
8.03 Lecture 13

Reminder: Maxwell’s equation in vacuum

~∇ · ~E = 0
~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B = µ0ε0
∂ ~E

∂t
= 1
c2
∂ ~E

∂t

Where c ≡ 1/√µ0ε0
Resulting wave equations:

~∇2 ~E = 1
c2
∂2 ~E

∂t2

~∇2 ~B = 1
c2
∂2 ~B

∂t2

We discussed plane harmonic wave solution. And you will show that in general a progressing wave
solution:

~E = E0ŷf(z − vt)
and the corresponding ~B field also satisfies Maxwell’s equations.
How do we transmit “information”? A simple harmonic wave would not be useful. We must use
“pulses,” chunks of localized energy in time. For instance:

We have learned:
f(x − vt) or f(kx − ωt) is a traveling wave moving in the +x̂ direction and its shape is kept
unchanged if and only if we are working in a non dispersive medium, i.e. ω/k = v
Consider an ideal string:

∂2ψ

∂t2
= v2∂

2ψ

∂x2

Where
ω

k
= v =

√
T

ρL



If we create a square pulse, the square pulse will move at constant speed v. The shape of the square
pulse does not change! We call this string a non-dispersive medium and the “dispersion relation”
is ω = vk. Note: the string tension is responsible for the restoring force.
However, if we consider the stiffness of the string, (for example, a piano string): If we bend a piano
string, even when there is no tension, the string tends to restore to its original shape. To model
“stiffness”:

∂2ψ

∂t2
= v2

[
∂2ψ

∂x2 − α
∂4ψ

∂x4

]
The dispersion relation becomes (where we use A cos(kx− ωt) as a test function):

ω2 = v2(k2 + αk4)

⇒ ω

k
= v

√
1 + αk2

Not a constant versus k anymore!!

Where k = 2π/λ. Large k ⇒ short λ ⇒ a lot of dispersion and a higher speed v
As a consequence, components with different k will be moving at different speeds vp = ω(k)/k and
we get a dispersion, or the wave loses shape:

Dispersion is a variation of wave speed with wave length. Example: addition of two progressing
waves:

ψ1(x, t) = A sin(k1x− ω1t) v1 = ω1
k1

ψ2(x, t) = A sin(k2x− ω2t) v2 = ω2
k2
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If we add ψ1 + ψ2 and using the trig identity

sinA+ sinB = 2 sin 1
2(A+B) cos 1

2(A+B)

we get
ψ1 + ψ2 = 2A sin

(
k1 + k2

2 x− ω1 + ω2
2 t

)
cos

(
k1 + k2

2 x− ω1 + ω2
2 t

)
Assuming k1 ≈ k2 ≈ k and ω1 ≈ ω2 ≈ ω we have “amplitude modulation:

Where the phase and group velocity is

vp = ω

k
vg = (ω1 − ω2)

(k1 − k2) ≈
dω

dk
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Bounded system:
ψ(x, t) =

∑
m

Am sin(kmx+ αm) sin(ωmt+ βm)

Where ωm = ω(km), then evolve as a function of time!
Now consider the boundary conditions of this system:

ψ(0, t) = 0 & ψ(L, t) = 0
This is similar to something we have solved before, and we got:

km = mπ

L
, αm = o

Identical to the ideal string case (α = o) We learned that:

1. The boundary condition “set” the km! Does not depend on the dispersion relation ω(k)

2. The individual normal modes are oscillating at ωm = ω(km) as calculated by the dispersion
relation: This does depend on the dispersion relation!

If we plot the dispersion relation:

But in general ωm is not equally spaced.
Full solution:

ψ(x, t) =
∑
m

Am sin(kmx+ αm) sin(ωmt+ βm)

=
∑
m

ψm

Example: ψ(x, t) = ψ1 + ψ2
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In a non-dispersive medium: the system goes back to the original shape after 2π/ω1
In a dispersive medium ω2 6= ω1. We need to wait longer until the reaches the least common
multiple of 2π/ω1 and 2π/ω2
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