
REGULATION OF BODY TEMPERATURE

OBJECTIVES

- Body temp measurement.
- Heat balance.
- Regulation of body temp.
 - o Exposure to hot
 - $\circ \quad \text{Exposure to cold} \\$
- 1. Normal body temp. ranges from 36.6-37.2°C (within ± 0.6°C) which maintain all biological activities and cellular survival.
- 2. The limit (absolute limit) of life is from 20-43°C body temp.

TYPES OF BODY TEMPERATURE		
CORE	SURFACE (SHELL)	
• Temp. of interior of body	Temp. of skin and underlying tissues	
• For deep body structures as:	• which varies markedly according to environmental temp	
1. Brain	Skin covering head, chest and abdomen have high temp.	34°C.
2. Heart	Skin covering large ms of leg and arm	30°C.
3. Lungs	Skin covering small ms of hands and feet	28°C.
4. Abd. Organs		

BODY TEMP. CAN BE MEASURED:				
ORALLY	Affected by			
	hot or cold fluids e gum chewing			
	mouth breathing orgarette smoking.			
PER RECTUM	(0.5°C higher than oral temp.).			
PER AXILLA	(0.5°C lower than oral temp.).			
MEATUS TEMP	MP by flexible probe inserted close to tympanic			
memb.				

r			7	°F °C	
THE BODY	TEMPERATURE CAN BE M	EASURED ON 3 SCALES:	C	114	Upper limit of survival?
	• Old <u>temperature</u> scale .	Tf = (9/5)* Tc+32	Temperature regulation	112 - 44	٦
FAHRENHEIT	• Tf = temperature in	- Take the temperature in	seriously impaired		Heatstroke, brain lesions
F	degrees <u>Fahrenheit</u>	Fahrenheit subtract 32.	impaired	106 -	2
		- Divide by 1.8.	Temperature (104 + 40	Fever and
		- The result is degrees	regulation effective in	102 - 100 - 38	exercise
		Celsius.	fever and health	98 -	Usual range
CELCIUS	 Today temperature 			96 - ³⁶	
°C	scale	Tc = (5/9)* (Tf-32)	ſ	94 - 34	
	• Tc = temperature in		Temperature	92 - 90 - 32	
	degrees Celsius		regulation - impaired	88	
KELVIN	• is a <u>unit increment</u> of			86 — 30	
К	temperature,	0 Kelvin = - 273°C		84 - 82 - 28	
	• written K and not °K.		Temperature	80	
		•	regulation	78 - 26	
			lost	70 -	

Lower limit of survival?

HEAT CONTENT OF THE BODY:

- Every person storing in his body an amount of heat equal to heat content.
- Heat content = body weight x specific heat of human tissue x body temp.

ecific heat of	stored heat \downarrow	\downarrow body temp	exposure to cold

heat content ↑

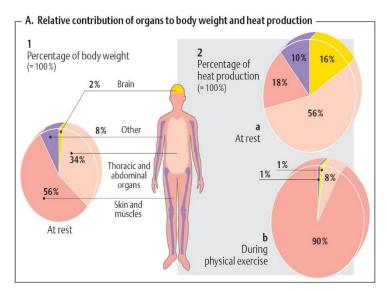
• The balance () heat production and heat loss (heat balance) determines body temp.

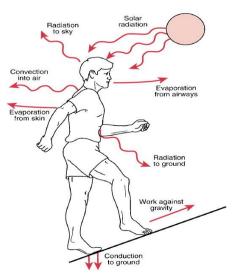
SOURCES OF HEAT PRODUCTION

1. Ms exercise.

3. All vital processes of BMR.

- 4. Hot weather (heat gain).
- 2. Food (physiological +SDA). 5. Extra metabolism caused by
 - , growth, symp and cell activity.
- HEAT LOSS

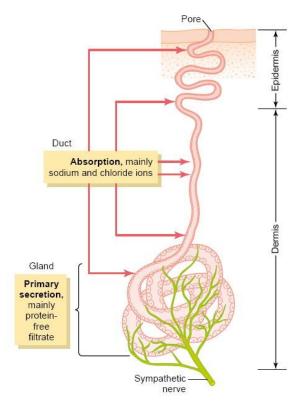

ms exercise

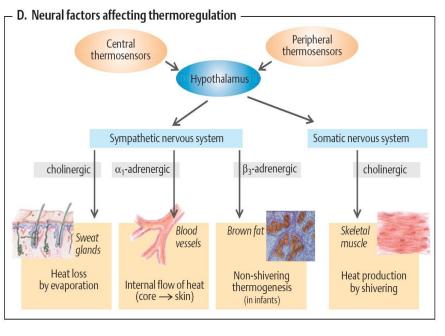

• Skin 85%.

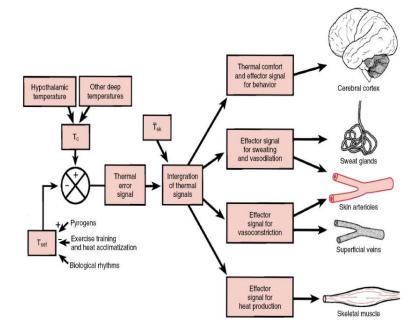
Routes:

 \uparrow body temp.

- Resp. tract 14%
- Body excreta 1%.



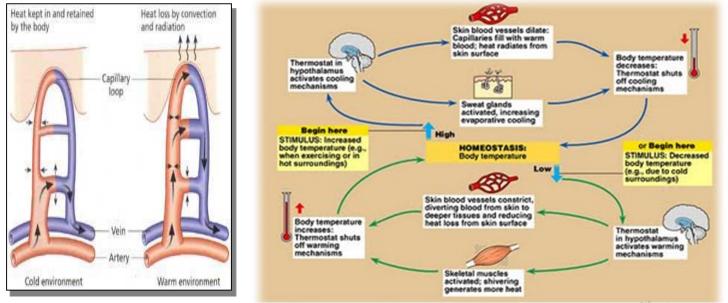



MECHANISMS HEAT LOSS		
CONDUCTION	• Heat lost from warm object to cooler one by contact such as air, clothes and water.	
(3%)	 This mechanism is minor except when person is immersed into water. 	
CONVECTION	1. Heat loss to object not in contact by way of air current	
(6-12%)	2. Air on skin becomes warmer, and lighter	
	3. Ascend and fresh air layer takes place	
	4. become warmer and ascend and so on.	
	 Also of minor importance except cold winds (forced convection). 	
IRRADIATION	- Heat loss from warm object to cooler one not in contact with the body by infra red	
(60%)	rays.	
	- Surface of body emits heat in the form of electromagnetic waves (infrared rays).	
	- All objects are radiating heat	
	- Sun is a powerful radiator	
EVAPORATION	• Latent heat of evaporation: amount of heart required for evaporation of 1 gm of	
(Vaporisation)	water from the surface of the body (it equals 0.6°C).	

SWEATING

SWEATING OCCURS IN THE FOLLOWING	HEAT LOSS IN SWEATING DEPENDS ON:
STATES:	1. Evaporation of sweat.
1. Exposure to hot weather	• It is effective in dry, cold weather with air currents.
 heat loss occurs only by sweating. 	2. In hot humid weather, sweating occurs excessively
2. During ms exercise	 sweat does not evaporate
\circ even in cold weather, due to \uparrow	no cooling effect
rate of heat production.	Discomfort in hot humid weather.
3. Fever.	3. There are about 2.5 millions sweat glands in the body.
RATE OF SWEATING:	MECHANISM OF SWEAT SECRETION
1. In cold weather \rightarrow zero.	1. ++ of ant. hypothalamic n. (preoptic area)
2. In very hot weather max rate rises from	2. transmitted via autonomic pathway to reticulospinal
0.7 L/h to 1.5 or 2 L/h.	tract
	3. symp. outflow to skin everywhere in body.
THE VASODILATATION ASSOCIATED WITH	REGULATION OF BODY TEMPERATURE
SWEATING IS CAUSED BY :	Human is Warm blooded (homeothermic animals).
1. Direct from heat on blood vessels.	 Its body temperature should be kept constant within
2. Reflex from heat receptors.	very narrow limit of variation.
3. Blood temp. \uparrow at hypothalamus \rightarrow	The thermoregulatory system includes two different
of VCC.	subsystems:
4. Bradykinin (vasodilator) as a result of	1. Behavioral thermoregulation.
sweat gland activity.	2. Physiologic thermoregulation.

THERMOREGULATORY SYSTEM		
BEHAVIORAL	PHYSIOLOGIC	
 Use of air conditions, and clothing to live in most extreme climates on earth. Importance: to↓ thermal discomfort. 	 Capable of fine adjustment of heat balance and body temp. Effective only within a relatively narrow range of environmental temp. Includes → receptors, afferents, center, efferents, and effectors. 	


I. THERMORECEPTORS

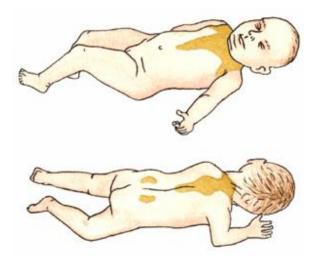
CENTRAL	PERIPHERAL
 heat sensitive neurons are located in preoptic area of hypothalamus (about one third as cold-sensitive neurons). 	 Cutaneous Rs warm or cold Rs. (Cold Rs are 10 times as warm). Information from peripheral Rs is transmitted via
• Information is transmitted to them via bl. from central structures about core temperature .	lateral spinothalamic tract to thalamus and hypoth.

II. THE TEMP REGULATING CENTER (HYPOTHALAMIC THERMOSTAT)

- 1. Hypothal. thermostat adjust body temp. at 36.6 37.2 °C w is called set point.
- 2. It detects any deviation of body temp. from set point by comparing sensory information received from thermoreceptors with set point.
- 3. Any deviation from the set point \rightarrow ++ appropriate effector organ.

ANTI-RISE CENTER (HEAT LOSS CENTER)	ANTI-DROP CENTER (HEAT GAIN CENTER)	
• It is located in ant. hypothalamic preoptic area.	It is located in post. hypothalamus.	
• ++ with \uparrow in core temp.	• ++ with \downarrow core temp.	
• cutaneous VD, sweating, and ms tone.	 cutaneous VC, ↑ ms tone and shivering. 	

III. EFFECTOR ORGANS


1. SKIN

 regulates body temp. through → blood vs and sweat gland.

 Receive symp. VC fibers Change amount of bl. flow to skin Regulation of skin temp. 	Supplied by symp. cholinergic fibers. Sweat evaporation reduces the body temp. (1ml of sweat loses 0.6 Cal from the body).

3. BROWN FAT THERMOGENESIS

- In human newborn → highly vascular tissues known as brown fat situated between scapulae and around intra-abd. vessels.
- Brown fat can give free FA directly generating heat however; its value in adults is very limited.
- Brown fat thermogenesis is induced by ↑ noradrenalin from symp. nerve terminals. It can ↑ MR to about 2.5 times the resting value.

2. SKELETAL MUSCLE(SHIVERING THERMOGENESIS

Def. Shivering is an involuntary contr. of sk ms.

Mechanism:

- 1. On exposure to cold
- 2. Cold signals from peripheral thermo Rs (skin and sp. cord)
- 3. ++ post hypothal.
 - (w is normally -- by signals from preoptic area)
- 4. ++ of this center
- 5. 个 ms tone
 - (by ↑ activity of AHCs through RST
- 6. Tone rises above certain level
- 7. Involuntary ms contraction
- 8. Shivering that can raise MR from 3 to 5 fold.

Thus, shivering \uparrow heat production rapidly, however, it can not maintain body temp. during exposure to cold weather for long time.

4. ENDOCRINE GLANDS (HORMONAL THERMOGENESIS)

- Thyroxin, noradrenalin/adrenalin, and steroid hs metabolism reaction

PHYSIOLOGICAL REGULATION OF BODY TEMP. I. THERMONEUTRAL ZONE (24-32C)

At the thermoneutral zone heat regulation occurs through the autonomic nervous system only by VD & VC of skin BV

ATMOSPHERIC TEMP 个 TO 32C	ATMOSPHERIC TEMP ↓ TO 24C	
body temp tends to ↑	body temp tends to \downarrow	
\rightarrow ++ heat loss center	\rightarrow ++ heat gain center	
\rightarrow VCC	\rightarrow ++VCC	
$ ightarrow$ VD of cutaneous BV and \uparrow skin blood flow	$ ightarrow$ VC of cutaneous BV and \downarrow skin blood flow	
\rightarrow \uparrow skin temp	$ ightarrow \downarrow$ skin temp	
$ ightarrow \uparrow$ temp gradient between skin and atmosphere	$ ightarrow \downarrow$ temp gradient between skin and atmosphere	
$ ightarrow \uparrow$ heat heat loss through the skin	$ ightarrow \psi$ heat loss through the skin	
\rightarrow \downarrow body temp to normal.	$ ightarrow \uparrow$ body temp to normal.	

II. ON EXPOSURE TO HOT WEATHER (PHYSICAL REGULATION)

↑ HEAT LOSS	↓ HEAT PRODUCTN
1. VD of cut. bl. Vs	1. By of heat producing
- thru sympa centers in post. hypoth. cause VC	mechanism
	ms tone
2. ↑ skin temp.	 shivering.
- 个 temp gradient btwn skin & atmosphere	
- \uparrow heat loss from deep structures to body surface by conduction-	2. Behavior response
convection & irradiation	(\downarrow feeding, light clothes &
$-\downarrow$ Body temp. to normal.	use of fans)
3. Sweating	
- result in a fluid loss (up to 1 L/h) and electrolytes imbalance	
- becomes less effective as humidity increases.	
- Sweat evaporation is affected by air currents, environmental temp. and humidity.	

III. ON EXPOSURE TO COLD WEATHER (CHEMICAL REGULATION)

个 HEAT PRODUCTN	↓ HEAT LOSS.
1. Ms tone and shivering	1. Cut. bl. vessels VC
	-↓ skin temp.
2. Secretion of thermogenic hormones	- \downarrow temp. gradient () skin & atmosphere
- ++ of post. hypothal.	- \downarrow heat loss.
- \uparrow thyroxin, adrenalin, and glucocorticoids	2. Curling up in a ball
- ↑ cellular metabolism & amt of heat production.	- \downarrow body surface area exposed to envirnmt.
	3. Horripilate
3. Brown fat Thermogenesis.	- erection of skin hair w is importance in animals
	- \downarrow heat loss.