8.03 Lecture 13

Reminder: Maxwell's equation in vacuum

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=0 \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Where $c \equiv 1 / \sqrt{\mu_{0} \epsilon_{0}}$
Resulting wave equations:

$$
\begin{aligned}
\vec{\nabla}^{2} \vec{E} & =\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
\vec{\nabla}^{2} \vec{B} & =\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{aligned}
$$

We discussed plane harmonic wave solution. And you will show that in general a progressing wave solution:

$$
\vec{E}=E_{0} \hat{y} f(z-v t)
$$

and the corresponding \vec{B} field also satisfies Maxwell's equations.
How do we transmit "information"? A simple harmonic wave would not be useful. We must use "pulses," chunks of localized energy in time. For instance:

We have learned:
$f(x-v t)$ or $f(k x-\omega t)$ is a traveling wave moving in the $+\hat{x}$ direction and its shape is kept unchanged if and only if we are working in a non dispersive medium, i.e. $\omega / k=v$ Consider an ideal string:

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=v^{2} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

Where

$$
\frac{\omega}{k}=v=\sqrt{\frac{T}{\rho_{L}}}
$$

If we create a square pulse, the square pulse will move at constant speed v. The shape of the square pulse does not change! We call this string a non-dispersive medium and the "dispersion relation" is $\omega=v k$. Note: the string tension is responsible for the restoring force.
However, if we consider the stiffness of the string, (for example, a piano string): If we bend a piano string, even when there is no tension, the string tends to restore to its original shape. To model "stiffness":

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=v^{2}\left[\frac{\partial^{2} \psi}{\partial x^{2}}-\alpha \frac{\partial^{4} \psi}{\partial x^{4}}\right]
$$

The dispersion relation becomes (where we use $A \cos (k x-\omega t)$ as a test function):

$$
\begin{aligned}
\omega^{2} & =v^{2}\left(k^{2}+\alpha k^{4}\right) \\
\Rightarrow \quad \frac{\omega}{k} & =v \sqrt{1+\alpha k^{2}}
\end{aligned}
$$

Not a constant versus k anymore!!

Where $k=2 \pi / \lambda$. Large $k \Rightarrow$ short $\lambda \Rightarrow$ a lot of dispersion and a higher speed v As a consequence, components with different k will be moving at different speeds $v_{p}=\omega(k) / k$ and we get a dispersion, or the wave loses shape:

Dispersion is a variation of wave speed with wave length. Example: addition of two progressing waves:

$$
\begin{array}{ll}
\psi_{1}(x, t)=A \sin \left(k_{1} x-\omega_{1} t\right) & v_{1}=\frac{\omega_{1}}{k_{1}} \\
\psi_{2}(x, t)=A \sin \left(k_{2} x-\omega_{2} t\right) & v_{2}=\frac{\omega_{2}}{k_{2}}
\end{array}
$$

If we add $\psi_{1}+\psi_{2}$ and using the trig identity

$$
\sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A+B)
$$

we get

$$
\psi_{1}+\psi_{2}=2 A \sin \left(\frac{k_{1}+k_{2}}{2} x-\frac{\omega_{1}+\omega_{2}}{2} t\right) \cos \left(\frac{k_{1}+k_{2}}{2} x-\frac{\omega_{1}+\omega_{2}}{2} t\right)
$$

Assuming $k_{1} \approx k_{2} \approx k$ and $\omega_{1} \approx \omega_{2} \approx \omega$ we have "amplitude modulation:

$$
\sim 0 \cos 00 \cos 00
$$

Where the phase and group velocity is

$$
v_{p}=\frac{\omega}{k} \quad v_{g}=\frac{\left(\omega_{1}-\omega_{2}\right)}{\left(k_{1}-k_{2}\right)} \approx \frac{d \omega}{d k}
$$

ω

Non-dispersive medium
ω

$$
v_{1}>v_{g}
$$

ω

$$
V_{g}>V_{p}
$$

It is also possible that Vg goes to negative!

Bounded system:

$$
\psi(x, t)=\sum_{m} A_{m} \sin \left(k_{m} x+\alpha_{m}\right) \sin \left(\omega_{m} t+\beta_{m}\right)
$$

Where $\omega_{m}=\omega\left(k_{m}\right)$, then evolve as a function of time!
Now consider the boundary conditions of this system:

This is similar to something we have solved before, and we got:

$$
k_{m}=\frac{m \pi}{L} \quad, \quad \alpha_{m}=o
$$

Identical to the ideal string case $(\alpha=o)$ We learned that:

1. The boundary condition "set" the k_{m} ! Does not depend on the dispersion relation $\omega(k)$
2. The individual normal modes are oscillating at $\omega_{m}=\omega\left(k_{m}\right)$ as calculated by the dispersion relation: This does depend on the dispersion relation!

If we plot the dispersion relation:

But in general ω_{m} is not equally spaced.
Full solution:

$$
\begin{aligned}
\psi(x, t) & =\sum_{m} A_{m} \sin \left(k_{m} x+\alpha_{m}\right) \sin \left(\omega_{m} t+\beta_{m}\right) \\
& =\sum_{m} \psi_{m}
\end{aligned}
$$

Example: $\psi(x, t)=\psi_{1}+\psi_{2}$

In a non-dispersive medium: the system goes back to the original shape after $2 \pi / \omega_{1}$ In a dispersive medium $\omega_{2} \neq \omega_{1}$. We need to wait longer until the reaches the least common multiple of $2 \pi / \omega_{1}$ and $2 \pi / \omega_{2}$

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

