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Abstract 

 
Umple adds UML abstractions to a base 

programming language. The resulting program can be 
seen as both model and code at the same time. Base 
languages currently supported include Java, PHP, and 
Ruby. Umplification is the process of converting a base 
language program to Umple by a series of 
refactorings. The result is a program that is 
semantically equivalent to the original, but which can 
be rendered and edited as UML diagrams by any 
modeling tool. Yet, it can still be manipulated as a 
textual program for those who prefer. In this paper we 
discuss the basic principles of Umple, the general 
process of umplification, and our experiences 
performing it in real contexts, including umplification 
of the Umple compiler itself. 
 
1. Introduction 
 

Our research has been motivated by our survey [1] 
indicating that adoption of modeling is limited by 
weaknesses in usability and code generation. 

We have a broad vision for the technology 
described in this paper: Firstly, our approach makes it 
possible to incrementally refactor existing programs so 
that the code becomes more abstract, and also so that 
such programs can be directly maintained using visual 
modeling tools. Secondly, our approach eliminates the 
artificial distinction between modeling and 
programming, allowing both to be interchangeable for 
the purposes of new development and maintenance. 

We call our technology Umple. This is a play on 
words, combining ‘UML Programming Language’, 
‘Simple’ and ‘Ample’. We call the process of 
incrementally converting a program to Umple, 
umplification. This plays on the words ‘amplification’ 
and ‘simplification’ since by umplification you are 
indeed amplifying the abstraction level of the program 
and simplifying the code too. 

This paper is organized as follows. In Section 2, we 
describe Umple by example. In Section 3, we explain 

Umple’s key philosophies. In Section 4, we describe 
the basics of umplification and give a small artificial 
example; and in Section 5, we discuss three 
experiences with umplification, including umpifying 
Umple itself. Section 6 concludes the paper. 
 
2. Essence and Examples of Umple 
 

Umple adds a set of UML-derived features to 
several object-oriented programming languages. The 
features enhance each language’s level of abstraction, 
allowing the programmer to express common concepts 
more succinctly. 

So far we have applied Umple to Java, PHP and 
Ruby, and we are working on C++. We refer to these 
as the ‘base’ languages, and when referring to one 
directly, we use the term language L. In this paper we 
normally refer to Umple in a pure sense, but if we need 
to refer to language L enhanced with Umple features, 
we use the notation Umple/L. An Umple/L compiler 
will generate a program in L, with L serving as an 
intermediate language. After generating the program in 
L, the Umple compiler will then call the L compiler.   

We do not provide the full specification of Umple 
here. For full details, the reader should refer to [2-5]. 
However, the following are some simple examples. 

A UML association can be represented in either of 
its end classes, or independently. Figure 1 shows a 
UML class diagram with a one-to-many association. 
The following are two semantically equivalent ways of 
writing this in Umple. 

In this paper, Umple code has a grey background 
and base language code has a white background. 
 

class A { 
   1 -- * B;} 
class B {}  

 

class A {} 
class B {} 
association { 
   1 A -- * B;}  

 
 



 
Figure 1: simple one-to-many association 

 
Note that any UML multiplicity can be used at 

either end of an association, and navigability in only 
one direction can be indicated using -> or <- instead of 
--. Having specified the above, the programmer can 
then manipulate the association in the base language by 
calling the generated API. The following is be the API 
currently generated from Umple/Java in class A 

 
public B getB(int index) 
public List<B> getBs() /* unmodifiable */ 
public int numberOfBs() 
public boolean hasBs() 
public int indexOfB(B aB) 
public B addB() /* creates new B */ 
public boolean addB(B aB) 
public boolean removeB(B aB) 

 
The following is the API in class B: 
 

public A getA() 
public boolean setA(A aA) 
public void delete() 

 
A constructor is also generated. Multiplicity and 

referential integrity constraints are always respected by 
the generated code. Note that different types of 
associations will generate different code. 

A state machine with two states and events to 
transition back and forth between states can be 
modeled in Umple as follows. 

 
class A { 
  sm { 
    S1 { 
      e1 -> S2;} 
    S2 { 
      e2 -> S1;} 
  } 
} 

 
The equivalent UML is shown in Figure 2. 

 

 
Figure 2: A simple state machine 

 

The programmer can change and query the state 
using the following datatype: 

 
enum Sm { S1, S2 } 

 
and the following API: 

 
public Sm getSm() 
public boolean e1() 
public boolean e2() 

 
Umple state machines support features such as 

transition actions, entry actions, exit actions, 
interruptible do activities and nested states. 

In addition to the associations and state machines 
illustrated above, Umple supports numerous other 
concepts. These include a rich semantics for attributes, 
including the notion of keys, read-only access, and 
defaults. Umple supports before and after code 
injections that allow specification of constraints and 
triggers in the base language; these are activated when 
attributes, associations and states are set or queried. 
Finally, Umple incorporates the notion of mixins, 
allowing features to be specified separately, and then 
combined into a final program. 
 
3. Philosophy of Umple 

 
The following are some key philosophies that have 

guided our design decisions regarding Umple: 
 

P1. Modeling is programming and vice versa: UML 
concepts can be expressed textually in Umple; hence, 
one can model in UML using Umple. For a 
programmer, Umple looks like a programming 
language, therefore, to such a person they are just 
programming more abstractly. 

 
P2. An Umple compiler can accept and generate 
code that uses nothing but UML abstractions. The 
resulting executable will be a module providing an API 
rather than a complete program, since it will lack a 
‘main’ method and algorithmic methods. P2 is a 
corollary of P1. 

 
P3. A program without Umple features can be 
compiled by an Umple compiler. This is the inverse 
of P2. In other words, any program P in base language 
L compiled by an Umple/L compiler will generate P. 
This provides a convenient starting point for a 
programmer who wants to begin using Umple 
incrementally: They can just change from using an L 
compiler to an Umple/L compiler. 

 



P4. A programmer can incrementally add Umple 
features to an existing program. This allows for 
iterative conversion of a base-language L program into 
Umple/L, with each step being a straightforward 
refactoring. We call this process umplification. 
Discussion of this forms the core material of this paper, 
starting in Section 4. 

 
P5. Umple features can be created and viewed 
diagrammatically or textually. One can use a UML 
diagramming tool to generate an Umple program that 
contains only UML abstractions, as in P2. Similarly, 
since Umple features map directly to UML, one can 
easily render any Umple program as a UML diagram. 
This can be done in real-time, as demonstrated in 
UmpleOnline [6]; a web-enabled Umple editor that 
supports Umple textual code, as well as UML class 
visualizations. Elements of code that are not Umple 
abstractions, such as the bodies of methods, are 
omitted from the diagram. 

 
P6. Much of the base language code in an Umple/L 
program corresponds to UML’s concept of an 
action language. To use UML for model-driven 
development, i.e. complete generation of an application 
from a UML model, UML calls for the use of an action 
language for the algorithmic details [7]. UML 
diagrammatic modeling tools currently allow snippets 
of action language to be specified for elements such as 
state machine actions. Users of these tools have to 
switch between the visual editor for manipulating the 
modeling elements, and the textual editor for 
manipulating the action language snippets. This 
context switching from diagram to text makes it 
difficult to understand an entire program.   

 
P7. Umple extends the base language in a minimally 
invasive way. A programmer familiar with language L 
should see the addition of an Umple feature as just a 
natural extension of L. In other words, Umple appears 
harmonious with L. As an example, for C-family 
languages this is accomplished by co-opting the curly-
bracket block idiom and adding a very small number of 
additional keywords. 

 
P8. Umple goes beyond UML as needed to directly 
implement patterns and other common 
programming idioms. Umple can, for example, 
generate code for the singleton pattern [8]. Such 
capabilities further increase Umple’s level of 
abstraction. 

 
P9. An Umple programmer should never need to 
edit generated code to accomplish any task. The 
need for round-tripping (editing generated code and 

then reflecting the edits back into the model) common 
in the Model Driven Engineering world [9] is not 
needed. 
 
4. Umplifying Base Language Code 

 
The process for converting a base language program 

to an Umple program involves a set of refactorings. 
We have coined the term umplification to describe 
these refactorings as a set. The umplification process is 
similar to what any reverse engineering tool would 
perform when generating a UML diagram from a 
program. The key difference is that the end-product of 
umplification is not a separate model, but is an 
incremental change to the code/model. 

The umplification process is illustrated in Figure 2. 
The source files with from language L code are 
initially just renamed as Umple files, with the 
extension .ump. At this point, the source code of L and 
Umple/L source text are identical. 

The Umple code can be edited by any text editor, 
However, to gain the power of modeling it can be 
loaded into a modeling tool such as our Eclipse plugin 
or UmpleOnline. 

The input Umple code is parsed by such a tool and 
at this point is represented internally in the tool in a 
manner that allows rendering and editing both in text 
and diagram form. Edits performed in one view are 
automatically reflected in the other view as they both 
represent the same underlying artifact.  

  

 
Figure 2: Refactoring Approach 

 



To perform umplification, one iteratively makes 
small transformations that gradually add UML 
abstractions while preserving the semantics of the 
program. In other words, one performs a series of 
refactorings. Before making any of these 
transformations, the diagram in the visual editor will 
only show the names of the classes. As the Umple/L 
text is edited (currently manually) to convert sections 
of code into UML abstractions, such as associations, 
these appear in the visual editor too. Once the 
abstractions appear in the visual editor, they can then 
be edited in either editor. (New UML can be added in 
either textual or graphical editors, but that would 
change the system’s semantics, so is beyond what we 
mean by umplification). 

 We recommend Umplification be performed in a 
test-driven environment. At each stage of refactoring, 
the resulting behavior of the system should remain 
semantically unchanged, and so the test suite acts as a 
litmus test to provide some assurance that the 
refactoring was done correctly. 

Traditionally, the literature refers to transformations 
using terms such as M2M (model to model), M2T 
(model to target code or code generation), T2M (code 
to model or reverse engineering) and T2T (code to 
code, refactoring, restructuring, or changing the 
language). Since Umple should be seen as both model 
and code (P1 in Section 3), all of these terms can be 
applied to umplification. We suggest using the terms 
U2U for incremental umplification; T2U for automated 
complete umplification of a base language program in 
one step; M2U for rendering a particular modeling 
notation to Umple so it can also be shown textually; 
U2M for generation of a pure diagrammatic model 
from Umple, and U2T for generating base language 
code from Umple. 

We have found that the process of manually 
umplifying code is reasonably straightforward for 
someone familiar with Umple, and with knowledge of 
UML modeling pragmatics. We have performed 
umplification of several significant systems, including 
Umple itself. Case studies are reported in Section 5. 

To recap, he basic algorithm for umplification is: 
 

1. Take a program in language L and consider 
it an Umple/L program 
 
2. While (there exist one or more key 
umplifiable concepts in the Umple/L program) 
    2.1 Select a key umplifiable concept 
    2.2 Umplify the selected concept 

 
After Step 1, if the Umple/L program is compiled, 

the Umple compiler will not encounter Umple 
keywords or constructs (with the exception of a basic 
class declaration), so will pass the whole program 

through to the L compiler unchanged. This is 
consistent with P3, as described in Section 2. 

As various iterations of Step 2 occur, more and 
more Umple notation will be processed by the Umple 
compiler, emitting language L code generated by 
Umple. 

As mentioned, each iteration of Step 2 should 
involve testing. The test cases may need to be adjusted 
to convert them from the API of the original program 
to the new Umple-generated API, but the underlying 
intention of the tests should remain unchanged. 

At the very end of the process, a large percentage of 
all the language L code emitted will be generated by 
Umple to handle Umple constructs. The major 
exception will be method bodies containing 
algorithms, which are still passed through unchanged. 
Please refer to [3] for a more detailed code complexity 
comparison between base programs and their 
refactored into Umple programs. 

 
4.1 Umplifiable Concepts 

 
The set of key umplifiable concepts includes: 
 
• Instance variables: These are variously called 

fields, data members, or properties in different 
programming languages. Some instance variables will 
become attributes, some will be further transformed 
into state machines (with the values being the states), 
and others will become association ends. In all these 
cases umplification requires not only transforming the 
instance variable itself, but also locating the code that 
accesses the instance variable and transforming that 
code as well. 

• Primitive data types. Umple uses its own data 
types such as Integer instead of either “int” or 
“Integer” in Java. This makes Umple uniform among 
base languages. 

• The notation in the base language that specifies 
generalization. Umple uses its own notation since 
base languages differ so much.  

 
In this paper, we do not present every last detail 

required when umplifying a program. Instead, we 
present the key aspects of the process in a way 
sufficient for the reader to understand and apply the 
process in most cases. It is assumed the reader is 
familiar with modeling in UML. 

 
4.2 Details of Umplifying Instance Variables 

 
Every instance variable in the base program can be 

umplified. However there are three basic cases: 
 



IV1: An instance variable is private and there are 
no public getters and setters for it. In this case the 
variable is used for local storage. The transformation is 
to mark it using the keyword ‘internal’ 

 
IV2: The instance variable is public and is an 
attribute data type. An attribute data type is either: 

• a primitive data type (including one of a selected 
subset of special data types such as Date or Time); 

• a class defined outside the current program, that 
does not itself contain any reference to the current 
class; 

• a collection of any of the above 
 
In such cases: 
• The instance variable becomes an Umple attribute. 
• Accesses to the instance variable are identified and 

changed to use the Umple API (e.g. if the variable is x, 
then it would be set using setX()). 

• If the instance variable has only a few discrete 
values, then it is further transformed into a state 
machine. This is discussed in more detail later. 

 
IV3: The instance variable is public and is not one 
of the types handled in U2. In this case the instance 
variable likely represents one end of an association. To 
perform umplification, the code implementing the 
association must be detected, and transformations must 
be performed corresponding to which of the many 
possible association-implementation patterns is 
present. 
 
4.3 Details of Umplifying to Create a State 
Machine 
 
The process of iteratively umplifying the original code 
to create a state machine in a class can be summarized 
as follows: 
 
SM1: Identify a state machine. If an attribute has a 
finite set of values, it becomes a candidate for 
umplification into a state machine. An attribute is 
particularly likely to be transformable to a state 
machine if there are clear transitions, i.e. functions 
(which may not be public) that change the attribute to 
one of the finite set of values. An additional clues that 
an attribute may be a state machine  is that it has a 
name including words like ‘state’ or ‘status’. Examples 
of such state machine attributes are given later. 
 
SM2: Identify state machine elements. In this step, 
candidate state machine elements are identified such as 
events, states, actions, and do activities.  

Table 1 summarizes some of the characteristics of 
state machine elements. 
 
Table 1: Umplification to create a state machine 

Element 
to create 

Elements in the original source that 
will give rise to the element to create 

Event Typically public functions that modify 
the state machine attribute. 

Action Most commonly public functions, but 
also may be blocks of code in more 
complex functions 

Do 
Activity 

Indicated by existence of long-running 
calculations where an action is taken 
when they complete, or parallel 
threads of execution. 

 
5. Examples of Umplification in Practice 
 

In this section we describe three separate examples 
of Umplification. The first example we describe in its 
entirety, giving the original Java and the resulting 
Umple. The second example describes how we applied 
this technique to the Umple compiler itself. The final 
example focuses on umplifying an event-driven system 
to demonstrate umplifying attributes into state 
machines. 

 
5.1 An Introductory Example 

 
The following example illustrates a simple Java 

program, and the steps required to convert it into the 
corresponding Umple. 

 
// File Person.java 
class Person { 
    public String name; 
} 

 
// File Student.java 
class Student extends Person { 
   private int stNum; 
 
   private int status; /* 0=appled; 
1=enrolled; 2=graduated; 3=quit */ 
   private Supervisor mySupervisor; 
 
   public Student(int stNum) { 
     this.stNum= stNum; 
     status=0; 
   } 
 
   public int stNum() {return stNum;} 
 
   public void enrol() 
      {if(status ==0) status=1;} 
   void graduate() { 
      if(status==1) { 
         removeSupervisor(); 
         status=2; 



      } 
   } 
 
   public void quit() 
     {removeSupervisor(); status=3;} 
 
   public boolean setSupervisor( 
      Supervisor newSupervisor) { 
      if(mySupervisor != null || status!=1)  
         return(false); 
      mySupervisor = newSupervisor; 
      newSupervisor.mentees.add(this); 
      return(true); 
   } 
   public boolean removeSupervisor() { 
      if(mySupervisor == null)  
         return(false); 
      mySupervisor.mentees.remove(this); 
      mySupervisor = null; 
      return(true); 
   } 
 
   public String toString() { 
      return( 
         (name==null ? " " : name) + 
         " status="+status + 
         " stNum="+stNum + " Supervisor=" + 
         (mySupervisor==null ? "nobody" :  
            mySupervisor.toString()) 
      ); 
   } 
} 

 
// File Supervisor.java 
import java.util.*; 
 
class Supervisor extends Person 
{ 
   List<Student> mentees = new 
ArrayList<Student>(); 
 
   Supervisor() {} 
 
   public String toString() { 
      return( 
         (name==null ? " " : name) + " " + 
         mentees.size()+ " mentees" 
      ); 
   } 
} 

 
The above source code, plus a test driver routine 

can be found online at [10]. 
The following is one possible set of Umplification 

steps for the code above. Other sequences could be 
followed. After the list of steps, we present the 
resulting Umple code. 

 
Step A: Simply rename the files as .ump files (to save 
space, we simply show all resulting Umple code in one 
continuous block) 
 
Step B: Change the ‘extends’ notation for subclassing 
to Umple’s ‘isA’ notation. Umple will now recognize 
the class hierarchy. 

 
Step C: Umplify the instance variable ‘name’ in 
Person. It will become an attribute. This requires i. 
removing ‘public’; and ii changing the toString() 
method and the test driver to call getName(). 
 
Step D: Umplify the instance variable ‘stNum’ in 
Student. It will also become an attribute as in Step C 
with Umple type Integer. Since there is no setter, we 
will also tag it as ‘immutable’. We have to get rid of 
the referring stNum() method, and adjust callers to call 
getStNum(). 
 
Step E: Umplify the instance variable mySupervisor in 
class Student. This becomes one end of an association, 
so we need to also transform the other end, the instance 
variable ‘mentees’ in class Supervisor. To do this we 
simply declare in  class Student an association 
 
* -- 0..1 Supervisor 

 
Step F. Umplify the instance variable ‘status’ in 
Student. This will become a state machine since it has 
a discrete set of values that are affected by calls to 
certain methods. We replace i. any methods that 
modify status with calls to events; ii. any methods that 
query status with calls to getStatus(); iii. any 
conditions on whether we should respond to an event 
with guards; and iv. any code triggered by events with 
actions (in this example, additional features like do-
activities are not used). 
 
Step G: Clean up the constructors, as well as accessor 
methods of the attributes and association ends using 
before and after code injections.  In our example, we 
add a before clause when setting a student’s supervisor 
to ensure the Student is not already enrolled. 

The resulting Umple code is as follows: 
 
class Person { 
  name; 
} 
 
class Student { 
  isA Person; 
 
  immutable Integer stNum; 
   
  status { 
    Applied { 
      quit -> Quit; 
      enrol -> Enrolled; 
    } 
    Enrolled { 
      quit -> /{setSupervisor(null);}  
        Quit; 



      graduate -> /{setSupervisor(null);} 
        Graduated; 
    } 
    Graduated {} 
    Quit {} 
  } 
 
  * -- 0..1 Supervisor; 
   
  before setSupervisor { 
    if(aSupervisor != null 
      && (supervisor != null ||  
        status != Status.Enrolled)) { 
      return false; 
    } 
  } 
 
  // Base language method 
  public String toString() { 
    return( 
      (getName()==null ? 
        " " : getName()) + 
      " status="+getStatus() + 
      " stNum="+getStNum() + 
      " Supervisor=" + 
      (getSupervisor()==null ? "nobody" :  
      getSupervisor().toString()) 
    ); 
  } 
} 
 
class Supervisor { 
  isA Person; 
 
  // Base language method 
  public String toString() { 
    return( 
      (getName()==null ? 
        " " : getName()) + " "    
         + 
      numberOfStudents()+ " mentees" 
    ); 
  } 
} 

 
Note that only two base language methods remain, 

the printString() methods in Student and Supervisor. 
The reader can take any versions of the code, at 

each step of umplification (obtained from [10]), and 
paste it into UmpleOnline [6] or our Eclipse-based 
Umple environment (also available for download at 
[6]). Note that the test driver at [10] for the umplified 
code was adjusted to account for the changes in the 
generated API, but the changes needed were minor. 
 
5.2 Refactoring Umple into Itself 
 

The Umple tools (parser, code generator, meta-
model, analytics) was initially written entirely in pure 

Java code. As new Umple features were developed, we 
were able to iteratively refactor Umple into itself. For 
example, Umple’s internal model representation was 
incrementally refactored to make use of Umple 
attributes and associations. 

The Umple meta-model contains two main 
components; the model representing classes, attributes 
and associations, and the model representing states, 
transitions and actions. The attribute/association 
component was developed for the first release of 
Umple and was initially written entirely in Java. It was 
then refactored into Umple, using the umplification 
process described in this paper. The second component 
was developed from the start using Umple, making use 
of existing modeling capability such as attributes and 
associations. 
 
5.2.1 Analysis of Our Experiences Umplifying 
Umple into Itself 
 

The Umple meta-model is comprised of about 15 
core classes, with another 25 subsidiary classes that 
navigate, analyze, and in general make use of those 
core classes.   

The effort to refactor Umple into itself provided two 
main benefits to Umple. First, it provided a practical 
test-bed for identifying language and code-generation 
features required to build real systems. As we 
encountered code blocks in the Java code that could 
not be readily transformed into Umple; we enhanced 
Umple to support the necessary (and missing) features. 
Second, it provided a realistic migration scenario 
demonstrating that existing systems could, in fact, be 
migrated towards Umple in a stepwise (as opposed to 
big-bang) approach. This therefore became our first 
experience with umplification. 

During the refactoring of Java into Umple, several 
less-than-ideal modeling decisions were uncovered in 
the Java code; resulting in a less-than-ideal model once 
our initial refactoring was complete. This can be 
somewhat explained by the fact that the design of the 
first model for Umple (i.e. the Umple meta-model) was 
separate from its implementation, with few facilities 
beyond reverse engineering tools to visually inspect the 
dependencies and relationships added to the system 
that were not part of the original design. 

These less-than-ideal modeling decisions were not 
uncovered until we attempted to model the Umple 
system itself in Umple. At this point, further 
improvements to the underlying meta-model could be 
achieved. Now that Umple is represented in a model-
oriented language, analysis and model inspections are 
used to help improve our models, which in turn 
improves our code. 



It was discovered that Umple provided an excellent 
environment for model-level code inspections. As 
enhancements to the model are made, the results are 
instantaneously achieved in the code itself; as they are 
one-in-the-same with no disconnect between modeler 
and coder. 

 
 5.3 Umplification of an Event-Driven System 
 

In this section, we illustrate Umplification of an 
open source elevator simulator that was written almost 
entirely manually by a team unaffiliated with us [11]. 
The system developers did not use state machine code 
generation to build any parts of the original system. At 
the same time, the system size (85 classes and 1396 
functions) was big enough to exhibit interactions 
between system components, making it a good 
example for demonstrating umplification into state 
machines. 
 
5.3.1 Identifying Candidate Elements for 
Umplification 
 

In this example, we limit our scope to presenting 
umplification of attributes that are controlled by a state 
machine. Other aspects of this case study are out of the 
scope of this paper. 

As discussed earlier, attributes exhibiting certain 
characteristics indicate candidacy for state machine 
umplification. The following Java code snippet shows 
three objects: UP, DOWN, and NONE.  
 
Direction UP = new Direction("UP"); 
Direction DOWN = new Direction("DOWN"); 
Direction NONE = new Direction("NONE"); 
 

These three objects can immediately be refactored 
into a single Umple attribute controlled by a state 
machine. Umple supports state machines without any 
transitions or events (simple state machines). 
Therefore, the refactored Umple code is as follows: 
 
Direction { 
  Up { } 
  Down { } 
  None { } 
} 

 
5,3 2 Umplification to Create Events 
 

The elevator simulator included a number of public 
functions that were easily identified as events. For 
example, the simulator implements a clock that sends 
signals at defined intervals. 

Functions invoked from the user interface were also 
candidates for umplification as state machine events. 
Table 2 illustrates some of functions invoked from the 
UI that were Umplified as part of the Umple state 
machine. 
 
Table 2: Some UI Functions That Became Events 
Function Name Description 
actionPerformed Calls a number of appropriate 

functions when the user performs 
an action during simulation (i.e, 
add people, add elevator) 

setFloatValue Sets the value of a simulation 
parameter, like the randomness 
of floor requests, the speed of the 
simulation, etc. 

parametersApplied The user applies new parameters 
to the simulation. 

 
Umple state machine events return a Boolean value 

(true if the event triggers any transition, false 
otherwise). This is needed in scenarios where the 
system needs to track if the event resulted in a state 
transition or not. We observed that a number of events 
identified in the simulator system return no value. It 
was easy to simply ignore the return value, and update 
the test cases accordingly. 

The following listing illustrates the state machine 
Direction partially updated with events of the state Up. 
 
Direction { 
  Up { 
    floorRequestDown -> Down; 
    floorRequestUp -> Up; 
    topFloorReached -> None; 
 } 
  Down { } 
  None { } 
} 
 

Umple events are language-independent. Since Java 
was the base language, the generated API for this 
example is the following. We adjusted the places 
where events are triggered to use these method names. 
  
public	  boolean	  floorRequestUp() 
public	  boolean	  floorRequestDown() 
public	  boolean	  topFloorReached() 
  
5.3.3 Umplifications to Create State Machine 
Actions 
 

Umple actions are implemented as calls to functions 
directly implemented in the base language source code. 
The following listing illustrates our example enhanced 



with an entry action in the None state that executes the 
operation of exiting and entering people out of and into 
an elevator. As the listing illustrates, the entry action 
calls a function that in turn calls two other functions in 
the base language. This is a powerful feature of Umple 
because it allows the refactoring of actions without 
having to change the existing source functions. 
 
Direction { 
  None {  
    entry /{exitPeople();} 
  } 
   
  private void exitPeople() { 
    chooseSomeoneFromList(); 
    updatePeopleWaitingSize(); 
    .. ..  
  } 
} 

 
5.3.4 Umplification to Create Guards 

 
Umple supports guards that represent a Boolean 

value, a Boolean expression, or any function that 
returns a Boolean result.  

The following listing illustrates the state None 
umplified with a simple guard 
arePeopleWaitingToExit. 
 
Direction { 
  None {  
    entry /{exitPeople();} 
    [arePeopleWaitingToExit] -> None; 
  } 
} 

 
5.3.5 Analysis of Our Experiences Umplifying the 
Event-Driven System 

 
 The elevator simulator system is comprised of 86 

classes, and 40 test cases. The system had 420 
attributes and about 1396 functions. The initial null 
transformation was applied to the entire system. Our 
umplification process was then limited to only one 
component of the system that resulted in umplifying 35 
attributes, 5 guards, 65 events, and 40 actions. The 40 
test cases provided with the system were run 
automatically after each umplification iteration.  

Even though the elevator simulator was developed 
by a separate development team, and there was hardly 
any code documentation provided with the system, the 
umplification process was relatively simple. 
Refactorings were applied in small steps and system 
sanity was checked systematically by running the test 
cases. As we umplified parts of the targeted 
components, our understanding of the system was 

improved because we were able to visually inspect 
modeling elements embedded in the refactored 
Umple/Java. 

 
6. Conclusion 
 

We presented an approach called umplification 
whereby source code in a base language such as Java 
or PHP can be incrementally refactored to add 
modeling abstractions. 

The result of a series of umplification steps is the 
conversion of a base language into our Umple 
language. At the same time, umplification results in the 
reverse engineering of a UML model. 

Umple currently supports the most important 
features of class diagrams and state diagrams. Umple 
essentially adds UML abstractions to base language 
code. The Umple compiler generates the needed base-
language code to implement the abstractions, and then 
passes the result to the base language compiler. 

Umplification can conceptually be performed 
automatically by any reverse engineering technology 
that can extract a UML model from source code. 
However, existing technologies have a key weakness: 
they generate a model that represents the code, but is 
not actually the code itself. The Umple language can 
be seen by the programmer as just modified source 
code, still containing much of the syntax they are 
familiar with. On the other hand, the modeller can see 
the modeling constructs in textual form or graphical 
form. The tension between model-centric and code-
centric software engineering is thus reduced. 

In addition to helping recover a UML model, 
Umplification can be used to simplify a system. The 
resulting Umple code base tends to have many fewer 
lines of code than the original base language. The 
umplification process can also enable inspections that 
are concurrently model-based and code-based. 

We demonstrated that the process works in practice: 
we have a functional compiler that we have used to 
umplify Umple itself, as well as several other systems. 
We have also used it for new development of both 
‘pure’ models, and complete systems. Umple has been 
used in the classroom and in several industrial projects. 
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