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1 The Infinite Square Well

In our last lecture we examined the quantum wavefunction of a particle moving in a circle. Here we

introduce another instructive toy model, the infinite square well potential. This forces a particle

to live on an interval of the real line, the interval conventionally chosen to be x 2 [0, a]. At the ends

0 and a of the interval there are hard walls that prevent the particle from going to x > a and x < 0.

The potential is defined as follows and shown in figure 1.
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= (1.1)
1 x � 0 , x � 0

It is reasonable to assume that the wavefunction must vanish in the region where the potential is

Figure 1: The infinite square well potential

infinite. Classically any region where the potential exceeds the energy of the particle is forbidden. Not

so in quantum mechanics. But even in quantum mechanics a particle can’t be in a region of infinite

potential. We will be able to justify these claims by studying the more complicated finite square well

in the limit as the height of the potential goes to infinity. But for the meantime we simply state the

fact:

ψ(x) = 0 for x < 0 and for x > a . (1.2)

Since the wavefunction must be continuous we must have that it should vanish at x = 0 and at x = a:
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1. ψ(x = 0) = 0 .

2. ψ(x = a) = 0 .

These are our boundary conditions. You may wonder about the continuity of the first derivative

ψ′(x). This derivative vanishes outside the interval and continuity would say that ψ′ should vanish at

0 and at a. But this is impossible. A solution of Schrödinger’s equation (a second order differential

equation) for which both the wavefunction and its derivative vanishes at a point is identically zero! If

a solution exist we must accept that ψ′ can have discontinuities at an infinite wall. Therefore we do

not impose any boundary condition on ψ′. The two conditions above will suffice to find a solution. In

that solution ψ′ is discontinuous at the endpoints.

In the region x 2 [0, a] the potential vanishes and the Schrödinger equation takes the form

d2ψ 2mE
= � ψ , (1.3)

dx2 ~2

and as we did before, one can show that the energy E must be positive (do it!). This allows us to

define, as usual, a real quantity k such that

k2
2mE ~2k2� E =
~2

! . (1.4)
2m

The differential equation is then
d2ψ

=
dx2

�k2ψ , (1.5)

and the general solution can be written as

ψ(x) = c1 cos kx+ c2 sin kx , (1.6)

with constants c1 and c2 to be determined. For this we use our boundary conditions.

The condition ψ(x = 0) = 0 implies that c1 in Eq 1.6 must be zero. The coefficient of sin kx need

not be, since this function vanishes automatically for x = 0. Therefore the solution so far reads

ψ(x) = c2 sin kx . (1.7)

Note that if we demanded continuity of ψ′ we would have to ask for ψ′(x = 0) = 0 and that would

make c2 equal to zero, and thus ψ identically zero. That is not a solution. There is no particle if

ψ = 0.

At this point we must impose the vanishing of ψ at x = a.

nπ
c2 sin ka = 0 ! ka = nπ ! kn = . (1.8)

a

Here n must be an integer and the solution would be

nπx
ψn(x) = N sin , (1.9)

a

with N a normalization constant. Which integers n are

(
acceptable

)
here? Well, n = 0 is not acceptable,

because it would make the wavefunction zero. Moreover, n and �n give the same wavefunction, up

to a sign. Since the sign of a wavefunction is irrelevant, it would thus be double counting to include

both positive and negative n’s. We restrict ourselves to n being positive integers.
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To solve for the coefficient, we utilize the normalization condition; every ψn(x) must be normalized.

1 = N2

∫ a

sin2

(
nπx

)
2

dx = N2 1
2

0
� a ! N =

a

√
. (1.10)

a

Therefore, all in all, our solutions are:√
2 (nπx) ~2k2 2

ψn = sin , En = n ~2π2n
= , n = 1, 2,

a a 2m 2ma2
� � � . (1.11)

Each value of n gives a different energy, implying that in the one-dimensional infinite square well there

are no degeneracies in the energy spectrum! The ground state –the lowest energy state– corresponds

to n = 1 and has nonzero energy.

Figure 2: The four lowest energy eigenstates for the infinite square well potential. The nth wavefunction
solution ψn has n � 1 nodes. The solutions are alternately symmetric and antisymmetric about the midpoint
x = a.

Figure 2 shows the first four solutions to the 1-d infinite square well, labeled from n = 1 to n = 4.

We note a few features:

1. The ground state n = 1 has no nodes. A node is a zero of the wavefunction that is not at the

ends of the domain of the wavefunction. The zeroes at x = 0 and x = a do not count as nodes.

Clearly ψ1(x) does not vanish anywhere in the interior of [0, a] and therefore it has no nodes. It
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Figure 3: The infinite square well shifted to the left to make it symmetric about the origin.

is in fact true that any normalizable ground state of a one-dimensional potential does not have

nodes.

2. The first excited state, n = 2 has one node. It is at x = a, the midpoint of the interval. The

second excited state, n = 3 has two nodes. The pattern in fact continues. The n-th excited state

will have n nodes.

3. In the figure the dotted vertical line marks the interval midpoint x = a . We note that the ground2

state is symmetric under reflection about x = a . The first excited state is antisymmetric, indeed2

its node is at x = a . The second excited state is again symmetric. Symmetry and antisymmetry2

alternate forever.

4. The symmetry just noted is not accidental. It holds, in general for potentials V (x) that are even

functions of x: V (�x) = V (x). Our potential, does not satisfy this equation, but this could

have been changed easily and with no consequence. We could shift the well over so that rather

than having V (x) = 0 from 0 � x � a, it extends from �a � x � a and then it would be2 2

symmetric about the origin x = 0 (see figure 3). We will later prove that the bound states of

a one-dimensional even potential are either even or odd! Here we are just seeing an example of

such result.

5. The wavefunctions ψn(x) with n = 1, 2, . . . form a complete set that can be used to expand any

function in the interval x 2 [0, a] that vanishes at the endpoints. If the function does not vanish

at the endpoints, the convergence of the expansion is delicate, and physically such wavefunction

would be problematic as one can verify that the expectation value of the energy is infinite.

2 The Finite Square Well

We now examine the finite square well, defined as follows and shown in figure 4.

V0 , for x a , V0 > 0 ,
V (x) =

{
� j j �

(2.12)
0 , for jxj � a .

Note that the potential energy is zero for jxj > a. The potential energy is negative and equal to

�V0 in the well, because we defined V0 to be a positive number. The width of the well is 2a. Note
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Figure 4: The finite square well potential

also that we have placed the bottom of the well differently than in the case of the infinite square well.

The bottom of the infinite square well was at zero potential energy. If we wanted to obtain the infinite

square well as a limit of the finite square well we would have to take V0 to infinity, but care is needed

to compare energies. The ones in the infinite square well are measured with respect to a bottom at

zero energy. The ones in the finite square well are measure with respect to a bottom at −V0.

We will be interested in bound states namely, energy eigenstates that are normalizable. For this

the energy E of the states must be negative. This is readily understood. If E > 0, any solutions in

the region x > a where the potential vanishes would be a plane wave, extending all the way to infinity.

Such a solution would not be normalizable. The energy E is shown as a dashed line in the figure. We

have

−V0 < E < 0 . (2.13)

˜Note that since E is negative we have E = −jEj. For a bound state of energy E, the energy E

measured with respect to the bottom of the potential is

Ẽ = E − (−V0) = V0 − jEj > 0 . (2.14)

˜Those E are the ones that can be compared with the energies of the infinite square well in the limit

as V0 !1.

What are the bound state solutions to the Schrödinger equation with this potential? We have to

examine how the equation looks in the various regions where the potential is constant and then use

boundary conditions to match the solutions across the points where the potential is discontinuous.

We have the equation Let’s examine the regions, where, for simplicity, we define A(x) by

d2ψ 2m
=

dx2
− (E

~2
− V (x))ψ = α(x)ψ , (2.15)

where we have defined the factor α(x) that multiplies the wavefunction on the right-hand side of the

Schrödinger equation. We then consider the two regions

� region jxj > a: α(x) is a positive constant. The wavefunction in this region constructed with

real exponentials.
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� region jxj < a: α(x) is a negative constant. The wavefunction in this region is constructed with

trigonometric functions.

The potential V (x) for the finite square well is an even function of x: V (�x) = V (x) We can

therefore use the theorem cited earlier (and proven later!) that for an even potential the bound states

are either symmetric or antisymmetric. We begin by looking for even solutions, that is, solutions ψ

for which ψ(�x) = ψ(x).

Even solutions. Since the potential is piecewise continuous we must study the differential equation

in two regions:

� jxj < a
d2ψ 2m 2m

=
dx2

� (E
~2

� (�V0))ψ = � (V E )ψ (2.16)
~ 02

� j j

V0 � jEj is a positive constant thus define a real k > 0 by

k2
2m� (V0 � jEj) > 0 , k > 0 . (2.17)
~2

It is interesting to note that this equation is not too different from the free-particle equation

k2 = 2mE
2 . Indeed, V E is the kinetic energy of the particle and thus k has the usual~ 0 � j j

interpretation. The differential equation to be solved now reads

ψ′′ = �k2ψ , (2.18)

for which the only possible even solution is

ψ(x) = cos kx , jxj < a . (2.19)

We are not including a normalization constant because, at this state we do not aim for normalized

eigenstates. We will get an eigenstate and while it will not be normalized, it will be normalizable,

and that’s all that is essential. We are after is the possible energies. Normalized wavefunctions

would be useful to compute expectation values.

� jxj > a
2m 2m E

ψ′′ = � (E 0)
~2

� ψ =
j j

ψ (2.20)
~2

This time we define a real positive constant κ with the relation

κ2
2m

=
jEj

, κ > 0 . (2.21)
~2

The differential equation to be solved now reads

ψ′′ = κ2ψ , (2.22)

and the solutions are exponentials. In fact we need exponentials that decay as x ! �1,

otherwise the wavefunction will not be normalizable. This should be physically intuitive, in a
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classically forbidden region the probability to be far away from the well must be vanishingly

small. For x > a we choose the decaying exponential

ψ(x) = Ae−κx, x > a , (2.23)

where A is a normalization constant to be determined by the boundary conditions. More gener-

ally, given that the solution is even, we have

ψ(x) = Ae−κ|x|, jxj > a . (2.24)

It is now useful to note that κ2 and k2 satisfy a simple relation. Using their definitions above we

see that the energy jEj drops out of their sum and we have

k2 + κ2
2mV0

= (2.25)
~2

At this point we make progress by introducing unit free constants ξ, η, and z0 as follows:

η � ka > 0 ,

ξ � κa > 0 ,
(2.26)

2mV
z0 �

0a
2

2 .
~2

Clearly ξ is a proxy for κ and η is a proxy for k. Both depend on the energy of the bound state. The

parameter z0, unit-free, just depends on the data associated with the potential (the depth V0 and the

width 2a) and the mass m of the particle. If you are given a potential, you know the number z0. A

very deep and/or wide potential has very large z0, while a very shallow and/or narrow potential has

small z0. As we will see the value of z0 tells us how many bound states the square well has.

Multiplying (2.25) by a2 and using our definitions above we get

η2 + ξ2 = z20 . (2.27)

Let us make clear that solving for ξ is actually like solving for the energy. From Eq. (2.21), we

can see
2mjEja2 2mV 2

0a E E
ξ2 = κ2a2 = =

~2 ~2
j j

= z2
V 0

j j
, (2.28)

0 V0

and from this we get
jEj ξ 2

= . (2.29)
V0 z0

This is a nice equation, the left hand side gives the

(
energy

)
as a fraction of the depth V0 of the well

and the right-hand side involves ξ and the constant z0 of the potential. The quantity η also encodes

the energy in a slightly different way. From (2.17) we have

η2 = k2
2ma2

a2 � (V
~ 02

� jEj) , (2.30)
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˜and using (2.14) we see that this provides the energy E, measured relative to the bottom of the

potential

Ẽ = V0 � jEj = η2
~2

. (2.31)
2ma2

This formula is convenient to understand how the infinite square energy levels appear in the limit as

the depth of the finite well goes to infinity. Note that the above answer for the energies is given by

the unit free number η multiplied by the characteristic energy of an infinite well of width a.

Let us finally complete the construction. We must impose the continuity of the wavefunction and

the continuity of ψ′ at x = a. Using the expressions for ψ for x < a and for x > a these conditions

give

ψ continuous at x = a =) cos(ka) = Ae−κa
(2.32)

ψ′ continuous at x = a =) �k sin(ka) = � κAe−κa ,

Dividing the second equation by the first we eliminate the constant A and find a second relation

between k and κ! This is exactly what is needed. The result is

k tan ka = κ ! ka tan ka = κa ! ξ = η tan η . (2.33)

Our task of finding the bound states is now reduced to finding solutions to the simultaneous equations

Even solutions: η2 + ξ2 = z20 , ξ = η tan η , ξ , η > 0 . (2.34)

These equations can be solved numerically to find all solutions that exist for a given fixed value

of z0. Each solution represents one bound state. We can understand the solution space by plotting

these two equations in the first quadrant of an (η, ξ) plane, as shown in figure 5.

The first equation in (2.34) is a piece of a circle of radius z0. The second equation, ξ = η tan η,

gives infinitely many curves as η grows from zero to infinity. The value of ξ goes to infinity for η

approaches each odd multiple of π/2. The bound states are represented by the intersections in the

plot (heavy dots).

In the figure we see two intersections, which means two bound states. The first intersection takes

place near η = π/2 and with large ξ � z0. This is the ground state, or the most deeply bound

bound-state. This can be seen from (2.29). Alternatively, it can be seen from equation (2.31), noting

that this is the solution with smallest η. The second solution occurs for η near 3π/2. As the radius of

the circle becomes bigger we get more and more intersections; z0 controls the number of even bound

states. Finally, note that there is always an even solution, no matter how small z0 is, because the arc

of the circle will always intersect the first curve of the ξ = η tan η plot. Thus, at least one bound state

exists however shallow the finite well is.

Odd solutions. For odd solutions all of our definitions (k, κ, z0, η, ξ) remain the same. The wave-

function now is of the form {
sin kx , jxj < a

ψ(x) = (2.35)
Ae−k|x| , jxj > a

Matching ψ and ψ′ at x = a now gives ξ = �η cot η (do it!). As a result the relevant simultaneous

equations are now

Odd solutions: η2 + ξ2 = z20 , ξ = �η cot η , ξ , η > 0 . (2.36)
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Figure 5: Graphical representation of the simultaneous equations (2.34). The intersections of the circle with
the η tan η function represent even bound state solutions in the finite square well potential. The deepest bound
state is the one with lowest η.

Figure 6: Graphical representation of (2.36). The intersections of the circle with the curves ξ = −η cot η are
odd bound-state solutions in the finite square-well potential. In the case displayed there is just one bound state.

In figure 6 the curve ξ = −η cot η does not appear for η < π/2 because ξ is then negative. For z0 <
π
2

there are no odd bound-state solutions, but we still have the even bound state.

We could have anticipated the quantization of the energy by the following argument. Suppose you
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Figure 7: Sketching eigenstates of a finite square well potential. The energies are E1 < E2 < E3.

try to calculate energy eigenstates which, as far as solving the Schrödinger equation, are determined

up to an overall normalization. Suppose you don’t know the energy is quantized and you fix some

arbitrary fixed energy and calculate. Both in the even and in the odd case, we can set the coefficient of

the sin kx or cos kx function inside the well equal to one. The coefficient of the decaying exponential

outside the well was undetermined, we called it A. Therefore we just have one unknown, A. But we

have two equations, because we impose continuity of ψ and of ψ′ at x = a. If we have one unknown

and two equations, we have no reason to believe there is a solution. Indeed, generally there is none.

But then, if we think of the energy E as an unknown, that energy appears at various places in the

equations (in k and κ) and therefore having two unknowns A and E and two equations, we should

expect a single solution! This is indeed what happened.

In figure 7 we sketch the energy eigenstates of a square-well potential with three bound states of

energies E1 < E2 < E3. A few features of the wavefunctions are manifest: they alternate as even, odd,

and even. They have zero, one, and two nodes, respectively. The second derivative of ψ is negative

for jxj < a and positive for jxj > a (it is in fact discontinuous at x = �a). The exponential decay in

the region jxj > a is fastest for the ground state and slowest for the least bound state.

Sarah Geller transcribed Zwiebach’s notes to create the first LaTeX version of this document.
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