
Umplification: Refactoring to Incrementally Add Abstraction to a Program

Timothy C. Lethbridge, Andrew Forward, Omar Badreddin
School of Information Technology and Engineering, University of Ottawa, Canada

{tcl,aforward,obadr024}@site.uottawa.ca

Abstract

Umple adds UML abstractions to a base

programming language. The resulting program can be
seen as both model and code at the same time. Base
languages currently supported include Java, PHP, and
Ruby. Umplification is the process of converting a base
language program to Umple by a series of
refactorings. The result is a program that is
semantically equivalent to the original, but which can
be rendered and edited as UML diagrams by any
modeling tool. Yet, it can still be manipulated as a
textual program for those who prefer. In this paper we
discuss the basic principles of Umple, the general
process of umplification, and our experiences
performing it in real contexts, including umplification
of the Umple compiler itself.

1. Introduction

Our research has been motivated by our survey [1]
indicating that adoption of modeling is limited by
weaknesses in usability and code generation.

We have a broad vision for the technology
described in this paper: Firstly, our approach makes it
possible to incrementally refactor existing programs so
that the code becomes more abstract, and also so that
such programs can be directly maintained using visual
modeling tools. Secondly, our approach eliminates the
artificial distinction between modeling and
programming, allowing both to be interchangeable for
the purposes of new development and maintenance.

We call our technology Umple. This is a play on
words, combining ‘UML Programming Language’,
‘Simple’ and ‘Ample’. We call the process of
incrementally converting a program to Umple,
umplification. This plays on the words ‘amplification’
and ‘simplification’ since by umplification you are
indeed amplifying the abstraction level of the program
and simplifying the code too.

This paper is organized as follows. In Section 2, we
describe Umple by example. In Section 3, we explain

Umple’s key philosophies. In Section 4, we describe
the basics of umplification and give a small artificial
example; and in Section 5, we discuss three
experiences with umplification, including umpifying
Umple itself. Section 6 concludes the paper.

2. Essence and Examples of Umple

Umple adds a set of UML-derived features to
several object-oriented programming languages. The
features enhance each language’s level of abstraction,
allowing the programmer to express common concepts
more succinctly.

So far we have applied Umple to Java, PHP and
Ruby, and we are working on C++. We refer to these
as the ‘base’ languages, and when referring to one
directly, we use the term language L. In this paper we
normally refer to Umple in a pure sense, but if we need
to refer to language L enhanced with Umple features,
we use the notation Umple/L. An Umple/L compiler
will generate a program in L, with L serving as an
intermediate language. After generating the program in
L, the Umple compiler will then call the L compiler.

We do not provide the full specification of Umple
here. For full details, the reader should refer to [2-5].
However, the following are some simple examples.

A UML association can be represented in either of
its end classes, or independently. Figure 1 shows a
UML class diagram with a one-to-many association.
The following are two semantically equivalent ways of
writing this in Umple.

In this paper, Umple code has a grey background
and base language code has a white background.

class A {
 1 -- * B;}
class B {}

class A {}
class B {}
association {
 1 A -- * B;}

Figure 1: simple one-to-many association

Note that any UML multiplicity can be used at

either end of an association, and navigability in only
one direction can be indicated using -> or <- instead of
--. Having specified the above, the programmer can
then manipulate the association in the base language by
calling the generated API. The following is be the API
currently generated from Umple/Java in class A

public B getB(int index)
public List getBs() /* unmodifiable */
public int numberOfBs()
public boolean hasBs()
public int indexOfB(B aB)
public B addB() /* creates new B */
public boolean addB(B aB)
public boolean removeB(B aB)

The following is the API in class B:

public A getA()
public boolean setA(A aA)
public void delete()

A constructor is also generated. Multiplicity and

referential integrity constraints are always respected by
the generated code. Note that different types of
associations will generate different code.

A state machine with two states and events to
transition back and forth between states can be
modeled in Umple as follows.

class A {
 sm {
 S1 {
 e1 -> S2;}
 S2 {
 e2 -> S1;}
 }
}

The equivalent UML is shown in Figure 2.

Figure 2: A simple state machine

The programmer can change and query the state
using the following datatype:

enum Sm { S1, S2 }

and the following API:

public Sm getSm()
public boolean e1()
public boolean e2()

Umple state machines support features such as

transition actions, entry actions, exit actions,
interruptible do activities and nested states.

In addition to the associations and state machines
illustrated above, Umple supports numerous other
concepts. These include a rich semantics for attributes,
including the notion of keys, read-only access, and
defaults. Umple supports before and after code
injections that allow specification of constraints and
triggers in the base language; these are activated when
attributes, associations and states are set or queried.
Finally, Umple incorporates the notion of mixins,
allowing features to be specified separately, and then
combined into a final program.

3. Philosophy of Umple

The following are some key philosophies that have

guided our design decisions regarding Umple:

P1. Modeling is programming and vice versa: UML
concepts can be expressed textually in Umple; hence,
one can model in UML using Umple. For a
programmer, Umple looks like a programming
language, therefore, to such a person they are just
programming more abstractly.

P2. An Umple compiler can accept and generate
code that uses nothing but UML abstractions. The
resulting executable will be a module providing an API
rather than a complete program, since it will lack a
‘main’ method and algorithmic methods. P2 is a
corollary of P1.

P3. A program without Umple features can be
compiled by an Umple compiler. This is the inverse
of P2. In other words, any program P in base language
L compiled by an Umple/L compiler will generate P.
This provides a convenient starting point for a
programmer who wants to begin using Umple
incrementally: They can just change from using an L
compiler to an Umple/L compiler.

P4. A programmer can incrementally add Umple
features to an existing program. This allows for
iterative conversion of a base-language L program into
Umple/L, with each step being a straightforward
refactoring. We call this process umplification.
Discussion of this forms the core material of this paper,
starting in Section 4.

P5. Umple features can be created and viewed
diagrammatically or textually. One can use a UML
diagramming tool to generate an Umple program that
contains only UML abstractions, as in P2. Similarly,
since Umple features map directly to UML, one can
easily render any Umple program as a UML diagram.
This can be done in real-time, as demonstrated in
UmpleOnline [6]; a web-enabled Umple editor that
supports Umple textual code, as well as UML class
visualizations. Elements of code that are not Umple
abstractions, such as the bodies of methods, are
omitted from the diagram.

P6. Much of the base language code in an Umple/L
program corresponds to UML’s concept of an
action language. To use UML for model-driven
development, i.e. complete generation of an application
from a UML model, UML calls for the use of an action
language for the algorithmic details [7]. UML
diagrammatic modeling tools currently allow snippets
of action language to be specified for elements such as
state machine actions. Users of these tools have to
switch between the visual editor for manipulating the
modeling elements, and the textual editor for
manipulating the action language snippets. This
context switching from diagram to text makes it
difficult to understand an entire program.

P7. Umple extends the base language in a minimally
invasive way. A programmer familiar with language L
should see the addition of an Umple feature as just a
natural extension of L. In other words, Umple appears
harmonious with L. As an example, for C-family
languages this is accomplished by co-opting the curly-
bracket block idiom and adding a very small number of
additional keywords.

P8. Umple goes beyond UML as needed to directly
implement patterns and other common
programming idioms. Umple can, for example,
generate code for the singleton pattern [8]. Such
capabilities further increase Umple’s level of
abstraction.

P9. An Umple programmer should never need to
edit generated code to accomplish any task. The
need for round-tripping (editing generated code and

then reflecting the edits back into the model) common
in the Model Driven Engineering world [9] is not
needed.

4. Umplifying Base Language Code

The process for converting a base language program

to an Umple program involves a set of refactorings.
We have coined the term umplification to describe
these refactorings as a set. The umplification process is
similar to what any reverse engineering tool would
perform when generating a UML diagram from a
program. The key difference is that the end-product of
umplification is not a separate model, but is an
incremental change to the code/model.

The umplification process is illustrated in Figure 2.
The source files with from language L code are
initially just renamed as Umple files, with the
extension .ump. At this point, the source code of L and
Umple/L source text are identical.

The Umple code can be edited by any text editor,
However, to gain the power of modeling it can be
loaded into a modeling tool such as our Eclipse plugin
or UmpleOnline.

The input Umple code is parsed by such a tool and
at this point is represented internally in the tool in a
manner that allows rendering and editing both in text
and diagram form. Edits performed in one view are
automatically reflected in the other view as they both
represent the same underlying artifact.

Figure 2: Refactoring Approach

To perform umplification, one iteratively makes
small transformations that gradually add UML
abstractions while preserving the semantics of the
program. In other words, one performs a series of
refactorings. Before making any of these
transformations, the diagram in the visual editor will
only show the names of the classes. As the Umple/L
text is edited (currently manually) to convert sections
of code into UML abstractions, such as associations,
these appear in the visual editor too. Once the
abstractions appear in the visual editor, they can then
be edited in either editor. (New UML can be added in
either textual or graphical editors, but that would
change the system’s semantics, so is beyond what we
mean by umplification).

 We recommend Umplification be performed in a
test-driven environment. At each stage of refactoring,
the resulting behavior of the system should remain
semantically unchanged, and so the test suite acts as a
litmus test to provide some assurance that the
refactoring was done correctly.

Traditionally, the literature refers to transformations
using terms such as M2M (model to model), M2T
(model to target code or code generation), T2M (code
to model or reverse engineering) and T2T (code to
code, refactoring, restructuring, or changing the
language). Since Umple should be seen as both model
and code (P1 in Section 3), all of these terms can be
applied to umplification. We suggest using the terms
U2U for incremental umplification; T2U for automated
complete umplification of a base language program in
one step; M2U for rendering a particular modeling
notation to Umple so it can also be shown textually;
U2M for generation of a pure diagrammatic model
from Umple, and U2T for generating base language
code from Umple.

We have found that the process of manually
umplifying code is reasonably straightforward for
someone familiar with Umple, and with knowledge of
UML modeling pragmatics. We have performed
umplification of several significant systems, including
Umple itself. Case studies are reported in Section 5.

To recap, he basic algorithm for umplification is:

1. Take a program in language L and consider
it an Umple/L program

2. While (there exist one or more key
umplifiable concepts in the Umple/L program)
 2.1 Select a key umplifiable concept
 2.2 Umplify the selected concept

After Step 1, if the Umple/L program is compiled,

the Umple compiler will not encounter Umple
keywords or constructs (with the exception of a basic
class declaration), so will pass the whole program

through to the L compiler unchanged. This is
consistent with P3, as described in Section 2.

As various iterations of Step 2 occur, more and
more Umple notation will be processed by the Umple
compiler, emitting language L code generated by
Umple.

As mentioned, each iteration of Step 2 should
involve testing. The test cases may need to be adjusted
to convert them from the API of the original program
to the new Umple-generated API, but the underlying
intention of the tests should remain unchanged.

At the very end of the process, a large percentage of
all the language L code emitted will be generated by
Umple to handle Umple constructs. The major
exception will be method bodies containing
algorithms, which are still passed through unchanged.
Please refer to [3] for a more detailed code complexity
comparison between base programs and their
refactored into Umple programs.

4.1 Umplifiable Concepts

The set of key umplifiable concepts includes:

• Instance variables: These are variously called

fields, data members, or properties in different
programming languages. Some instance variables will
become attributes, some will be further transformed
into state machines (with the values being the states),
and others will become association ends. In all these
cases umplification requires not only transforming the
instance variable itself, but also locating the code that
accesses the instance variable and transforming that
code as well.

• Primitive data types. Umple uses its own data
types such as Integer instead of either “int” or
“Integer” in Java. This makes Umple uniform among
base languages.

• The notation in the base language that specifies
generalization. Umple uses its own notation since
base languages differ so much.

In this paper, we do not present every last detail

required when umplifying a program. Instead, we
present the key aspects of the process in a way
sufficient for the reader to understand and apply the
process in most cases. It is assumed the reader is
familiar with modeling in UML.

4.2 Details of Umplifying Instance Variables

Every instance variable in the base program can be

umplified. However there are three basic cases:

IV1: An instance variable is private and there are
no public getters and setters for it. In this case the
variable is used for local storage. The transformation is
to mark it using the keyword ‘internal’

IV2: The instance variable is public and is an
attribute data type. An attribute data type is either:

• a primitive data type (including one of a selected
subset of special data types such as Date or Time);

• a class defined outside the current program, that
does not itself contain any reference to the current
class;

• a collection of any of the above

In such cases:
• The instance variable becomes an Umple attribute.
• Accesses to the instance variable are identified and

changed to use the Umple API (e.g. if the variable is x,
then it would be set using setX()).

• If the instance variable has only a few discrete
values, then it is further transformed into a state
machine. This is discussed in more detail later.

IV3: The instance variable is public and is not one
of the types handled in U2. In this case the instance
variable likely represents one end of an association. To
perform umplification, the code implementing the
association must be detected, and transformations must
be performed corresponding to which of the many
possible association-implementation patterns is
present.

4.3 Details of Umplifying to Create a State
Machine

The process of iteratively umplifying the original code
to create a state machine in a class can be summarized
as follows:

SM1: Identify a state machine. If an attribute has a
finite set of values, it becomes a candidate for
umplification into a state machine. An attribute is
particularly likely to be transformable to a state
machine if there are clear transitions, i.e. functions
(which may not be public) that change the attribute to
one of the finite set of values. An additional clues that
an attribute may be a state machine is that it has a
name including words like ‘state’ or ‘status’. Examples
of such state machine attributes are given later.

SM2: Identify state machine elements. In this step,
candidate state machine elements are identified such as
events, states, actions, and do activities.

Table 1 summarizes some of the characteristics of
state machine elements.

Table 1: Umplification to create a state machine

Element
to create

Elements in the original source that
will give rise to the element to create

Event Typically public functions that modify
the state machine attribute.

Action Most commonly public functions, but
also may be blocks of code in more
complex functions

Do
Activity

Indicated by existence of long-running
calculations where an action is taken
when they complete, or parallel
threads of execution.

5. Examples of Umplification in Practice

In this section we describe three separate examples
of Umplification. The first example we describe in its
entirety, giving the original Java and the resulting
Umple. The second example describes how we applied
this technique to the Umple compiler itself. The final
example focuses on umplifying an event-driven system
to demonstrate umplifying attributes into state
machines.

5.1 An Introductory Example

The following example illustrates a simple Java

program, and the steps required to convert it into the
corresponding Umple.

// File Person.java
class Person {
 public String name;
}

// File Student.java
class Student extends Person {
 private int stNum;

 private int status; /* 0=appled;
1=enrolled; 2=graduated; 3=quit */
 private Supervisor mySupervisor;

 public Student(int stNum) {
 this.stNum= stNum;
 status=0;
 }

 public int stNum() {return stNum;}

 public void enrol()
 {if(status ==0) status=1;}
 void graduate() {
 if(status==1) {
 removeSupervisor();
 status=2;

 }
 }

 public void quit()
 {removeSupervisor(); status=3;}

 public boolean setSupervisor(
 Supervisor newSupervisor) {
 if(mySupervisor != null || status!=1)
 return(false);
 mySupervisor = newSupervisor;
 newSupervisor.mentees.add(this);
 return(true);
 }
 public boolean removeSupervisor() {
 if(mySupervisor == null)
 return(false);
 mySupervisor.mentees.remove(this);
 mySupervisor = null;
 return(true);
 }

 public String toString() {
 return(
 (name==null ? " " : name) +
 " status="+status +
 " stNum="+stNum + " Supervisor=" +
 (mySupervisor==null ? "nobody" :
 mySupervisor.toString())
);
 }
}

// File Supervisor.java
import java.util.*;

class Supervisor extends Person
{
 List<Student> mentees = new
ArrayList<Student>();

 Supervisor() {}

 public String toString() {
 return(
 (name==null ? " " : name) + " " +
 mentees.size()+ " mentees"
);
 }
}

The above source code, plus a test driver routine

can be found online at [10].
The following is one possible set of Umplification

steps for the code above. Other sequences could be
followed. After the list of steps, we present the
resulting Umple code.

Step A: Simply rename the files as .ump files (to save
space, we simply show all resulting Umple code in one
continuous block)

Step B: Change the ‘extends’ notation for subclassing
to Umple’s ‘isA’ notation. Umple will now recognize
the class hierarchy.

Step C: Umplify the instance variable ‘name’ in
Person. It will become an attribute. This requires i.
removing ‘public’; and ii changing the toString()
method and the test driver to call getName().

Step D: Umplify the instance variable ‘stNum’ in
Student. It will also become an attribute as in Step C
with Umple type Integer. Since there is no setter, we
will also tag it as ‘immutable’. We have to get rid of
the referring stNum() method, and adjust callers to call
getStNum().

Step E: Umplify the instance variable mySupervisor in
class Student. This becomes one end of an association,
so we need to also transform the other end, the instance
variable ‘mentees’ in class Supervisor. To do this we
simply declare in class Student an association

* -- 0..1 Supervisor

Step F. Umplify the instance variable ‘status’ in
Student. This will become a state machine since it has
a discrete set of values that are affected by calls to
certain methods. We replace i. any methods that
modify status with calls to events; ii. any methods that
query status with calls to getStatus(); iii. any
conditions on whether we should respond to an event
with guards; and iv. any code triggered by events with
actions (in this example, additional features like do-
activities are not used).

Step G: Clean up the constructors, as well as accessor
methods of the attributes and association ends using
before and after code injections. In our example, we
add a before clause when setting a student’s supervisor
to ensure the Student is not already enrolled.

The resulting Umple code is as follows:

class Person {
 name;
}

class Student {
 isA Person;

 immutable Integer stNum;

 status {
 Applied {
 quit -> Quit;
 enrol -> Enrolled;
 }
 Enrolled {
 quit -> /{setSupervisor(null);}
 Quit;

 graduate -> /{setSupervisor(null);}
 Graduated;
 }
 Graduated {}
 Quit {}
 }

 * -- 0..1 Supervisor;

 before setSupervisor {
 if(aSupervisor != null
 && (supervisor != null ||
 status != Status.Enrolled)) {
 return false;
 }
 }

 // Base language method
 public String toString() {
 return(
 (getName()==null ?
 " " : getName()) +
 " status="+getStatus() +
 " stNum="+getStNum() +
 " Supervisor=" +
 (getSupervisor()==null ? "nobody" :
 getSupervisor().toString())
);
 }
}

class Supervisor {
 isA Person;

 // Base language method
 public String toString() {
 return(
 (getName()==null ?
 " " : getName()) + " "
 +
 numberOfStudents()+ " mentees"
);
 }
}

Note that only two base language methods remain,

the printString() methods in Student and Supervisor.
The reader can take any versions of the code, at

each step of umplification (obtained from [10]), and
paste it into UmpleOnline [6] or our Eclipse-based
Umple environment (also available for download at
[6]). Note that the test driver at [10] for the umplified
code was adjusted to account for the changes in the
generated API, but the changes needed were minor.

5.2 Refactoring Umple into Itself

The Umple tools (parser, code generator, meta-
model, analytics) was initially written entirely in pure

Java code. As new Umple features were developed, we
were able to iteratively refactor Umple into itself. For
example, Umple’s internal model representation was
incrementally refactored to make use of Umple
attributes and associations.

The Umple meta-model contains two main
components; the model representing classes, attributes
and associations, and the model representing states,
transitions and actions. The attribute/association
component was developed for the first release of
Umple and was initially written entirely in Java. It was
then refactored into Umple, using the umplification
process described in this paper. The second component
was developed from the start using Umple, making use
of existing modeling capability such as attributes and
associations.

5.2.1 Analysis of Our Experiences Umplifying
Umple into Itself

The Umple meta-model is comprised of about 15
core classes, with another 25 subsidiary classes that
navigate, analyze, and in general make use of those
core classes.

The effort to refactor Umple into itself provided two
main benefits to Umple. First, it provided a practical
test-bed for identifying language and code-generation
features required to build real systems. As we
encountered code blocks in the Java code that could
not be readily transformed into Umple; we enhanced
Umple to support the necessary (and missing) features.
Second, it provided a realistic migration scenario
demonstrating that existing systems could, in fact, be
migrated towards Umple in a stepwise (as opposed to
big-bang) approach. This therefore became our first
experience with umplification.

During the refactoring of Java into Umple, several
less-than-ideal modeling decisions were uncovered in
the Java code; resulting in a less-than-ideal model once
our initial refactoring was complete. This can be
somewhat explained by the fact that the design of the
first model for Umple (i.e. the Umple meta-model) was
separate from its implementation, with few facilities
beyond reverse engineering tools to visually inspect the
dependencies and relationships added to the system
that were not part of the original design.

These less-than-ideal modeling decisions were not
uncovered until we attempted to model the Umple
system itself in Umple. At this point, further
improvements to the underlying meta-model could be
achieved. Now that Umple is represented in a model-
oriented language, analysis and model inspections are
used to help improve our models, which in turn
improves our code.

It was discovered that Umple provided an excellent
environment for model-level code inspections. As
enhancements to the model are made, the results are
instantaneously achieved in the code itself; as they are
one-in-the-same with no disconnect between modeler
and coder.

 5.3 Umplification of an Event-Driven System

In this section, we illustrate Umplification of an
open source elevator simulator that was written almost
entirely manually by a team unaffiliated with us [11].
The system developers did not use state machine code
generation to build any parts of the original system. At
the same time, the system size (85 classes and 1396
functions) was big enough to exhibit interactions
between system components, making it a good
example for demonstrating umplification into state
machines.

5.3.1 Identifying Candidate Elements for
Umplification

In this example, we limit our scope to presenting
umplification of attributes that are controlled by a state
machine. Other aspects of this case study are out of the
scope of this paper.

As discussed earlier, attributes exhibiting certain
characteristics indicate candidacy for state machine
umplification. The following Java code snippet shows
three objects: UP, DOWN, and NONE.

Direction UP = new Direction("UP");
Direction DOWN = new Direction("DOWN");
Direction NONE = new Direction("NONE");

These three objects can immediately be refactored
into a single Umple attribute controlled by a state
machine. Umple supports state machines without any
transitions or events (simple state machines).
Therefore, the refactored Umple code is as follows:

Direction {
 Up { }
 Down { }
 None { }
}

5,3 2 Umplification to Create Events

The elevator simulator included a number of public
functions that were easily identified as events. For
example, the simulator implements a clock that sends
signals at defined intervals.

Functions invoked from the user interface were also
candidates for umplification as state machine events.
Table 2 illustrates some of functions invoked from the
UI that were Umplified as part of the Umple state
machine.

Table 2: Some UI Functions That Became Events
Function Name Description
actionPerformed Calls a number of appropriate

functions when the user performs
an action during simulation (i.e,
add people, add elevator)

setFloatValue Sets the value of a simulation
parameter, like the randomness
of floor requests, the speed of the
simulation, etc.

parametersApplied The user applies new parameters
to the simulation.

Umple state machine events return a Boolean value

(true if the event triggers any transition, false
otherwise). This is needed in scenarios where the
system needs to track if the event resulted in a state
transition or not. We observed that a number of events
identified in the simulator system return no value. It
was easy to simply ignore the return value, and update
the test cases accordingly.

The following listing illustrates the state machine
Direction partially updated with events of the state Up.

Direction {
 Up {
 floorRequestDown -> Down;
 floorRequestUp -> Up;
 topFloorReached -> None;
 }
 Down { }
 None { }
}

Umple events are language-independent. Since Java
was the base language, the generated API for this
example is the following. We adjusted the places
where events are triggered to use these method names.

public	 boolean	 floorRequestUp()
public	 boolean	 floorRequestDown()
public	 boolean	 topFloorReached()

5.3.3 Umplifications to Create State Machine
Actions

Umple actions are implemented as calls to functions
directly implemented in the base language source code.
The following listing illustrates our example enhanced

with an entry action in the None state that executes the
operation of exiting and entering people out of and into
an elevator. As the listing illustrates, the entry action
calls a function that in turn calls two other functions in
the base language. This is a powerful feature of Umple
because it allows the refactoring of actions without
having to change the existing source functions.

Direction {
 None {
 entry /{exitPeople();}
 }

 private void exitPeople() {
 chooseSomeoneFromList();
 updatePeopleWaitingSize();

 }
}

5.3.4 Umplification to Create Guards

Umple supports guards that represent a Boolean

value, a Boolean expression, or any function that
returns a Boolean result.

The following listing illustrates the state None
umplified with a simple guard
arePeopleWaitingToExit.

Direction {
 None {
 entry /{exitPeople();}
 [arePeopleWaitingToExit] -> None;
 }
}

5.3.5 Analysis of Our Experiences Umplifying the
Event-Driven System

 The elevator simulator system is comprised of 86

classes, and 40 test cases. The system had 420
attributes and about 1396 functions. The initial null
transformation was applied to the entire system. Our
umplification process was then limited to only one
component of the system that resulted in umplifying 35
attributes, 5 guards, 65 events, and 40 actions. The 40
test cases provided with the system were run
automatically after each umplification iteration.

Even though the elevator simulator was developed
by a separate development team, and there was hardly
any code documentation provided with the system, the
umplification process was relatively simple.
Refactorings were applied in small steps and system
sanity was checked systematically by running the test
cases. As we umplified parts of the targeted
components, our understanding of the system was

improved because we were able to visually inspect
modeling elements embedded in the refactored
Umple/Java.

6. Conclusion

We presented an approach called umplification
whereby source code in a base language such as Java
or PHP can be incrementally refactored to add
modeling abstractions.

The result of a series of umplification steps is the
conversion of a base language into our Umple
language. At the same time, umplification results in the
reverse engineering of a UML model.

Umple currently supports the most important
features of class diagrams and state diagrams. Umple
essentially adds UML abstractions to base language
code. The Umple compiler generates the needed base-
language code to implement the abstractions, and then
passes the result to the base language compiler.

Umplification can conceptually be performed
automatically by any reverse engineering technology
that can extract a UML model from source code.
However, existing technologies have a key weakness:
they generate a model that represents the code, but is
not actually the code itself. The Umple language can
be seen by the programmer as just modified source
code, still containing much of the syntax they are
familiar with. On the other hand, the modeller can see
the modeling constructs in textual form or graphical
form. The tension between model-centric and code-
centric software engineering is thus reduced.

In addition to helping recover a UML model,
Umplification can be used to simplify a system. The
resulting Umple code base tends to have many fewer
lines of code than the original base language. The
umplification process can also enable inspections that
are concurrently model-based and code-based.

We demonstrated that the process works in practice:
we have a functional compiler that we have used to
umplify Umple itself, as well as several other systems.
We have also used it for new development of both
‘pure’ models, and complete systems. Umple has been
used in the classroom and in several industrial projects.

7. References

[1] Forward, A. and Lethbridge, T. C. "Problems and
opportunities for model-centric versus code-centric
software development: A survey of software
professionals," in MiSE '08: Proceedings of the 2008
International Workshop on Models in Software
Engineering, 2008, pp. 27-32.

[2] Forward, A., Badreddin, O., Lethbridge, T.C..
"Umple: Towards Combining Model Driven with
Prototype Driven System Development", proc. IEEE
International Symposium on Rapid System
Prototyping, Fairfax Va, 2010

[3] Forward, A., Lethbridge, T. C. and Brestovansky,
D. "Improving program comprehension by enhancing
program constructs: An analysis of the Umple
Language," proc. International Conference on
Program Comprehension, 2009, pp. 311-312.

[4] "Umple Language," accessed June 2009,
http://cruise.site.uottawa.ca/umple/

[5] Badreddin, O. "Umple: A model-oriented
programming language," in proc. 32nd ACM/IEEE
International Conference on Software Engineering-
Volume 2, 2010, pp. 337-338.

[6] "UmpleOnline," accessed June 2009,
http://cruise.site.uottawa.ca/umpleonline

[7] Object Management Group, "Concrete Syntax for a
UML Action Language RFP," Tech. Rep. ad/2008-09-
09, 2008.

[8] Gamma, E., Helm, R., Johnson, R. and Vlisides, J.,
"Design Patterns: Elements of Reusable Object-
Oriented Software". New Jersey: Addison-Wesley
Reading, MA, 1995

[9] France, R. and Rumpe, B. "Model-driven
development of complex software: A research
roadmap," in FOSE '07: 2007 Future of Software
Engineering, 2007, pp. 37-54.

[10] "Umplification Example Person / Student,"
accessed 2010,
http://cruise.site.uottawa.ca/umple/umplificationExamp
le-PersonStudent/

[11] Chris Dailey, N. M. (2004-2005, "Elevator
simulator". v. 0.4, 2005,
http://sourceforge.net/projects/elevatorsim/files/elevato
rsim/.

