdd indicates that the losses
of two tasks are added directly. (2) MTYGNNFixed denotes
using fixed weights instead of automatic learning. Here we
set the weight of classification loss to 0.3 and the weight of
segmentation loss to 0.7.

The experimental results on the ShapeNet dataset are
presented in Table X. The results indicate that MTYGNN
outperforms the other two variants. This indicates that apply-
ing homoskedastic uncertainty can automatically learn the

TABLE X

EFFECT OF WEIGHTED LOSS FUNCTION ON SHAPENET DATASET

TABLE XI

ANALYSIS ON POOLING RATIO K ON SHAPENET DATASET

appropriate weights for two tasks to ensure that there is no
negative gain between the tasks.

5) Analysis on Pooling Ratio K: We provide an ablation
experiment to evaluate the effect of different pooling ratios
K on the model performance. The results in Table XI show
that the smaller the pooling ratio, the fewer nodes are retained
in the point cloud and the accuracy is lower. This is because
a smaller pooling ratio causes the down-sampling operation
to lose important structural information in the point clouds,
resulting in performance degradation. If an appropriate K value
is selected, GAPool can retain the important points as much
as possible, thereby preserving the most important information
in the point cloud. As can be seen in Table XI, when the K
value is 0.5, it still can obtain high accuracy.

6) Network Depth Study: Network depth is a critical
hyper-parameter that directly determines the quality of feature
learning. Our proposed MTYGNN is a multi-task learning
framework, it is necessary to separately determine the network
depths of the segmentation branch l1 and classification branch
l2. Here we first remove the classification branch to obtain the
best value of l1, and then fix l1 to obtain l2. Table XII presents
the performance for different number of network depths.
From the results, we can observe that both segmentation and
classification branches achieve the best performance for a
network depth of 2. The performance of the model usually
decreases when the network depth deviates from 2.

7) Time and Space Complexity: We measure the model
complexity by comparing the model size and forward time

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

9578 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

TABLE XII

INFLUENCE OF THE NETWORK DEPTHS

TABLE XIII

COMPLEXITY COMPARISON

of the proposed MTYGNN with other baseline models. For
the fair comparison, all experiments are run on NVIDIA Tesla
P100 GPUs. The statistical results are presented in Table. XIII,
we can observe that the model size of MTYGNN is larger
than DGCNN but smaller than PointNet. The reason is that
MTYGNN is a multi-task learning framework that introduces
multiple task branches. Furthermore, the forward time of
MTYGNN is smaller than that of Pointnet and DGCNN since
the proposed GAPool for downsampling operation can reduce
the complexity of GAConv that has higher computational
cost. In particular, the computational cost of the downstream
GAConv is even negligible after multiple down-sampling.
Therefore, our proposed MTYGNN has achieved the better
trade-off between the model complexity, computational com-
plexity, and accuracy.

V. CONCLUSION

Point clouds, as an efficient 3D representation, play an indis-
pensable role in intelligent transportation scenarios. In this
work, we propose a novel multi-task Y-shaped graph neural
network (MTYGNN) to explore and analyze point cloud data.
By extending the traditional U-shaped framework, MTYGNN
performs simultaneously segmentation and classification tasks,
and exploits the commonality between the two tasks to
improve the generalization capability of the model. To learn
better feature representation, we further design GAConv and
GAPool for point clouds. GAConv exploits attention mech-
anisms to explore potential structural relationships in point
clouds, while GAPool implements pooling operations for
point clouds based on feature representations and structural
information. Furthermore, we use homoscedastic uncertainty
to automatically learn the weights between the two tasks to
ensure that there is no negative interference between tasks.
Experiments on common point cloud datasets in traffic scenar-
ios demonstrate that MTYGNN outperforms existing bench-
marks. For example, on Paris-Lille-3D, our model achieves
an accuracy of 75.9%. In the ShapeNet dataset, mIoU reaches
85.9%. For future studies, we plan to investigate the effect of
other features (e.g., normals, colors) in the point cloud on the
model.

REFERENCES

[1] Y. Cui et al., “Deep learning for image and point cloud fusion in
autonomous driving: A review,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 2, pp. 722–739, Feb. 2022.

[2] Z. Luo, M. Attari, S. Habibi, and M. V. Mohrenschildt, “Online multiple
maneuvering vehicle tracking system based on multi-model smooth
variable structure filter,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 2,
pp. 603–616, Feb. 2020.

[3] L. Ma, Y. Li, J. Li, W. Tan, Y. Yu, and M. A. Chapman, “Multi-scale
point-wise convolutional neural networks for 3D object segmentation
from LiDAR point clouds in large-scale environments,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 2, pp. 821–836, Feb. 2021.

[4] C. Chen, K. Li, C. Zhongyao, F. Piccialli, S. C. H. Hoi, and Z. Zeng,
“A hybrid deep learning based framework for component defect detec-
tion of moving trains,” IEEE Trans. Intell. Transp. Syst., early access,
Nov. 10, 2021, doi: 10.1109/TITS.2020.3034239.

[5] C. Chen et al., “Hierarchical semantic graph reasoning for train com-
ponent detection,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Mar. 31, 2021, doi: 10.1109/TNNLS.2021.3057792.

[6] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3D point clouds: A survey,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 43, no. 12, pp. 4338–4364, Dec. 2021.

[7] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet:
Deep learning on point sets for 3D classification and segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 652–660.

[8] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5099–5108.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[10] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–12.

[11] H. Gao and S. Ji, “Graph U-Nets,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 2083–2092.

[12] G. Te, W. Hu, A. Zheng, and Z. Guo, “RGCNN: Regularized graph CNN
for point cloud segmentation,” in Proc. 26th ACM Int. Conf. Multimedia,
Oct. 2018, pp. 746–754.

[13] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon, “Dynamic graph CNN for learning on point clouds,”
ACM Trans. Graph., vol. 38, no. 5, pp. 1–12, Nov. 2019, doi:
10.1145/3326362.

[14] K. Zhang, M. Hao, J. Wang, C. W. de Silva, and C. Fu, “Linked dynamic
graph CNN: Learning on point cloud via linking hierarchical features,”
2019, arXiv:1904.10014.

[15] J. Liu, B. Ni, C. Li, J. Yang, and Q. Tian, “Dynamic points agglomera-
tion for hierarchical point sets learning,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 7546–7555.

[16] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans,
D. Dai, and L. Van Gool, “Multi-task learning for dense prediction
tasks: A survey,” 2020, arXiv:2004.13379.

[17] Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet: Point cloud auto-
encoder via deep grid deformation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 206–215.

[18] O. Dovrat, I. Lang, and S. Avidan, “Learning to sample,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 2760–2769.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[20] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[21] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7482–7491.

[22] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional
neural networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 984–993.

[23] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN:
Convolution on χ -transformed points,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 820–830.

[24] J. Yang et al., “Modeling point clouds with self-attention and Gum-
bel subset sampling,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 3323–3332.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu,
“A comprehensive survey on graph neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2020.3034239
http://dx.doi.org/10.1109/TNNLS.2021.3057792
http://dx.doi.org/10.1145/3326362

ZOU et al.: MULTI-TASK Y-SHAPED GRAPH NEURAL NETWORK FOR POINT CLOUD LEARNING IN AUTONOMOUS DRIVING 9579

[26] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “PointASNL: Robust
point clouds processing using nonlocal neural networks with adaptive
sampling,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 5589–5598.

[27] C. Holtz, O. Atan, R. Carey, and T. Jain, “Multi-task learning on graphs
with node and graph level labels,” in Proc. NeurIPS Workshop Graph
Represent. Learn., 2019.

[28] D. Buffelli and F. Vandin, “A meta-learning approach for graph repre-
sentation learning in multi-task settings,” 2020, arXiv:2012.06755.

[29] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 3734–3743.

[30] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “DiSAN:
Directional self-attention network for RNN/CNN-free language under-
standing,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1–10.

[31] X. Roynard, J.-E. Deschaud, and F. Goulette, “Paris-Lille-3D: A large
and high-quality ground-truth urban point cloud dataset for automatic
segmentation and classification,” Int. J. Robot. Res., vol. 37, no. 6,
pp. 545–557, 2018.

[32] Z. Liang, M. Yang, L. Deng, C. Wang, and B. Wang, “Hierarchical
depthwise graph convolutional neural network for 3D semantic seg-
mentation of point clouds,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2019, pp. 8152–8158.

[33] J. Behley et al., “SemanticKITTI: A dataset for semantic scene under-
standing of LiDAR sequences,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9297–9307.

[34] H. Su et al., “SPLATNet: Sparse lattice networks for point cloud
processing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 2530–2539.

[35] W. Wu, Z. Qi, and L. Fuxin, “PointConv: Deep convolutional networks
on 3D point clouds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 9621–9630.

[36] Z. Wu et al., “3D ShapeNets: A deep representation for volumetric
shapes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1912–1920.

Xiaofeng Zou is currently pursuing the Ph.D. degree
in computer science and technology with Hunan
University, China. His research interests include
machine learning, data mining, and deep learning.

Kenli Li (Senior Member, IEEE) received the Ph.D.
degree in computer science from the Huazhong Uni-
versity of Science and Technology, China, in 2003.
He has published more than 200 research papers
in international conferences and journals. His major
research interests include cloud computing, high
performance computing, and parallel computing.
He serves on the Editorial Board of the IEEE
TRANSACTIONS ON SUSTAINABLE COMPUTING

(T-SUSC) and IEEE TRANSACTIONS ON INDUS-
TRIAL INFORMATICS (TII).

Yangfan Li is currently pursuing the Ph.D. degree
in computer science with Hunan University, China.
His research interests include parallel and distributed
computing, machine learning, and deep learning.

Wei Wei (Senior Member, IEEE) received the Ph.D.
degree from Xi’an Jiaotong University in 2010. He is
currently an Associate Professor with the School of
Computer Science and Engineering, Xi’an Univer-
sity of Technology, China. He has more than 100
papers published or accepted by international con-
ferences and journals. His research interests include
mobile computing, image processing, the Internet of
Things, and distributed computing.

Cen Chen received the Ph.D. degree in computer
science from Hunan University, China. He is cur-
rently a Scientist II at the Institute for Infocomm
Research (I2R), Agency for Science, Technol-
ogy and Research (A*STAR), Singapore. He has
published several research articles in interna-
tional conference and journals, such as IEEE
TRANSACTIONS ON PARALLEL AND DISTRIB-
UTED SYSTEMS (TPDS), IEEE TRANSACTIONS
ON COMPUTERS (TC), IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS

(TITS), IEEE TRANSACTIONS ON CYBERNETICS (TCYB), ACM Transac-
tions on Knowledge Discovery from Data (TKDD), and AAAI. His research
interests include machine learning, deep learning, and parallel and distributed
computing.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 23,2023 at 02:11:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

