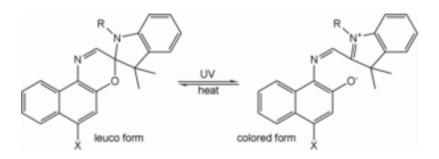

Hydrogels

- crosslinked hydrophilic polymers
- superabsorbent polymers [SAP]
 - PAA, PAAm, PVA
 - irrigation, fertilizer retention, diapers
- stimuli-sensitive [smart] hydrogels
 - temperature-sensitive
 - PNIPAAm, copolymers with vinyl ethers, acrylates
 - (controllable) LCST
 - crosslinked (swell-deswell) or linear (sol-gel)
 - actuators

Microgel

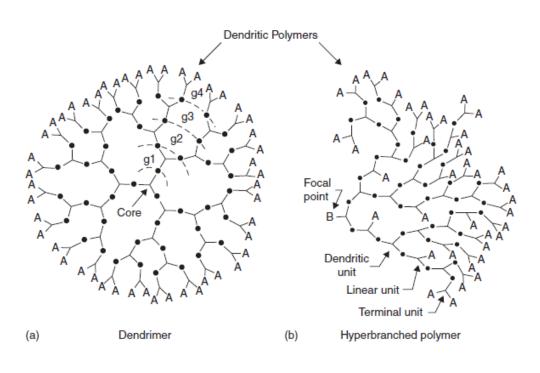
- micron-size crosslinked polymer
- temperature-sensitive microgel
 - water-insoluble at polym'n Temp > LCST ~ deswell
 - water-soluble at lower Temp < LCST ~ swell</p>
 - □ eg, pNIPAAm ~ useful in drug delivery


DDS

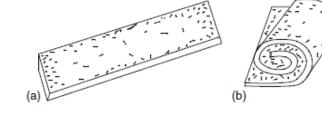
A C C S T S L C S L C

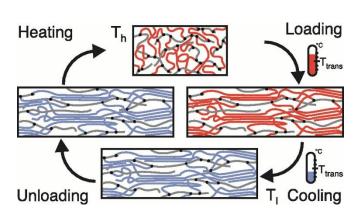
pH-sensitive

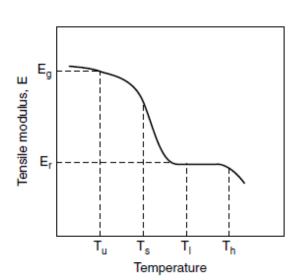
DDS, biosensor


- light-sensitive
 - UV sensitive ~ leuco dyes
 - □ vis sensitive ~ Fig 5.76
 - by heating

- electric field-sensitive
 - □ PAN, PAAm, PMA, ---
 - swell-deswell, bending by
 - E-produced stress
 - ion movement
 - actuator, switch

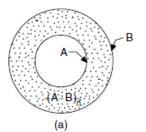

Dendritic polymers

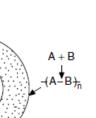

- dendrimer vs hyperbranched polymers
 - dendrimer ~ multi-generation, monodisperse, uniform
 - HBP ~ one-step, polydisperse, defects
- properties
 - density gradient
 - low viscosity
 - high functionality
- applications
 - DDS
 - rheology modifier
 - catalyst, ---

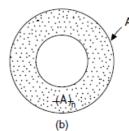


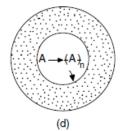
Shape-memory polymers

- □ frozen phase (fixed point) + reversible phase
 - TPI ~ crosslinks + TPI crystals
 - SB polymer ~ S domain + BD domain
 - PU ~ hard segment + soft segment
- \square large E_q/E_r preferred
- packaging, sensor, biomedical

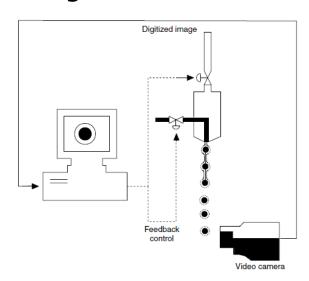


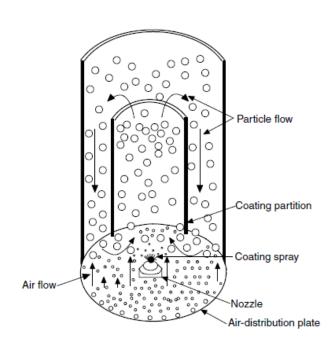


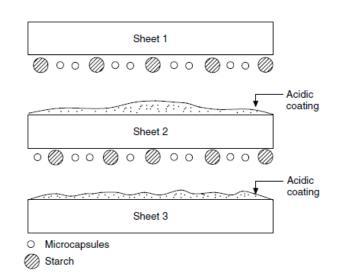

Microencapsulation

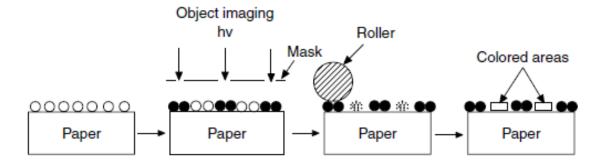

enveloped by using

- coacervation ~ two (water-soluble) polymers in colloid
 - coacervate (high polymer conc'n) + supernatant (low)
 - coacervate with substance crosslinked
- polymer-polymer incompatibility ~ one polymer
 - □ two polymers in solvent → phase-separated
 - substance engulfed by one polymer
- interfacial a/o in-situ polymerization
 - (a) interfacial polym'n, substance in core
 - (b) in-situ polym'n, initiator in core
 - (c) polym'n and moves to interface
 - (d) polym'n in core and moves

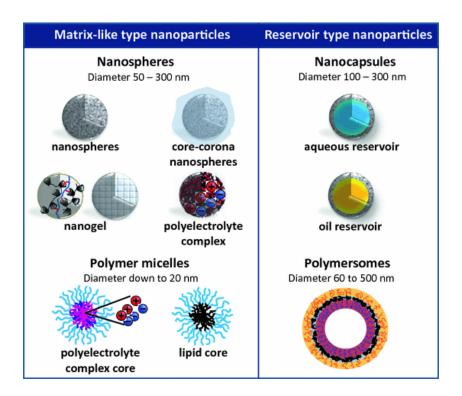


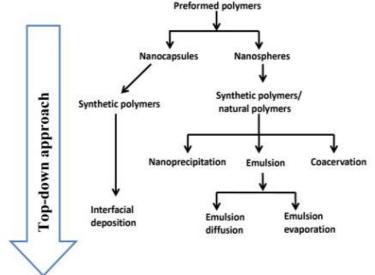


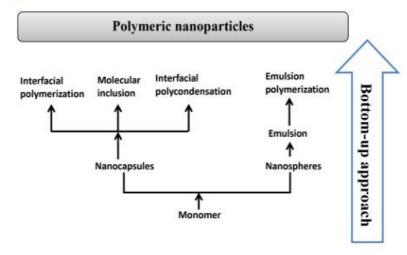

enveloped by using (cont'd)


- spray drying ~ cheap
 - (oil+substance) in water sprayed to hot chamber
- fluidized-bed coating
 - for solid or liq-absorbed solid
- co-extrusion
 - through concentric orifice

- released by
 - rupture (perfume, copy, printing)
 - dissolution (detergent)
 - melting (food)
 - diffusion (medicine)
 - biodegradation (medicine)






- Unexposed microcapsule (soft)
- Exposed microcapsule (solidified)

Nano-sized polymers

- nano < 100 nm ~ high surface area</p>
- nanoparticles
 - nanospheres ~ RP
 - nanocapsules ~ DD

- nanofibers
 - electrospun
 - for reinforcing, membrane, tissue engineering
- other nanostructures
 - nanowires, nanofilms, nanotubes, nanorods
 - electronic, optical, medical applications

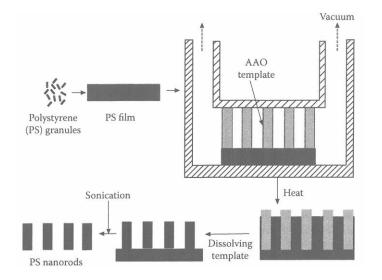
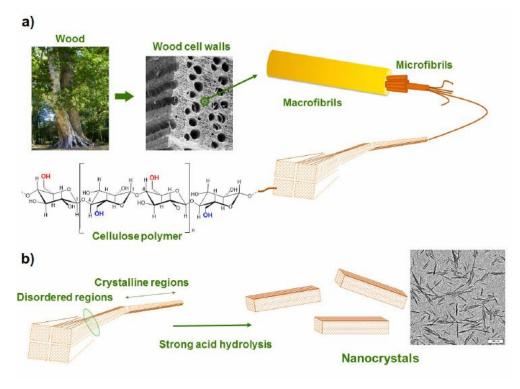
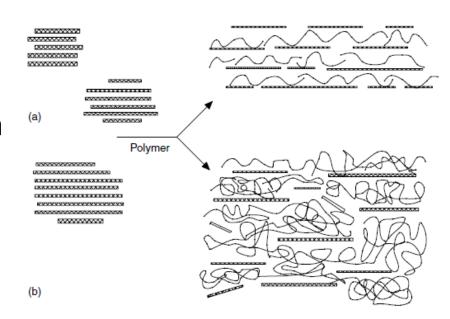



Fig 5.95

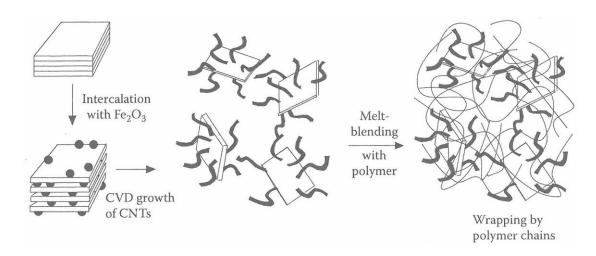
nanocellulose

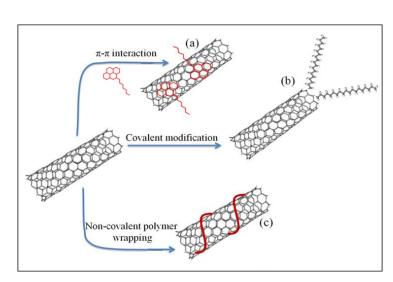
- cellulose nanofiber [CNF], cellulose nanocrystal [CNC]
- grinding and hydrolyze pulp
- for reinforced plastics

Polymer nanocomposites

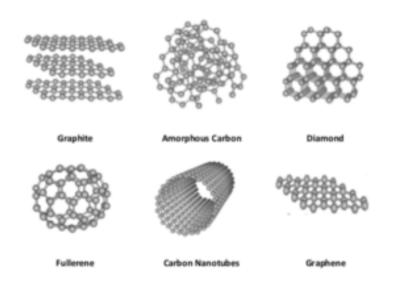

- □ polymer matrix + nanoscale (< 100 nm) inclusion
- compared to macro- or micro-composites
 - NC has
 - larger interfacial area
 - smaller inter-particle distance ~ larger interaction
 - at smaller weight fraction (< 10 wt%)</p>
 - giving higher
 - modulus, strength
 - heat resistance
 - wear resistance
 - barrier property, flame retardancy
 - optical transparency
 - processability

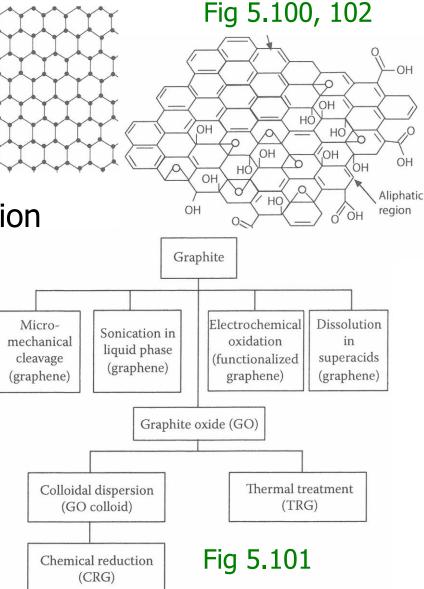
polymer/clay NC

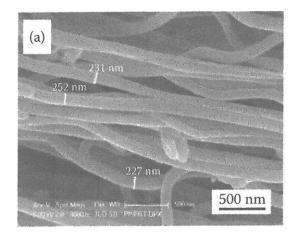

- (nano)clay ~ layered silicate ~ Na-MMT
- need organic modification ~ organoclay
 - especially for non-polar polymers
 - with compatibilizing intercalant

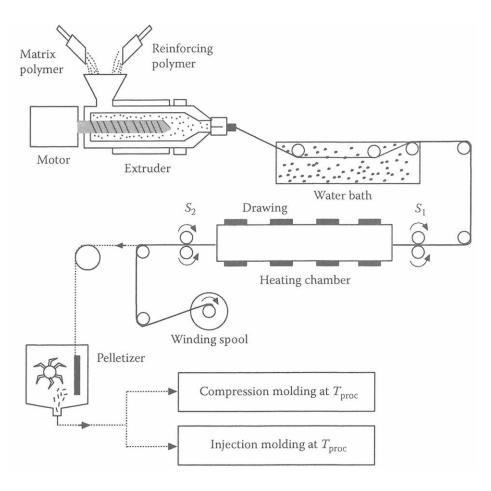

 $H_3C-N^+-CH_2-C_{12}H_{25}$ C_nH_{2n+1} (n=14-18)

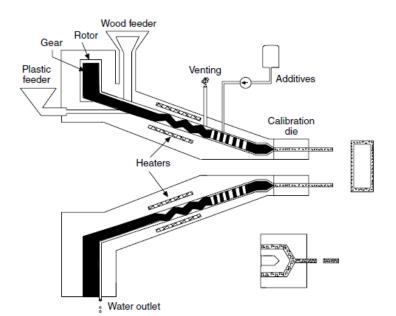
- mixed with polymer by
 - melt mixing
 - solution mixing
 - intercalation/polymerization
- giving
 - intercalated or
 - exfoliated morphology

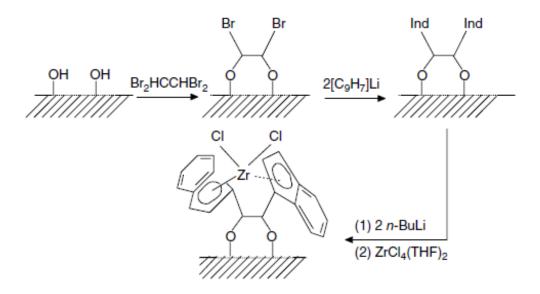



- polymer/CNT NC
 - smaller (than clay), conductive
 - functionalization for dispersion
 - solution, melt, in-situ also
- polymer/CNT-clay hybrid NC
 - CNT grown on clay ~ hybrid filler




- polymer/graphene NC
 - 2-D, smaller
 - strong, flexible, conductive
 - functionalization for dispersion
 - solution, melt, in-situ also


- micro/nanofibrillar polymer composites
 - polymer fibrils in polymer matrix
 - low/high T_m pairs
 - LCP/glassy pairs
 - fibril forms in-situ
 - reinforcing, tissue engineering


Wood-polymer composite

- wood + polymer
 - wood fiber or flour
 - PE, PP, PVC
- environmentally friendly, sensible
- construction, automotive

Polymerization-filled composites

- for highly-filled composite
- polymerization site on the filler

