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Abstract

The highly poisonous ragwort (Jacobaea Vulgaris) is in-
creasingly spreading, posing significant risks to agriculture,
livestock, and nature conservation due to the production
of toxic pyrrolizidine alkaloids (PAs). The current manual
control methods, such as plucking weed, are labor-intensive
and time-consuming. This paper introduces a workflow to-
wards automated regulation of J. Vulgaris, which consists
of the two independent tasks of deep learning-based mon-
itoring and controlling. We aim to detect and control J.
Vulgaris in an early growth stage before the plant can re-
seed, which challenges the data collection and the training
of deep neural networks. Primarily we need to detect the
green leaf rosettes on a green meadow. The main focus lies
on the monitoring part with synthetic training data genera-
tion and a deep neural network-based labeling assistant.

1. Introduction

Since the middle of the last decade, an increased spread

of ragwort (Jacobaea Vulgaris Gaertn., syn. Senecio ja-
cobaea L.) has been observed in Germany [10, 22]. The

plant spreads mainly in nature protected areas and exten-

sively used grassland. Therefore, meadows which are used

for animal feed production are affected. This is espe-

cially problematic because ragwort produces the poisonous

pyrrolizidine alkaloid (PA), which is toxic to mammals.

Canned feed, such as hay or silage, may contain the toxin,

leading to potential poisoning incidents in livestock. Due to

the potential danger of poisoning, ragwort mass occurrences

endanger the usability and acceptance of species-rich, ex-
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Figure 1: Proposed concept overview of J. Vulgaris regula-

tion

tensively used grassland stands that are valuable for nature

conservation. In order to use the infested areas after all,

regular control and eradication of ragwort is necessary. Cur-

rently, this has been a manual and time-consuming process.

Manual control is usually performed shortly before mow-

ing. At that point, the plants have already formed yellow

flowers and are easily recognizable. A significant disadvan-

tage of this approach is that the plants can reseed if not all

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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(a) (b)

Figure 2: J. Vulgaris rosette in first year growth stage (a)

and in the second year growth stage with erect stems with

inflorescences (b).

plants are removed before the seeds are ripe. Individual J.
Vulgaris plants have the capacity to produce up to 50000
seeds, and in certain cases, even more [13]. New J. Vul-
garis plants can thus sprout from the soil seed bank even af-

ter several years. Therefore, the approach proposed in this

paper, depicted in Fig. 1, takes advantage of the fact that

J. Vulgaris are monocarpic biennial plants. In the first year

of their two-year growth cycle, they form a basal rosette of

leaves, and only in the second year they grow an erect stem

with inflorescences, as shown in Fig. 2. After it has flow-

ered, the plant dies. Detection and control of J. Vulgaris in

the first year of the growth phase prevents the plant from re-

seeding. New challenges arise, as the plant can no longer be

identified solely by the easily recognizable yellow flowers

but should be determined based on the formed leaf rosette.

While there are already many efforts and publications in the

field of weed identification, they mainly focus on detect-

ing weeds in arable crops with easy soil backgrounds. In

grassland cultivation, however, the green leaf rosettes on a

green meadow should be detected. Furthermore, the diver-

sity of species in these meadows and the resulting frequency

of plants that look similar to J. Vulgaris (e.g., Ajuga Rep-
tans) is challenging.

2. Related Work

Unmanned ground vehicles (UGVs) in agriculture are a

widely researched topic. However, most studies focus on

usage in arable farming, especially in the field of weed de-

tection and control. In classical arable farming, methods

for weed detection that rely on the spectral properties of

plants are particularly promising [21, 28, 25]. The imple-

mentation of these methods for managing grasslands has

been constrained due to the diversity of vegetation. The

authors in [11, 36, 38] have shown promising results based

on deep neural networks and using RGB images. However,

approaches based on Deep Neural Networks (DNNs) usu-

ally require a large amount of data. This is still a limit-

ing factor for employing DNNs in many areas for which no

data is available. Without having public datasets, the data

needs to be generated. This process includes data recording

and annotation. Especially the annotation part is very time-

consuming and cumbersome. Recent research shows that

using neural networks can support the annotation process or

even automate it completely [27]. Schilling et al. [35] pre-

sented a tool that enables assisted annotation in image pro-

cessing tasks, simplifying the process, increasing efficiency,

improving annotation quality, and offering additional func-

tionalities to support users. Another approach for reducing

annotation efforts is proposed by Rettneberger et al. [31].

They use a thresholding technique to get simple masks on

which a neural network is trained. However, the methods

presented are mainly focused on medical images and can-

not be easily transferred to grassland images. Another way

to get annotated data is to generate the data synthetically. In

this case, the annotations can be generated directly. In ad-

dition, synthetic data has the advantage of eliminating the

time-consuming process of collecting real data. The use of

synthetic training data in training neural networks is rapidly

growing. Vietz et al. [37] have shown that artificially gen-

erated data can fill up potential gaps in datasets. Also, in

the field of weed identification, the use of model-based syn-

thetic data has been evaluated by Iqbal et al. [19]. More-

over, the generation of synthetic data finds applications be-

yond 2D image processing. For example, Chaudhury et
al. [4] have shown that the segmentation of point clouds

of real plants can also be trained with the help of gener-

ated 3D models. However, the application of generative AI

models to create synthetic grassland datasets is novel and

unexplored. The rise of generative AI models has opened

up new possibilities for synthetic data generation and aug-

mentation. For instance, Antoniou et al. [1] established that

the inclusion of a DAGAN in the workflow can enhance the

performance of classifiers, even after the application of con-

ventional data augmentation methods. Furthermore, He et
al. [15] found that state-of-the-art text-to-image diffusion

models are well fit to provide training data for recognition

tasks, especially in zero-shot or few-shot scenarios. Fine-

tuning of large pre-trained diffusion models for synthetic

image dataset creation has mainly been applied to medical

and microbiological datasets[3, 26].

3. Proposed Workflow
Our proposed approach is divided into the two tasks of

monitoring and controlling, as illustrated in Fig. 1. Both

tasks are performed in independent steps. For example,

monitoring could be carried out with a drone or camera sys-

tem attached to a tractor. The same applies to the control of

the plants, where various approaches are conceivable, rang-

ing from a tractor with attached tools to a UGV that inde-
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Figure 3: Different samples from the acquired dataset. The top row represents relatively easy samples where the J. Vulgaris
plants are easier recognizable. More complex examples are shown on the bottom row, with smaller plants, interference

objects, shadows, or even tractor tracks.

pendently drives the field based on the previously collected

data. In the following, we will explain the two stages in

more detail, as well as the individual approaches.

3.1. Monitoring

Sensoric Setup During monitoring and controlling, we

need to know the exact position of the plants. For this pur-

pose, we use at least one camera mounted on a carrier plat-

form. The carrier platform can be a tractor, a drone, or a

UGV. In the first place, this camera is a typical industrial

RGB camera. The setup for creating the first dataset will be

described in more detail in section 4.1.

Data Collection and Annotation Extensively annotated

datasets are essential to train efficient DNNs that recognize

the plants in the meadow. So the first step in the monitoring

process is to collect the data. Therefore, we use our pro-

posed sensor setup to capture images of the meadow. Addi-

tionally, we propose to use synthetic data to extend the real

dataset. In the annotation process, synthetic data have the

advantage of allowing direct annotation generation. Real

data, on the other hand, are annotated using a labeling tool.

Since this process is time-consuming and only some plants

are easily recognizable, we aim to support this process with

a weak classifier. In the first place, we only annotate the J.
Vulgaris plants with bounding boxes.

Detection and Localization After collecting and anno-

tating the data, we employ DNNs to detect and localize J.
Vulgaris plants based on object detection and image seg-

mentation techniques. Both approaches can be trained to

detect whole plants or single leaves in an image. We uti-

lize a combination of real and synthetic data to train the

networks. Subsequently, the detected plant locations in the

images are combined with position data from the carrier

platform to determine the plants’ locations in the meadow

precisely. Upon successful detection and localization, we

obtain a map of the meadow with the exact positions of the

J. Vulgaris plants. The map serves as a valuable resource for

understanding the distribution and abundance of J. Vulgaris
within the meadow, aiding in the formulation of effective

control and management strategies.

3.2. Controlling

Besides the perception part, different controlling strate-

gies for the detected plants should be developed and evalu-

ated. Currently, the regulation of J. Vulgaris is usually per-

formed manually. Other approaches have been investigated,

such as regulation by varied cutting and restoration mea-

sures [40]. However, the disadvantage of these approaches

is that they are either very time-consuming or cannot tar-

get individual plants. Our approach generates a map during

the monitoring phase to give the farmer a suitable tool for

controlling the plants. Based on this map, the farmer can

decide on a controlling strategy. This could still be manual

control if the number of plants is low or a targeted control

with an automated approach if the number of plants is high.

With the assumption that we detect many plants, we aim at

a targeted control of individual plants. Here the main focus

will be on methods such as mechanical control [24], hot air

[7], laser weeding [39], or treatment by applying high volt-

age [6]. Aside from the success rate, the processing speed

plays a crucial role in determining the appropriate control

methods. The choice of control approach is influenced by

the speed at which grassland processing occurs, typically

up to 12 kmh−1. However, this limitation can be addressed
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by employing UGVs as their speed can be adjusted accord-

ingly.

4. Methods and Implementation
In the previous section, we outlined our roadmap for con-

trolling J. Vulgaris in our research project. This includes

key components such as data generation and annotation,

crucial for effective J. Vulgaris control. In this section, we

will focus on detailing the implementation of these tech-

niques. It is important to note that the rest of the proposed

workflow, including other components such as segmenta-

tion and control strategies, will be shown in our forthcom-

ing research project publications.

4.1. Dataset

As a first approach, a dataset was recorded on two mead-

ows in Zehnhausen near Rennerod in Rhineland-Palatinate,

Germany. A Basler ace 2 camera with a global shutter and

an image resolution of 1920 × 1200 px was used for the

recordings. The camera was equipped with a Basler lens

with a focal length of 4 mm. During the recording, dif-

ferent recording strategies were tested. First, the camera

was attached to the pitchfork of a tractor. Then the trac-

tor was driven over the meadow at three typical processing

speeds (3, 5, and 12 km/h). Not the whole meadow was

covered, but only a part of it. For the second approach, the

camera was attached to a portable frame. With the help of

the frame, specific pictures were taken in which J. Vulgaris
is visible. Additionally, several close-ups of single plants

were recorded using a 12 MP camera. Next, we annotated

the images using the labeling tool CVAT1. As labels, we use

bounding boxes in the YOLO format [30] to train object de-

tection algorithms. However, a pixel-wise annotation for

segmentation is also conceivable. Each bounding box in-

cludes the whole plant with all attached leaves. The assign-

ment choice for the J. Vulgaris class relied solely on the

visual characteristics depicted in the images without con-

sidering any real-world plant phenotype. An excerpt from

the dataset is shown in Fig. 3. Here, one can see the het-

erogeneity of the dataset, for example, the different lighting

conditions or the number of J. Vulgaris plants per image.

4.2. Annotation using Weak Classifier

The primary goal of the weak classifier is to train a neu-

ral network with a small amount of data, which will support

and simplify the labeling of further data. In addition, initial

tests can determine whether a neural network can recognize

the characteristics of J. Vulgaris and thus distinguish the

plant from others. Therefore, we introduce a weak classi-

fier called Easy Label Assist Net (ELAN), which generates

a heatmap, as illustrated in Fig. 4. This heatmap indicates

1https://www.cvat.ai/

where potentially J. Vulgaris plants are located in a new im-

age. To generate the heatmap, we divide a given image into

N ×N patches and process each patch in a multi-stage pro-

cess. First, we train a feature extractor to recognize features

in the patches. Next, we build and train a classifier on top

of this feature extractor to predict whether an image patch

contains J. Vulgaris. Finally, we stitch the patches together

and upscale the heatmap to match the original resolution.

4.2.1 Training data

The previously acquired dataset (see Sec. 4.1) was cre-

ated for object detection applications. In order to use this

dataset for classification tasks, the labeled bounding boxes

on which J. Vulgaris is seen are cropped from the images

with a size of 128 × 128 px. Counterexamples were gen-

erated by randomly selecting image crops of the same size

that do not overlap with J. Vulgaris bounding boxes. To

perform the network’s training, we created a well-balanced

dataset comprising a total of 500 samples. In addition, we

created a dataset of 500 synthetic images with our proposed

data generation (see Sec. 4.3.2).

4.2.2 Training of the feature extractor

Since the amount of training data is small, we applied

a few-shot learning strategy, presented in Hadsell et al.
[12]. The proposed architecture, called Siamese Neural Net-
work (SNN), can be seen as the learnable distance metric

DW ( �X1, �X2) = ||GW ( �X1)−GW ( �X2)||2 between two im-

ages �X1 and �X2. Here, GW denotes an underlying CNN

model that outputs embeddings of the corresponding im-

ages, between which the Euclidean distance is measured.

The objective is to decrease the distance DW between im-

ages of the same category while increasing the distance be-

tween images of different categories. To this end, we mini-

mize the so-called contrastive loss function:

L(W,Y, �X1, �X2) =

(1− Y )
1

2
(DW )2 + (Y )

1

2
{max (0,m−DW )}2 (1)

where Y ∈ {0, 1} describes whether �X1 and �X2 belong

to the same or different categories. Each of the summands

covers a specific case. If �X1 and �X2 belong to the same

category, we want to minimize 1
2 (DW )2. In the case that

�X1 and �X2 belong to different categories, we want to min-

imize 1
2{max (0,m−DW )}2. The upper margin m > 0

is necessary to prevent the network from lowering the loss

by raising the distance of different instances to infinity. It

defines the radius in which the distance of dissimilar pairs

contributes to the loss. We assigned the value of m as 20.

The SNN uses an underlying CNN model where parameters

can be optimized to learn the correct distances. While the
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(a)

(b)

Figure 4: (a) Example of a generated heatmap where each

pixel shows the confidence whether J. Vulgaris is included

in the image patch or not. (b) Original image from the

dataset, over which the generated heatmap was overlayed.

architecture of the CNN model GW can be freely chosen, a

pre-trained ResNet50 [14] worked best in our case. For the

training process, pairs are formed from all dataset images,

which will be used for the training. Thereby, the number

of training samples is increased by a factor of 0.5(n− 1)n,

where n is the number of used samples. For example, we

generated a training dataset of 124750 image pairs from the

500 underlying training images.

4.2.3 Training of the PatchGAN classifier

After training the feature extractor GW , we used it to build

a classifier based on the PatchGAN approach [20]. The

PathcGAN is a pure convolutional model where the last

convolutional layer outputs one feature map containing the

classifications of each patch. The peculiarity of the archi-

tecture is that it can process images of arbitrary size. There-

fore, the network’s output is a heatmap with the same as-

pect ratio as the input image, each pixel indicating whether

J. Vulgaris is observable in the area or not. The size of the

(a) (b)

Figure 5: Simulated 3D environment with a custom J. Vul-
garis model (a) and the generated segmentation mask (b).

heatmap is determined by the number N of image patches

in an image. In our case, we rebuild network architecture

to classify image patches of size 128 × 128 px. From this

follows that the training images with a size of 128× 128 px
result in 1 × 1 px heatmaps. For the whole images in our

dataset with a size of 1920×1200 px, the resulting heatmaps

are 57×35 px. Since the feature extractor is already trained,

it is sufficient to train only the classification layer. The ob-

jective of the classifier is binary classification, distinguish-

ing between J. Vulgaris and noJ. Vulgariskk patches. We

employed the Binary Cross Entropy loss function, effec-

tively training the classifier to identify the presence of J.
Vulgaris in image patches.

4.3. Synthetic Training Data

Capturing labeled data of J. Vulgaris poses significant

challenges due to its time-consuming nature and restrictions

on data collection during specific periods of the year. As

a result, the acquired dataset is relatively small and likely

exhibits an imbalance across lighting conditions, growth

stages, and terrains. This section explores various ap-

proaches for generating annotated images of J. Vulgaris to

augment our training dataset and improve detection per-

formance. Firstly, we will briefly describe a model-based

approach, which offers promising possibilities for generat-

ing additional data. Subsequently, we will describe a more

elaborate approach using generative models to enhance the

dataset further.

4.3.1 Model-based approach

With this approach, we generate 3D models of J. Vul-
garis within its natural surroundings and transform these

scenes into visual representations. The key advantage of

this methodology lies in the precise manipulation of the ren-

dering procedure. It allows us to flexibly simulate various

lighting conditions, perspectives, camera configurations,

and the spatial arrangement of objects within the scene. To
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implement the 3D rendering process, we leveraged the ca-

pabilities of the open-source 3D modeling tool Blender2.

To create realistic representations of J. Vulgaris, we uti-

lized custom meshes and textures specific tJ. Vulgariskk.

Additionally, we incorporated various environmental assets

such as grass, weeds, and other disruptive objects. To in-

troduce diversity and variation, we introduced randomiza-

tion in factors like leaf arrangement, plant positioning, and

the number of J. Vulgaris instances within a scene. Our

custom rendering process also allows for the generation of

segmentation masks (Fig. 5). These pixel-perfect annota-

tions could be used for image segmentation training in the

future. Additionally, we could output the bounding boxes

easily as we know exactly where we placed the J. Vulgaris
plants. This approach, however, has some crucial shortcom-

ings. First, 3D modeling requires expert knowledge of J.
Vulgaris’s characteristics to model ”ideal” specimens. It is

also difficult to model plant variance since it is difficult to

identify from what point a plant is no longer recognizable as

a specimen of J. Vulgaris. A more fundamental problem is

the obvious existence of a reality gap: Rendered images can

easily be identified as computer-generated imagery. Much

effort can be spent on shrinking that gap, but true photore-

alism is almost impossible to realize. The next section will

explain a more promising approach using generative AI.

4.3.2 Neural network-based approach

Our second synthetic data-generating approach is leverag-

ing state-of-the-art generative AI to create artificial images.

Until recently, Generative Adversarial Networks (GANs)

have been the most popular architecture for generating im-

ages. They have also been used in various ways for pre-

cision agriculture and weed control [8, 23, 9]. In recent

years, there has been an upsurge in diffusion-based archi-

tectures, with models like DALL·E [29], Imagen [34] and

Stable Diffusion (SD) [32] being the most prominent im-

plementations. It has been shown that diffusion-based mod-

els can provide better image quality than GANs [5]. They

also don’t suffer from mode collapse, a common problem

during GAN training. In the case of diffusion, a significant

drawback is a noticeable increase in the inference time [2].

Model selection Our approach utilizes Stable Diffusion

[32], a text-to-image model specifically designed for high-

resolution image synthesis. Stable Diffusion leverages the

basic diffusion process described in [17]. It employs a de-

noising network that progressively constructs images from

Gaussian noise, operating on latent image representations

to expedite training and inference. SD’s image generation

is conditioned by text prompts, allowing for the deliberate

2https://www.blender.org/

Figure 6: On a real background (left), limited by an inpaint

mask (center), a synthetic weed is inserted (right).

synthesis of J. Vulgaris’s growth stages and terrains, pro-

vided they are in sufficient quantities in the training data. In

addition to its primary text-to-image pipeline, SD can per-

form various downstream tasks, including inpainting, out-

painting, image-to-image translation, and image upscaling.

We propose using text-conditioned inpainting to insert J.
Vulgaris onto real backgrounds at specific positions within

given inpainting masks (refer to Fig. 6). While the posi-

tions of generated objects may not be pixel-perfect, the pre-

cision of bounding boxes derived from inpainting masks has

been found to be comparable to manually created bounding

boxes.

Model Fine-tuning Since the images we want to generate

are very different from typical training datasets, we need to

fit the model to our data. Therefore, we need to create an

image-text dataset from our data. To create such dataset we

can utilize our existing object detection dataset. We can use

the bounding boxes to crop the objects of interest and cap-

tion them with certain ”trigger words” which can later be

used in prompts. For the fine-tuning process itself one can

choose various techniques. The most used variants are full

model fine-tuning, Dreambooth [33], and Low-rank adap-

tiont (LoRA) [18]. Dreambooth and LoRA are specifically

designed for extreme few-shot learning, utilizing as few as

10 to 20 training images. These approaches work because

the base model has already been trained on many related ob-

jects. A complete fine-tuning of the model is necessary to

adapt to our images properly, as our training images differ

significantly from those used to train the base model.

5. Experiments and Results
This section presents the experiments and results we car-

ried out for our proposed methods, starting with the eval-

uation of the ELAN model and followed by the synthetic

image generation.

5.1. Annotation using Weak Classifier

We have trained three versions of the ELAN model.

ELANReal was trained with real data only, ELAN Synth

with synthetic data only, and ELANMix with mixed data

consisting of equal parts of real and synthetic data. All
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Subset Model Accuracy Precision Recall F1 Average

Precision

ValReal ELANReal 0.9540 0.9619 0.9385 0.9500 0.9314

ELAN Synth 0.8793 0.9466 0.7854 0.8585 0.8434

ELANMix 0.9187 0.8752 0.9628 0.9169 0.8599

ValSynth ELANReal 0.9932 1.0000 0.9875 0.9937 0.9943

Table 1: Evaluation results of the ELAN classifiers on validation dataset as well as the synthetic dataset.

Figure 7: Contrastive loss of training multiple feature ex-

tractor models on real, synthetic, and mixed data over two

epochs (7797 steps per epoch). The VGG16 was only

trained on real data.

Figure 8: Precision-Recall curves of various ELAN models,

evaluated on the validation dataset.

training datasets had a size of 500 images each. For each

model, a feature extractor had to be trained first, followed

by the training of the corresponding PatchGAN classifier.

Hyperparameters We trained each feature extractor over

2 epochs (7797 steps per epoch) with a batch size of 16,

which means that 16 image pairs result in a total of 32 im-

ages per batch. The PatchGAN classifiers were trained with

a batch size of 32 over 10 epochs. While training a Patch-

GAN classifier, we no longer adjusted the feature extrac-

tor’s weights. An Adam optimizer with a learning rate of

1 × 10−4 was chosen for both the feature extractors and

the PatchGAN classifiers. In addition, we applied several

augmentation techniques during the whole training, includ-

ing random horizontal and vertical flip, rotation, translation,

scale, shear, grayscale, and brightness adjustment.

Results Since generating heatmaps is a classification task

for individual image patches, we evaluated each ELAN
model by measuring classification metrics on a valida-

tion dataset consisting of 1500 real samples. In addition,

ELANReal was evaluated on the synthetic dataset consist-

ing of 500 synthetic samples. Initially, we tested two dif-

ferent backbones for our feature extractor. However, the re-

sults showed that, in contrast to the ResNet50 backbone, the

VGG16 backbone could not learn the data features, which

can be seen in Fig. 7. Therefore, all further experiments

were only done with the ResNet50 architecture. The eval-

uation results of the different ELAN models can be seen in

table 1. The precision-recall-curves in Fig. 8 show that all

versions of ELAN are capable of recognizing J. Vulgaris. As

described earlier, the resulting heatmaps are significantly

smaller than the original images. In order to use them as

a labeling aid, they must be scaled up to the original size

in the final step. An example of an image prelabeled by

ELANReal is shown in Fig. 4b.
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5.2. Synthetic Training Data

For the full model fine-tuning, we trained a SD v1.5

model using EveryDream Trainer 2.0 3, which provides ad-

vanced functionalities for model training and optimization.

As a training dataset, we used 110 images of J. Vulgaris and

background at a resolution of 256× 256 px.

Hyperparameters During training, we employed a batch

size of 6 and maintained a constant learning rate of 5×10−7

for both the text encoder and U-Net. The model was trained

for 100 epochs. Through qualitative assessment of the

model checkpoints, it became noticeable after 100 epochs

that the variance of the samples decreased significantly, i.e.,

more similar plants were generated. The training images

were cropped to squares and captioned with descriptions

containing the trigger word jacobaea. It is worth noting that

the training script used in this experiment did not support

lower resolutions, necessitating the upscaling of the images

to 256× 256 px.

Results Using the proposed training procedure, the result-

ing model can produce images that closely resemble the

training images regarding weed shapes, lighting conditions,

and overall visual appearance. As depicted in Fig. 9, the

model can generate fairly realistic images of a wide vari-

ety. This general qualitative assessment is supported by the

Fréchet Inception Distance (FID) [16] of 55.5 calculated

over 110 samples of real and synthetic images each. Here,

smaller values represent better image quality. In evaluating

the performance of our ELAN classifier, we found that the

model trained on a dataset consisting only of real images

performs equally well on synthetically generated images

(Table 1). This result suggests that while the synthetic im-

ages already capture the different characteristics of J. Vul-
garis and its environment to some degree, they still need

more crucial details to appropriately train neural networks

on them. Therefore, to enhance the quality and effective-

ness of the synthetic data, we plan to train our SD model on

higher-resolution images and a larger dataset. Currently, a

significant portion of the available training images falls be-

low the minimum resolution requirement of 256 × 256 px.

Consequently, upscaling has introduced distortions that de-

grade the quality of the synthetic images. Addressing this

resolution discrepancy will be a key focus in future itera-

tions of the model training process.

6. Conclusion and Future Work
Our work proposes a comprehensive approach to effec-

tively regulate the poisonous plant J. Vulgaris. One of the

key advantages of our modular approach lies in the two

3https://github.com/victorchall/EveryDream2trainer

Figure 9: Real training samples (top row) and samples gen-

erated by our finetuned model (bottom row).

independent tasks, enabling us to fully exploit the poten-

tial of appropriate carrier platforms and controlling strate-

gies. In addition to the proposed conceptual workflow,

we presented our work on synthetic training data genera-

tion and a labeling aid. Initial results indicated that an-

notation time can be reduced using our ELAN. Leverag-

ing the Siamese architecture, we have successfully trained

a classifier with only a limited amount of data. While our

work highlights the potential of synthetic data generation

for grassland robotics, we acknowledge several open chal-

lenges. The need for more diverse data for object detection

algorithms and higher-resolution images for image gener-

ation is crucial. We have also explored the potential of

SD-based image generation, but further experiments are re-

quired to understand its capabilities and limitations fully.

We plan to explore using time-dependent image generation

for synthetic training data in future investigations. Further-

more, we are investigating various object detection archi-

tectures that exhibit promising results. While focusing on

the monitoring aspect of our proposed workflow, our fu-

ture work will also examine different control methods. In

this context, we will focus on integrating the overall system

with attention to processing speed, quality, and reliability.

Accurately monitoring plants using position data will be a

crucial development area for effectively controlling J. Vul-
garis. By addressing these challenges and pursuing future

research directions, we aim to advance the state-of-the-art in

regulating J. Vulgaris, ultimately leading to improved con-

trol strategies with enhanced efficiency and effectiveness.
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