MANAGEMENT OF NATURAL HAZARDS IN MOUNTAIN BASINS

Hillslope processes and landslides

Dr. Francesco Comiti Academic year 2014/2015

Credits to: P.R. Bierman, D.R. Montgomery (2014) «Key concept in Geomorphology» Dr. F. Guzzetti (CNR-IRPI Perugia) for landslide statistics Prof. G. Bischetti (University of Milano) for role of vegetation

Landslide: a world-scale overview

 32,322 fatalities caused by 2620 landslides in the 7-yr period 2004-2010

Petley (2012)

Landslide in Italy with victims

Between 1964 and 2013:

- 3043 casualties
- 151,551 homeless & evacuees

http://polaris.irpi.cnr.it

Hillslopes: types and formation

Hillslope shape, soil cover, and the surface processes that transport mass downslope generally vary with climate. In arid regions with little rainfall, bare rock is common, talus slopes are mantled with rockfall from cliffs above, and the removal of mass from slopes is limited by the rate at which the rock weathers (**weathering limited slopes**). In more humid climates, the rate at which mass is removed from slopes is limited by sediment transport capacity (**transport limited slopes**), soil covers rock, and the soil cover may thicken downslope.

Hillslopes: diffusive vs advective processes

The transition between **diffusive** and **advective** processes on hillslopes determines the location of the channel head (X_c). Channel head locations vary in a complex fashion with climate, relief, vegetation cover, soil/rock erodibility, and near-surface hydrology. Drainage density is inversely related to X_c. Channel heads close to the drainage divide generate high-drainage densities and are common in areas with high rainfall, weak soils, and no vegetation (e.g., badlands). Large X_c values, where channel heads are located far from drainage divides, favor development of long, rolling hills.

Hillslopes: types

Hillslope geometry can be characterized by profile and planform shape. Patterns of mass flux down slopes are dependent on hillslope geometries. For example, on convex **noses**, flow diverges. Conversely, in concave **hollows**, flow converges. Most landscapes are composed of different slope geometries. The lower panel shows how areas of profile curvature (colors) generally correspond with areas of planform curvature (as indicated by purple topographic contours); hollows are typically concave and convergent, whereas noses are typically convex and divergent.

Hillslopes: types and dynamics

Humid regions

Slope replacement

Process description

Hillslopes in humid regions tend to be **soil-mantled** and erode by slope-dependent diffusive **processes**, resulting in progressive rounding and lowering of hillslope profiles. Over time, this results in the decay of hillslope profiles as gradients gradually decline.

Hillslopes in arid regions tend to form bedrock slopes that erode by progressive back-wearing. Processes such as rock fall preserve the initial shape and gradient of hillslopes, thereby promoting parallel slope retreat.

Slope replacement occurs in very steep terrain where surface processes cannot remove debris that accumulates below a cliff. In this case, a talus slope builds up as the base of the cliff. The cliff is "replaced" by a more gently sloping pile of broken rock (scree).

Montgomery

Hillslopes: diffusive transport processes

Soil creep describes the suite of processes that move soil and regolith downslope at a velocity proportionate to the to slope angle. Processes contributing to soil creep include tree-throw, animal burrowing, and deformation of fine-grained soil.

Heave contributes to soil creep. Heaving soil rises up perpendicular to the slope through the wetting and expansion of clays or the freezing of interstitial water. When the soil thaws or dries and shrinks, the material drops vertically under the influence of gravity, causing net downslope movement of soil.

Hillslopes: types and dynamics

Shear strength of rocks and soils

• Mohr-Coulomb failure criterion

 $SS = C + \sigma tan\Phi$

Coulomb criteria describe material strength as a combination of frictional and cohesive strength. Due to their granular nature, sands typically have higher **friction angles** ($30-40^{\circ}$) than do clays ($10-20^{\circ}$), although clays often exhibit significant **cohesion**. Lacking cohesion, dry sand cannot hold slopes higher than its **angle of repose**, equal to Φ . In contrast, cohesive clay can hold a short vertical face, even though it is less able to resist shear at higher normal stress.

Strength of rock, soil and roots

Material	Friction angle (degrees)	Cohesion (kPa*)	
Soil			
Sandy soil	30-40	0	
Soft organic clay	22-27	5-20	
Stiff glacial clay	30-32	70-150	
Rock			
Intact sandstone (lab)	35-45	>10,000	
Intact shale (lab)	25-35	>1,000	
Sandstone (field)	17-21	120-150	
Shale (field)	15-25	40-100	

*1 Pa = 1 kg/ms^2 ; 1 kPa = 1000 Pa

lab = laboratory data on small samples

field = data collected from field measurements

Typical values of	apparent	cohesion	associated with	
vegetation				

Vegetation	Apparent cohesion (kPa*)
Grass	0-1
Stumps	0-2
Chaparral	0–3
Hardwoods	2-13
Conifers	3-20

Factors favouring mass movements

- Weak parental substrate (lithology)
- Highly fractured and deformed rocks (tectonics)
- Rock weathering
- Orientation of strata
- Topography (slope)
- Precipitation regime
- Vegetation removal

Triggering causes for mass movements

• Earthquakes

Triggering causes for mass movements

Landslides that trigger debris flows are a geomorphic process that occurs when a **threshold** is exceeded. In this case, rainfall is the trigger, saturating the ground and causing slopes to fail. Both rainfall intensity and duration, not just cumulative rainfall, are important in determining slope stability. The combinations of rainfall intensities and durations that trigger slope failure vary regionally, reflecting differences in slope strength, topography, and near-surface hydrology. Threshold: the <u>minimum</u> rainfall intensity, cumulated rainfall, rainfall duration for possible landslide <u>occurrence</u>

Type of mass movements on hillslopes

Earthflows

of

Translational slides

Translational slides: the infinite-slope model

The **infinite-slope model** is often used to analyze the stability of slopes to shallow, planar landslides. The model is a balance between the **shear strength** of the slope materials and the **shear stress** provided by gravity, due to the downslope-oriented component of the mass of the soil. It considers the **pore pressure** effect on the stress balance as well as the effect of slope.

Translational slides: the infinite-slope model

failed slope

Rotational slides

A slide in which the surface of rupture is curved concavely upward and the slide movement is roughly rotational

Rotational landslides generate characteristic landforms that are indicative of the underlying physical processes. Near the **head** of the slide there are often multiple back-rotated blocks, each bordered by **scarps** and each having a back-tilted top. At the **toe** of the slide, material may pile up, increasing ground elevation.

Rotational slides

Diagram by Jim Rodgers

The **method of slices** is a useful way to analyze the stability of a **rotational landslide**. The method approximates the **force balance** of slides with circular failure surfaces by approximating the failure surface as a series of chords and solving the force balance for each of these subsections. Summing the results determines the overall stability of the slide mass.

Rockfalls

Falls are abrupt movements of masses of rocks that become detached from steep slopes or cliffs

Separation occurs along discontinuities such as fractures, joints, and bedding planes, and movement occurs by free-fall, bouncing, and rolling.

Toppling failures are distinguished by the forward rotation of a unit or units about some pivotal point, below or low in the unit, under the actions of gravity and forces exerted by adjacent units or by fluids in cracks

Large landslides of the past

«Fadalto» post-glacial landslide (created the Santa Croce Lake and deviated the Piave River)

«Piz peak» landslide in 1771 (created the Alleghe Lake and aggraded the Cordevole River)

Recent large (and complex) landslides

Human-triggered landslides

Vajont (Friuli, 1963)

- Slide mass 270 Million m³
- Triggered by hydropower reservoir filling
- >1900 casualties

Laces (Bolzano, 2010)

- Slide mass 400 m³
- Triggered by irrigation system leakage
- 9 casualties

Surcharge

weight of vegetation on a slope exerts both a downslope (destabilizing) stress and a stress component perpendicular to the slope which tends to increase resistance to sliding (+/-).

Soil binding

binding of soil particles (+)

Root reinforcement

roots mechanical reinforce a soil by transfer of shear stress in the soil to tensile resistance in the roots (+)

Buttressing and arching

anchored and embedded stems can act as buttress piles or arch abutments in a slope, counteracting shear stresses. (+)

Windthrowing

destabilizing influence from turning moments exerted on a slope as a result of strong winds blowing downslope through trees (-)

Root wedging

The tendency of roots to invade cracks, fissures, and channels in a soil or rock mass and thereby cause local instability by wedging (-/+).

Additional cohesion depends on:

- Root spatial density
- Root diameter(s)
- Local environmental conditions

Reference	<i>C</i> , [kPa]	Species and landscape				
Shear tests in situ						
Endo & Tsuruta (1969)	2.0÷12.0	Alder in nursery (Japan)				
Ziemer (1981)	3.0÷21.0	Pinus contorta California (USA)				
O'Loughlin & Ziemer (1982)	6.6	beech in New Zealand				
Shear tests in laboratory						
Waldron (1977)	1÷1.7	Yellow pine				
Waldron et al. (1983)	3.7÷6.4	Yellow pine (54 months)				
Back analysis						
Swanston (1970)	3.4÷4.4	spruce in Alaska (USA)				
O'Loughlin (1974)	1.0÷3.0	coniferous in British Columbia (Canada)				
Buchanan & Savigny (1990)	2.6÷3.0	Red alder, spruce, douglas fir and cedar Washington (USA)				
O'Loughlin & Ziemer (1982)	3.3	Mixed forest in New Zealand				
Gray & Meghan (1981)	10.3	coniferous in Idaho (USA)				
Bischetti et al (2002)	4.5÷6.5	Mixed ash and hazel trees in Valcuvia (Italy)				

Shallow soil with bedrock substrate impenetrable for roots

(very) weak reinforcement

Bedrock hosts part of the root system

important reinforcement

Increase in factory of safety more relevant where soils are poorly cohesive

