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An integrity basis for plane elasticity tensors 

M. VIANELLO (MTLANO) 

AN ISOTROPIC functional basis of 5 polynomials is shown to be a lso an integrity basis for the space 
of plane elasticity tensors. A decomposition of each clement in this space into a direct sum of 
" harmonic" tensors is used to compute or estimate the distance between an arbitrary elasticity 
tensor and the three non-trivial symmetry classes, to allow for the determination of the material 
symmetry when the elasti c coefficients are known only to within a given approximation. 

1. Introduction 

LET lEla BE THE SPACE of two-dimensional elasticity tensors, which describe the 
constitutive equations for plane linarly elastic bodies, and let 0 (2) be the group of 
orthogonal transformations on the two-dimensional Euclidean space. A function 
tl.• defined on lEia is isotropic, or, equivalently, an 0 (2)-invariant, if 'lj;(C) = 
1 1(Q *C) for all C E lE la and Q E 0 (2), where, as we shall see more precisely 
later on, the asterisk denotes an action of 0(2) on lE ia. A finite collection B of 
such invariants is a functional basis if each other invariant is a function of the 
elements of B. If these elements are polynomials, and all isotropic polynomials 
are also expressible as polynomial functions of them, this coll ection is an integrity 
basis (or Hilhert hasis ) for the action of 0(2). A similar set of definitions covers 
the case in which the action of the group of proper rotations 50(2) is considered, 
and the corresponding invariants are said to be hemitropic. 

It is a classical result that every integrity basis is also a functional basis. The 
proof, which is far from trivial , is based on a lemma which shows that "polynomials 
separate the orbits". More expli citl y, this statement means that whenever two 
elements do not lie on the same orbit, there is at least one invari ant polynomial 
which takes difTerent values on them. For a modern proof of this important result 
we refer to the paper by WtNEMAN and PrPKlN [17, Sec. 6). On the other hand, it 
is not difficult to provide counterexamples showing that, in general, a functional 
basis is not an integrity basis. 

In Sec. 4 we construct a functional basis of 5 polynomials 1n for the isotropic 
invariants on lEla. Similar results were recently obtained by ZHENG [18] and by 
BLLNOWSKl , 0 STROWSKA-MA CfEJEWSKA and RYCHLEWSKI [3]. Indeed, the technique 
used in the present paper is very simil ar to the discussion contained there, and 
the basis found is essentially equivalent. However, in addition, here it is shown 
that the set { In} is also an integrity basis for the action of 0(2) on lE la, which is 
the main goal of this paper. 

For the sake of clarity and self-completeness we choose to ofTer a detailed 
presentati on of some mathematical preliminari es, even if this can be seen as an 
alternative derivation of simil ar results contained in [3]. 
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The key mathematical step is the decomposition of an elasticity tensor into 
a quadruplet formed by: two scalars ). and fl, a second-order tensor H and a 
fourth-order tensor ![(, both symmetric and traceless. A description of this tech-
nique, when applied for other goals to the three-dimensional case, is contained 
in some papers by BACK US (1 ), BA ER HElM (2), COWlN (6), FORTE and V!ANELLO (8) 
and, moreover, in a classical treatise by SCHOUTEN (15]. However, except for ref-
erence (3], we are not aware of any other presentation of a similar decomposition 
for plane elasticity. 

The insight coming from this approach is used to represent the action of 0 (2) 
on IEla through a pair of orthogonal transformations on the two-dimensional 
spaces to which H and ]!( belong. This point of view all ows for a natural construc-
tion of a functional basis, thus providing a confirmation, with a slightly different 
approach, of a simil ar conclusion reached in (3]. Moreover, the proof that the set 
{J, } is an in tegrity basis is strongly dependent on the isomorphism between the 
action of 0 (2) on IEla and the acti on of the same group on products of complex 
planes, which can be easil y deduced only in view of the previous considerations. 

Constitutive equations for two-dimensional linearly elastic bodies are divided 
into four symmetry classes by a relation stating that two elasticity tensors are 
equivalent when their symmetry groups are conjugate in 0 (2). Once a functional 
basis has been establi shed, it is not diffi cul t, through its geometric interpretation, 
to obtain a complete characterization of the symmetry classes as zero-sets of ap-
propri ate coll ections of invari ant polynomials. As noticed in (3], this is a useful 
resul t in itself, since it allows fo r an easy determination of the symmetry class of 
an elasti city tensor. Moreover, it shows clearly that the collection of tensors with 
non-minimal symmetry group is a set of measure zero. 

An interesting problem originates from the experimental errors contained in 
the numerical data describing elasticity tensors, as it was recently noted also by 
FRA <;OIS, 13ERTHAUD and GEYMONAT [5]. In view of the above considerations, 
the question of symmetry class has, with "probabili ty one", the same answer: 
The materi al has no special symmetry. What is really important is a comparison 
between the precision of our experimental apparatus and the distance between 
CC and the closest tensor of a given symmetry. If this distance is small er than 
a certain value, we may reasonably say that, within the approximation all owed, 
the materi al descri bed by CC does belong to that symmetry class. In view of our 
geometri c approach, we propose some fo rmulas, ready fo r applications, which 
all ow for a quick evaluation of the relevant distances. We believe some of the 
results to be new. 

2. Symmetry groups and symmetry classes 

We use small (resp., capital) boldface letters for vectors (resp., second-order 
tensors) of V, the translati on space of a two-dimensional Euclidean space [. 
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Scalars are denoted by Greek letters and fourth-order tensors are wri tten with a 
blackboard bold font, such as <C. A superscript T is used for the transpose and the 
space of symmetri c tensors is call ed Sym. We use subscripts for the components 
of vectors or tensors with respect to a fi xed orthonormal basis e i (i = 1 2). Thus, 
for instance, v = viei and T = 1';.i e i @ ej, where the sum over repeated indexes is 
understood and the symbol 0 stands for the tensor product. The subspace of Sym 
formed by all traceless tensors (such that A ii = 0) is Dev, whil e the space of all 
fourth-order tensors IHI which are symmetric and traceless is IDev. More precisely, 
IHI E IDev if I f i.ikt is unchanged by any permutation of the indexes and, moreover, 
H;,kt = 0. The group of orthogonal transformations of V is 0(2), where the unit 
element is denoted by I , and the subgroup of rotations, formed by all Q E 0 (2) 
with determinant equal to one, is 80(2). We write Q(O) fo r the rotation such 
that 

(2.1) 

- -and we denote by Q the reflection with respect to the e1 direction: Qe1 = e1, 

Qe2 = - e2. Obviously, 0(2) is generated by .5'0(2) and Q. 
For an extensive introduction to linear elasticity we refer to classical conven-

tions (see, e.g., GuRTIN (10]). Here, we simply recall that an eLasticity tensor <C 
is a symmetric linear map of Sym, which gives the stress tensor T as a function 
of the infin itesimal strain E: T = <C[E]. Thus, the components of <C satisfy the 
fo llowing index symmetries: 

ci.1"' = cl'"' = e;j,k = C\.,,j . 
The .\ynzmetJy group g(<C) is the coll ection of all orthogonal transformati ons 

Q such that 
\f E E Sym. 

It is convenient to define an action of 0(2) on !E ia, the 6-dimensional space of 
(plane) elasticity tensors. For each Q E 0(2) and each <C E !E l a, let Q * <C be 
defined by 

(Q * <C)1J<1rs := CJp,CJqjQ,.kQs/C';jk/ · 

Thus, the symmetry group is 

g(<C) := {Q E 0 (2) IQ* <C = <C} . 

A straightfOiward consequence of this definit ion is that g(Q *<C) = Qg(<C)QT. 
Moreover, by continuity, g(<C) is cLosed. Hence, as a consequence of classical 
resul ts (see, e.g., the book by GoLuBrTSKY, STEW ART and SCHAEFFER (9, Ch. XIII , 
Th. 6.1 ]) , we know that g(<C) is conjugate to exactly one of the elements in the 
follow ing coll ection: 

5; := { I, Z,, D 11 , .5'0(2), 0(2)} (n ｾ＠ 2), 
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where Zn and Dn denote, respectively, the cyclic and dihedraL groups of order n 
(for an extensive coverage of this topic see also MrL LER'S book [11 ]). 

The space lEla is divided into symmel! y classes by a relation defining C1 and 
C2 as equivalent when g(C1) is conjugate to g(C2) in 0 (2). Let lE la( G) be the 
coll ection of all elasticity tensors such that their symmetry groups are conjugate 
to 0 E E. Then, C1 and C2 have conjugate symmetry groups if and only if they 
belong to the same lE la(C'), and the problem of finding the number and type of 
symmetry classes is equivalent to the problem of determining which lEla(G) are 
empty and which are not. The answer is known (see, e.g., RYCHLEWSKI [14, Sec. 8]), 
even if some contradictory statements can still be found in the lit erature (cf., e.g., 
ZHENG [1 9, Sec. 3.3), where the Author seems to suggest otherwise). However, 
the discussion of Sec. 3 has the fo ll owing statement as a direct consequence: There 
are exactly four non-empty sets lE la(G). for G = Z2, D2, D4, 0(2). 

We use the foll owing terminology to classify the symmetries, depending on 
which element ｯｦｾ＠ the group g(C) is conjugate to: anisotropic fo r Z2, otthotropic 
for 0 2, tetragonal fo r 0 4 and isotropic for 0(2). Notice that only lE la(0(2)) is a 
lin ear subspace of lE la. 

As mentioned before, it is almost impossible that an elasti city tensor obtained 
from experimental data might have any special symmetry at all. As we recall in 
Sec. 5, the set of tensors with symmetry D2, D4 or 0(2) has the structure of an 
algebraic manifold of measure zero, formed by the null-set of a fini te number of 
polynomials. Thus, anisotropic elasti city tensors are dense in lE la. From this point 
of view, the question of interest becomes a different one: We would like to know 
how close a given C is to classes of non-minimal symmetry. 

The fi nal section contains a computation of the distance between C and 
lEia(C), fo r G = 0 2, 0 4 or 0 (2), which is defin ed to be the infi mum of the 
distance between C and C*, as the latter varies over lE la(G) (an obvious Eu-
cli dean norm and a corresponding distance are defin ed in the space of elasticity 
tensors). 

3. A decomposition for the space of elasticity tensors 

A fin ite-dimensional vector space is decomposed into a direct sum of subspaces 
which are irreducible under the action of a compact group (see, e.g .. [9] or [11 ]). 
In our particular context it is possible to show that the decomposition of lE la is 
described by an 5'0 (2)-invariant isomorphism which maps C in to a quadruplet 
(A , f1, H, OC), where A and 1-l are scalars, while H and !I( belong to Dev and IO>ev, 
respectively. More expli citl y, fo r a given C E lE la: 

A = (3Cppqq - 2Cpqpq)j 8, p = (2Cpqpq-Cppqq)/8, 
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h ·i.ik' = C;k,- [8;jCkptp + 8ktCipjp + 8;kCipjp + btj Cipkp + b;tCjpkp + bjkCiplp]/ 6 

+ [C pqpq(Sb;j bkt- o;kbtj - 8il8jk)] / 12 - [Cppqq(35;jbkt- 5;kbtj- 8i,5jk)] / 8, 

( b;.J is Kronecker's delt a). Vice versa, the elasticity tensor C corresponding to 
(.-\ , ft, H, OC) is: 

ｃＧ［Ｎｾｫｬ＠ = 1\;j '" + b;j Hk, + H ;j bk, + 5;kHlj + H ;kblj + 8;,H jk + H ;,5jk 

+ .A8;j5k, + f-l (b;kblj + 8;,5jk)· 

The vali dity of this decompositi on can be di rectly checked through substitu-
tions fo ll owed by lengthy computations. Moreover, it is not difficult to see that 
this is a variation, and an indirect confirmation, of a quite similar result presented 
by B LINOWSK.I et al. [3]. However, it is perhaps useful to spend a few words on a 
short description of the rationale behind our derivation, for which we foll owed 
the scheme adopted by B AERHEIM [2] in three dimensions. The fir st step con-
sists in writin g C;.ikl as the sum of a completely symmetric part S'ijkt and an 
"asymmetric" part ａ ［ｪｾＺ Ｈ＠

sijkl := ccijkl + ciklj + ciljk )/ 3, 

This corresponds to a decompositi on of IE la into a direct sum of two orthogonal 
subspaces. Since the dimension of lE la is 6 and the space of completely symmetric 
fourth-order tensors has dimension 5, it fo ll ows that A ikl is a scalar multiple of 
a fi xed asymmetri c tensor, say: 

Next, we use the fact that fo r each S'iikl there is a unique pair of tensors A E Sym 
and ![{ E IDev such that 

S'i.ikl = 1\ijkl + 5(i.i Akl)' 

where the parenthesis denotes full symmetrization with respect to the enclosed 
set of indexes or, more precisely, 

This property is a reformulati on of a well-kn own result on polynomials, which 
naturall y correspond to symmetric tensors, as discussed in [9, Ch. XIII , Sec. 7, 
Prop. 7.1]. 

Finally, we use the decompositi on of each element of Sym into the sum of a 
"spherical" part (i.e., a multiple of I) and an element H of Dev, so that we may 
wri te 
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Trivial substitutions foll owed by an appropriate change of names yield the de-
compositi on, which, with obvious meaning, is written as 

(3.1) 

An action of 0(2) on Dev is defined by 

Q * A := QAQT, 't/ Q E 0 (2), 't/ A E Dev. 

It is a matter of simple computations to check that 

Q *C = (A , ft , Q * H, Q *OC), 'V Q E 0(2), 

and, consequently, g(C) = g(H) n g(OC), where g(H) is defin ed in the natural 
way. It is now clear why the action of 0(2) on Dev and Dev is of great interest, 
and the importance of the geometric description of this action which is obtained 
in the final part of this section. 

It is convenient to defin e an appropriate orthonormal basis in each of these 
spaces. For Dev we use: 

/2 
E, := 2 (e, 0 e, - e2 C·.J e2), 

The basis fo r Dev is more complex: 

vs 
lE,:= 8 (e, 1e, o e1 ｾＭＧ ･Ｌ＠ +e2r., e20 e20 e2-et 0 CJ 0 e20 e2- e1® e2® e10 e2 

- e2 0 e, LV Ct (·) e2 - e2 ('J CJ Q'l e2 0 e1 - e1 0 e2 C3J e2 Ｈｾ＠ e1 - e2 0 e2 0 e, 0 e1 ), 

vs 
IE2 := 8 (e1 v1 e1 ﾷｊ ･ Ｌ ﾷＭＩ ･ Ｒ Ｋ･ ｬ ｾ ﾷ ｊ ･ Ｌ ｜Ｉ ･ Ｒ ＨＺＧＩ ･ Ｑ＠ +e,c e2®e1 0 eJ +c20 e, (c) e10 e, 

- e2 e2 · ·, e2 : J e1 - e2 \') e2 < J CJ 0 e2 - e2 0 e, C.:l e2 0 e2 - e, 0 e2 0 e2 0 e2). 

In view of (2.1), through direct substitution it is not diffi cult to show that 

Q(O) * E1 = cos(20)E1 + sin(20)E2 . Q(O) * E2 = - sin (20)E1 + cos(28)E2, 

while more lengthy computations are needed to prove that 

Q(O) * IE1 = cos(40)1E1 + sin(40)1E2. Q(O) * IE2 = - sin(48)1E1 + cos(40)lE2 . 

Tn conclusion, each Q(O) acts on Dev as a rotation of 20 and on Dev as a 
rotation of 40, while Q is simply a reflection with respect to the "horizontal" 
axes spanned by E1 and lE 1• The geometri c insight provided by this poin t of view 
makes easy a proof of the fact that there are only symmetry classes corresponding 
to groups l 2, /J2, /J4, and 0(2). 
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4. An integrit y basis 

The Euclidean structure of Dev and ][J)ev is obtained by introducing the inner 
products A· B = / l i.J B ;J and JHl . !I( = H ij kl [{ ijkl · We use the symbol 1·1 to denote 
the norm in both spaces. For a given C = (,\, p., H, IK), let a be the angle between 
H and ｅｾＬ＠ and let d be the angle between !I( and IE 1. Furthermore, we need the 
fo ll owing defi nitions: 

(4.1) 
u, := IHI COSC\' = H · El ' 

/\·, := lOCI cos/3 = !I( · IE1 , 

H2 := IHI sin a = H · E2 , 

X2 := IOCi sin /3 = OC ·IE2 . 

The geometric view of the action of 0 (2) on Dev and ][J)ev makes the choice 
of jour independent polynomial invariants quite obvious: 

h := fl, 

Thus, we only need to find a fif th invariant, and, to this end, we consider the 
angle 1 : = 2o - f-J. Since the action of Q(O) maps a onto a + 20 and j3 onto 
,1 + 40, it ｦｾ ｬ ｯｷｳ＠ that 1 is left fixed. However, it is also straightforward to see 
that, under Q, 1 is mapped onto -1 . Thus, the conclusion is that this angle is an 
:·>0(2)-invariant, but not an 0(2)-invariant. A natural choice fo r the fif th isotropic 
invari ant I is the cosine of 1 : 

I := cos/ = cos(2o-(:J ). 

This function is not a polynomial and thus we expand it as 

I = (cos2 n - sin2 o) cos {1 + 2 sin a cos a sin f] 

and use definitions ( 4.1) to obtain the fi ft h polynomial isotropic invari ant: 

The steps followed for the construction of the coll ection { 1,1 } show that a 
necessary and sufficient condition for C1 and <C2 to be on the same orbit is that 
f, (C 1) = f 11 (C2) (1 :S n :S 5). I t is a well -known resul t that this condition is 
necessary and suffi cient for {i n} to be a functional basis (see, e.g., WEYL [16], 
WINEMAN and PrPKJN [17, Sec.4, p.i90]). 

As an additional remark, we notice that if the .5'0(2)-invari ant polynomial 

is added to the previous list, we obtain a functional basis for S0(2)-invariant 
functions on !E l a. However, in this case, there is a relation (or .syzygy) among the 
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elements of the collection Um} (1 ｾ＠ m ｾ＠ 6): Iff + fg = l lh This is obviously 
due to the trigonometric identity between sin 1 and cos I · 

Our aim is now to prove that the collection of invariants {!71 } is indeed an 
integrity basis, and not only a functional basis. 

T EOREM 1. For each 0(2)-invariant real-valued polynomial p on lE la, there is a 
polynomial 1r in 5 l'ariables such that 

p(<C) = rr (I1(<C), h(<C), h(C), I 4(C), Is(<C)), VC E IE la. 

A convenient technique of proof is based on the idea of looking at the action 
of 0(2) on Dev and [l) ev as an action on the complex plane C, and then to apply 
straightforward considerations from the complex number theory. This method 
was applied by PIERCE [12] to a simil ar problem. 

More ·precisely, the product between Dev and [l) ev is seen as C2. Then, the 
action of a ro tation Q(O) E 5'0 (2) on this space is defined through the unit 
complex number exp(iO) as 

Q * (ZJ,Z2) := (exp(i20)zJ,exp(i40).::2), '1/ (..:1 Z2) E C2. 

Moreover, the action of Q (reflection with respect to the "horizontal" axes) cor-
responds to complex conjugation: Q * (.:1, .:-2) := (z1, 22). According to this point 
of view, we rewrite three of the invariants as 

(4.2) 

In view of the decompositi on of !El a described in Sec. 3, we now choose to 
look at polynomial functions of elasticity tensors as being defined on R 2 x C2. 

Mo reover, we notice that each polynomial in the real variables :r and y can be 
written as a polynomial in the complex vari ables z and z, where z = x + iy . For 
this reason, we have · 

(4.3) l')(<C ) _ ｾ＠ C \ 1
1
lm _,. ;:s _t :;11 

- L /m,·stuA r ｾ ｾ＠ Ｍ Ｑ Ｍ Ｒ ｾ Ｒ＠ ' 

where the index range depends on the degree of p. However, since we are only 
interested in real-valued polynomials, the restriction c,m,·stu = Cims,·ut must be 
sati sfi ed. Moreover, invariance under the action of Q is guaranteed by Cimrstu = 
｣ Ｑ ｯｷｵｾ＾＠ which combined with the previous conditi on, implies tha t all the coeffi-
cients are real. 

The action of Q(O) E 5'0(2) yields 

p(Q *<C) = L Cimrstt,A
1
ftm zj' zf ｺｾ ｺ Ｒ＠ exp[i (2T- 2s + 4t - 4u)] 

and, from p(<C ) = p(Q *C), we deduce that invariance under the action '0(2) 
is guaranteed when the non-zero coefficients in (4.3) satisfy a relation which 
simplifi es to 

T- s = 2(u- t ). 
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Thus, by inspection, we deduce that there are three types of non-zero terms in 
the sum defining p: (a) Those for which 7' = s and u = t; (b) Those for which 
T := 'lt - l and T - s = 2T are positive integers; (c) Those for which T := t - u 
and s - 1· = 2T are positive integers. 

Case (a) is simple, because we rewrite each such addendum as 

C. \ /1-,m ( - .:: ) " ( - .:: )u - C \ lf-tm l ,. 12''1z 12u lm?TtLtl /\ • ｾ Ｑ＠ -" I ｾ Ｒ Ｍ Ｒ＠ - lmn uuA - 1 2 ' (no sum), 

and, in view of (4.2), this is a monomia l in the invariants hand 14. The symmetries 
of the coefficients Ctm,·stu imply that the sum of the terms corresponding to cases 
(b) and (c) can be written as 

T' < S, t < U 

which is 
2 ｾ＠ C d 11m <n[zr :;s ,.t .::u] 
ｾ＠ lm1·stu /\ r :l l 1 " 1 -2"'2 ' r < s, L < u . 

Since 1· = s + 2 T and u = t + T, we conclude that this sum is 

r < s, t < u. 

Finally , in view of the binomial formula, the real part of zT is always a polynomial 
in the variables .r := 1)(.:: and y2 := ('sz )2 = lzl2 - :r2. Thus, we deduce that 
Ｑ Ｉｾ ｛Ｈ ＮＺＺ ｦ ｺ Ｒ ＩＧ｝＠ is a polynomial in h, 14 and 15, and this concludes the proof that 
the collection { f11 } is an integri ty basis. As a final remark, we wish to draw the 
reader's attention to the fact that, with a simil ar technique, it is possible to prove 
that this coll ection, plus the sixth invariant 16, is also an integri ty basis for the 
acti on of the gro up 80(2) on !E la. 

5. Symmetry classes and invariants 

A complete characterization of each one of the three non-trivial symmetry 
classes mentioned in Theorem 1 as the intersection of the zero-sets of isotropic 
polynomials is directly deducible from the geometric interpretation of the invari-
ants in troduced. This was also shown in [3], but, for the reader's convenience, 
we repeat here a formulation of this result, which can be easil y proved using the 
concepts previously introduced. 

PROPOSITION 1. 

1ff - lti4 = 0, 

iff- i ff /4 -:f 0. 
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We are now left with the problem of determining the distance between an 
elasticity tensor obtained through experimental obseiVations of a given material 
of unknown symmetry and the symmet1y classes !Ela(0 (2)), !Ela(D4) and !E la(D2) . 

As we shall see, only the distance with the fir st two classes can be computed 
explicitly, while for the third one the problem is left in a more general setting. 

Before completing this discussion, it is important to make clear a further 
point. In principle, we are not so much interested in the distance between a 
given <C, which here we shall assume to be anisotropic, and the other three sym-
metry classes, but, rather, in the distance between them and the orbit of <C. The 
reason is clear when we think that two different elasticity tensors <C1 and <C2 

lying on the same orbit (i.e., such that there is an orthogonal Q with the prop-
erty that <C 1 = Q * <C2) represent the same material differently rotated in space. 
Thus, properly speaking, physical meaning pertains to the orbits, rather than 
to the elasticity tensors themselves. This obseiVation, which is also discussed by 
BoEHLER, Kl RtLLOY and 0 NAT [4), shows the importance of having at our dis-
posal a functional basis of isotropic invariants, to separate the orbits and decide 
when two elasticity tensors correspond to the same material body. Incidentall y, 
we note that a functional basis for three-dimensional elasticity is not yet known, 
even if a partial answer is provided in [4), and a complete solution was recently 
announced by ZHENG and BETIEN [20, Abstract] and is expected to be publi shed 
in a forthcoming paper by the same Authors. 

However, we now prove that all the elasticity tensors on the same orbit have 
equal distance from any given symmetry class. D irect substitution shows that the 
action of 0 (2) on !E l a is distance-preseiVing: d(<C 1, <C2) = d(Q * <C1, Q * <C2), for 
all Q E 0 (2). In other words, this action is a homomorphism of 0(2) into the 
group of orthogonal transformations of !E ia. For convenience of notation, we let 
S be any one of the four symmetry classes of elasticity tensors. Then Q * S = S 
for all orthogonal Q. Thus, 

d(Q * C S):= inf d(Q * <C, <Cx) = inf d(Q * <C, Q * ＼ｃｾ Ｉ＠
C' ES C' ES 

= inf cl(<C ,<C'' ) = : cl(<C ,S) . 
iC" ES 

The interested reader will fin d a more complete discussion of many aspects of 
the geometty of the orbits of elasticity tensors under the action of the orthogonal 
group in a paper by R YCHLEWSKJ (13). 

Our goal is now to compute explicitly the square of the distance between a 
given Lensor <C = (,\, p . H, !K), which is assumed to be aelotropic, and each one 
of the three remaining symmetry classes. We write this quantity as fo llows: 

ｾＨ ＼ｃＮ＠ Q) := lcl(<C, !Ela(Q)) I2-

Let ｾｾ＠ = 0 (2). Then, fo r a generic isotropic <Cx we may write the decomposi-
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tion (3.1) as ｃｾ＠ = Ｈａ ｾ Ｌ＠ ft*. 0, 0). Thus, 

ldCC. ｣ｾ Ｉ ｬ Ｒ＠ = (A - A"' )2 + (fl - rt"' )2 + IHI2 + IIKI2-

Tt is now obvious that minimization as c· varies over lEla(0(2)) requires C"' = 
(A . f'· 0. 0) and, consequently, 

ｾＨ ｃＬ＠ 0 (2)) = IHI2 + IIKI2 = h + 14 . 

A geometri c interpretation of this result is straightforward: C* is simply the 
orthogonal projection of C onto the subspace of isotropic tensors, and ｾＨ ｃ Ｌ＠ 0 (2)) 
is the square of the distance between the two. The problem of determining the 
isotropic elasticity tensor which is the closest to a given C is classical and, for 
three-dimensional elasticity, this solution is discussed in many textbooks (see, e.g., 
F EDOROV [7, Ch. 5, Sec. 26, pp. 174--175). 

We now address the issue of determining ｾＨ ｃ Ｌ＠ D4). The decomposition of a 
generic tetragonal elasticity tensor is: C"' = Ｈａｾ Ｌ＠ fl * , 0, IK"' ). Thus, 

and minimization implies that C"' = (A f.t , 0, IK). In conclusion, 

The computation of ｾ ＨｃＮ＠ D2) is more complex. In view of Propositi on 1, the 
symmetry class !Ela(D2) can be seen as the union of two disjoin t subsets S1 and 
S2, fo rmed, respectively, by elasti city tensors such that 14 = 0 and such that 
/ 4 -:f 0 with ll = ! } !4. Minimi zation of the distance between a given C and S1 
yield the inequality 

Cl(C. D2) ｾ＠ !4 . 

which, in any case, is a useful estimate of Cl(C , D2). To complete our analysis we 
need a better description of the set <;2, which is characteri zed by the conditi on 
cos 1 = ± 1. Let 1/ ' and q> be the angles that the two tensor components in the 
decompositi on (3.1) of a generic element of S2 form, respectively, with E1 and 
IE 1. Then, 11' = 9/2 + br / 2, for some integer k . The element of S2 minimizing 
the di tance from C = (A , p . H. IK) is obviously C"' = (A, p , H"', IK"'), where H"' 
and oc· are chosen in such a way that the sum IH- H*l2 + IlK -IK"' I2 is an absolute 
minimum. We may now use elementa1y geometry considerations to show that 

Let ｃｬ ｾ＠ be the minimum of this distance as <P vari es over [0. 27r). In view of the 
definiti ons (4.1 ) we deduce that 

Cl " = min {IIKI2sin2(4; -/3) + IHI2sin2(4;/2 - a)}. 
</>E l0.2rr ) 
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Moreover, since this quantity is invariant under the action of 0 (2) on C we may 
also assume that a = 0 and, as a consequence, 1 = -/3. Thus, in conclusion, 

!::.* = min {14sin2(</> + 1) + hsin2(</>/2)}, 
.PE[0,2rr ) 

and 
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