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Abstract

Lack of temporal synchronization between audio and
video streams represents one of the major quality defects in
videos. The defect is more prominent in dubbed media due
to errors in post-production such as improper audio over-
lay. Prior works in Audio-Video sync detection rely on ei-
ther lip synchronization methods, which cannot be applied
to dubbed media, or on self-supervised embeddings for gen-
eral sound events, which are not accurate. In this paper, we
present a novel, accurate and efficient method for tempo-
ral sync detection between dubbed audio tracks and corre-
sponding non-dubbed original-language audio tracks. Us-
ing the availability of non-dubbed audio tracks and existing
lip sync methods, we can simplify the problem of “Dubbed
Audio-to-Video” sync detection to that of “Dubbed Audio-
to-Original Audio” sync detection. Our method finds and
compares matching frames in compressed audio signatures,
achieving near perfect classification with 99.4 F1 score in
less than 1 minute of processing time per hour of audio,
along with ≈ 99.6% relative reduction in memory footprint
compared to an uncompressed full audio spectrogram. We
believe this is the first work to tackle temporal sync detec-
tion in dubbed media.

1. Introduction
Ensuring synchronization in the time domain between

multiple modalities such as visual and audio is an impor-
tant aspect of video quality. Lack of such synchronization
causes degradation of speech comprehension and difficul-
ties in audio-visual integration [27]. Studies conducted by
the International Telecommunications Union [18] suggest
that viewers are able to perceive desynchronizations as low
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Figure 1: Overall design of Dubbed A/V Sync utilizing Lip
Sync and Audio-to-Audio Sync detection

as −125ms (audio lag) and +45ms (audio lead).
Online streaming services have grown exponentially in

recent years leading to a significant growth in cinematic
media. This has also lead to an increase in number of
dubbed movies. A/V sync issues are more common in
dubbed content due to additional errors introduced during
post-production such as :

• Improper overlay of dubbed audio track on the visual
stream.

• Poor quality dubbing.

Despite its important need in real-world applications,
audio-video sync detection in dubbed content has been ne-
glected in research so far. Prior works for audio-video
sync detection task have relied on lip synchronization meth-
ods [7, 8, 9] that learn how to correlate lip movements to
speech signals. Lip synchronization is not applicable on
dubbed movies where the lips movements correspond to the
original filmed language whereas speech signals correspond
to the dubbing language.

Given the original language audio is typically available
with dubbed cinematic content, we can utilize existing lip
synchronization methods to verify that the original language
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audio track is in sync with visuals. With this, the problem of
solving Audio-to-Video synchronization for dubbed audio
resolves to that of Dubbed Audio-to-Original Audio syn-
chronization as shown in figure 1. The key contributions of
this paper can be summarized as follows :

1. Present a novel approach for A/V Sync Detection in
dubbed videos by using Lip Sync and Audio-to-Audio
synchronization. We believe this is the first paper to
tackle A/V sync quality issues in dubbed videos.

2. Present a novel, fast and memory efficient method
for Audio-to-Audio synchronization by finding match-
ing segments between two audio signatures. The au-
dio signatures are generated by applying compres-
sive sensing techniques on frequency-vs-time spectro-
grams. Compressive sensing is a signal processing
technique in which the signal is sparsely sampled al-
lowing for efficient storage.

3. Demonstrate effectiveness of compressive sensing to
efficiently generate audio signatures achieving 99.6%
relative reduction in dimensionality without loss in
sync detection performance against a baseline of full-
spectrogram based matching.

Section 2 gives an overview of prior research in related
areas. Section 3 provides the technical details of our ap-
proaches. Section 4 and 5 describe the dataset used and our
experimental results respectively. Finally the conclusions as
well as directions for future research are outlined in section
6.

2. Related Works
Lip Synchronization : Focus on synchronizing lip

movements with speech in “talking heads” segments
of video clips. Earlier works [22, 24] utilized explicit
phoneme (fundamental unit of language) to viseme (lip
configuration corresponding to phoneme) matching. Lewis
(1991) [22] utilized phoneme recognition on audio, whereas
Morishima et al. (2002) [24] classified face parameters to
visemes. SyncNet V1 by Chung and Zisserman (2016)
[7] was a 2-branch Siamese style CNN architecture that
learned to correlate lip movements and speech in short
segments (≈ 0.2 sec) without doing explicit phoneme to
viseme matching. SyncNet V2 by Chung and Zisserman
(2017) [8] improved V1 to provide accurate predictions for
non-frontal speaking videos through a curriculum learning
strategy of training on increasingly harder samples of
in-profile face video clips. Perfect Match by Chung et
al. (2019) [9] incorporated a multi-class matching loss
over SyncNet architecture, providing minor improvements.
SyncNet and its variants have been shown to be very accu-
rate at lip sync detection in non-dubbed original language

videos achieving > 98% accuracy. They however are
not applicable on dubbed content as the basic premise of
correlation between lip movements and speech signals does
not hold. Beyond audio-video sync detection, automated
correction of lip sync errors has also been explored by
Halperin et al. (2019) [15], who applied Dynamic Time
Warping (DTW) on features extracted from SyncNet to
align video to speech for Automatic Dialogue Replacement
(ADR).

General A/V Synchronization : Super-set of lip sync
where general sound events (such as telephone ringing,
ball bouncing) are synchronized with corresponding visual
segments. Foley-style detection [12] has been previously
applied on Tennis videos by synchronising the timestamps
via audio and video event detectors for a ball bouncing.
This approach is however not scalable for other general
sound events commonly encountered in movie/episodic
content. Other approaches [6, 19, 21, 23, 29, 38] fo-
cussed on using audio-visual synchrony as a pre-text
self-supervised task for learning generic video represen-
tations that are transferrable to other downstream tasks
such as Action Recognition and Sound Source Separation.
As such these models cover a more generic use-case
but have limited accuracy (60-70%) at a higher degree
of desynchronization (2-6 seconds) than desired (≈ 0.2
seconds). Owens and Efros (2018) [29] utilize a 2-branch
late fusion CNN architecture to learn audio-visual embed-
dings. Korbar et al. (2018) [21] utilized a similar 2-branch
CNN but improved the training regime by incorporating a
curriculum learning strategy to sample negative examples
(progressing from large to medium desynchronizations).
Recent works have included attention mechanisms for late
or early fusion of multi-modal signals. Khosravan et al.
(2019) [19] utilized late spatial and temporal attention
over video block representations (same stem architecture
as Owens and Efros). Hierarchical fusion of audio-video
features has been explored, with Cheng et al. (2020) [6]
utilizing a transformer style architecture [34] and Xiao et
al. (2020) [38] augmenting Slow-Fast networks [13] with
an additional audio modality branch.

Acoustic Fingerprinting : Cano et al. (2002) [3] de-
scribed an acoustic fingerprint as a content based compact
signature that summarizes an audio recording. Acoustic
fingerprinting has been utilized in several use-cases such
as music identification and search [35], audio copy detec-
tion [28], music genre identification [16], advertisement
tracking [4] etc. Shazam algorithm by Wang (2003) [35] is
one of the most popular methods of acoustic fingerprinting
and is based on amplitude peak pairs in the spectrogram
representation of an audio signal. Panako by Six and
Leman (2014) [33] improved on basic amplitude landmarks
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Figure 2: Overall pipeline to perform lip sync detection via SyncNet.

by adding robust handling measures for time-scale and
pitch modifications. Most recently, SAMAF [2] by Suárez
et al. (2020) utilized a sequence-to-sequence autoencoder
model for audio fingerprinting to achieve state-of-art results
in audio identification on VoxCeleb 1 dataset [26]. Audio
fingerprinting techniques have been previously explored by
Shrstha et al. (2007) for synchronization of multi-camera
video recordings [32].

Compressive Sensing : Is a signal processing method
to acquire and reconstruct a signal that is sparse in
some domain from far fewer samples than required by
Nyquist–Shannon sampling theorem [25]. Compressive
sensing has been applied in a wide range of domains such
as video [30, 17], images [40, 39] and audio [37, 36, 1].
Utilizing the fact that audio signals are typically sparse
in frequency domain (i.e., energy is present in only some
frequencies), compressive sensing methods can be applied
on audio signals to represent them efficiently. Acoustic
fingerprinting via compressive sensing has been previously
explored by Saravanos et al. (2020) [31] who utilized
K-SVD based dictionary learning for song identification.

As highlighted earlier, lip synchronization methods are
very accurate in original language A/V sync detection but
cannot be applied on dubbed media where there is no cor-
relation between lip movements and spoken speech. In the-
ory, general A/V Sync methods may be extended to dubbed
A/V sync detection but in practice are not accurate and can-
not detect low levels (0.2 - 2 seconds) of desynchroniza-
tions that are perceivable by humans. For this reason, we
try an approach of Audio-to-Audio Sync detection utiliz-
ing audio signatures generated via compressive sensing on
audio spectrograms. At a high level, our idea is similar to
Courtenay and Ellis who utilized matching pursuit and lo-
cality sensitive hashing to identify similar acoustic events
in a database [10] (2009) and audio fingerprinting to iden-
tify multiple videos of an event [11] (2010). We believe
we are the first work to tackle the use-case of dubbed audio
synchronization as well as use compressive sensing based

audio fingerprints for the same.

3. Methodology
There are two separate parts to solving dubbed A/V sync

as as shown in figure 1.

1. Lip Sync Detection : To verify that the original lan-
guage audio track is in-sync with the visual stream.

2. Audio-to-Audio Sync Detection : To detect the exact
time offset (sync error) between the dubbed audio track
and the original language audio track.

3.1. Lip Sync Detection

For lip sync detection, we use the Multi-View SyncNet
architecture (SyncNet V2) [8] which predicts the time offset
between “talking heads” video clips and their correspond-
ing speech segments. The overall pipeline for SyncNet
based lip sync detection is shown in figure 2. The com-
ponents are described as :

Pre-Processing Sub-dividing the entire video into face-
centered clips of candidate human speakers. Shot
boundaries are first detected using a Histogram-of-
Gradients (HoG) based classifier over Hue-Saturation-
Value space [14]. For each candidate shot, face bound-
ing boxes of the same person are detected and grouped
together using off-the-self face detection and tracking.

SyncNet Inference Multi-view SyncNet is a Siamese-
style [20] network that is trained to correlate audio and
lip movements for short segments. It comprises of two
parallel branches :

1. Visual Representation : Modified VGG-M CNN
architecture [5] over 5 video frames (224 x 224
images).

2. Audio Representation :VGG-M CNN architec-
ture [5] over input Mel-Frequency Cepstral Coef-
ficient (MFCC) features. Input audio features are
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Figure 3: Overall pipeline for audio-to-audio sync detection.

represented as a heatmap image with 13 MFCC
coefficients on y-axis and 20 timesteps (sampling
rate ≈ 100 Hz for a 0.2 second signal).

Audio and visual representations are trained to be in
the same semantic space by minimizing a contrastive
loss, i.e., output of audio and visual networks are sim-
ilar for genuine (in-sync) pairs and dissimilar for false
(out-of-sync) pairs. Mathematically, the loss is defined
as :

E =
1

2N

N∑
n=1

(yn)d
2
n + (1− yn)max(margin− dn, 0)

2

dn = ||vn − an||2

where vn and an are the representations via SyncNet
for short visual and audio segments respectively and
dn is the L2 distance between them.

Sync Decision Aggregation For each frame in a candidate
face track clip, the time offset can be found via a slid-
ing window approach, i.e., finding the index of mini-
mum L2 distance between visual segment representa-
tion (centered at current frame) and all audio segment
representations in a ±x second window. Time offset
for coarser granularities (such as time offset for face-
track clip or entire video) is found by taking median
statistics of time offset predictions at finer granulari-
ties (such as per frame and per face-track clip respec-
tively).

Automated Correction For the scope of this paper we
limit ourselves to constant sync errors that are present
from the very start of the video. To correct them, we
employ a simple strategy of shifting the audio stream
in the opposite direction of full-video predicted time
offset. To correct variable sync errors (i.e., differ-
ent desynchronization per face track), Dynamic Time

Warping as described by Haperin et al. (2019) [15] can
be employed.

3.2. Audio-to-Audio Sync Detection

The key idea behind designing a solution for dubbed au-
dio to original language audio sync detection is the fact that
only certain segments of an audio track are actually dubbed
over. General sound events such as a gunshot being fired, an
instrument being played, background score, environmental
sounds, etc. remain the same regardless of the language of
audio track. Therefore we can find exact matching segments
between the two audio tracks and compare their relative
timestamps to predict the overall time offset. The overall
pipeline for original audio to non-dubbed audio sync detec-
tion is depicted in figure 3.

3.2.1 Audio Signature Generation

Comparison between raw audio waveforms to find all
matching segments is computationally inefficient, espe-
cially for long audio tracks such as movies. Therefore, we
generate compressed audio signatures for both the dubbed
audio track and original language audio track. The output
audio signature is a per audio frame representation which
allows downstream signature match logic to give per frame
time offsets. Figure 4 describes the pipeline for audio sig-
nature generation via compressive sensing. Individually the
components are as follows :

Spectrogram Generation : The raw audio waveform is
converted into its power spectrogram using Short-Term
Fourier Transform. The power spectrogram Spec is a
matrix with rows as frequencies, columns as time in-
dices (audio frame) and values as loudness in dB at
that frequency and time. Spec has a dimensionality of
F ∗ T where :

• F : dimensionality in frequency domain deter-
mined by the window size in STFT.

568



Figure 4: Audio signature generation via compressive sensing. The output signature is compressed in both time and frequency
domains. M << F.

• T : dimensionality in time domain determined by
the duration of audio track and size of each audio
frame via STFT.

Loudness Sparsification : All loudness values less than
threshold θdB are truncated to zero. This allows our
signature to be robust against minor noise in a similar
manner to amplitude landmark based audio signature
generation methods such as Shazam [35].

Time-Domain Sparsity Filter : All columns, i.e., time in-
dices or audio frames that are too sparse (i.e., few
frequencies having 0 loudness) or too noisy (i.e.,
too many frequencies having non-zero loudness) are
dropped from the power spectrogram. Dropping such
frames makes the output audio signature have a smaller
memory footprint as well as speeds up the downstream
match logic. The output is a truncated spectrogram
matrix Spectrunc of dimensionality F ∗ Ttrunc.

Compressive Sensing : A compressive sensing matrix
CSM is a randomly initialized Bernoulli matrix of di-
mensions M ∗ F where :

• F : Frequency dimensionality which is the same
as in the spectrogram generation step.

• M : Measurement dimension equal to
F

compression ratio

We multiply the compression matrix CSM to the trun-
cated spectrogram Spectrunc giving an output audio
signature of dimensionality M ∗ Ttrunc. It must be
noted that the same random seed is used for initializa-
tion of CSM each time to ensure consistency in audio
signatures. It must be noted that the compressive sens-
ing typically refers to both the compression as well as
reconstruction of the original signal, where reconstruc-
tion can be done by Signature ∗ CSM−1. However,
for this paper we do not reconstruct the original signal
and perform sync detection by matching the signatures
directly.

3.2.2 Audio Signature Match and Sync Decision

To find all the matching segments in two audio tracks, we
utilize a sliding window approach. For all audio frame rep-
resentations in source signature, we find the Chebyshev dis-
tance (Linf norm) with audio frames in a ±x second range
in the target signature. The index of minimum Linf distance
gives the frame level time offset.

To make sure that we only consider source audio frames
that were close to exact matches in the target audio while
making a full-audio sync decision, we set a threshold of
θmin dist. Only audio frames with minimum Linf distance
< θmin dist are considered for full-audio sync decision,
with the track level time offset = median of exact match
frame offsets.

4. Dataset

Statistic Movie Episodes Total

Num titles 50 40 90
Num source lang 6 4 7
Num target lang 7 12 13
Num desyncs 10 10 10
Total samples 550 440 990
Hours source videos 83 22 105

Table 1: Summary statistics of evaluation dataset

We evaluate Audio-Audio sync detection both as a re-
gression task to predict the exact time offset in between the
original language and dubbed audio tracks as well, as a bi-
nary classification task (out-of-sync as positive class and in-
sync as negative class). For binary classification, all offset
predictions and ground truth desyncs of > 0.2 seconds or
< -0.2 seconds are considered with positive label (out-of-
sync).

We collected 90 full-length video pairs (≈ 105 hours)
in their original and dubbed languages, comprising of 50
cinematic movies (duration 1 to 2.5 hours) and 40 episodes
(duration 20 minutes to 1 hour). We ensured a diverse mix
of languages for both source (original language) and target
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Model Signature
Dimensionality

Signature Size
(in MB) Time to Fingerprint Time to Match

Spectrogram 1.59 ∗ 108 524.3 MB 51.72 seconds > 30 minutes

Spectrogram +
Compressive Sensing 4.96 ∗ 106 16.62 MB 51.67 seconds 175.3 seconds

Spectrogram +
Time-Domain Sparsity Filtering 2.01 ∗ 107 68.1 MB 51.48 seconds 363.2 seconds

Spectrogram +
Time-Domain Sparsity Filtering +
Compressive Sensing

6.29 ∗ 105 2.23 MB 51.44 seconds 3.66 seconds

Table 2: Size and time comparisons for audio signature generation.
The statistics have been averaged per hour of audio.

Model Classification Regression
Precision Recall F1 MAE

Spectrogram +
Time-Domain Sparsity Filter 0.988 1 0.994 0.02 sec

Spectrogram +
Time-Domain Sparsity Filter +
Compressive Sensing

0.988 1 0.994 0.02 sec

Table 3: Classification and regression performance for Dubbed Audio-to-Original Language Audio Sync Detection

(dubbed) videos, with the total number of unique languages
being 15. All the dubbed videos were artificially desynchro-
nised by ± 0.05, 0.5, 1.0, 5.0, 30.0 seconds (+ being audio
lead, - being audio lag). Thus the final dataset contains 990
video pairs (90 unique titles x 11 desync values). Samples
with desync of ± 0, 0.05 seconds are taken as actual nega-
tive class (in-sync) and samples with desync of ± 0.5, 1.0,
5.0, 30.0 seconds are taken as actual positive class (out-of-
sync) giving a class imbalance of 8:3 (positive:negative).
Table 1 gives the summary statistics for our dataset.

All source (original language) audio tracks were verified
to be in sync with the visual using SyncNet as described in
section 3.1. As audio-to-audio sync detection is completely
unsupervised the dataset described above was completely
for testing and evaluation. We used a separate held-out
dataset of 10 titles (5 episodes and 5 movies) to tune hyper-
parameters θdB (threshold for loudness sparsification) and
θmin dist (threshold for minimum frame Linf distance to be
considered in full-title sync decision).

5. Experimental Results

For each experiment, we generated spectogram S from
STFT with sample rate of 44.1 kHz and hop length of 2048.
The frequency resolution F of power spectrogram S is thus
2049 and time resolution (size of a single audio frame) is
≈ 46 milliseconds. With a compression ratio of 32, the

frequency resolution M of output signature is 64. Table 2
shows the effect of each stage of audio signature generation
on output signature size as well as time to compute.

We are able to achieve 99.6 % relative reduction in
dimensionality from 1.59 ∗ 108 for basic spectrogram to
6.29∗105 for audio signature via compressive sensing. With
compressive sensing, output audio signatures are just 2.23
MB per hour of audio, which is a 99.6 % improvement over
storing uncompressed audio spectrogram (524 MB).

The low memory footprint of output audio signatures
via compressive sensing also makes matching significantly
faster, taking only ≈ 4 seconds per hour of audio as com-
pared to > 30 minutes of matching time for uncompressed
spectrogram. It must be noted that both the optimizations of
time-domain sparsity filtering and compressive sensing are
highly optimized vector operations that cause an insignifi-
cant increase in time to generate audio signatures.

Table 3 gives the classification and regression results
for dubbed audio-to-original language audio sync detection.
We achieve near perfect sync detection with an F1 score of
99.3 and median absolute error between actual offset and
predicted offset of just 0.02 seconds. This shows that the
achievements for efficiency do not come at a cost of accu-
racy. It also indicates that finding approximate exact frame
matches in audio does not require a large amount of infor-
mation to be encoded.
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6. Conclusions and Future Work

In this paper, we demonstrated an unsupervised audio
match based solution for Dubbed A/V sync detection un-
der the assumption that the corresponding original language
audio track is available. We achieved near perfect perfor-
mance for full movie/episode videos sync detection with an
F1 score of 0.994 and median absolute error of just 0.02
seconds. We believe this was the first work to tackle sync
quality issues in dubbed media.

Because of the requirement to have the corresponding
original language audio available, this method should be
treated as a pesudo-reference approach. Unlike traditional
full-reference detectors, we do not require explicit presenta-
tion time-stamps or watermarks between the visual stream
or any of the audio tracks. One of the areas for future re-
search would be to develop a no-reference Dubbed A/V
sync detection using CV, without simplifying the problem
to one of Audio-to-Audio sync detection.

We also showed that compressive sensing is a very
fast and efficient method for generating audio signatures,
achieving a ≈ 99.6% relative reduction in signature dimen-
sionality compared to an uncompressed full audio spectro-
gram. This huge improvement in efficiency does not com-
promise accuracy in the downstream task of audio-to-audio
sync detection.

Finally, the scope of this paper was currently limited to
A/V sync detection on dubbed content. We plan to explore
compressive sensing based audio fingerprinting for other
use-cases such as music identification and search, music
metadata matching, etc.
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