

Chapter 4 Macro Processor

Chapter 4: Macro Processor

A Macro represents a commonly used group of statements in the source programming

language.

 A macro instruction (macro) is a notational convenience for the programmer

o It allows the programmer to write shorthand version of a program (module

programming)

 The macro processor replaces each macro instruction with the corresponding

group of source language statements (expanding)

o Normally, it performs no analysis of the text it handles.

o It does not concern the meaning of the involved statements during macro

expansion.

 The design of a macro processor generally is machine independent!

 Two new assembler directives are used in macro definition

o MACRO: identify the beginning of a macro definition

o MEND: identify the end of a macro definition

 Prototype for the macro

o Each parameter begins with „&‟
 name MACRO parameters

:

body

:

MEND

o Body: the statements that will be generated as the expansion of the macro.

4.1 Basic Macro Processor Functions:

 Macro Definition and Expansion

 Macro Processor Algorithms and Data structures

4.1.1 Macro Definition and Expansion:

The figure shows the MACRO expansion. The left block shows the MACRO

definition and the right block shows the expanded macro replacing the MACRO call with

its block of executable instruction.

M1 is a macro with two parameters D1 and D2. The MACRO stores the contents

of register A in D1 and the contents of register B in D2. Later M1 is invoked with the

parameters DATA1 and DATA2, Second time with DATA4 and DATA3. Every call of

MACRO is expended with the executable statements.

 1

Chapter 4 Macro Processor

Fig 4.1

The statement M1 DATA1, DATA2 is a macro invocation statements that gives the

name of the macro instruction being invoked and the arguments (M1 and M2) to be used

in expanding. A macro invocation is referred as a Macro Call or Invocation.

Macro Expansion:

The program with macros is supplied to the macro processor. Each macro

invocation statement will be expanded into the statement s that form the body of the

macro, with the arguments from the macro invocation substituted for the parameters in

the macro prototype. During the expansion, the macro definition statements are deleted

since they are no longer needed.

The arguments and the parameters are associated with one another according to

their positions. The first argument in the macro matches with the first parameter in the

macro prototype and so on.

After macro processing the expanded file can become the input for the Assembler.

The Macro Invocation statement is considered as comments and the statement generated

from expansion is treated exactly as though they had been written directly by the

programmer.

The difference between Macros and Subroutines is that the statement s from the

body of the Macro is expanded the number of times the macro invocation is encountered,

whereas the statement of the subroutine appears only once no matter how many times the

subroutine is called. Macro instructions will be written so that the body of the macro

contains no labels.

 Problem of the label in the body of macro:
o If the same macro is expanded multiple times at different places in the

program …

o There will be duplicate labels, which will be treated as errors by the

assembler.

 Solutions:

 2

Chapter 4 Macro Processor

o Do not use labels in the body of macro.
o Explicitly use PC-relative addressing instead.

 Ex, in RDBUFF and WRBUFF macros,
o JEQ *+11

o JLT *-14

 It is inconvenient and error-prone.

The following program shows the concept of Macro Invocation and Macro

Expansion.

 3

Chapter 4 Macro Processor

Fig 4.2

4.1.2 Macro Processor Algorithm and Data Structure:

Design can be done as two-pass or a one-pass macro. In case of two-pass

assembler.

Two-pass macro processor

 You may design a two-pass macro processor

o Pass 1:
 Process all macro definitions

o Pass 2:

 Expand all macro invocation statements

 However, one-pass may be enough

o Because all macros would have to be defined during the first pass before

any macro invocations were expanded.

 The definition of a macro must appear before any statements that

invoke that macro.

 Moreover, the body of one macro can contain definitions of the other macro

 Consider the example of a Macro defining another Macro.

 In the example below, the body of the first Macro (MACROS) contains statement
that define RDBUFF, WRBUFF and other macro instructions for SIC machine.

 The body of the second Macro (MACROX) defines the se same macros for
SIC/XE machine.

 A proper invocation would make the same program to perform macro invocation

to run on either SIC or SIC/XEmachine.

 4

Chapter 4 Macro Processor

MACROS for SIC machine

Fig 4.3(a)

MACROX for SIC/XE Machine

Fig 4.3(b)

 A program that is to be run on SIC system could invoke MACROS whereas a

program to be run on SIC/XE can invoke MACROX.

 However, defining MACROS or MACROX does not define RDBUFF and

WRBUFF.

 These definitions are processed only when an invocation of MACROS or

MACROX is expanded.

 5

Chapter 4 Macro Processor

One-Pass Macro Processor:

 A one-pass macro processor that alternate between macro definition and macro

expansion in a recursive way is able to handle recursive macro definition.

 Restriction

o The definition of a macro must appear in the source program before any

statements that invoke that macro.

o This restriction does not create any real inconvenience.

The design considered is for one-pass assembler. The data structures required are:

 DEFTAB (Definition Table)

o Stores the macro definition including macro prototype and macro body

o Comment lines are omitted.

o References to the macro instruction parameters are converted to a

positional notation for efficiency in substituting arguments.

 NAMTAB (Name Table)

o Stores macro names

o Serves as an index to DEFTAB

 Pointers to the beginning and the end of the macro definition

(DEFTAB)

 ARGTAB (Argument Table)

o Stores the arguments according to their positions in the argument list.

o As the macro is expanded the arguments from the Argument table are

substituted for the corresponding parameters in the macro body.

o The figure below shows the different data structures described and their

relationship.

Fig 4.4

 6

Chapter 4 Macro Processor

The above figure shows the portion of the contents of the table during the processing of
the program in page no. 3. In fig 4.4(a) definition of RDBUFF is stored in DEFTAB, with

an entry in NAMTAB having the pointers to the beginning and the end of the definition.

The arguments referred by the instructions are denoted by the their positional notations.

For example,

TD =X‟?1‟

The above instruction is to test the availability of the device whose number is given by

the parameter &INDEV. In the instruction this is replaced by its positional value? 1.

Figure 4.4(b) shows the ARTAB as it would appear during expansion of the RDBUFF

statement as given below:

CLOOP RDBUFF F1, BUFFER, LENGTH

For the invocation of the macro RDBUFF, the first parameter is F1 (input device code),

second is BUFFER (indicating the address where the characters read are stored), and the

third is LENGTH (which indicates total length of the record to be read). When the ?n

notation is encountered in a line fro DEFTAB, a simple indexing operation supplies the

proper argument from ARGTAB.

The algorithm of the Macro processor is given below. This has the procedure DEFINE to

make the entry of macro name in the NAMTAB, Macro Prototype in DEFTAB.

EXPAND is called to set up the argument values in ARGTAB and expand a Macro

Invocation statement. Procedure GETLINE is called to get the next line to be processed

either from the DEFTAB or from the file itself.

When a macro definition is encountered it is entered in the DEFTAB. The normal

approach is to continue entering till MEND is encountered. If there is a program having a

Macro defined within another Macro. While defining in the DEFTAB the very first

MEND is taken as the end of the Macro definition. This does not complete the definition

as there is another outer Macro which completes the difintion of Macro as a whole.

Therefore the DEFINE procedure keeps a counter variable LEVEL. Every time a Macro

directive is encountered this counter is incremented by 1. The moment the innermost

Macro ends indicated by the directive MEND it starts decreasing the value of the counter

variable by one. The last MEND should make the counter value set to zero. So when

LEVEL becomes zero, the MEND corresponds to the original MACRO directive.

Most macro processors allow thr definitions of the commonly used instructions to

appear in a standard system library, rather than in the source program. This makes the use

of macros convenient; definitions are retrieved from the library as they are needed during

macro processing.

 7

Chapter 4 Macro Processor

Fig 4.5

 8

Chapter 4 Macro Processor

Algorithms

 9

Chapter 4 Macro Processor

Fig 4.6

4.1.3 Comparison of Macro Processor Design

 One-pass algorithm

o Every macro must be defined before it is called

o One-pass processor can alternate between macro definition and macro

expansion

o Nested macro definitions are allowed but nested calls are not allowed.

 Two-pass algorithm

o Pass1: Recognize macro definitions

o Pass2: Recognize macro calls

o Nested macro definitions are not allowed

 10

Chapter 4 Macro Processor

4.1 Machine-independent Macro-Processor Features.

The design of macro processor doesn‟t depend on the architecture of the machine.

We will be studying some extended feature for this macro processor. These features are:

 Concatenation of Macro Parameters

 Generation of unique labels

 Conditional Macro Expansion

 Keyword Macro Parameters

4.2.1 Concatenation of unique labels:

Most macro processor allows parameters to be concatenated with other character

strings. Suppose that a program contains a series of variables named by the symbols

XA1, XA2, XA3,…, another series of variables named XB1, XB2, XB3,…, etc. If similar

processing is to be performed on each series of labels, the programmer might put this as a

macro instruction. The parameter to such a macro instruction could specify the series of

variables to be operated on (A, B, etc.). The macro processor would use this parameter to

construct the symbols required in the macro expansion (XA1, Xb1, etc.).

Suppose that the parameter to such a macro instruction is named &ID. The body

of the macro definition might contain a statement like

LDA X&ID1

Fig 4.7

& is the starting character of the macro instruction; but the end of the parameter is not

marked. So in the case of &ID1, the macro processor could deduce the meaning that was

intended. If the macro definition contains contain &ID and &ID1 as parameters, the

situation would be unavoidably ambiguous.

Most of the macro processors deal with this problem by providing a special

concatenation operator. In the SIC macro language, this operator is the character . Thus

the statement LDA X&ID1 can be written as

LDA X&ID

 11

Chapter 4 Macro Processor

Fig 4.8

The above figure shows a macro definition that uses the concatenation operator as

previously described. The statement SUM A and SUM BETA shows the invocation

statements and the corresponding macro expansion.

4.2.2 Generation of Unique Labels

As discussed it is not possible to use labels for the instructions in the macro

definition, since every expansion of macro would include the label repeatedly which is

not allowed by the assembler. This in turn forces us to use relative addressing in the jump

instructions. Instead we can use the technique of generating unique labels for every

macro invocation and expansion. During macro expansion each $ will be replaced with

$XX, where xx is a two-character alphanumeric counter of the number of macro

instructions expansion.

For example,

XX = AA, AB, AC…

This allows 1296 macro expansions in a single program.

 12

Chapter 4 Macro Processor

The following program shows the macro definition with labels to the instruction.

The following figure shows the macro invocation and expansion first time.

If the macro is invoked second time the labels may be expanded as $ABLOOP

$ABEXIT.

 13

Chapter 4 Macro Processor

4.2.3 Conditional Macro Expansion

There are applications of macro processors that are not related to assemblers or

assembler programming.

Conditional assembly depends on parameters provides

MACRO &COND

……..

IF (&COND NE „‟)
part I

ELSE

part II

ENDIF

………

ENDM

Part I is expanded if condition part is true, otherwise part II is expanded. Compare

operators: NE, EQ, LE, GT.

Macro-Time Variables:

Macro-time variables (often called as SET Symbol) can be used to store working

values during the macro expansion. Any symbol that begins with symbol & and not a

macro instruction parameter is considered as macro-time variable. All such variables are

initialized to zero.

Fig 4.9(a)

 14

Chapter 4 Macro Processor

Figure 4.5(a) gives the definition of the macro RDBUFF with the parameters &INDEV,
&BUFADR, &RECLTH, &EOR, &MAXLTH. According to the above program if

&EOR has any value, then &EORCK is set to 1 by using the directive SET, otherwise it
retains its default value 0.

Fig 4.9(b) Use of Macro-Time Variable with EOF being NOT NULL

Fig 4.9(c) Use of Macro-Time conditional statement with EOF being NULL

 15

Chapter 4 Macro Processor

Fig 4.9(d) Use of Time-variable with EOF NOT NULL and MAXLENGTH being NULL

The above programs show the expansion of Macro invocation statements with different
values for the time variables. In figure 4.9(b) the &EOF value is NULL. When the macro

invocation is done, IF statement is executed, if it is true EORCK is set to 1, otherwise

normal execution of the other part of the program is continued.

The macro processor must maintain a symbol table that contains the value of all macro-

time variables used. Entries in this table are modified when SET statements are

processed. The table is used to look up the current value of the macro-time variable

whenever it is required.

When an IF statement is encountered during the expansion of a macro, the specified

Boolean expression is evaluated.

If the value of this expression TRUE,

 The macro processor continues to process lines from the DEFTAB until it
encounters the ELSE or ENDIF statement.

 If an ELSE is found, macro processor skips lines in DEFTAB until the next
ENDIF.

 Once it reaches ENDIF, it resumes expanding the macro in the usual way.
If the value of the expression is FALSE,

 The macro processor skips ahead in DEFTAB until it encounters next ELSE or

ENDIF statement.

 The macro processor then resumes normal macro expansion.
The macro-time IF-ELSE-ENDIF structure provides a mechanism for either

generating(once) or skipping selected statements in the macro body. There is another

 16

Chapter 4 Macro Processor

construct WHILE statement which specifies that the following line until the next ENDW

statement, are to be generated repeatedly as long as a particular condition is true. The

testing of this condition, and the looping are done during the macro is under expansion.

The example shown below shows the usage of Macro-Time Looping statement.

WHILE-ENDW structure

 When an WHILE statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated.

 TRUE

o The macro processor continues to process lines from DEFTAB until it
encounters the next ENDW statement.

o When ENDW is encountered, the macro processor returns to the preceding

WHILE, re-evaluates the Boolean expression, and takes action based

on the new value.

 FALSE

o The macro processor skips ahead in DEFTAB until it finds the next
ENDW statement and then resumes normal macro expansion.

 17

Chapter 4 Macro Processor

4.2.4 Keyword Macro Parameters

All the macro instruction definitions used positional parameters. Parameters and

arguments are matched according to their positions in the macro prototype and the macro

invocation statement. The programmer needs to be careful while specifying the

arguments. If an argument is to be omitted the macro invocation statement must contain a

null argument mentioned with two commas.

Positional parameters are suitable for the macro invocation. But if the macro

invocation has large number of parameters, and if only few of the values need to be used

in a typical invocation, a different type of parameter specification is required (for

example, in many cases most of the parameters may have default values, and the

invocation may mention only the changes from the default values).

Ex: XXX MACRO &P1, &P2, …., &P20, ….

XXX A1, A2,,,,,,,,,,…,,A20,…..
Null arguments

Keyword parameters

 Each argument value is written with a keyword that names the corresponding

parameter.

 Arguments may appear in any order.

 Null arguments no longer need to be used.

 Ex: XXX P1=A1, P2=A2, P20=A20.

 It is easier to read and much less error-prone than the positional method.

 18

Chapter 4 Macro Processor

 19

Chapter 4 Macro Processor

Fig 4.10 Example showing the usage of Keyword Parameter

4.3 Macro Processor Design Options

4.3.1 Recursive Macro Expansion

We have seen an example of the definition of one macro instruction by another. But we

have not dealt with the invocation of one macro by another. The following example

shows the invocation of one macro by another macro.

 20

Chapter 4 Macro Processor

Problem of Recursive Expansion

 Previous macro processor design cannot handle such kind of recursive macro

invocation and expansion

o The procedure EXPAND would be called recursively, thus the invocation

arguments in the ARGTAB will be overwritten. (P.201)

o The Boolean variable EXPANDING would be set to FALSE when the

“inner” macro expansion is finished, i.e., the macro process would forget

that it had been in the middle of expanding an “outer” macro.

 Solutions

o Write the macro processor in a programming language that allows

recursive calls, thus local variables will be retained.

o If you are writing in a language without recursion support, use a stack to

take care of pushing and popping local variables and return addresses.

 21

Chapter 4 Macro Processor

The procedure EXPAND would be called when the macro was recognized. The

arguments from the macro invocation would be entered into ARGTAB as follows:

The Boolean variable EXPANDING would be set to TRUE, and expansion of the macro

invocation statement would begin. The processing would proceed normally until

statement invoking RDCHAR is processed. This time, ARGTAB would look like

At the expansion, when the end of RDCHAR is recognized, EXPANDING would be set
to FALSE. Thus the macro processor would „forget‟ that it had been in the middle of

expanding a macro when it encountered the RDCHAR statement. In addition, the

arguments from the original macro invocation (RDBUFF) would be lost because the

value in ARGTAB was overwritten with the arguments from the invocation of

RDCHAR.

4.3.2 General-Purpose Macro Processors

 Macro processors that do not dependent on any particular programming language,

but can be used with a variety of different languages

 Pros
o Programmers do not need to learn many macro languages.

o Although its development costs are somewhat greater than those for a

language specific macro processor, this expense does not need to be

repeated for each language, thus save substantial overall cost.

 Cons
o Large number of details must be dealt with in a real programming

language

 Situations in which normal macro parameter substitution should

not occur, e.g., comments.

 Facilities for grouping together terms, expressions, or statements

 Tokens, e.g., identifiers, constants, operators, keywords

 Syntax had better be consistent with the source programming

language

 22

Parameter Value

1 BUFFER

2 LENGTH

3 F1

4 (unused)

- -

Parameter Value

1 F1

2 (Unused)

-- --

Chapter 4 Macro Processor

4.3.3 Macro Processing within Language Translators

 The macro processors we discussed are called “Preprocessors”.
o Process macro definitions

o Expand macro invocations

o Produce an expanded version of the source program, which is then used as

input to an assembler or compiler

 You may also combine the macro processing functions with the language

translator:
o Line-by-line macro processor

o Integrated macro processor

4.3.4 Line-by-Line Macro Processor

 Used as a sort of input routine for the assembler or compiler
o Read source program

o Process macro definitions and expand macro invocations

o Pass output lines to the assembler or compiler

 Benefits

o Avoid making an extra pass over the source program.
o Data structures required by the macro processor and the language translator

can be combined (e.g., OPTAB and NAMTAB)

o Utility subroutines can be used by both macro processor and the language

translator.

 Scanning input lines

 Searching tables

 Data format conversion

o It is easier to give diagnostic messages related to the source statements

4.3.5 Integrated Macro Processor

 An integrated macro processor can potentially make use of any information about

the source program that is extracted by the language translator.

o Ex (blanks are not significant in FORTRAN)

 DO 100 I = 1,20

 a DO statement
 DO 100 I = 1

 An assignment statement

 DO100I: variable (blanks are not significant in FORTRAN)

 An integrated macro processor can support macro instructions that depend upon
the context in which they occur.

 23

