A Survey of Probability Concepts

Chapter 5

GOALS

1. Define probability.
2. Describe the classical, empirical, and subjective approaches to probability.
3. Explain the terms experiment, event, outcome, permutations, and combinations.
4. Define the terms conditional probability and joint probability.
5. Calculate probabilities using the rules of addition and rules of multiplication.
6. Apply a tree diagram to organize and compute probabilities.
7. Calculate a probability using Bayes' theorem.

Probability

PROBABILITY A value between zero and one, inclusive, describing the relative possibility (chance or likelihood) an event will occur.

Cannot happen						Sure to happen	
1	$1 \quad 1$	1	-	-			
$0.00 \quad 0.10$	$0.20 \quad 0.30$	0.40	$0.50 \quad 0.60$	0.70	0.80	0.90	1.00
\uparrow Probability	\uparrow Chance		Chance of a	$\stackrel{\uparrow}{\uparrow}$			Chance of
our sun will S	Slo Poke will		head in	of an			rain in
disappear	win the		single toss	increase			Florida
this year	Kentucky		of a coin	in federal			this year
	Derby			taxes			

Experiment, Outcome and Event

- An experiment is a process that leads to the occurrence of one and only one of several possible observations.
- An outcome is the particular result of an experiment.
- An event is the collection of one or more outcomes of an experiment.

Experiment	Roll a die	Count the number of members of the board of directors for Fortune 500 companies who are over 60 years of age
All possible outcomes	Observe a 1 Observe a 2 Observe a 3 Observe a 4 Observe a 5 Observe a 6	None are over 60 One is over 60 Two are over 60 29 are over 60 ... 48 are over 60
Some possible events	Observe an even number Observe a number greater than 4 Observe a number 3 or less	More than 13 are over 60 Fewer than 20 are over 60

Mutually Exclusive Events and Collectively Exhaustive Events

- Events are mutually exclusive if the occurrence of any one event means that none of the others can occur at the same time.
- Events are independent if the occurrence of one event does not affect the occurrence of another. Events are collectively exhaustive if at least one of the events must occur when an experiment is conducted.
- Events are collectively exhaustive if at least one of the events must occur when an experiment is conducted.

Ways of Assigning Probability

There are three ways of assigning probability:

1. CLASSICAL PROBABILITY

Based on the assumption that the outcomes of an experiment are equally likely.
2. EMPIRICAL PROBABILITY

The probability of an event happening is the fraction of the time similar events happened in the past.
3. SUBJECTIVE CONCEPT OF PROBABILITY

The likelihood (probability) of a particular event happening that is assigned by an individual based on whatever information is available.

Classical Probability

CLASSICAL PROBABILITY

Consider an experiment of rolling a six-sided die. What is the probability of the event "an even number of spots appear face up"?
The possible outcomes are:

There are three "favorable" outcomes (a two, a four, and a six) in the collection of six equally likely possible outcomes.

Empirical Probability

EMPIRICAL PROBABILITY The probability of an event happening is the fraction of the time similar events happened in the past.

The empirical approach to probability is based on what is called the law of large numbers. The key to establishing probabilities empirically is that more observations will provide a more accurate estimate of the probability.

LAW OF LARGE NUMBERS Over a large number of trials the empirical probability of an event will approach its true probability.

Empirical Probability - Example

On February 1, 2003, the Space Shuttle Columbia exploded. This was the second disaster in 113 space missions for NASA. On the basis of this information, what is the probability that a future mission is successfully completed?

Probability of a successfulflight $=\frac{\text { Number of successfulflights }}{\text { Total number of flights }}$

$$
=\frac{111}{113}=0.98
$$

Subjective Probability - Example

SUBJECTIVE CONCEPT OF PROBABILITY The likelihood (probability) of a particular event happening that is assigned by an individual based on whatever information is available.

- If there is little or no past experience or information on which to base a probability, it may be arrived at subjectively.
- Illustrations of subjective probability are:

1. Estimating the likelihood the New England Patriots will play in the Super Bowl next year.
2. Estimating the likelihood you will be married before the age of 30 .
3. Estimating the likelihood the U.S. budget deficit will be reduced by half in the next 10 years.

Summary of Types of Probability

Rules for Computing Probabilities

Rules of Addition

- Special Rule of Addition - If two events A and B are mutually exclusive, the probability of one or the other event's occurring equals the sum of their probabilities.

$P(A$ or $B)=P(A)+P(B)$
- The General Rule of Addition - If A and B are two events that are not mutually exclusive, then $P(A$ or $B)$ is given by the following formula:
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Addition Rule - Mutually Exclusive Events Example

An automatic Shaw machine fills plastic bags with a mixture of beans, broccoli, and other vegetables. Most of the bags contain the correct weight, but because of the variation in the size of the beans and other vegetables, a package might be underweight or overweight. A check of 4,000 packages filled in the past month revealed:

Weight	Event	Number of Packages	Probability of Occurrence	
Underweight	A	100	.025	$\leftarrow \frac{100}{4,000}$
Satisfactory	B	3,600	.900	
Overweight	C	$\underline{300}$	$\frac{.075}{1.000}$	
		4,000		

What is the probability that a particular package will be either underweight or overweight?
$P(A$ or $C)=P(A)+P(C)=.025+.075=.10$

Addition Rule - Not Mutually Exclusive Events Example

What is the probability that a card chosen at random from a standard deck of cards will be either a king or a heart?

Card	Probability		Explanation
King	$P(A)$	$=4 / 52$	4 kings in a deck of 52 cards
Heart	$P(B)$	$=13 / 52$	13 hearts in a deck of 52 cards
King of Hearts	$P(A$ and $B)=1 / 52$	1 king of hearts in a deck of 52 cards	

$$
\begin{aligned}
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
& =4 / 52+13 / 52-1 / 52 \\
& =16 / 52, \text { or } .3077
\end{aligned}
$$

The Complement Rule

The complement rule is used to determine the probability of an event occurring by subtracting the probability of the event not occurring from 1.

$$
P(A)+P(\sim A)=1
$$

or $\quad P(A)=1-P(\sim A)$.

The Complement Rule - Example

An automatic Shaw machine fills plastic bags with a mixture of beans, broccoli, and other vegetables. Most of the bags contain the correct weight, but because of the variation in the size of the beans and other vegetables, a package might be underweight or overweight. Use the complement rule to show the probability of

Weight	Event	Number of Packages	Probability of Occurrence
Underweight	A	100	.025
Satisfactory	B	3,600	.900
Overweight	C	$\frac{300}{4,000}$	$\frac{.075}{1.000}$

$$
\begin{aligned}
P(B) & =1-P(\sim B) \\
& =1-P(A \text { or } C) \\
& =1-[P(A)+P(C)] \\
& =1-[.025+.075] \\
& =1-.10 \\
& =.90
\end{aligned}
$$

The General Rule of Addition

GENERAL RULE OF ADDITION
 The Venn Diagram shows the result of a survey

$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
[5-4] of 200 tourists who visited Florida during the year. The survey revealed that 120 went to Disney World, 100 went to Busch Gardens and 60 visited both.

What is the probability a selected person visited either Disney World or Busch Gardens?

$$
\begin{aligned}
P(\text { Disney or Busch }) & =P(\text { Disney })+P(\text { Busch })-P(\text { both Disney and Busch }) \\
& =120 / 200+100 / 200-60 / 200 \\
& =.60+.50-.80
\end{aligned}
$$

Joint Probability - Venn Diagram

JOINT PROBABILITY A probability that measures the likelihood two or more events will happen concurrently.

Special Rule of Multiplication

- The special rule of multiplication requires that two events A and B are independent.
- Two events A and B are independent if the occurrence of one has no effect on the probability of the occurrence of the other.
- This rule is written: $\quad P(A$ and $B)=P(A) P(B)$

Multiplication Rule-Example

A survey by the American Automobile association (AAA) revealed 60 percent of its members made airline reservations last year. Two members are selected at random. Since the number of AAA members is very large, we can assume that R1 and R2 are independent.

What is the probability both made airline reservations last year?

Solution:
The probability the first member made an airline reservation last year is .60, written as $P\left(R_{1}\right)=.60$
The probability that the second member selected made a reservation is also .60, so $P\left(R_{2}\right)=.60$.
Since the number of AAA members is very large, you may assume that R_{1} and R_{2} are independent.
$P\left(R_{1}\right.$ and $\left.R_{2}\right)=P\left(R_{1}\right) P\left(R_{2}\right)=(.60)(.60)=.36$

Conditional Probability

- A conditional probability is the probability of a particular event occurring, given that another event has occurred.
- The probability of the event A given that the event B has occurred is written $P(A \mid B)$.

General Multiplication Rule

The general rule of multiplication is used to find the joint probability that two independent events will occur.

It states that for two independent events, A and B, the joint probability that both events will happen is found by multiplying the probability that event A will happen by the conditional probability of event B occurring given that A has occurred.

General Multiplication Rule - Example

A golfer has 12 golf shirts in his closet.
Suppose 9 of these shirts are white and the others blue. He gets dressed in the dark, so he just grabs a shirt and puts it on. He plays golf two days in a row and does not do laundry.
What is the likelihood both shirts selected are white?

- The event that the first shirt selected is white is W_{1}. The probability is $P\left(W_{1}\right)$ = 9/12
- The event that the second shirt (W_{2})selected is also white. The conditional probability that the second shirt selected is white, given that the first shirt selected is also white, is $P\left(W_{2} \mid W_{1}\right)=8 / 11$.
- To determine the probability of 2 white shirts being selected we use formula: $P(A B)=P(A) P(B \mid A)$
- $P\left(W_{1}\right.$ and $\left.W_{2}\right)=P\left(W_{1}\right) P\left(W_{2} \mid W_{1}\right)=(9 / 12)(8 / 11)=0.55$

Contingency Tables

A CONTINGENCY TABLE is a table used to classify sample observations according to two or more identifiable characteristics
E.g. A survey of 150 adults classified each as to gender and the number of movies attended last month. Each respondent is classified according to two criteria-the number of movies attended and gender.

	Gender		
Movies Attended	Men	Women	Total
0	20	40	60
1	$\frac{10}{70}$	30	70
2 or more	$\frac{10}{-}$	$\underline{20}$	
Total	80	150	

Contingency Tables - Example

A sample of executives were surveyed about their loyalty to their company. One of the questions was, "If you were given an offer by another company equal to or slightly better than your present position, would you remain with the company or take the other position?" The responses of the 200 executives in the survey were cross-classified with their length of service with the company.

	Length of Service				
	Less than 1 Year,	$\mathbf{1 - 5}$ Years,	$\mathbf{6 - 1 0}$ Years,	More than $\mathbf{1 0}$ Leyalty	$\boldsymbol{B}_{\mathbf{1}}$

What is the probability of randomly selecting an executive who is loyal to the company (would remain) and who has more than 10 years of service?

Contingency Tables - Example

Event A_{1} happens if a randomly selected executive will remain with the company despite an equal or slightly better offer from another company. Since there are 120 executives out of the 200 in the survey who would remain with the company

$$
P\left(A_{1}\right)=120 / 200, \text { or } .60 .
$$

Event B_{4} happens if a randomly selected executive has more than 10 years of service with the company. Thus, $P\left(B_{4} \mid A_{1}\right)$ is the conditional probability that an executive with more than 10 years of service would remain with the company. Of the 120 executives who would remain 75 have more than 10 years of service, so $P\left(B_{4} \mid A_{1}\right)=75 / 120$.

$$
P\left(A_{1} \text { and } B_{4}\right)=P\left(A_{1}\right) P\left(B_{4} \mid A_{1}\right)=\left(\frac{120}{200}\right)\left(\frac{75}{120}\right)=\frac{9,000}{24,000}=.375
$$

Tree Diagrams

A tree diagram is useful for portraying conditional and joint probabilities. It is particularly useful for analyzing business decisions involving several stages.
A tree diagram is a graph that is helpful in organizing calculations that involve several stages. Each segment in the tree is one stage of the problem. The branches of a tree diagram are weighted by probabilities.

Bayes' Theorem

- Bayes' Theorem is a method for revising a probability given additional information.
- It is computed using the following formula:

BAYES' THEOREM

$$
\begin{equation*}
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)} \tag{5-7}
\end{equation*}
$$

Bayes Theorem - Example

Bayes Theorem - Example (cont.)

- There are three mutually exclusive and collectively exhaustive events, that is, three suppliers.
A_{1} The LS-24 was purchased from Hall Electronics.
A_{2} The LS-24 was purchased from Schuller Sales.
A_{3} The LS-24 was purchased from Crawford Components.
- The prior probabilities are:
$P\left(A_{1}\right)=.30$ The probability the LS-24 was manufactured by Hall Electronics.
$P\left(A_{2}\right)=.20$ The probability the LS-24 was manufactured by Schuller Sales.
$P\left(A_{3}\right)=.50$ The probability the LS-24 was manufactured by Crawford Components.
- The additional information can be either:
B_{1} The LS-24 appears defective, or
B_{2} The LS-24 appears not to be defective.

Bayes Theorem - Example (cont.)

- The following conditional probabilities are given.

$$
\begin{array}{ll}
P\left(B_{1} \mid A_{1}\right)=.03 & \begin{array}{l}
\text { The probability that an LS-24 chip produced by Hall } \\
\text { Electronics is defective. }
\end{array} \\
P\left(B_{1} \mid A_{2}\right)=.05 & \begin{array}{l}
\text { The probability that an LS-24 chip produced by Schuller } \\
\text { Sales is defective. }
\end{array} \\
P\left(B_{1} \mid A_{3}\right)=.04 & \begin{array}{l}
\text { The probability that an LS-24 chip produced by Crawford } \\
\text { Components is defective. }
\end{array}
\end{array}
$$

- A chip is selected from the bin. Because the chips are not identified by supplier, we are not certain which supplier manufactured the chip. We want to determine the probability that the defective chip was purchased from Schuller Sales. The probability is written $P\left(A_{2} \mid B_{1}\right)$.

Bayes Theorem - Example (cont.)

Event,	Prior Probability, $\boldsymbol{P}\left(\boldsymbol{A}_{\boldsymbol{i}}\right)$	Conditional Probability, $\boldsymbol{P}\left(\boldsymbol{B}_{\boldsymbol{i}} \mid \boldsymbol{A}_{\boldsymbol{i}}\right)$	Joint Probability, $\boldsymbol{P}\left(\boldsymbol{A}_{\boldsymbol{i}}\right.$ and $\left.\boldsymbol{B}_{\boldsymbol{i}}\right)$	Posterior Probability, $\boldsymbol{P}\left(\boldsymbol{A}_{\boldsymbol{i}} \mid \boldsymbol{B}_{\boldsymbol{1}}\right)$
Hall	.30	.03	.009	$.009 / .039=.2308$
Schuller	.20	.05	.010	$.010 / .039=.2564$
Crawford	.50	.04	.020	$.020 / .039=\underline{.5128}$
			$P\left(\boldsymbol{B}_{1}\right)=\overline{.039}$	1.0000

Bayes Theorem - Example (cont.)

The probability the defective LS-24 chip came from Schuller Sales can be formally found by using Bayes' theorem. We compute $P\left(A_{2} \mid B_{1}\right)$, where A_{2} refers to Schuller Sales and B_{1} to the fact that the selected LS-24 chip was defective.

$$
\begin{aligned}
P\left(A_{2} \mid B_{1}\right) & =\frac{P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)}{P\left(A_{1}\right) P\left(B_{1} \mid A_{1}\right)+P\left(A_{2}\right) P\left(B_{1} \mid A_{2}\right)+P\left(A_{3}\right)\left(B_{1} \mid A_{3}\right)} \\
& =\frac{(.20)(.05)}{(.30)(.03)+(.20)(.05)+(.50)(.04)}=\frac{.010}{.039}=.2564
\end{aligned}
$$

Counting Rules - Multiplication

The multiplication formula indicates that if there are m ways of doing one thing and n ways of doing another thing, there are $m \times n$ ways of doing both.
Example: Dr. Delong has 10 shirts and 8 ties. How many shirt and tie outfits does he have?
$(10)(8)=80$

Counting Rules - Multiplication: Example

An automobile dealer wants to advertise that for \$29,999 you can buy a convertible, a twodoor sedan, or a four-door model with your choice of either wire wheel covers or solid wheel covers. How many different arrangements of models and wheel covers can the dealer offer?

MULTIPLICATION FORMULA Total number of arrangements $=(m)(n)$

We can employ the multiplication formula as a check (where m is the number of models and n the wheel cover type). From formula (5-8):

$$
\text { Total possible arrangements }=(m)(n)=(3)(2)=6
$$

Counting Rules - Permutation

A permutation is any arrangement of r objects selected from n possible objects. The order of arrangement is important in permutations.

$$
\text { PERMUTATION FORMULA } \quad{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

where:
n is the total number of objects.
r is the number of objects selected.

Counting - Combination

A combination is the number of

 ways to choose robjects from a group of n objects without regard to order.
COMBINATION FORMULA

$$
\begin{equation*}
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!} \tag{5-10}
\end{equation*}
$$

where:
n is the total number of objects.
r is the number of objects selected.

Combination and Permutation Examples

COMBINATION EXAMPLE

There are 12 players on the Carolina Forest High School basketball team. Coach Thompson must pick five players among the twelve on the team to comprise the starting lineup. How many different groups are possible?

$$
{ }_{12} C_{5}=\frac{12!}{5!(12-5)!}=792
$$

PERMUTATION EXAMPLE
Suppose that in addition to selecting the group, he must also rank each of the players
in that starting lineup according to their ability.

$$
{ }_{12} P_{5}=\frac{12!}{(12-5)!}=95,040
$$

