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Introduction 

1 Introduction 

Wheat (Triticum aestivum) is one of the most important staple foods worldwide. About 

16 % of the calories consumed globally are provided by wheat (Dixon et al. 2009 In: 

Morgounov et al. 2011). Similar to other crops wheat suffers from a broad range of plant 

diseases, which limit plant growth and reduce yield. Leaf rust (Puccinia triticina) and 

powdery mildew (Blumeria graminis f.sp. tritici) of winter wheat belong to the most 

hazardous global wheat diseases (Oerke 2006, Morgounov et al. 2011) and are 

responsible for severe crop yield losses (James et al. 1990). Severe leaf rust epidemics 

occurred in Bulgaria 1932, France 1961, Hungary 1958, Poland 1958, 1959, 1961, 

Romania 1940, Yugoslavia 1958 (Zadoks 1965), Kansas (USA) 2007 (Bolton et al. 2008), 

the Netherlands 1981, 1983 (Daamen et al. 1992), Mexico 1976/77 (Dubin & Torres 

1981), India 1972, 1973 (Joshi et al. 1980) and showed crop yield losses up to 90 % in 

some regions. 

Powdery mildew is characterized by less epidemic nature, occurs more frequently, and is 

responsible for a high amount of yield loss every year worldwide (Morgounov et al. 

2011). Studies of James et al. (1990) for Great Britain and Ireland from 1970 to 1988, 

Zadoks & Rijsdijk (1984) covering continental Europe from 1961 to 1970 underline this 

behaviour. In Germany leaf rust and powdery mildew of winter wheat belong to the most 

important crop diseases, too. One reason is the area cultivated with winter wheat. One 

quarter of the arable land is used for wheat cropping (Statistisches Bundesamt 2015). 

Another reason are the climatic conditions in Germany, which regularly take values 

around the optimum for the development of both diseases. Meteorological variables like 

temperature, precipitation, leaf wetness, and radiation, to name just a few, play an 

important role for the development of plant pathogens under field conditions (Colhoun 

1973). The influences can be divided into directly accelerating or inhibiting weather 

factors and indirect effects of weather and weather periods on the host plant, serving as 

nourishment for the pathogens. 

Despite their importance the factors influencing the incidence and severity of both 

agricultural diseases are not sufficiently studied yet. Especially the influence of weather, 

weather periods, climate, and their respective changes on the incidence and severity of 

both diseases lack profound knowledge. Because of the scarcity of long-term monitoring 

data for agricultural pathogens (Coakley 1988, Hodson 2011) most of the recent studies 
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are based on experiments under artificial conditions. Unfortunately, such experiments can 

not replicate the complex environment-host-pathogen system and thus concentrate on 

describing and exploring idealized parts of single system components. In addition, the 

relationships discovered by laboratory studies are the basis for most of the models 

simulating disease development and disease pressure (Waggoner 1974, Teng 1985, 

Campbell & Madden 1990). For the modelling of leaf rust infestation of wheat, many 

different empirical and simulation attempts already exist (Chester 1946, Burleigh et al. 

1969, Dirks & Romig 1970, Burleigh et al. 1972a, Burleigh et al. 1972b, Daamen 1991, 

Daamen et al. 1992, Eversmeyer & Kramer 1996, Rossi et al. 1997, Eversmeyer & 

Kramer 1998, Moschini & Pérez 1999, Sache 2000, Räder et al. 2007, Franke et al. 2009, 

Wiik & Ewaldz 2009, Richerzhagen et al. 2013). The same applies to powdery mildew 

of wheat (Aust 1981, Daamen et al. 1992, Friedrich 1994, Te Beest et al. 2009, Wiik & 

Ewaldz 2009). But for powdery mildew the infestation of barley was emphasized more 

often (Polley & King 1973, Channon 1981, Channon 1983 (In: Jones & Clifford 1983), 

Aust et al. 1983, Stephan 1984, Hau 1985, 1988, 1990, Gutsche et al. 1986, 1987, Gutsche 

1987, Kluge et al. 1989, Frahm & Volk 1993, Bruns 1997, Rossi & Giosue 2003). 

In the course of projected climatic changes in the coming decades the weather conditions 

influencing development and occurrence of both diseases will change, too. Thus, plant 

diseases will develop better or worse in the future, increasing or decreasing the damage 

caused by them, respectively. But, most of the studies projecting the occurrence of leaf 

rust and powdery mildew of wheat under changing climatic conditions are based on 

speculation, incorporate empirical equations developed from studies under artificial 

conditions, or were not validated (Juroszek & von Tiedemann 2013). For Germany only 

very few studies concerning the occurrence of leaf rust and powdery mildew of winter 

wheat under changing climatic conditions exist (Jahn et al. 1996, von Tiedemann 1996, 

Volk et al. 2010, Racca et al. 2012, Bregaglio et al. 2013). Only one study (Jahn et al. 

1996) worked with empirical data from field trials and none utilized empirical models 

that ran through a validation process. 
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2 Aims of the Study 

This study will identify knowledge gaps regarding climatic influences on leaf rust and 

powdery mildew of winter wheat in Germany. To fill the gaps analysis of relationships 

between meteorological variables and plant disease incidence are conducted for a selected 

study region.  

The federal state of Saxony-Anhalt is selected as the study region because monitoring 

data for both diseases for a time frame of 34 years, at 20 to 30 monitoring locations per 

year are available. It represents a unique data collection for Germany regarding spatial 

and temporal resolution. 

The main aims of this work are the quantification of the influence of meteorological 

variables on the occurrence of leaf rust and powdery mildew of winter wheat and the 

projection of the results into the future using climate simulations. 

In a first step the influence of meteorological factors on leaf rust and powdery mildew 

occurrence during the most vulnerable phase of wheat development in Saxony-Anhalt 

will be identified. Therefore a database of long-term monitoring data for disease 

occurrence of both pathogens is build. Relationships between single meteorological 

variables and disease occurrence are studied by using a shifting windows correlation 

approach. 

As the second step the database will be utilized to calculate regression models to quantify 

the influence of combinations of meteorological variables on the incidence of both plant 

diseases. To account for non-climatic variables having a significant impact on disease 

occurrence, soil, crop, and cultivation specific variables are analysed and, if applicable, 

included in the model building process. The models are extensively validated by a nested 

cross-validation approach to guarantee adequate prediction accuracy. 

The resulting empirical disease models will then be fed with climate scenario data derived 

by a statistical climate model, to generate scenarios for future disease occurrence under 

changed climatic conditions. These scenarios may be an important component for disease 

control strategies in the framework of an integrated pest management. 

The results of this work can be helpful for analysis of climatic impacts on other plant 

diseases and/or other regions in Germany. 
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3 State of Research 

3.1 Biology of leaf rust and powdery mildew of wheat 

3.1.1 Biology of Puccinia triticina 

Leaf rust of winter wheat is an obligate biotroph parasite belonging to the class 

Basidiomycetes and needs an alternate host to complete its complete sexual 

developmental cycle with 5 spore types. Alternate hosts can be species of the genus 

Isopyrum, Thalictrum, Anchusa and Clematis (Chester 1946, Zadoks 1965, d’Oliveira & 

Samborski 1966, Roelfs & Bushnell 1985, Samborski 1985, Leonard & Fry 1986, Bolton 

et al. 2008, Bockus et al. 2010). But the importance of alternate hosts for epidemic 

development of leaf rust infection is heavily debated. Referring to Roelfs & Bushnell 

(1985) the sexual reproduction of leaf rust on alternate hosts is not of great importance 

for the evolution of new leaf rust races. Because of the small abundance of alternate hosts 

and results from molecular genetics, Kolmer (2005) states only small importance of the 

sexual reproduction cycle for dissemination and genetic heterogeneity of the pathogen. 

However, alternate hosts play an important role in surviving, when the primary host 

Triticum aestivum (wheat) is not available during the vegetation period. Therefore the 

pathogen evolves sperms and aecidiospores to assure surviving on the intermediate host. 

But overwintering of spores on the primary host is also possible. To build up a part of the 

inoculum in spring of the next season teleutospores, forming basidiospores, can be 

developed, but during mild winters urediniospores are the main survival mechanism 

(Roelfs & Bushnell 1984). 

Overwintering urediniospores, which are very important for an epidemic development of 

leaf rust infestation (Hogg 1969), occur in all European countries (Zadoks 1965). When 

temperature increases during spring the development of P. triticina accelerates and the 

polycyclism of the fungus shows its advantages. With higher temperatures the 

monocycles are evolving faster, latency and infection times become shorter. 

Urediniospores landing on a suitable host plant under suitable conditions build a germ 

tube, which searches for suitable locations to infiltrate the host and evolves an 

appressorium if such an infiltration point has been found. After several hours with suitable 

microclimatic conditions a penetration hypha is built to infiltrate the leaf. Stomata play 

an important role as suitable infiltration points. The next step of the infection process is 
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the establishment of a network of fungal mycelia inside the leaf. Haustoria grow inside 

host cells and represent the knots of a network delineating the food structure of the fungus 

(Bolton et al. 2008). Uredinia, which produce urediniospores, are built by mycelia 7 to 

10 days after the infection. The building of uredinia is an important stage of leaf rust 

development. They are the only structures visible from outside the plant and the symptom 

that is recorded by disease assessments. After ripening urediniospores are released by 

uredinia and transported to other hosts for infection. With liberation and transport of 

urediniospores the monocycle of the asexual leaf rust reproduction is completed. One 

monocycle lasts from inoculation until liberation of the new generation of urediniospores, 

called latency, and takes 10 to 14 days on average (Stubbs et al. 1986, Wójtowicz 2007). 

Latencies of 7 to 17 days are not uncommon (Eversmeyer et al. 1980). 

Infection time, incubation time, latency, infection, germination, ripening, and liberation 

are factors which strongly depend on temperature and moisture conditions. 

The short latency enables leaf rust to pass through multiple monocycles per vegetation 

period, which is called polycyclism, and grants an enormous epidemic potential under 

extremely favorable weather periods, causing great damages on wheat plants and yield 

losses over 50%. Epidemics shortly before or during anthesis can cause the highest yield 

losses (Bockus et al. 2010), because, the maximum infestation by leaf rust of winter wheat 

occurs during anthesis (BBCH stages 60 to 70). After its maximum, infestation drops 

quickly due to missing host plant material after harvest and temperatures exceeding the 

optimum for leaf rust. The remaining leaf rust individuals struggle to survive summer on 

volunteers or weeds until the emergence of newly sown wheat during autumn. The more 

individuals survive summer, the bigger the potential threat of yield loss during the next 

season (Eversmeyer & Kramer 2000). 

 

3.1.2 Biology of Blumeria graminis f.sp. tritici 

Powdery mildew of winter wheat is an obligate biotroph parasite, too. During most parts 

of the vegetation period powdery mildew reproduces asexually (imperfect phase) by 

conidia (Spencer 1978). After the deposition of conidia on the leaf surface of the host the 

germ tube is being built to search for suitable infiltration points. If the plant is compatible 

an appresorium is formed as soon as a penetration point is found. Through an enzymatic 

reaction with the cuticle of the host, the penetration hyphe later mechanically infiltrates 

the leaf to form a haustorium between the leaf cells. As already described for leaf rust the 
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haustorium is responsible for the nutrition of the fungus by taking in nutrients from 

surrounding cells (Bélanger et al. 2002). After the formation of a network of haustoria 

inside the leaf conidiophores are built to produce new conidia for reproduction and 

dissemination of the parasite. After ripening the conidia can be released from the 

conidiophore by vibrations or wind and disseminate. One monocycle of B.graminis takes 

between 4 and 28 days according to Friedrich (1994). Temperature and humidity play a 

major role for all developmental stages of the monocycle. 

B.graminis has a sexual reproduction cycle (perfect phase), too (Spencer 1978). Within 

this cycle a cleisthotecium, the main fruit of the fungus, which is responsible for 

producing ascospores, is built. The sexual cycle is important to guarantee the long term 

survival of the pathogen by overcoming resistances of host plants and developing 

resistances against fungicides. However, the importance of the sexual reproduction cycle 

of powdery mildew of winter wheat for the epidemic development of the pathogen is 

considered low (Yarwood 1957). 

Periods without living plant material of the primary host are very important for an 

epidemic development of B.graminis. The fungus reaches its developmental minimum 

during high temperatures after harvesting during summer and very low temperatures in 

winter. Powdery mildew has to survive these periods as cleistothecium (Moseman & 

Powers 1957), fungal mycelium (Cherewick 1944), or conidium - the most important 

survival mode from an epidemiological point of view (Johnston 1974) – because it does 

not have a specialized survival form (sclerotia). Thus, volunteers and weeds are very 

important for powdery mildew populations to survive the summer months (Bélanger 

2002). There is a higher infection potential for newly sown wheat in autumn, if large 

amounts of conidia survive during summer. If more conidia survive winter, more initial 

inoculum is available resulting in a higher infection potential in early spring. 

3.2 Climatic influences on leaf rust and powdery mildew of wheat 

The influence of environmental factors on the development of plant diseases has been 

known for a long time. The history of knowledge and investigations regarding the 

influence of environmental variables on plant disease development from ancient times 

until the 1950s is summarized by Colhoun (1973). Theophrastus (370-286 BC) was the 

first who speculated that weather conditions are influencing the occurrence of cereal rust 

diseases. It took about 2000 years until researchers (Berkeley 1846, de Bary 1861) 
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accepted the existence of fungi as autonomous microorganisms for the first time and 

recognized them as the cause of many plant diseases. Plant pathogens were still a mystery 

when potato blight caused the Irish potato famine in 1845 resulting in immigration of 

Irish people to the United States. The same disease caused an epidemic in Europe 1918 

and directly influenced the course of World War I, but knowledge of key factors 

influencing the disease was still scarce. After World War II studies targeting this topic 

increased. A summary of studies analyzing the climatic requirements and conducting 

statistical analyses on the influence of meteorological variables on leaf rust and powdery 

mildew will follow within the next sub-chapters 

3.2.1 Climatic requirements for the asexual development of P. triticina 

The influence of weather and weather periods on the development of leaf rust of winter 

wheat is well known. Books and review articles summarizing the most important findings 

from laboratory and climate chamber experiments are Chester (1946), Hassebrauk (1959), 

Zadoks (1965), Roelfs & Bushnell (1984) and Roelfs & Bushnell (1985). Temperature 

and moisture conditions are the most important variables for most of the developmental 

sub-processes. This chapter will start with summarizing the climatic influences on the 

infection process and end with the liberation of the ripened spores. 

Wind systems play an important role in the short distance and large scale spread of the 

pathogen (Hassebrauck 1959, Sache 2000). The North African - European and the North 

American leaf rust pathways were described by Zadoks (1961), Hirst et al. (1967a, b) and 

Hogg (1969). 

The urediniospores of leaf rust germinate at temperatures between 2 and 31°C with 

„good“ germination rates between 10 and 28°C (Asuyama 1939, Hassebrauk 1959, Givan 

& Bromfield 1964). The same authors mentioned optimal germination of urediniospores 

at a temperature of 20°C. 

Experiments under field conditions showed, that low temperature during winter and 

spring limits germination stronger than high temperature in summer. Further results of 

Eversmeyer & Kramer (1994) unveiled, that 50% of the spores are still able to germinate 

after 120 hours under environmental conditions in autumn, 60% under summer 

conditions, only 10 to 20% in spring, and during winter no viable spores were left after 

96 hours at temperatures under 0°C. The optimum of the germination rate appeared after 

120 hours with 30°C. In comparison, the germination rates dropped drastically at 5°C and 

only a little at 35°C. In addition, the germination of urediniospores can be hindered and 
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even inhibited by strong precipitation events washing the spores off the leaf surface 

(Sache 2000). 

After germination the pathogen has to penetrate the leaf to build up its nutrition structures. 

Asuyama (1939) and Givan & Bromfield (1964) identified the optimum temperature of 

the penetration process being 20°C. After penetrating the leaf appressoria are built. 

Eversmeyer & Kramer (1994) revealed that more appressoria were built at 5°C compared 

to 10, 20, 30 and 35°C after 120 hours. 

Concerning the time frame between infection and development of appressoria 3 to 6 hours 

at 15 to 25°C or 8 to 13°C, respectively, are required (Asuyama 1939). 3 to 6 hours at 

15°C or 9 hours at 13°C are needed between infection and penetration of the leaf. The 

time needed for leaf infection decreases from 9 to 3 hours, if the temperature rises from 

8 to 13°C up to 23°C. The optimal temperature for the general infection process differs 

between 18 to 25°C (Asuyama 1939) and 15 to 18°C (Straib 1940). 

Regarding the length and optimal conditions of the latency period many differing results 

are present in literature. Obst & Paul (1993) present a value of 140 degree days. 

Eversmeyer et al. (1980) describes latencies between 157 and 500 hours at temperatures 

between 10 and 32.2°C, with the shortest latency at 26.7°C. The same optimal 

temperature was found by Tomerlin et al. (1983) on infected seedlings. For host plants 

infected during heading or anthesis latency gets shorter with rising temperature. The 

infection periods at 25°C are significantly shorter than at 10 to 20°C. For the amount of 

uredinia per square centimeter Eversmeyer & Kramer (1994) identify a maximum at a 

temperature of 20°C lasting 120 hours. At 5°C and 35°C the amount is considerably 

lower. Zadoks (1965) shows an optimal temperature of 25°C and urediniospore growth 

times varying between 6 and 60 days for a temperature range of 2 to 35°C. For the overall 

development of leaf rust nights with a temperature between 15 and 22°C and a leaf 

wetness period of at least 4 hours are optimal (Heitefuss et al. 1993, Obst & Paul 1993). 

Sunny days with 20 to 25°C have a beneficial effect on the development, too (Prigge et 

al. 2005). 

3.2.2 Climatic requirements for the asexual development of B. graminis f.sp. tritici 

This sub-chapter reviews knowledge on meteorological influences on the infestation of 

wheat plants by powdery mildew in general and on sub-processes of fungal development, 

starting with the infection process and ending with the liberation of the ripened spores. 
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The influence of temperature and moisture conditions in particular on the development 

of powdery mildew of wheat is well known. Scientific results of laboratory studies and 

experiments under artificial conditions focusing on the influence of meteorological 

variables on subprocesses of powdery mildew infestation on wheat plants are summarized 

in the articles of Spencer (1978), Friedrich (1994), Merchan-Vargas (1984), Yarwood et 

al. (1954), Braun (1995), Bélanger (2002) and Te Beest et al. (2008) and sometimes are 

blended with own results. Some of the results for other formae specialis of powdery 

mildew of cereals can be transferred to powdery mildew of wheat, because the fungi 

behave similar to meteorological influences (Friedrich 1994). 

The flight of powdery mildew conidia is increased on days with maximum temperatures 

over 15.6°C, more than 5 hours of sunshine, less than 1mm of precipitation, and mean 

wind speed exceeding 2.85m/s (Polley & King 1973). For the infection process Pratt 

(1943), Cherewick (1944) and Arya & Gemawat (1953) identified a temperature interval 

of below 0°C to 40°C where infection is possible and Hammarlund (1925) and Cherewick 

(1944) determined an optimum between 15 and 20°C. 

Germination of conidia was detected between 0 and 35°C by Cherewick (1944), Yarwood 

et al. (1954), Jones & Clifford (1983) and Wiese (1987). Results for optimal germination 

temperature vary strongly at values between 6°C (Cherewick 1944) and 17°C (Yarwood 

et al. 1954). More general results for the order Erysiphales presented limiting 

temperatures for the germination of conidia between 2 and 4°C for the minimum and 30 

and 35°C for the maximum, with optimal conditions between 11 and 28°C (Yarwood 

1957, Blumer 1967). Grainger (1947) and Nour (1958) added studies about the influence 

of moisture conditions on germination. They found out that more than 85% relative 

humidity were needed for germination. An optimum of 100% was determined by 

Manners & Hossain (1963), Jiafeng et al. (1976, cited in Merchan Vargas 1984) and 

Cherewick (1944). Further study results regarding moisture and germination of conidia 

were summed up by Friedrich (1994). 

Studies about the influence of temperature on germ tube growth showed similar results. 

Minimum temperatures were identified at -2°C (Pratt 1943) and 0°C (Prabhu et al. 1962), 

respectively, maximum temperatures at 30°C (Pratt 1943) and 32°C (Graf-Marin 1934), 

and optimum temperatures between 20 and 25°C (Prabhu et al. 1962, Pratt 1943, 

Yarwood et al. 1954). Nour (1958) and Manners & Hossain (1963) found out that germ 

tube growth is supported by high atmospheric moisture contents with a remarkable germ 

tube growth over 98% and an optimum at 100% relative air humidity. For the 
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development of appressoria the same authors determined 98% relative humidity to be the 

minimum requirement for the process. 

Under optimal conditions between 15 and 20°C the incubation time of powdery mildew 

lasted three days (Müller 1988, Last 1963) and was prolonged to 17.5 days with 

temperatures decreasing to -2°C. The latency was about 3 to 4 days under optimal 

conditions and prolonged to 9 to 10 days when temperatures decreased to 10°C and up to 

28 days at -2°C (In: Friedrich 1994). 

Conidia develop and sporulate at temperatures between 5 and 28°C (Prigge et al. 2005, 

Obst & Paul 1993). Conditions are optimal between 20 and 21°C (Last 1953, Aust 1973, 

Pauvert 1976, Stephan 1980, Aust 1981, Dutzmann 1985). Müller (1988) mentioned 

lower temperatures between 15 and 20°C as the optimum for both processes. Moisture 

conditions for both processes were optimal between 90 and 100% relative humidity 

according to Ward & Manners (1974) and Prabhu et al. (1962). 

Aust (1981) found out that spores of barley powdery mildew built at temperatures 

between 18 and 22°C were showing the highest germination and infection potential. 

Infectivity declined slowly at lower temperatures above 10°C and more rapid at higher 

temperatures above 22°C. Spores built at a temperature of 25°C inherited only 10% of 

the germination and infection potential compared to spores built at 20°C (Ward & 

Manners 1974). 

The development of B. graminis f.sp. tritici progressed between temperatures below 2°C 

and 30°C (Pratt 1943). Temperature was optimal around 20°C with differing values of 

20°C (Pratt 1943), 21.5°C (Kocourek & Vechet 1984), and 15 to 20°C (Heitefuss et al. 

1993, Hammarlund 1925). Bouma (2008) described the optimal conditions for powdery 

mildew being unstable and cloudy weather in May. Prigge et al. (2005) added 

temperatures between 18 and 22°C, high relative humidity, and alternating warm and 

moist days. 

3.2.3 Statistical approaches for analyzing climatic impacts on the development of 

P. triticina 

Numerous statistical and mathematical approaches have been used to model leaf rust 

infection of wheat plants. Some of these approaches dealt with modeling leaf rust 

infections statistically, ignoring climatic influences. These approaches were important to 

understand the nature of leaf rust epidemics, but won't be listed in detail, because they are 

not important in the framework of this essay. Most of the statistical approaches dealing 
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with climatic influences on leaf rust modeled specific sub-processes of the infection 

process under the influence of changing climatic conditions, e. g. temperature, 

precipitation, wind speed, or at specific growth stages of the host plant. Some of the 

models were created for a better understanding of the influence of changing 

environmental variables on leaf rust development and others for short- to medium-term 

predictions. The most important studies worth mentioning are the studies of Eversmeyer, 

Kramer, and Burleigh, who built statistical models for leaf rust prediction for the United 

States wheat belt. In this sub-chapter the most important studies concerning statistical and 

mathematical modeling approaches for leaf rust will be summarized in chronological 

order, beginning with the oldest studies. 

First findings from statistical analysis of climatic influences on the incidence of wheat 

leaf rust were summarized by Chester (1946) and blended with his own results. Chester 

created the theory of the critical month. His results indicated that weather conditions in 

March with average daily temperatures exceeding 10°C were crucial for the reactivation 

of dormant uredinia supporting the spread of leaf rust in spring. The works of Chester 

(1946), Bryzgalova (1937), and others were summarized in a report of the „World 

Meteorological Organisation“ (Hogg 1969). 

Eversmeyer & Burleigh (1970) worked on a linear model to predict leaf rust incidence on 

wheat in the United States. They used maximum and minimum temperature, precipitation 

and free moisture per day from a time interval between 8 and 14 days before disease 

assessment. Burleigh et al. (1972a) created statistical models to analyze dependencies 

between leaf rust incidence and crop yield. Burleigh et al. (1972b) built a linear model to 

predict leaf rust of winter wheat 7 to 30 days in advance. They found out, that heat 

accumulation estimated from the days with base temperature above 12°C and relative 

humidity over 70% without precipitation were good indicators. Furthermore, incidence 

increased when the amount of days with average temperature between 12 and 18°C and 

relative humidity over 49% increased during spring. 

For leaf rust intensity on wheat in May (around the beginning of stem elongation and 1 

to 2 nodes visible) and July (milky ripe) Daamen et al. (1992) developed statistical 

models. Disease prevalence measured in July was positively influenced by March 

temperatures and the amount of precipitation during April and May. An early onset of 

spring was more important for leaf rust epidemics than mild temperatures during winter. 

In another study, Eversmeyer & Kramer (1996) focused on the overwintering of 

urediniospores using statistical models. They found out that minimum temperature in 
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August had a negative influence and minimum temperature in March and snow cover 

during February a positive impact on inoculum levels at mid-March. Snow cover in 

December showed the strongest positive relationship with overwintering inoculum. In 

addition, the authors modeled inoculum levels in September, October, November, 

December, January, and February and found out that precipitation anomalies in July were 

an important predictor. This underlined the importance of moisture at the time of the 

emergence of volunteers and its significance for the amount of inoculum available at the 

beginning of the next vegetation period. 

The only study using German leaf rust data was conducted by Jahn et al. (1996). They 

used correlation and simple regression analyses to measure the influence of mean annual 

temperature and precipitation sums of spring and summer on leaf rust infestation. They 

identified temperature having a positive and precipitation a negative effect on infestation. 

The study of Eversmeyer & Kramer (1998) supported the theory of the importance of 

winter temperatures on the overwintering of leaf rust urediniospores. They revealed that 

warmer winters allowed inoculum to survive until early spring, which gave leaf rust an 

early start into the growing season. Exogenous inoculum was needed to increase the 

population in spring. After a very cold winter less inoculum survived and the number of 

generations built during the vegetation period was reduced by four, which resulted in 

varieties of medium resistance to escape epidemic infections. Furthermore, cold and 

moist conditions during fall foster the emergence of volunteers and the time infected 

leaves remained attached to the host plant. This led to more infections on volunteers and 

early sown wheat and increased the inoculum potential for the next year. 

Moschini & Perez (1999) used linear regression to model the maximum leaf rust intensity 

on wheat plants at 4 stations during 22 years in Argentina. In their analyses they 

incorporated early and late sown wheat as well as a resistance index. For early sown wheat 

they determined cumulative degree days for base temperatures 11, 12, and 18°C at a 

relative humidity over 50%, days with less than 0.2 mm precipitation, relative humidity 

over 70%, and the resistance index as the most influential factors. For late sown wheat 

the degree of explanation of the meteorological variables decreased. The degree of 

explanation of the resistance index increased. Overall their results confirmed those of 

Chester (1946). Temperatures between the emergence of the first leaves on the host plant 

and the end of tillering played an important role for inoculum production. 

Mahir (2000) used data of two vegetation periods for uni- and multivariate linear 

regression models to study the influence of meteorological variables on leaf rust severity. 
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He determined relative humidity, hours with relative humidity over 80%, and maximum 

temperature as the most important factors. 

A similar study using correlation analyses, simple and multiple linear regression models 

was conducted by Wiik & Ewaldz (2009). The authors studied the influence of monthly 

temperature means and precipitation sums on the incidence and severity of leaf rust of 

winter wheat between 1983 and 2007 in southern Sweden. Their correlation analyses and 

simple linear regression models showed that January and April temperatures had a 

positive influence on disease incidence during anthesis and milky ripe (GS 65 to 75). 

Precipitation of December and July had a positive influence on severity at maximum 

attack. The multiple linear regression model revealed a positive influence of April and 

February temperatures and a negative influence of March precipitation on incidence at 

GS65. 

Further studies were conducted under more special conditions and used a smaller database 

compared to those summarized above. Jaczewska-Kalicka (2007) and Vechet (2003) 

compared time series of weather and disease occurrence of leaf rust in Poland and the 

Czech Republic, respectively. They identified the average temperature in June and the 

number of days with maximum temperature over 25°C during the second and third week 

of June having a significant impact on leaf rust severity. Kolesnikov et al. (2009) used 

correlation analyses to identify meteorological important months for leaf rust 

development on wheat. They found out that temperatures in January, April, June, July, 

and October had a positive correlation and precipitation in December, January, and June 

a negative correlation with disease development. 

3.2.4 Statistical approaches for analyzing climatic impacts on the development of 

B. graminis f.sp. tritici 

Compared to leaf rust only few statistical modelling approaches exist for studying 

climatic impacts on powdery mildew of winter wheat. The most important studies are 

Daamen et al. (1992), Vechet (2003), Jaczewska-Kalicka (2007), Te Beest et al. (2008), 

Kolesnikov et al. (2009), Wiik & Ewaldz (2009), and Cao et al. (2012). Additionally, the 

results of studies concerning powdery mildew of barley (Polley & King 1973, Aust 1981, 

Stephan 1984, Lindner 1989) can be transferred to powdery mildew of winter wheat, 

because of the similarities of both subspecies (Friedrich 1994, p.10). The results of Sache 

(2000) can be transferred to powdery mildew, too. He studied the influence of wind on 

the dispersal of fungal spores utilizing statistical methods. 
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The first memorable study was conducted by Polley & King (1973) and dealt with the 

identification of logical rules explaining the amount of powdery mildew spores in the air 

in dependence of meteorological factors. The critical values for the logical rules were 

maximum temperature over 15.6°C, precipitation sum below 1mm, sunshine duration 

above 5 hours, and wind run above 246 km. Maximum values of spore numbers were 

detected, when all criteria were met on one day, three criteria on two consecutive days, 

or two criteria on three consecutive days. 

Aust (1981) used climate chamber experiments in combination with field data to identify 

critical values for powdery mildew development. He analyzed the field data statistically 

and compared the results with those of the laboratory part. The study identified the 

influence of temperature, relative humidity, precipitation, sunshine duration, and wind 

speed as important variables for powdery mildew development on barley. The fungus 

showed compensation effects under unfavourable developmental conditions. Two other 

studies dealing with the development of powdery mildew of barley using field data were 

conducted by Stephan (1984), Lindner (1989), and Kluge (1990). Simple linear and 

quadratic regression models revealed a positive impact of temperature on the 

reproduction rate of the fungus (Stephan 1984). Lindner (1989) compared weekly disease 

incidence with temperature and host plant development in a qualitative analysis. Kluge 

(1990) identified precipitation during April and May to hamper powdery mildew 

development. 

The study of Jahn et al. (1996) utilized German disease data, too. They used similar 

methods for powdery mildew and leaf rust and identified temperature and precipitation 

having a negative impact on mildew infestation. 

Daamen et al. (1992) did a thorough study of the impact of meteorological variables on 

severity and incidence of powdery mildew of winter wheat. They used linear regression 

models and correlation analyses and integrated a resistance index to represent the 

resistance characteristics of the varieties used as an additional independent variable for 

the regression equations. 

Vechet (2003) analyzed the influence of weather on powdery mildew. He did not observe 

significant influences of weather variables. Jaczewska-Kalicka (2007) observed that years 

with higher rainfall amounts between April and July resulted in a higher powdery mildew 

severity. 

Te Beest et al. (2008) used a combined approach to analyze weather-disease relationships. 

The authors identified weather variables important for the occurrence of a damaging 
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epidemic using discriminant analyses. In case of a damaging epidemic they estimated the 

severity of the epidemic separately by utilizing correlation analyses in combination with 

a window-pane approach. In the following step they built linear regression models to 

quantify the impacts of different weather variables. The number of days with more than 

200 km of wind run between December and March, the number of days with a maximum 

of 2 hours of sunshine, and radiation accumulation at temperatures below 4°C between 

January and March lower the possibility of a damaging epidemic to occur. The number 

of consecutive days with a minimum of 95% humidity, rain accumulation above 10 mm, 

and the number of days with maximum temperature of 20°C or above between April and 

mid June held positive correlations with disease severity in case of a damaging epidemic. 

Kolesnikov et al. (2009) found out that mean temperature between October and January 

and mean monthly temperature in April were negatively correlated and May temperature 

positively correlated with powdery mildew development by using correlation analyses. 

Precipitation sums of December and January had a negative correlation with powdery 

mildew development. 

In the study of Wiik & Ewaldz (2009) correlation and linear regression analyses were 

conducted to identify the impact of monthly weather variables on powdery mildew 

incidence and severity. They revealed that mildew incidence at growth stage (GS) 65 (mid 

anthesis) was positively correlated with August temperature and negatively with January 

temperature. Mildew severity at maximum attack showed a positive correlation with 

September temperature. 

In a recent study Cao et al. (2012) performed correlation and regression analyses to 

identify meteorological variables influencing conidia concentrations of powdery mildew 

in the air on a daily basis. They identified a positive influence of temperature and radiation 

and a negative impact of wind speed and vapour pressure deficit on conidia 

concentrations. In addition, high temperatures lowered conidia concentrations in some 

years. 
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3.3 Non-climatic influences on the development of leaf rust and 

powdery mildew 

Along with climatic factors non-climatic influences have a reasonable impact on plant 

disease development. They can be classified as factors modifying the crop, the pathogen 

development, or the environment (Krupinsky et al. 2002). But influences on diseases are 

hard to classify into those three categories, because some of them impact diseases in more 

than one way. 

The resistance of wheat represents the most important factor for disease development by 

modifying the host. Partial resistances of wheat varieties to leaf rust and/or powdery 

mildew hinder the establishment of fungal structures inside the leaves and thus reduce 

disease incidence and severity. But genes responsible for the resistance of a wheat variety 

may only work in a specific temperature range (Leonard & Fry 1989). Furthermore, 

incidence and severity of both diseases are influenced by factors modifying the pathogen 

abundance, e.g. crop rotation in general and the preceding crop specifically. Crop rotation 

is a classical method to reduce the severity of diseases by rotating to non-host crops for 

the pathogen. Without suitable host material leaf rust and powdery mildew lack their basis 

for survival and nutrition and thus can not retain nor increase their population anymore. 

Some preceding crops support the abundance of bacterial or other pathogenic populations 

by inducing susceptibility for specific pathogens like powdery mildew on the subsequent 

crop (Newton et al. 2004). In addition the preceding crop influences the planting and 

harvesting dates of the subsequent crop and thus modifies the time available for an 

accumulation of inoculum in the subsequent crop. Sugarbeet for example is harvested 

late, thereby postponing the sowing of wheat and hampering powdery mildew 

development (Kluge 1990). 

Another important factor is the canopy architecture of the wheat variety chosen to be 

sown. Recent studies assigned the canopy architecture an important role and presented 

ways to reduce pesticide usage by manipulating the plant canopy. In addition, canopy 

architecture impacted the senescence of plant tissue and thereby modified tissue 

receptivity to infection (Tivoli et al. 2012). But research on the influence of faster 

senescing leaves on disease development is only at the beginning. Furthermore, the 

development of the plant canopy has a strong impact on micro-climatic conditions in the 

crop stand by altering humidity and temperature below the canopy (Russell et al. 1989). 

The micro-climate is important for disease development during most developmental 
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stages of the host plant. Another factor influencing in-field micro-climate and disease 

development is the stand density (Werner 1992). In crops sown with a higher stand 

density the temperature is higher, because of the reduced exchange with atmospheric 

layers above the canopy. In contrast, it can be lower, because of reduced insolation. In 

addition, higher air humidity may be present, because of reduced insolation leading to 

less evaporation. 

Stand density is predefined by the distance between seed rows and can additionally be 

influenced by fertilization. Koch (1991) showed that the use of organic instead of mineral 

fertilizer lowered the stand density and thus powdery mildew severity. 

More influences modifying the environment for the disease are cultivation practices, the 

application of nutrients (e.g. N, S, P, Ca), growth regulator, and fungicides. Chemical 

synthetical fungicides are often developed to prevent disease development of a specific 

disease on the plant, to reduce the impact of the disease, or to reduce the impact of 

multiple diseases on the crop. Biological fungicides serve the same purpose but with a 

different mode of action. For example micro-organisms of the Streptomyces species were 

identified having an antifungal effect on wheat leaf rust (Yi et al. 2004). Growth 

regulators are influencing the developmental speed of the host plant and thereby modify 

the micro-climate inside the stand. Additionally, the regulator disturbs the synchrony 

between host plant growth and disease development and thus may hamper the latter one. 

The application of nutrients as fertilizer has a considerable impact on disease 

development. The influence of different nutrients on plant disease development was 

reviewed by Dordas (2008). 

Especially the influence of nitrogen fertilizer on powdery mildew incidence and severity 

was an often discussed topic in agricultural literature. Several studies showed that higher 

N supply increased the severity and incidence of powdery mildew (Kluge 1990, Kádár et 

al. 1999) by decreasing the resistance of the host plant (Kiraly 1976, In: Wiese et al. 

2003). Besides powdery mildew leaf rust intensity was enhanced by higher N rates, too 

(Krauß 1969, Howard et al. 1994). But the effect of N applications depended on the 

timing. N applicated late in the growing season had only a reduced effect on powdery 

mildew development. Olesen et al. (2003) identified a split of the N application being the 

best strategy, promoting the tillering and development of the crop canopy at an early point 

in time, but reducing the beneficial effect for powdery mildew at the same time. 

No consistent results are presented in the literature regarding the influence of K supply 

on the development of powdery mildew. High K supply hampered the development of 
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leaf rust on wheat (Krauß 1969) and hindered powdery mildew under specific soil 

conditions (Kádár & Elek 1999, Kádár et al. 1999, Brennan & Jayasena 2007) and by 

increasing resistance (Dordas 2008). Another nutrient influencing powdery mildew 

development on wheat was sulphur. Hussain & Leitch (2005) found out that S 

applications reduced powdery mildew severity on wheat ears by delaying senescence and 

extending green leaf duration. 

The studies mentioned underlined the importance of nutrients for plant diseases in general 

and leaf rust and powdery mildew of wheat specifically. However, the nutrient supply of 

wheat plants can not only be modified by nutrient applications. It also depends on the 

nutrients supplied by the soil beneath the crop, which is characterized by a specific soil 

type and structure. The influence of different soil types and structures on powdery mildew 

development was studied by Kluge (1990). The properties of the underlying soil can be 

modified by cultural practices, for example the addition of straw and manure to the soil 

(Rodgers-Gray & Shaw 2000). Under high disease pressure straw addition reduced 

powdery mildew and leaf rust incidence. The addition of manure decreased leaf rust 

incidence by increasing the resistance of the host plant against the diseases. The exact 

mechanism is not sufficiently studied yet, but silica levels in the plants may play an 

important role. Rodgers-Gray & Shaw (2004) observed reduced powdery mildew 

occurrence on plants treated with silicon on two different soils and related the effect to 

increased plant resistance to the disease. The additional silicon acted as a barrier inside 

the leaves against the penetration by the pathogen. Similar results were obtained by Aust 

(1981), who observed that age-related resistance manifested itself as a silification of 

epidermal cells and an increased number of stomata on the upper two leaves. 

The influence of tillage practices on disease development is unclear. Charles et al. (2011) 

did not detect an influence of tillage on leaf rust and powdery mildew. In contrast, Ditsch 

& Grove (1991) found slightly higher powdery mildew incidence under no-tillage 

conditions. Besides influencing disease development by modifying host nutrition and the 

availability of volunteers and stubble, Han et al. (2013) showed that tillage practices could 

impact disease development by modification of micro-climatic conditions. The authors 

found out that in a no-tillage system illumination and air temperature were reduced during 

heading and increased during filling. The relative humidity of the canopy was higher 

under no-tillage. The mechanisms behind these results are still unknown as well as its 

relevance for disease development. 
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The last influential factor on the stand micro-climate worth mentioning is the exposition 

of the host plant. Depending on the exposition of the field various weather variables (e.g. 

temperature, precipitation, wind speed) may differ from those measured at the weather 

station. Kluge (1990) demonstrated that powdery mildew severity was higher at sheltered 

locations compared to exposed ones. 

This leads to another important topic regarding the calculation of weather influences on 

disease severity. Causes and consequences of differences between field weather 

conditions and weather station data will be described in the following sub-chapter. 

3.4 Field weather conditions versus weather station data 

Pathogens are heavily influenced by weather conditions throughout the vegetation period. 

The closer the weather conditions to optimal conditions for disease development are, the 

faster a pathogen is able to reproduce itself, increase its population size, and potentially 

form an epidemic. Optimal conditions for disease development normally refer to the 

micro-climate in the crop stand. To analyse the impact of micro-climatic conditions on 

disease development the micro-climate in every surveyed crop stand needs to be 

measured. Unfortunately, this is not possible due to financial and logistical reasons. Thus, 

micro-climatic data only exists for some selected locations and rather short time frames. 

Additionally, equipment failures thin out the already sparse database of micro-climatic 

measurements (Coakley 1989). Hence, macro-climatic weather data of official measuring 

stations are commonly used to conduct these analyses. Unfortunately, official weather 

stations are not necessarily situated in the vicinity of the crop stand of interest. It has to 

be validated if the data collected at some weather station represents the weather conditions 

at the location of the crop stand sufficiently. Additionally, the upper leaves of the crop 

stand represent an isolation layer, shielding the lower parts of the crop stands from 

insolation, precipitation and wind leading to differences between observed weather at the 

station and in-field micro-climate. Up to 6°C difference between in-field and outside 

temperature can be measured during the year. Especially during summer, when the 

canopy is fully developed, the temperature on the ground of a wheat field can be 6°C 

lower compared to the outside (Krédl et al. 2012). Hence, the influence of the crop canopy 

on the micro-climate inside a crop stand depends on the weather and changes with the 

development of the crop throughout the vegetation period. The influence of the crop 
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canopy gets even more complex considering the factors influencing a crop canopy listed 

in Chapter 3.3. 

Apart from all variables influencing micro-climate and factors modifying them the 

macro-climate always represents the general framework for disease development inside 

a crop stand. Thus, weather station data represents a very useful database for analysing 

weather- disease interactions and is the only reliable source for long-time weather 

observations. 

3.5 Climate change in Saxony-Anhalt 

Due to rising concentrations of carbon dioxide in the atmosphere the global climate will 

be subject to significant changes in the coming decades. This change will manifest itself 

as a change in global circulation patterns, and hence will alternate air temperature, 

precipitation, air humidity, sunshine duration, and wind fields to name just a few (IPCC 

2013). In the past 20 years numerous climate studies were conducted to elaborate on the 

influence of rising greenhouse gas (GHG) concentrations on the global climate and the 

magnitude of changes to be expected. General circulation models (GCMs), simulating the 

general atmospheric circulation played an important role in performing these analyses. 

But climate change is not only a global phenomenon. It is the sum of changes happening 

on much smaller scales (countries, states, regions, municipalities, etc.) all around the 

globe. To quantify the regional impacts of global climatic changes regional climate 

models (RCMs) are used to downscale changes in atmospheric phenomena on smaller 

scales like the state of Saxony-Anhalt (IPCC 2013, Kotlarski et al. 2005). 

3.5.1 Projections for atmospheric phenomena 

The important atmospheric phenomena for the central European climate region are the 

North-Atlantic Oscillation (NAO), extratropical Cyclones (ETCs), and blocking activities 

by high pressure systems (IPCC 2013). Additionally, interactions with phenomena like 

the Atlantic ocean-atmosphere phenomenon, which is a multidecadal oscillation of North-

Atlantic sea surface temperatures (SSTs), and the Barents-Kara-Sea sea-ice 

teleconnection (Petoukhov & Semenov 2010) are suspected to influence the central 

European climate. 

Simulation results for future development of the NAO index indicated a slight increase. 

But the index was subject to large natural variations lowering the confidence in simulation 
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results. Supposing a slight increase more westerly weather situations were projected to 

occur in central Europe in the future. The IPCC indicated that it is unlikely that future 

ETC frequency will decrease. Regarding storm tracks, there is medium confidence in a 

poleward shift for the northern hemisphere. It is unlikely that North Atlantic storm tracks 

will simply shift polewards. A more complex reaction to climate change is to be expected. 

Blocking events, interrupting the westerly winds of the middle and high latitudes, play an 

important role for cold spells in winter and heat waves during summer in Europe. 

Transient eddy activity is supposed to be a key factor for these events. Long-term 

observed trends show a decrease in blocking events during winter over the North Atlantic, 

which are consistent with NAO-trends. Simulations do not show a clear tendency 

regarding intensity and persistence, but there is medium confidence that no increase in 

blocking events will occur in the future (IPCC 2013). The results for major atmospheric 

phenomena important for central Europe show that the future climate development in 

central Europe is subject to large natural variations and regional projections for most 

meteorological variables can only be made with large insecurities. 

3.5.2 Observed and projected changes in climatological variables for central 

Europe 

Implications for some variables, especially for temperature and extremes, for Europe in 

general and Saxony-Anhalt in particular are presented in the literature. For Europe an 

increase in the mean annual temperature was observed since the 1980s. Mean annual 

temperature is projected to increase further in the future. The seasonal distribution of the 

warming trend shows a summer warming in Southern Europe and a winter warming in 

Northern Europe (IPCC 2014). For central Europe a less intense warming in summer and 

winter is projected. During recent decades mean wind speeds declined for Europe. 

Projections of the future development are subject to large insecurities. Trend calculations 

for future precipitation amounts are unclear for central Europe due to the insecurities 

about the future development of the NAO, ETCs, and blocking events. Projections are 

subject to large regional and seasonal variations. Another observed change, despite a high 

natural variability, was the increased frequency of high temperature extremes and the 

decreased frequency of low temperature extremes over Europe. Simulations projected a 

marked increase in heat waves, droughts, and heavy precipitation events for Europe. 

There is high confidence in the changes of temperature extremes in Europe and high 

confidence in increased precipitation extremes in continental Europe, due to increased 
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atmospheric moisture, moisture convergence, and an intensification of ETC activities 

during winter (IPCC 2014). 

3.5.3 Projected changes in meteorological variables for Saxony-Anhalt 

Climate projections for Saxony-Anhalt confirm the temperature trends from GCM 

calculations for Europe mentioned above. Mean annual temperature is projected to 

increase by 2 and 3°C until the end of the 21st century under the A1B and A2 scenarios, 

respectively, according to the climate models WETTREG (Spekat et al. 2007) and REMO 

(Jacob et al. 2001). The warming trend in WETTREG was spatially homogenous. In 

REMO the south-eastern part of the state showed a stronger warming trend than the 

northern part and the area around the Harz Mountains. For annual precipitation sums the 

WETTREG model projected a decrease for all scenarios used (A1B, B1, A2), the REMO 

model an increase for all scenarios. In comparison with WETTREG, REMO showed a 

much larger inter-annual variability of precipitation sums. Spatial precipitation trends 

varied between scenarios and time frames considered for WETTREG and REMO. For 

the most prominent scenario - A1B - WETTREG simulated a slight decrease in annual 

precipitation for the whole state between 2011 and 2040, a slight decrease in the north 

and the eastern Harz mountains, and a decrease in rainfall up to 60mm for the other parts 

of the state between 2041 and 2070, an increase up to 40mm in the north and the 

southeastern Harz mountains, and a decrease in precipitation up to 60mm for the 

remaining parts between 2071 and 2100. For the A1B-scenario, REMO simulated a 

decrease in annual precipitation sums in the northern part of the state and an increase up 

to 60mm for the remaining parts between 2011 and 2040, an increase in rainfall for the 

whole state, especially for the central parts and the central Harz mountains with values 

up to 120mm/a between 2041 and 2070, and a moderate increase in the central state parts 

and central Harz mountains with up to 80mm/a, a slight decrease at the northern border, 

and a slight increase in the remaining parts between 2071 and 2100 (Kropp et al. 2009). 

The change in annual values was not only subject to spatial variations but developed 

differently during the course of the year. WETTREG simulations using the A1B emission 

scenario showed a slight rise in minimum, maximum and mean temperature during the 

whole year. A more intense increase during winter is the main reason for the annual 

increase in temperature for Saxony-Anhalt. In addition the model projected a decrease in 

summer and increase in winter precipitation, which balanced the summer maximum for 

the base scenario. In comparison, REMO showed the same response for temperature 
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variables but with higher magnitude. In addition REMO simulated a higher increase in 

summer temperature than WETTREG. For precipitation REMO simulated tendencies 

comparable to those of WETTREG with a less pronounced decrease in summer and 

increase in winter. Both models agreed in the number of frost days decreasing strongly 

towards the end of the century. The number of extremely hot days would increase for all 

emission scenarios considered according to both models (Kropp et al. 2009). Overall the 

simulations projected a temperature increase of Saxony-Anhalt, especially during winter 

and summer. Deviations for mean wetness would become more pronounced in the future 

(Bernhofer et al. 2008). 

3.6 Impact of climatic changes on plant diseases 

Besides meteorological variables the environment in general will be influenced by 

climatic changes on different complexity levels (IPCC 2014). Plant diseases and their 

host plants are significantly influenced by climatic conditions as demonstrated through 

the disease triangle (Jeger & Pautasso 2008). As a result of changing climatic conditions 

the plant growth of agricultural crops and the abundance of insects and plant pathogens 

will be subject to changes. The possible impacts of climatic changes on plant diseases 

according to the literature will be summarized in the following chapter. A short summary 

of climate change impact studies regarding the future development of leaf rust and 

powdery mildew in Germany will follow. 

3.6.1 How do climatic changes impact plant diseases? 

A respectable amount of studies concerning the impact of changing climatic conditions 

on plant pathogens were conducted (Juroszek & von Tiedemann 2013). Unfortunately, 

most of them based on pure speculation and not on proper models or statistical analyses 

of the investigated diseases. However, most of the studies described only the influences 

of single climatic factors on pathogen development. The studies mentioned were scattered 

on a large number of plant diseases. Hence, little is known about the development of leaf 

rust and powdery mildew under changing climatic conditions. The main reasons for the 

lack of climate impact studies are a lack of process-based models for most plant diseases 

(Bregaglio et al. 2013), a lack of long-term monitoring data (Luck et al. 2011, Shaw & 

Osborne 2011), and difficulties in linking epidemiological and climate models (Garrett et 
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al. 2011) mainly because of the high temporal resolution of weather data needed by 

epidemiological models. 

Hourly resolution of weather data is often supported by weather station data, but most 

climate models only support daily or 6-hour data. Additionally, climate models generate 

reasonable results simulating longer time-periods, e. g. simulation of monthly and annual 

mean values. Hourly climate simulation data has to be used with caution. The physics 

behind the simulation results stay the same, but hourly simulations are subject to random 

processes. Natural variability exhibits large uncertainties (Motha 2007), especially when 

precipitation is the variable of interest (Ghini et al. 2008, Shaw & Osborne 2011). 

Despite these difficulties climate model scenarios present a solid base for projecting the 

future development of meteorological factors influencing disease abundance (Motha 

2007). The literature contains interesting, alarming, and speculative projections for the 

future development of plant pathogens under changed climatic conditions. Climatic 

changes will affect pathogens directly and indirectly by influencing the host plant. The 

possible reactions of pathogens will include changes in the geographical distribution, the 

seasonal phenology, and population dynamics (Coakley et al. 1999, Boonekamp 2012, 

Decker et al. 1986 cited in Jahn et al. 1995, Pangga et al. 2011, Shaw & Osborne 2011). 

In detail, the changes regarding population dynamics for plant diseases will manifest 

themselves in a higher infection rate, shortened latent and incubation periods (Eastburn 

et al. 2011), a higher amount of overwintering and oversummering inoculum (Coakley et 

al. 1999), followed by a faster development of the disease, and hence a higher 

reproduction rate causing more generations to be built during the vegetation period under 

increased temperatures (Chakraborty et al. 2011). A decrease in moisture availability may 

counter the potential increase in disease abundance (Boland et al. 2004). Dissemination 

from and deposition of spores on host plants will be impacted (Garrett et al. 2011). 

Indirect influences will affect plant diseases through climate impacts on crops. According 

to Eastburn et al. (2011) the colonization of plant tissue may be altered as a response to 

changes in host physiology due to rising CO2 levels. In addition, an elevated CO2 level 

alters host plant growth and canopy structures, which will induce changes in micro-

climatic conditions and developmental conditions of pathogens (Pangga et al. 2011). On 

a larger scale, changes in atmospheric circulation patterns will alter dissemination 

pathways for fungal spores (Rosenzweig et al. 2005 cited in Chakraborty et al. 2011). 

Thus, regions will get connected to new inoculum sources of pathogens which are not 

endemic yet or may become disconnected from inoculum sources resulting in lower 
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disease abundances. The temporal gap at the end of the vegetation period without living 

host material will narrow and a “green bridge” could support the survival of inoculum 

until the next season. Changes in the seasonal phenology will disturb the synchronization 

between host and pathogen, but the consequences are difficult to estimate. For example, 

host plants will evolve faster and escape their pathogens by faster development and earlier 

senescence (Gregory et al. 2009). Furthermore, host plants will get stressed by extreme 

weather conditions, e. g. high temperatures and drought, and thus susceptibility to plant 

pathogens will change (Coakley et al. 1999, Eastburn et al. 2011, Boyer 1995 cited in 

Eastburn et al. 2011). Resistance genes shielding the host plant against a number of 

pathogens will become more or less effective under changed climatic conditions due to 

physiological alterations in response to altered CO2 levels and due to changes in the 

efficiency of these genes (Gregory et al. 2009, Juroszek & von Tiedemann 2011). In 

addition, susceptibility can be influenced by changing levels of ozone exposure of host 

plants (Boland et al. 2004). Besides ozone a change in other gaseous components of the 

atmosphere may influence disease incidence and severity of plant diseases, as 

summarized by Fitt et al. (2011). 

3.6.2 Climate change studies of leaf rust and powdery mildew for Germany 

Overall very few studies were found concerning the impact of climatic changes on plant 

pathogens in Germany. All studies dealt with impacts on multiple diseases including leaf 

rust and powdery mildew of wheat, except for Bregaglio et al. (2013). Only the findings 

for leaf rust and powdery mildew will be summarized in this chapter. 

Jahn et al. (1996) were the first authors examining disease data recorded by the plant 

protection service of the former German Democratic Republic with regard to the 

influence of climate change on plant diseases. They used correlation and simple 

regression analyses to measure the influence of the mean annual temperature and 

precipitation sums of spring and summer on leaf rust and powdery mildew infestation. 

The regression equations were used to extrapolate into the future assuming mean annual 

temperature to increase by 1K or 2K, respectively, or spring or summer rainfall amounts 

to decrease by 30% or 60%, respectively. They tried to combine both effects and 

calculated future disease scenarios. They identified a supporting effect of higher 

temperature and decreased precipitation for single variables and for the combination of 

both for leaf rust of winter wheat. The powdery mildew infestation decreased slightly for 
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elevated temperature and increased for lowered precipitation. In combination a slight 

decreasing effect was found. 

Von Tiedemann (1996) used climate projections of the IPCC for temperature and 

precipitation changes until 2030 to discuss the potential changes in disease occurrence 

based on expert knowledge about both diseases. He concluded that powdery mildew of 

wheat will lose importance. Leaf rust of wheat will become more important for future 

agriculture in temperate Europe. 

Another important study is the “Befallsatlas – Atlas der potentiellen Befallsgefährdung 

durch wichtige Schadorganismen im Ackerbau Deutschlands“ by Kluge et al. (1999). The 

work reports the actual damaging potential of various plant diseases and pests in Germany 

based on climate data of 412 weather stations between 1951 and 1980. As a basis for the 

calculation of the disease potential logical rules, on the basis of expert knowledge were 

defined incorporating meteorological variables. The rules, similar to a fuzzy approach, 

were then used to calculate the disease potential. Despite not being intended to be used 

for a climate change impact assessment these rules can be utilized to deduct future disease 

potential and changes in disease potential by feeding the equations with climate 

simulation data. The results of this experiment served as the basis for forming hypotheses 

about the impact of climatic changes on disease potential in Germany and are listed in 

chapter 6.6. 

Volk et al. (2010) calculated disease projections for the time frame 2001 to 2050 for the 

German federal state North Rhine-Westphalia. They used the already existing disease 

warning system “proPlant expert” (Johnen et al. 1995) and ran the model with A1B 

climate scenario data calculated by the WETTREG model (Spekat et al. 2007). The results 

showed that the infection risk between November and March increased for leaf rust and 

powdery mildew for all considered subregions. The low-lying regions of the state held a 

stronger increasing trend compared to the higher elevated areas for both diseases. 

Another regional study for the German state of Lower Saxony was conducted by Racca 

et al. (2012). They ran the disease model “SIG-Getreide” in combination with the 

ontogenesis model SIMONTO-WW and the REMO climate model developed by the 

Max-Planck-Institute for Meteorology (Jacob et al. 2001). No information on the 

emission scenario used was given. The authors calculated differences of the length of the 

vegetation period (BBCH 30 to 69) and of the infection probability of leaf rust and 

powdery mildew of winter wheat between the base period (1971-2000), a short-term 

projection (2021-2050), and a long-term projection (2071-2100). The simulated infection 
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probabilities for powdery mildew showed no significant trend but a slight decreasing 

tendency. The infection probability for leaf rust increased significantly between the base 

period and the long-term projection. A prolongation of the vegetation period under future 

climatic conditions resulted (Richerzhagen et al. 2013). 

In the most recent study Bregaglio et al. (2013) calculated disease scenarios for whole 

Europe and discussed the results on a regional basis, including Germany. They used the 

generic potential infection model by Magarey et al. (2005) in combination with the A1B 

emission scenario of the HadCM3-GCM nested within the HadRM3-RCM (van der 

Linden and Mitchell 2009). Infection events for the baseline time frame (1993-2007) were 

compared with a short-term scenario (2025-2034) and a long-term scenario (2045-2054). 

The results revealed a considerable increase in leaf rust infection events for northern 

Germany, including Saxony-Anhalt for the short-term scenario and an increase in the 

number of leaf rust infections by up to 100% for the long-term scenario. 

 

27 

 



Materials and Methods 

4 Materials and Methods 

4.1 Data used 

4.1.1 Disease data 

In the analyses data on the occurrence of leaf rust (Puccinia triticina) and powdery 

mildew (Blumeria graminis f.sp. tritici) on winter wheat, collected from untreated plots 

by the Federal Plant Protection Service of Saxony-Anhalt according to methodological 

specifications of the pest monitoring system of the former German Democratic Republic 

(Schwähn & Röder 1982) was used. Infestation levels were determined on 40 plants per 

plot for each site and year and the mean disease incidence for each monitoring site was 

calculated as the percentage of infected plants. The infestation data were collected from 

1976 to 2010 at several sites (up to 35) per year and transferred into a database. As the 

monitoring sites were randomly selected, the locations varied over time. Because 

monitoring sites could not be identified by municipality from 1976 to 1990, the district 

capitals of the former German Democratic Republic were used as substitute monitoring 

sites during this period. From 1991 to 2010 the capitals of the municipalities were defined 

as monitoring sites. Because the maximum infestation level represents the best indicator 

of the damage caused by both diseases, only data from the beginning of anthesis until 

early ripening (Feekes stage 16 or BBCH stage 60 to 70) were included in the analyses. 

In case of multiple measurements during anthesis the value recorded on the latest 

monitoring date was used. Overall, 989 infestation measurements for leaf rust and 1180 

for powdery mildew were included (Tab. 4-1). Additional information included the 

sowing date and the monitoring date as day of the year (doy). The median monitoring 

date for both diseases was 16th of June. Furthermore the sown wheat variety was recorded 

for the majority of the plots. The susceptibility of each variety of winter wheat, divided 

into nine susceptibility classes, was extracted from the National Lists of the German 

Federal Plant Variety Office (1990-2010) and variety lists of the “ZENTRALE FÜR 

SORTENWESEN DER DEUTSCHEN DEMOKRATISCHEN REPUBLIK” (1976-1989). 
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Tab. 4-1: Annual numbers of monitoring sites for leaf rust and powdery mildew on winter wheat in Saxony-
Anhalt during 1976 to 2010. 

 

4.1.2 Weather data 

Daily measurement data collected by the German Weather Service (DWD) were available 

at 1,218 stations distributed over Germany for the timeframe 1951 to 2010. Missing or 

inhomogeneous data were replaced or corrected by interpolation by the Potsdam Institute 

for Climate Impact Research (PIK, Orlowsky et al. 2008). The regression analyses of data 

from Saxony-Anhalt were performed using daily measurements for the variables mean 

temperature, precipitation, and wind speed collected at 61 weather stations. For the 

correlation analyses the daily variables maximum and minimum temperature, relative 

humidity, sunshine duration, and air pressure, corrected to sea level, were added. The 

number of days with precipitation (daily precipitation sum above 0 mm), freezing days 

(daily minimum temperature under 0°C), days with snowfall (daily precipitation sum 

above 0 mm and daily mean temperature under 0°C), and days with mean temperature 

between 17 and 23°C (including the optimal temperature for leaf rust and powdery 

mildew development) were calculated as additional variables for the weather stations 

used.  

The monitoring sites (Fig. 4-1) were connected with weather data from the corresponding 

weather stations by calculating Thiessen polygons using inverse distance weighting to 

interpolate the climatic data between weather stations (Shepard 1968). The software 

ArcGIS 10.0 was used for this purpose. 

4.1.3 Other data 

Beside weather variables 12 other environmental variables possibly related to disease 

occurrence in the field were collected and analysed. The 12 non-climatic variables 

covered disease resistance, the preceding crop (PC), the previous preceding crop (PPC), 

Leaf rust Powdery mildew
Year N Year N Year N Year N Year N Year N
1976 48 1989 44 2000 31 1976 50 1987 26 1999 35
1977 43 1990 39 2001 35 1977 45 1988 43 2000 31
1978 31 1992 28 2002 37 1978 33 1989 34 2001 35
1979 40 1993 38 2003 30 1979 41 1990 34 2002 37
1981 20 1994 39 2004 29 1980 47 1992 28 2003 30
1984 26 1995 34 2005 29 1981 47 1993 38 2004 30
1985 28 1996 19 2006 30 1982 38 1994 39 2005 30
1986 13 1997 37 2007 30 1983 42 1995 34 2006 30
1987 24 1998 17 2008 19 1984 20 1996 19 2007 30
1988 43 1999 37 2009 36 1985 45 1997 37 2008 19

2010 35 1986 45 1998 17 2009 36
2010 35
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the length of the vegetation period (calculated as the difference, in days, between the 

monitoring and sowing date), the doy of disease assessment, sowing, and emergence, and 

mean values of the field capacity, useable field capacity, air capacity, total pore volume, 

and potential cation exchange capacity of the upper soil layers. The soil properties were 

estimated by using the BÜK 1000 N2.3 soil dataset (BGR 2007). Mean values of all soil 

variables were calculated by aggregating the variables for the upper two meters of the 

soil. 

Fig. 4-1: Monitoring sites for leaf rust and powdery mildew on winter wheat and weather stations with 
corresponding Thiessen polygons in Saxony-Anhalt between 1976 and 2010. Source of the digital elevation 
model data: Hole-filled seamless SRTM data V4 (Jarvis et al. 2008). 
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4.2 Interval-based correlation 

The “Window Pane” algorithm proposed by Coakley and colleagues (Coakley et al. 1988, 

Coakley 1989) was used to perform the analyses. A flow chart of the program was 

published by Coakley et al. (Fig. 1, 1985). The approach dealt with the calculation of 

correlation coefficients between disease values measured at a similar point in time every 

year and weather variables averaged or summarized over a shifting time window. The 

window is defined by its length, its starting point, and an increment for shifting. Coakley 

used the algorithm to identify highly correlated time windows for each meteorological 

variable and to narrow the interesting windows further by decreasing the length or the 

increment of the procedure. 

In this study the algorithm was applied with starting days ranging from day 1 to day 295 

and ending days ranging from day 5 to day 300 before disease monitoring and window 

lengths of 5 to 300 days. The increment was one day for all analyses. Thus, all possible 

time intervals between day 1 and day 300 before the disease assessment with a minimum 

length of five days for all 13 meteorological variables were investigated regarding their 

correlation with the disease data for leaf rust and powdery mildew. The results were 

presented as correlograms (Goldwin 1982), which are perfectly suited for presenting the 

results of the “Window Pane” algorithm in its entirety. In contrast to the aforementioned 

publications describing the “Window Pane” and Goldwin’s correlogram, Kendall 

correlation coefficients were calculated to derive the correlation matrices. Kendall’s 

correlation coefficient was used to account for the non-normal distribution of the disease 

data. Non-parametric tests were performed to derive information on the significance of 

the coefficients (Noether 1967, Hartung et al. 2009). 

The number of correlation coefficients calculated was about 45,000 per plant disease and 

weather variable, which amounts to about 1.2 million correlations investigated. SAS 

statistical analysis software (Version 9.2) was used to perform the time-consuming 

calculations (SAS Institute Inc. 2008). 

4.3 Analysis of non climatic variables 

To analyse non-climatic influences on disease incidence of leaf rust and powdery mildew 

of winter wheat correlation coefficients of Kendall were calculated for the length of the 

vegetation period, the doy of disease assessment, sowing, and emergence, and mean 
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values of the field capacity, useable field capacity, air capacity, total pore volume, and 

potential cation exchange capacity of the upper soil layers. For significance testing the 

nonparametric z-statistic (Noether 1967) was calculated to determine the p-values. 

The calculation of correlation coefficients were not suitable for the discrete variables 

resistance, PC and PPC. Hence, the mean values and distributions of disease incidence 

between the characteristic features were compared. Equal methods for all three variables 

were applied. The methodology for disease resistance is summarized in chapter 4.4.1. 

Disease resistance was included as a predictor in the model procedures and resistance 

classes had to be aggregated before. To compare the mean values of PC- and PPC-classes 

multisample Kruskal-Wallis tests and two-sample Wilcoxon rank-sum tests were 

conducted to identify the significance of differences between all and single class means, 

respectively. In addition, Kolmogorov-Smirnov tests were carried out to identify 

significant differences between the distributions of two classes. Every combination of 

classes was analysed. 

Autocorrelation functions were calculated for annual means of leaf rust (LRI) and 

powdery mildew incidence (PMI) to test time-series of both pathogens for recurring 

patterns. 95%-Quantiles of the normal distribution were calculated to test the significance 

of the autocorrelation coefficients. Lags between 0 and 15 years were analysed using this 

method. Years with missing values were left out. Furthermore, the correlation between 

yearly LRI and PMI means was assessed using Spearman’s correlation coefficient in 

combination with a t-test for significance. 

4.4 Logistic regression model 

4.4.1 Grouping varieties by resistance 

The observations were filtered for the resistance of the variety. Observations without 

information on the degree of resistance were excluded, resulting in 837 incidence 

measurements available for leaf rust and 950 for powdery mildew. Kruskal-Wallis and 

Kolmogorov-Smirnov tests (Hartung et al. 2009) were run using the NPAR1WAY 

procedure of the SAS system (Version 9.2) to compare mean values and distributions of 

disease incidence between all nine susceptibility classes for both diseases. Varieties 

without significant differences in incidence mean values and/or distributions were 

aggregated. The observations were grouped by dividing the samples into two groups: 

more resistant and more susceptible varieties - in the following referred to as resistant and 
32 

 



Materials and Methods 

susceptible varieties. Based on the results of the aforementioned statistical tests and under 

the condition of groups with a nearly equal number of observations, susceptibility classes 

one to five were grouped as resistant and classes six to nine as susceptible for leaf rust. 

For powdery mildew classes one to four were grouped as resistant, and classes five to 

nine as susceptible. 

4.4.2 Preparation of the predictor variables 

The weather data were aggregated for the regression analyses by calculating mean values 

and sums of meteorological variables, respectively, for 15-day periods extending 

backwards from the monitoring date to the earliest sowing date of the previous year. 

Meteorological variables like temperature showed a strong autocorrelation with a 

persistence of up to 60 days. The meteorological variables were deseasonalized by 

subtracting the long-term daily mean values from each observation before aggregating 

the data by intervals to reduce autocorrelation effects. In addition the length of the 

intervals for aggregating the weather data was set to 15 days to further reduce 

autocorrelation. The resulting aggregated meteorological variables were defined as 

independent. In the next step, the three meteorological variables were aggregated for 20 

intervals yielding a total of 60 weather variables for regression analysis covering 300 days 

of the year. The starting and ending dates for each interval are shown in Tab. 4-2. 

Interactions between susceptibility and the 60 weather variables were included as 60 

additional variables for the analyses to account for an influence of plant resistance in 

combination with weather variables on disease incidence. In combination with the 

susceptibility groups as a categorical variable 121 predictors were available for the 

regression procedures. 

Tab. 4-2: Relationships between 15-day intervals used as the basis for aggregating meteorological variables 
for the regression procedure and real dates. 

 

4.4.3 Preparation of the validation datasets 

The dataset consisted of 121 predictors and one predictand. It was split up into training, 

validation, and test samples (Hastie et al. 2009). In a first step the data were split into 10 

Interval 1 2 3 4 5 6 7 8 9 10
Start 16.6 1.6 17.5 2.5 17.4 2.4 18.3 3.3 16.2 1.2
End 2.6 18.5 3.5 18.4 3.4 19.3 4.3 17.2 2.2 18.1
Interval 11 12 13 14 15 16 17 18 19 20
Start 17.1 2.1 18.12 3.12 18.11 3.11 19.10 4.10 19.9 4.9
End 3.1 19.12 4.12 19.11 4.11 20.10 5.10 20.9 5.9 21.8
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outer samples with an equal number of observations using a stratified random sampling 

approach (Cochran 1977) for the outer 10-fold cross-validation. For the outer cross-

validation 9 of the 10 samples were chosen as training data (further split up into training 

and validation sample for the inner cross-validation) and one sample as validation data 

(representing the test sample for the overall validation approach). The procedure was 

repeated 10 times until all samples were used exactly once for validation and 9 times for 

training. The stratification was handled differently for raw and binary disease data. For 

the raw disease data the restriction on the random splits demanded the resistant to 

susceptible ratio to be equal for both training and test samples. For the dichotomized 

disease data the ratio of observations exceeding the threshold and those below the 

threshold had to be equal for training and test samples, in addition to the restriction 

mentioned before. The second step dealt with the construction of the inner samples for 

the leave-one-out cross-validation. Therefore, each outer sample was split into n inner 

samples with n being the number of observations in the sample using simple random 

sampling (Cochran 1977). For the inner cross-validation n-1 observations were used for 

training and one observation for validation. The procedure was repeated n times until all 

observations were used once for validation and n-1 times for training. No stratification 

was used for selecting the samples. 

4.4.4 Modelling and parameter estimation 

The logistic regression models were built (Harrell Jr. 2010) to explain functional 

relationships between environmental variables and disease incidence of the two 

pathogens. Maximum-likelihood estimates of the parameters were calculated using the 

LOGISTIC procedure of the SAS System (Version 9.2, SAS Institute Inc. 2008). All other 

steps of the analysis were programmed manually, because they were not integrated in the 

procedure used. 

Besides analyzing the influence of weather variables and variety susceptibility on raw 

leaf rust (LRI) and powdery mildew incidence (PMI) the study assessed the influence on 

the probability of the diseases exceeding different incidence thresholds. According to 

thresholds defined by Beer (2005) disease incidence was dichotomized in four different 

ways. Incidence thresholds of 0% (non-diseased and diseased) for both diseases (LRI0, 

PMI0), 30% (≤ 30% and >30%) for leaf rust incidence (LRI30), and 50% (≤ 50% and 

>50%) for powdery mildew incidence (PMI50) were applied. One logistic regression 

equation was identified for the raw disease data and two logistic regression models were 
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developed for the dichotomized incidence data for each disease. Susceptible varieties 

were defined as the reference category coded as “-1” and resistant varieties were coded 

as “1” (Allison 2012) when interactions with disease susceptibility were included in the 

model. 

The dichotomized incidence data were analyzed using the standard binary logistic 

regression procedure. The raw disease data were analyzed using a modification by Piepho 

(1998). Maximum-likelihood estimates were derived using the Fisher scoring method. As 

a scale parameter to account for overdispersion, the Pearson chi-square statistic divided 

by the degrees of freedom was used. 

4.4.5 Variable selection 

The logistic regression models for raw disease data were calculated for each possible 

number of predictors using forward variable selection. The variables considered for the 

model were selected using leave-one-out cross-validation (Efron & Tibshirani 1998, 

Hastie et al. 2009, Sen & Srivastava 1990). The selection started with the predictor 

minimizing the mean squared error in the training dataset (MSE-T) averaged over all 

inner cross-validation samples. The step was repeated until a stop criterion was met. One 

criterion included the addition of an additional variable included in the model not 

decreasing the mean squared error of the validation dataset (MSE-V) further. The second 

criterion stated that no predictor candidate exhibiting a significant parameter estimate 

upon inclusion was found. According to Harrell Jr. (2010) and Wilks (1995) the minimum 

MSE-V equals the number of variables in the model from which on overfitting occurs. 

Thus, the maximum amount of possible predictors that can be added without overfitting 

the model was determined and the variable selection stopped. To exclude meaningless 

parameters from the models only parameters significantly different from zero were 

considered. Significance for all parameter estimates was tested using empirically derived 

cross-validation confidence intervals at α = 0.1. In the last step, the estimated parameters 

and the corresponding confidence intervals for the best model were extracted. 

The logistic regression proceeded similar for the dichotomized disease data but used 

another variable selection statistic instead of MSE, called the f-measure, proposed by 

Torgo & Ribeiro (2006). The basic principle for calculating the f-measure is a 2x2 table 

in which the real situation (value below or above threshold) is contrasted with the 

situation predicted by the model. There are four possible outcomes of this test: 

1. True positive (TP): threshold was exceeded and this was detected by the model, 
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2. True negative (TN): threshold was not reached and this was detected by the model, 

3. False negative (FN): threshold was exceeded but the model detected a value below 

the threshold), and 

4. False positive (FP): threshold was not reached but the model detected a threshold 

exceedance. 

The f-measure is defined as a weighted harmonic mean of precision (positive predicted 

value) and recall (sensitivity) with 0≤ β ≤ 1 
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The β values are weights that allow the researcher to adjust the equations according to the 

importance of recall in comparison to precision. In this study, β was set at 0.5, which 

means precision was weighted four times higher than recall for variable and model 

selection. Thus, the maximum f-measure was calculated as the variable selection statistic 

to pick variables for integration in the logistic regression models for binary transformed 

disease data. Additionally, the maximum f-measure determined the amount of variables 

from which on overfitting occurs and served as a stop criterion for the variable selection 

algorithm similar to the MSE-V. To calculate the f-measure, all prediction results from 

each step of the variable selection for the logistic regression procedures for dichotomized 

incidence were transformed. The transformation dichotomized the predicted probabilities 

into binary outcomes with values 0 and 1. For the transformation into binary outcomes a 

predicted probability of 0.5 was used as the classification threshold. Observations 
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exceeding the threshold were assigned the value 1, values below the threshold the value 

0. 

4.4.6 Model selection and validation 

After selecting the best parameters and calculating the estimates the resulting models 

were validated. For the validation independent data not involved in the variable selection 

process were used to assess the predictive ability of each model. Unfortunately, the 

validation samples of the inner cross-validation procedure were already used for the 

variable selection. Hence, a second, outer cross-validation loop around the model fitting 

part was built applying 10-fold cross-validation to the test samples described before. The 

best model for raw disease data from the resulting ensemble was selected by calculating 

the MSE-T and picking the model with the minimum value. For the dichotomized disease 

data the same procedure was performed using the maximum f-measure as the model 

selection criterion. 

To assess the overall quality of the selected “best” model the models were validated using 

the original input data. For raw incidence data errors of the overall mean for the period 

1976 to 2010 and root-mean-square errors (RMSEs) of the annual and station-wise mean 

values were analysed for each pathogen. In addition, the RMSE over all observations was 

examined for the final models working with raw disease data. The quality of the final 

models using dichotomized disease data was assessed using precision, recall, and the 

f-measure. In addition, annual, station-wise, and dataset mean differences of the 

probability of exceeding the defined threshold were calculated between observed and 

predicted values. To obtain the differences, mean probabilities for the observed data were 

calculated utilizing the binary threshold exceedance values. Mean probabilities for the 

predicted data were calculated using the non-dichotomized probabilities resulting from 

the logistic regression equations. The residuals of both model types were investigated by 

plotting the Pearson residuals against the linear predictor. Furthermore, the area under the 

receiver under the operator curve (ROC AUC) was calculated to determine the model 

quality. 

 

37 

 



Materials and Methods 

4.5 STARS – a statistical resampling scheme 

To calculate the scenarios for leaf rust and powdery mildew the STARS model (Orlowsky 

et al. 2008), developed by the Potsdam Institute for Climate Impact Research, was used. 

The abbreviation STARS stands for “statistical analogue resampling scheme” and names 

a regional statistical climate model. The STARS model uses observed weather periods 

from the years 1951 to 2003 and reorders them under specific constraints to meet a 

prescribed temperature trend. The prescribed temperature trend is determined by 

inspection of possible future temperature scenarios from multiple runs of GCMs.  

Under the restriction to meet the prescribed temperature trends STARS reorders 

monitored weather time-series to construct scenario time-series. In a first step, years of 

the observed weather data are reordered using Monte-Carlo-simulations to meet the 

prescribed temperature trend. In the second step blocks of 12-day length are selected from 

the observed weather data for every year and used to replace blocks of the same length in 

the first approximated scenario time-series, which showed the strongest prohibiting 

influence on meeting the prescribed trend during the first approximation step. The block 

length of 12 days is chosen to assure realistic weather periods inside the blocks and to 

maintain the persistence of temperature, air pressure, and precipitation for each station. 

Furthermore, some blocks from the first approximation retain their position to preserve 

the basic structure of the observed years and the intra-annual variability. Hence, 

physically plausible series of weather periods during the course of the year are 

guaranteed. 

The described steps are repeated for every reference station determined beforehand. To 

determine reference stations a cluster analysis identifies clusters of similar structures of 

meteorological variables. For each cluster one station is selected as its reference station. 

The temperature trend is only prescribed for reference stations and simulation time series 

of non-reference stations are constructed using the reorder information of the reference 

stations. Hence, the spatial structure of meteorological variables is retained. 

In summary, the model fulfilled the following requirements to guarantee physical 

consistency of the scenarios: 

1. The seasonal cycle for the scenarios is preserved. 

2. The persistence of weather periods is preserved. 

3. The spatial consistency of the meteorological parameters is preserved. 

4. The physical plausibility is preserved. 
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Daily climate scenario data for 11 meteorological variables are produced by the model 

for each of the 1218 weather stations of the German Weather Service (DWD). 

For this study scenario data of 61 weather stations from the federal state of Saxony-Anhalt 

were used. The data were part of climate simulations conducted for previous studies 

(Gerstengarbe & Werner 2013, PIK 2012). For each climate scenario STARS calculated 

100 realizations to account for the range of possible future climate conditions. Seven 

climate change scenarios with different temperature trends from 2011 until 2060 were 

calculated by the model. The scenarios used incorporated prescribed temperature trends 

of 0, 1.0, 2.0, and 3.0K. The 2K-scenario is comparable to the A1B scenario used by 

WETTREG (Spekat et al. 2007) and REMO (Jacob et al. 2001). 

The simulation results were analyzed calculating long-term mean values of mean 

temperature and wind speed, precipitation sums, and sums of freezing days, icy days, and 

days with rainfall. The calculations were conducted for annual and seasonal aggregates 

on scales of the whole federal state and single stations. The aggregates of the scenario 

period 2031 to 2060 were compared to aggregates of the base period 1981 to 2010 by 

calculating the differences. The differences were obtained by subtracting the base period 

values from those of the scenario periods for all STARS realizations. The median 

difference was used to compare the scenarios and 5%- and 95%-percentiles were 

calculated to test the significance of the differences. The significance of the differences 

was tested against the null hypothesis of no difference. Station-wise differences were only 

calculated for the meteorological variables mean temperature, precipitation, and wind 

speed under the 3K-scenario. Only aggregates calculated for the whole state were tested 

for significance. 

4.6 Climate change disease scenarios 

For calculation of the LRI and PMI scenarios the logistic regression models were run with 

climate model data provided by the STARS model. The climate scenario data were 

deseasonalized using the seasonal component of the base period (1981-2010) to meet the 

conditions of the meteorological data used as input for the regression modelling 

procedure. The six regression equations were fed with climate scenario data of all 100 

realizations computed by STARS. In addition to the four climate change scenarios (0K, 

1K, 2K, 3K), two susceptibility scenarios, containing two extreme presumptions about 
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the amount of resistant varieties used in the future were applied. One scenario 

incorporated only susceptible varieties and the other only resistant varieties. 

A simple linear regression was used to estimate the trend for each of the disease scenarios 

for both pathogens and each of the 100 realizations between 2011 and 2060. For the 

models generated with raw disease data, mean disease incidence was used as the 

predictand. The probability of exceeding the defined threshold was used as predictand for 

the models generated with dichotomized disease data. The thresholds for both pathogens 

were selected as defined in chapter 4.4.4. Trends were calculated on one hand for each 

Thiessen polygon in Saxony-Anhalt and on the other hand for the disease scenario data 

averaged over the whole federal state. 

Trends of future disease occurrence were tested for significance with α = 0.05 by 

interpreting the 100 realizations as bootstrap repetitions of each disease scenario. The 

95% and 5%-percentiles for each disease scenario trend were calculated from the 

empirical distribution of the means, respectively. In case of zero not being part of the 

bootstrap confidence interval, a significant trend was identified. A total of over 300,000 

trends were examined. 

To identify significant changes between past and future disease incidence the LRI, LRI0, 

LRI30, PMI, PMI0, and PMI50 mean values of the period 1976 to 2010 were compared 

with the period 2031 to 2060 for the whole state. The differences were adjusted for errors 

by subtracting the validation errors to account for discrepancies between model validation 

results and observed values. The data of all 100 model realizations entered the analyses 

as mentioned above. The significance of changes was identified by calculating the 

empirical 5%- and 95%-percentiles of mean differences for LRI, LRI0, LRI30, PMI, 

PMI0, and PMI50 for each disease scenario. 

The LRI, LRI0, LRI30, PMI, PMI0, and PMI50 mean values of the period 2031 to 2060 

calculated for each Thiessen polygon were compared between the 0K-scenario, indicating 

no change in German mean temperature, and the 1K,- 2K-, and 3K-scenario, indicating 

an increase in German mean temperature, to identify regional differences in future disease 

incidence and threshold exceeding probability. Incidence was compared between both 

time periods for the disease scenarios originating from raw disease data. The probabilities 

of exceeding the defined thresholds were compared for the disease scenarios originating 

from dichotomized data. Significance was tested by comparing the 5%- and 95%-

percentiles derived for the 0K-scenario with those calculated for the warming scenarios. 
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4.7 Fuzzy modelling 

Logical expressions taken from the “Befallsatlas” (Kluge et al. 1999) were used to 

calculate the disease potential for both pathogens during the 1981 to 2010 timeframe and 

during the 2031 to 2060 timeframe for the mean of all STARS climate model realizations. 

The station weather data used as input for the fuzzy models were interpolated according 

to chapter 4.1.2. Actual and future disease potential were calculated for all Thiessen 

polygons in the study area.  

The logical expressions for leaf rust of winter wheat were: 

( ) 15.0
(15.0 ( ) 15.7 ) ( ( ) 65 )

(15.0 ( ) 15.7 ) (65 ( ))
15.7 ( ) 16.2

(16.2 ( )) ( ( ) 65 )

(16.2

tmean June C
Low

C tmean June C prec June mm

C tmean June C mm prec June
Medium C tmean June C

C tmean June prec June mm

High C

< °
←  

° ≤ ≤ ° ∧ <

° ≤ ≤ ° ∧ ≤
←  ° < ≤ °

° < ∧ <

←  ° ( )) (65 ( ))tmean June mm prec June< ∧ ≤

 (4). 

 

The logical expressions for powdery mildew of winter wheat were: 

12.6 ( )

11.6 ( ) 12.6

11.0 ( ) 11.6

( ) 11.0

Low C tmean May

Medium C tmean May C

High C tmean May C

Very high tmean May C

←  ° <

←  ° ≤ ≤ °

←  ° ≤ < °

 ←  < °

 (5). 

For leaf rust potential the third expression was changed due to a typing error in the 

original document. The class “very high” disease potential was added for powdery 

mildew, to account for areas with temperatures outside the limits of the original definition. 

Differences between both timeframes were assessed and used as a basis for building 

hypotheses about future disease potential. 
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5 Study Area 

In this chapter the climatic and disease situation of Saxony-Anhalt are presented. A 

characterization of the state and its placement in context to the general atmospheric 

circulation according to the literature will be given. After that the climatic 

characterization based on own weather data will be presented. Finally, the disease 

situation based on monitoring data between 1976 and 2010 will be summarized. 

5.1 Climatic Conditions 

The federal state of Saxony-Anhalt is located in central Germany between 51° and 53° 

latitude. It is characterized by a temperate climate. The state is situated at the border of 

the maritime western parts of Europe and the continental East (Metzger et al. 2005). The 

relief is characterized on one hand by the dry central German flats and on the other by the 

strongly exposed mountain ranges of the Harz. Inside the general atmospheric circulation 

Saxony-Anhalt is located in the zone of extratropical westerlies and circulation patterns 

with western winds dominating the flow patterns during the year. Where air masses are 

not deflected by mountain ridges, weather periods are mainly influenced by the Atlantic 

Ocean. 

Saxony-Anhalt is divided into two climatic zones with a borderline from the Harz to the 

Fläming. North of this line north, northwest, west, and southwest weather conditions 

dominate. The maritime influence is high and high pressure situations over central Europe 

only have limited impact. South of the border, the importance shifts in favor of high 

pressure systems, especially during winter. The maritime influence decreases and the 

climate becomes more continental. Additionally, low pressure systems moving from the 

Mediterranean to the Baltic states have a stronger influence and precipitation is more 

intense (Schröder 2000). 
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Fig. 5-1: Long-term averages of monthly aggregated mean temperature (a), freezing days (b), icy days (c), 
precipitation (d), days with rainfall (e), and wind speeds (f) during 1981 to 2010. 
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The climatological characteristics presented in the following section were calculated for 

the federal state using weather data of the DWD from 1981 to 2010. The data were error 

corrected and homogenized by the PIK. The abovementioned influences of the 

atmospheric circulation result in a long-term annual mean temperature of 8.9°C with 84 

frosty days (minimum temperature below 0°C) and 24 icy days (maximum temperature 

below 0°C). Long-term precipitation sums are 681mm distributed on 182 days with 

precipitation. Mean temperatures reach their minimum of 0 to 1.5°C between December 

and February (Fig. 5-1a). During this timeframe about 70% of the freezing days (Fig. 

5-1b) and 90% of the icy days (Fig. 5-1c) occur. The warmest months are June, July, and 

August with long-term mean temperatures between 16 and 18°C (Fig. 5-1a). The 

precipitation distribution during the course of the year has a bimodal structure with a 

slight maximum in winter and a stronger maximum between May and August (Fig. 5-1d). 

The summer maximum is defined by monthly precipitation sums between 60 and 70mm, 

the winter maximum has monthly precipitation values of 55 to 60mm. Rainfall during 

summer is distributed over 14 days with precipitation per month and 17 days per month 

during winter, which demonstrates the higher intensity of summer compared to winter 

rainfall in the study area (Fig. 5-1e). The distribution of mean wind speed is characterized 

by a maximum during winter with values of 3.0 m/s and a summer minimum with values 

between 2.0 and 2.2 m/s (Fig. 5-1f). 

According to the regional distribution of mean temperature, Saxony-Anhalt is split into 

four subdivisions (Fig. 5-2a). The northernmost part is almost identical to the northern 

subdivision described by Schröder (2000). The atlantic influence has a cooling effect 

during summer in this area, which results in a mean annual temperature between 8.5 and 

9.5°C. During winter the atlantic influence weakens and frosty days occur nearly as often 

as in the Harz mountains. The atlantic influence during the course of the year can be 

recognized when examining the annual precipitation sums and the number of rainy days 

for Saxony-Anhalt (Fig. 5-2d & 5-2e).  

Precipitation sums are around the statewide mean or slightly below with 550 to 750mm/a. 

Despite some outliers the rainfall is distributed over 175 to 208 days. Wind speed reaches 

higher values in the northeast compared to the central, southern, and eastern parts of the 

state (Fig. 5-2f). 
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Fig. 5-2: Long-term station-wise averages of annually aggregated mean temperature (a), freezing days (b), 
icy days (c), precipitation (d), days with rainfall (e), and wind speeds (f) during 1981 to 2010. 
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According to Schröder (2000) the southern part can be split into three distinct temperature 

subdivisions. The central and eastern part of the state shows a mean annual temperature 

above 9.5°C, the southernmost part exhibits mean annual temperatures around 9°C at the 

northern rim of the Thuringian Forest, and the area directly influenced by the Harz 

mountains shows a mean annual temperature below 7°C in the center of the mountain 

range and 8 to 8.5°C at the rim. The central part, often referred to as the central German 

dry zone (Fabig 2007), shows the lowest amounts of annual rainfall with 500 to 600mm. 

In some areas annual rainfall is even below 500mm. The regional rainfall distribution is 

very heterogeneous. The rainfall is distributed on 156 to 180 days. In the southernmost 

area near the Thuringian Forest precipitation is higher again. Annual rainfall amounts up 

to 550 to 750mm distributed on 150 to 170 days. The area around the Harz Mountains is 

the wettest in Saxony-Anhalt and whole central Germany (Schröder 2000) with annual 

precipitation sums between 750 and more than 1100mm. In contrast to the more central 

areas of the state, rainfall is distributed on a larger amount of days (180 to more than 208 

rainy days). In addition this region is the coldest in the state, which is underlined by 85 

to more than 110 freezing days per year (Fig. 5-2b) and more than 25 icy days per year 

in the long term mean (Fig. 5-2c). Wind speed is lowest in the southeastern part of the 

state near the Thurinigian Forest. The highest wind speeds are detected at the Brocken 

station and the eastern to south eastern areas of the Harz Mountains (Fig. 5-2f). 

5.2 Disease Situation 

The time series of LRI on winter wheat presents two distinct periods in Saxony-Anhalt 

(Fig. 5-3a). The first period covers the time before 1993 with very low LRI means and 

very few regions exceeding 10% LRI every year. Beginning in 1993 LRI shows an overall 

increasing trend with mean values up to 35% LRI, a maximum LRI of 100% in some 

years at some stations, and a higher interannual and intraannual variability. The years 

with higher LRI concentrate around the years 1994, 2001, and 2007, always interrupted 

by phases with lower LRI. Figures 5-6a & b show annual time series of LRI0 and LRI30 

during the same timeframe. The tendency towards higher leaf rust incidence after 1993 

becomes more obvious. Observations indicating a damaging epidemic were scarce before 

1993 and became much more frequent after 1993. In 2007 the observations exhibiting a 

damaging epidemic reached its peak with 40%. The frequency distribution of LRI reveals 

that the majority (around 75%) of the 837 incidence measurements has a value between 
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0 and 5% (Fig. 5-4). The remaining 25% distribute on values above 5% with the majority 

between 5 and 15% LRI.  

 

 
Fig. 5-3: Disease incidence of leaf rust (a) and powdery mildew (b) on winter wheat in percent during the 
period 1976 to 2010: The mean values (red dots), medians (crossbars in the box), interquartile ranges (box 
heights), 5%- and 95%-percentiles (whiskers), and outliers (black dots) are shown. 
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Fig. 5-4: Frequency distribution of leaf rust incidence in percent. 

 
Fig. 5-5: Median leaf rust incidence (a) and proportion of observations exceeding 0% (b) and 30% (c) 
incidence during the period 1976 to 2010. 
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The spatial distribution of median LRI reveals only small regional differences (Fig. 5-5a). 

The median LRI0 shows more pronounced regional differences (Fig. 5-5b). Values are 

higher in a band stretching from the Harz Mountains eastwards to the eastern and 

northeastern border of the state compared to most of the northern and southern areas. The 

highest values with LRI0 above 50% are located in the farthest northwestern, eastern, and 

southern parts of the state. The median LRI30 is lowest near the Harz Mountains with 

LRI30 below 5% (Fig. 5-5c). Values above 10% and even above 20% are reached in the 

northeastern and eastern parts of the state.  

 

 

Fig. 5-6: Relative annual frequency of observations exceeding 0% (a, c), 30% (b), and 50% (d) incidence 
during the period 1976 to 2010 at monitoring sites for leaf rust (a, b) and powdery mildew(c, d) in percent. 
 

Compared to LRI, powdery mildew incidence (PMI) shows a decreasing trend 

considering the whole timeframe 1976 to 2010 (Fig. 5-3b). The negative trend is visible 

during the whole period, but becomes especially obvious after 1991 with mean PMI only 

rarely exceeding 30%. Especially after 2004 mean values reach a continuously low level 

between 10 and 15% PMI. The decreasing tendency is underlined by figures 5-6c & d, 

presenting annual time series of PMI0 and PMI50.  
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Fig. 5-7: Frequency distribution of powdery mildew incidence in percent. 
 

Compared to the early years damaging epidemics, indicated by exceeding the 50% PMI 

threshold, occur at much fewer monitoring sites. The frequency distribution of PMI 

shows, that about one third of the 950 measurements has a value below 5% incidence 

(Fig. 5-7). The second third of the data exhibits values between 5% and 25% PMI and the 

last third distributes on 25% to 100% PMI. The spatial distribution reveals high median 

PMI values between 5 and 30% for most parts of Saxony-Anhalt (Fig. 5-8a). The 

southeastern and northwestern parts of the state exhibit the highest values with PMI over 

15%. The median PMI0 holds high values above 70% for nearly the whole state (Fig. 

5-8b). Areas with lower PMI0 aggregate in the southern and southwestern parts of the 

state. Fig. 5-8c, showing the median PMI50, reveals a split of the state into two parts. The 

central, eastern, and southern areas of the state belong to the part having higher PMI50 

values above 20%. The northern areas and areas northeast of the Harz Mountains belong 

to the part characterized by PMI50 values below 20%, most of them even below 15%. 
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Fig. 5-8: Median powdery mildew incidence (a) and proportion of observations exceeding 0% (b) and 50% 
(c) incidence during the period 1976 to 2010. 
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6 Results 

6.1 Interval-based correlation 

The results described in this chapter were taken from the study of Stößel et al. (2013). 

6.1.1 Leaf rust 

The results of the analysis of the influence of selected weather parameters on leaf rust 

occurrence are presented in Figures 6-1 and 6-2. A positive correlation between daily 

mean temperature and leaf rust infestation level were detected for most investigated time 

intervals. The highest correlation coefficients were found for longer time periods (e.g., 

from day 1 to day 300 before the monitoring date) (Fig. 6-1a). Another finding was that 

correlation coefficients for short 5- to 20-day periods around 120, 150, 200, 240, and 260 

days before monitoring were lower than those obtained averaging over these periods. 

Short- to medium-term relationships prevailed for correlations between precipitation 

sums and leaf rust infestation (Fig. 6-1b). Positive correlations were observed from days 

90 to 150 (mid-March to mid-January), around days 230 and 295, and in the first 20 to 40 

days before monitoring. Short-term negative correlations were found around 60, 170, and 

210 days before field monitoring. 

The correlation analyses of sunshine duration and leaf rust infestation are shown in Fig. 

6-1c. Sunshine duration had a significant positive influence on leaf rust incidence when 

averaged over 300 days. In contrast to Fig. 6-1a correlations on shorter time scales were 

higher than those for longer time periods. There were significant positive correlations 

from days 30 to 60 (mid-May to mid-April) and days 160 to 270 before monitoring (end 

of January to mid-September). No significant positive correlations were found from early 

spring to mid-winter (day 80 to 150). Significant negative correlations were observed 

between days 90 and 120 (March to February). No significant correlations were identified 

during the first 30 days before disease monitoring. Between days 290 and 300 significant 

negative correlations with leaf rust infestation were observed. 
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Fig. 6-1: Correlograms of significant correlation (α=0.05; Kendall’s coefficient) between a) mean 
temperature, b) precipitation sum, c) sunshine duration, d) relative humidity, and e) wind speed and leaf 
rust severity on winter wheat in Saxony-Anhalt from 1976 to 2010. Legend elements represent the median 
of the interval of correlation coefficients. Day zero represents the monitoring day. 
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Correlations between leaf rust infestation and relative humidity revealed mainly short-

term relationships, except during the period from day 140 to 270 (end of January to mid-

September), when significant negative mid- to long-term correlations were observed (Fig. 

6-1d). From days 30 to 60 (mid-May to mid-April) another negatively correlated period 

was observed. 

Analysis of correlations between wind speed and leaf rust infestation showed almost 

exclusively negative relationships (Fig. 6-1e). Significant negative correlations were 

detected for mean wind speed in autumn (days 240 to 270 before monitoring), late autumn 

and winter (days 150 to 180), and during the first 60 days before monitoring (spring to 

early summer). 

Analysis of correlations between leaf rust infestation and the number of days with 

precipitation (Fig. 6-2a) pointed out significant positive correlations from day 90 to day 

150 (March to January), day 190 to day 240 (end of November to mid-October), and day 

290 to day 300. Significant negative correlations occurred during the interval from days 

35 to 60 and around day 170 before monitoring. 

The influence of freezing days on leaf rust infestation in spring was mainly negative from 

the beginning of November (day 225) until mid-March (day 90) (Fig. 6-2b), especially 

during the winter until early spring. Analysis of correlations between the number of days 

with snowfall and leaf rust occurrence revealed the most negative correlation coefficients 

in the interval between days 90 and 210 (mid-March to mid-November) and further 

negative correlations during shorter time periods around day 210 (Fig. 6-2c). 
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Fig. 6-2: Correlograms of significant correlation (α=0.05; Kendall’s coefficient) between a) number of 
precipitation days, b) number of freezing days and c) number of days with snowfall and leaf rust severity 
on winter wheat in Saxony-Anhalt from 1976 to 2010. Legend elements represent the median of the interval 
of correlation coefficients. Day zero represents the monitoring day. 
 

6.1.2 Powdery mildew 

The results of the analysis of the influence of selected weather parameters on powdery 

mildew occurrence are presented in Figures 6-3 and 6-4. Powdery mildew infestation was 

not clearly affected by mean temperature throughout the whole vegetation period (Fig. 

6-3a). Rather short intervals with significant correlation coefficients were observed. 

Periods around days 230, 290, and during the first two to three months before monitoring 

contained most of the negative correlations. Positive correlations were found for days 130 

to 210 before disease monitoring. 
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Regarding relationships between minimum temperatures and powdery mildew infestation 

levels significant positive correlations appeared in the period from day 70 to day 110 

(beginning in April until end of February) and during winter months (February to 

December) (Fig. 6-3b). Conversely, significant negative correlations were observed 

between mid-November and mid-October. 

Two distinct patterns are shown by the correlograms for precipitation sums and powdery 

mildew occurrence (Fig. 6-3c). Firstly, precipitation sums from February to September 

and from days 20 to 40 before monitoring were negatively correlated with disease 

incidence. Secondly, time windows around 300 days before monitoring and during the 

first 10 to 15 days before monitoring included significant positive correlations. 

Analysis of correlations between relative humidity and disease infestation revealed 

significant negative correlations from days 90 to 230 (mid-March to the beginning of 

November) and positive relationships during April and 10 to 15 days before disease 

monitoring (Fig. 6-3d). 

Significant negative correlations between sunshine duration and disease occurrence for 

the time window from December until the monitoring date were observed (Fig. 6-3e). 

The strongest correlations were identified during the first 10 to 15 days before monitoring. 

The correlogram for maximum temperature and incidence of B. graminis f.sp. tritici 

shows significant negative correlations in late summer (end of August) and between the 

beginning of February and the monitoring day (Fig. 6-3f). Between the end of January 

and the beginning of December significant positive correlations at interval lengths of 10 

to 20 days were detected. 

In late spring (days 20 to 60) and especially in autumn (days 210 to 270) the number of 

days with precipitation had a significant negative effect on powdery mildew incidence 

(Fig. 6-4a). Significant positive correlations were observed during the first 20 days before 

monitoring. 

Regarding correlations between freezing days and powdery mildew occurrence (Fig. 

6-4b) significant positive correlations were observed from mid-October to the end of 

November (days 240 to 200). 

The analyses identified significant positive correlations between the number of days with 

mean temperatures of 17 to 23°C and powdery mildew occurrence for periods in early 

April, from days 70 to 80, and around mid-October. Significant negative correlations 

were located around 15 and 300 days before monitoring (Fig. 6-4c). 
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Fig. 6-3: Correlograms of significant correlation (α=0.05; Kendall’s coefficient) between a) mean 
temperature, b) minimum temperature, c) precipitation sum, d) relative humidity, e) sunshine duration, and 
f) maximum temperature and powdery mildew severity on winter wheat in Saxony-Anhalt from 1976 to 
2010. Legend elements represent the median of the interval of correlation coefficients. Day zero represents 
the monitoring day. 
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Fig. 6-4: Correlograms of significant correlation (α=0.05; Kendall’s coefficient) between a) number of 
precipitation days, b) number of freezing days, and c) number of days with temperatures between 17 and 
23°C and powdery mildew severity on winter wheat in Saxony-Anhalt from 1976 to 2010. Legend elements 
represent the median of the interval of correlation coefficients. Day zero represents the monitoring day. 
 

6.2 Non-climatic influences 

The correlation coefficients of Kendall, calculated between leaf rust incidence (LRI) and 

nine non-climatic variables for the timeframe 1990-2010, revealed only one significant 

relationship. The monitoring doy had a significant negative correlation (r = -0.09) with 

LRI and p < 0.01 (Tab. 6-1). In contrast to the results for leaf rust correlations with 

powdery mildew incidence (PMI) revealed significant correlations for all non-climatic 

variables: except soil air capacity (Tab. 6-1). The doy of sowing and emergence had a 

positive correlation with PMI, the monitoring doy, the length of the vegetation period, 
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and mean values of the soil variables usable field capacity, field capacity, total pore 

volume, and potential cation exchange capacity a negative correlation. 

Tab. 6-1: Kendall correlation coefficients and p-values between non-climatic variables and incidence of 
leaf rust (lr) and powdery mildew (pm). 

 

Tab. 6-2: Chi-Square values and p-values obtained by Kruskal-Wallis tests on differences between sample 
means of PC, PPC, and Resistance for leaf rust and powdery mildew. 

 
 

The Kruskal-Wallis tests on differences between multiple class means revealed no 

significant influence of the PC on LRI and no significant influence of the PPC on LRI 

and PMI. But, a significant impact of the PC on PMI was identified with p = 0.048 (Tab. 

6-2). 

The Kruskal-Wallis tests applied on variety susceptibility revealed significant differences 

for LRI and PMI with p < 0.01. Susceptibility classes 3 to 5 had significant different LRI 

mean values compared to classes 7 to 9 with p < 0.05 according to the two-sample 

Wilcoxon rank-sum tests. Classes 2 and 6 had no significant different mean than any other 

class (Tab. 6-3). The Kolmogorov-Smirnov tests presented even less significant 

differences between the leaf rust susceptibility classes (Tab. 6-3). Susceptibility classes 1 

and 2 had significant different PMI means compared to classes 3 to 8 with p < 0.05 

according to the two-sample Wilcoxon rank-sum tests. The classes 3 and 4 had significant 

different means compared to most of the classes 5 to 8 with p < 0.05. The mean values of 

classes 5 to 8 were not significantly different from each other (Tab. 6-3). The 

Kolomogorov-Smirnov tests revealed similar patterns of difference between the 

susceptibility classes for powdery mildew (Tab. 6-3). 

Variable corr (lr) p (lr) corr (pm) p (pm) n
Monitoring day -0.0889 0.0049 -0.0959 0.0016 554
Day of sowing -0.0384 0.2211 0.1467 0.0000 553
Day of emergence -0.0422 0.1819 0.1487 0.0000 541
Vegetation period -0.0197 0.5285 -0.1628 0.0000 553
Usable field capacity 0.0159 0.6205 -0.0818 0.0083 554
Field capacity -0.0149 0.6439 -0.1315 0.0000 554
Air capacity -0.0043 0.8957 0.0230 0.4624 554
 Total pore volume -0.0056 0.8630 -0.1120 0.0003 554
Potential cation exchange capacity -0.0310 0.3357 -0.0692 0.0257 554

Disease Variable Chi-Square p
Leaf rust PC 16.4894 0.8995
Leaf rust PPC 17.9126 0.5283
Leaf rust Resistance 19.8071 0.0060
Powdery mildew PC 36.5693 0.0483
Powdery mildew PPC 19.9622 0.3969
Powdery mildew Resistance 38.8212 0.0000

59 

 



Results 

Tab. 6-3: P-values of two-sample Wilcoxon rank-sum tests (Wilc) and Kolmogorov-Smirnov tests (KS) to 
compare mean values and distributions of leaf rust and powdery mildew incidence between all 
combinations of resistance groups. 

 
 

The annual amounts of susceptible and resistant varieties included in the dataset revealed 

different patterns for both pathogens. No varieties susceptible to leaf rust were detected 

before 1992 (Fig. 6-5a). Between 1992 and 1996 more susceptible than resistant varieties 

were used. Since 1996 a trend towards varieties with lower susceptibility was observed. 

In contrast to leaf rust varieties susceptible to powdery mildew were intensely used before 

1992 (Fig. 6-5b). In most of the years more than 50% of the varieties were susceptible. 

Group 1 Group 2 p (Wilc) p (KS) Group 1 Group 2 p (Wilc) p (KS)
2 3 0.7997 0.9975 1 2 0.3533 0.7258
2 4 0.4526 0.8069 1 3 0.4340 0.5265
2 5 0.6011 0.9498 1 4 0.1670 0.2400
2 6 0.4459 0.9361 1 5 0.0281 0.0794
2 7 0.2250 0.3842 1 6 0.0249 0.0366
2 8 0.2132 0.3958 1 7 0.0272 0.0095
2 9 0.1060 0.3585 1 8 0.0261 0.1033
3 4 0.1053 0.3128 1 9 0.1203 0.2992
3 5 0.3404 0.8360 2 3 0.0046 0.0105
3 6 0.1539 0.6924 2 4 <.0001 0.0001
3 7 0.0007 0.0016 2 5 0.0001 0.0018
3 8 0.0026 0.0317 2 6 0.0014 0.0037
3 9 0.0191 0.1882 2 7 0.0028 0.0021
4 5 0.6259 0.9665 2 8 0.0090 0.0745
4 6 0.8820 0.6345 2 9 0.0771 0.2268
4 7 0.0208 0.0335 3 4 0.2812 0.7627
4 8 0.0777 0.3041 3 5 0.0308 0.1337
4 9 0.0964 0.3504 3 6 0.0261 0.0709
5 6 0.5865 0.9982 3 7 0.0448 0.0201
5 7 0.0181 0.0851 3 8 0.0280 0.1756
5 8 0.0455 0.2233 3 9 0.2613 0.5594
5 9 0.0789 0.3361 4 5 0.1274 0.4414
6 7 0.1249 0.1320 4 6 0.0593 0.1613
6 8 0.1864 0.4492 4 7 0.0922 0.0582
6 9 0.1492 0.6381 4 8 0.0438 0.2047
7 8 0.7034 0.8893 4 9 0.3787 0.7122
7 9 0.5797 0.9679 5 6 0.3494 0.7299
8 9 0.4724 0.8423 5 7 0.4803 0.4867

5 8 0.1132 0.2453
5 9 0.7628 0.9444
6 7 0.8307 0.9614
6 8 0.3839 0.5860
6 9 0.6644 0.9525
7 8 0.2647 0.2700
7 9 0.6433 0.9639
8 9 0.2683 0.5176

Leaf rust Powdery mildew
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Results 

Starting in 1992 the amount of varieties susceptible to powdery mildew remained constant 

on a very low level. 

The autocorrelation functions were significant for LRI at lags of one and seven years (Fig. 

6-6a) and not significant for PMI (Fig.6-6b) according to the 95%-quantile of the normal 

distribution. 

 
Fig. 6-5: Annual counts of wheat varieties susceptible (red) and resistant (blue) to leaf rust (a) and powdery 
mildew (b)for monitoring sites during 1976 to 2010 in Saxony-Anhalt. 
 

 
Fig. 6-6: Coefficients of the autocorrelation functions of leaf rust (a) and powdery mildew (b) for lags of 0 
to 14 years. The confidence limits using α = 0.05 are indicated as blue interrupted lines. 
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Results 

6.3 Logistic regression results 

In this chapter the results of the logistic modeling approaches are presented. In addition 

to the tables presented below, all parameter estimates of the final selected models were 

compiled according to a calendar format in Tab. 6-4 & 6-5 to allow an easier overview of 

the selected variable-timeframe combinations. 

Tab. 6-4: Calendar of parameter estimates included in the logistic regression models using leaf rust data. 
Interval number (Interv), real starting (Start), and ending (End) dates of the intervals are displayed. Res = 
x, if parameter estimate interacted with the resistance group, Res = value, if meteorological variable was 
selected with and without resistance as an interaction term. Negative (red) and positive (blue) parameter 
estimates are shown for the LRI-, LRI0-, and LRI30-model. 

 

Tab. 6-5: Calendar of parameter estimates included in the logistic regression models using powdery mildew 
data. Interval number (Interv), real starting (Start), and ending (End) dates of the intervals are displayed. 
Res = x, if parameter estimate interacted with the resistance group, Res = value, if meteorological variable 
was selected with and without resistance as an interaction term. Negative (red) and positive (blue) parameter 
estimates are shown for the PMI-, PMI0-, and PMI50-model. 

 

Start 16.6 1.6 17.5 2.5 17.4 2.4 18.3 3.3 16.2 1.2 17.1 2.1 18.12 3.12 18.11 3.11 19.10 4.10 19.9 4.9
End 2.6 18.5 3.5 18.4 3.4 19.3 4.3 17.2 2.2 18.1 3.1 19.12 4.12 19.11 4.11 20.10 5.10 20.9 5.9 21.8
Interv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
LRI 0.116 0.145 0.141
Res
LRI0 0.120 0.110
Res x

LRI30 0.229 0.238 0.153 -0.144
Res
LRI 0.138 -0.173 0.301 0.297 0.300 -0.212 0.164 0.220
Res x x x
LRI0 -0.205 0.290 0.380 0.169
Res

LRI30 0.172 0.286
Res x
LRI 0.243 -0.343
Res
LRI0 -0.217 0.312
Res

LRI30 0.628 -0.395 0.690 -0.804
Res x x

Date
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Start 16.6 1.6 17.5 2.5 17.4 2.4 18.3 3.3 16.2 1.2 17.1 2.1 18.12 3.12 18.11 3.11 19.10 4.10 19.9 4.9
End 2.6 18.5 3.5 18.4 3.4 19.3 4.3 17.2 2.2 18.1 3.1 19.12 4.12 19.11 4.11 20.10 5.10 20.9 5.9 21.8
Interv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
PMI 0.075 -0.042 -0.092 -0.065 -0.080 -0.080 -0.085
Res x x x x
PMI0 -0.085 -0.112
Res x x

PMI50 -0.069 -0.109 -0.121 -0.108 -0.120 0.070 -0.139
Res 0.105 x x x
PMI 0.091 -0.182 -0.204 -0.152 -0.373 -0.252 0.135
Res
PMI0 -0.189 -0.308 -0.459
Res

PMI50 0.154 -0.190 -0.210 -0.428 -0.258 -0.167 -0.157 -0.278 -0.342 0.135
Res x x x x x x
PMI 0.350 -0.413 -0.150 -0.192
Res
PMI0 -0.165 0.215 -0.262
Res

PMI50
Res

Date
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Results 

6.3.1 Leaf rust 

6.3.1.1 Raw incidence data 

The MSE validation results obtained for the 10 regression models, identified by applying 

a 10-fold cross-validation on the test samples are presented in Tab. 6-6. The logistic 

model for the raw leaf rust incidence (LRI) with the minimum MSE value for the test 

sample was selected and included 14 variables (Tab. 6-7). Based on the parameter 

estimates (PE) precipitation had a positive influence on LRI between mid February and 

mid March and at the end of August and beginning of September and a negative influence 

during the second half of December. During the second half of May, the first half of 

February, and the second half of November precipitation had a positive impact on LRI on 

resistant varieties and a negative on LRI on susceptible varieties. In the first half of April 

precipitation had a negative influence on LRI on susceptible varieties and a positive one 

on resistant varieties. Mean temperature had a positive influence on LRI during the first 

half of April, the second half of January, and the first half of December. Wind speed had 

a negative impact on LRI during the first half of January and a positive one during the 

second half of March. The resistance group had a negative parameter estimate. With 

regard to the class coding this implies a positive PE on susceptible varieties and a negative 

PE on resistant varieties. 

Tab. 6-6: MSE-V for the logistic regression model derived using raw leaf rust data for each repetition 
number according to the 10-fold cross-validation sample. 

 
 

 

 

 

 

Re p e titio n MSE-V
1 0.031
2 0.040
3 0.039
4 0.049
5 0.031
6 0.023
7 0.042
8 0.038
9 0.043
10 0.046
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Results 

Tab. 6-7: Parameter estimates and 5%- and 95%-confidence limits for the final selected leaf rust (lr) model 
using raw incidence data. The abbreviation “Resgr” stands for the resistance group. Interactions are 
indicated by *.The numbers linked with the abbreviated variable identify the 15-day interval over which 
the variable was aggregated. 

 

6.3.1.2 0% incidence threshold 

The f-measure validation results obtained for the 10 regression models, identified by 

applying a 10-fold cross-validation on the test samples are shown in Tab. 6-8. The binary 

logistic model for a threshold of 0% leaf rust incidence (LRI0) with the maximum f-

measure for the test sample was selected and included 9 variables (Tab. 6-9). The PEs 

pointed out that precipitation had a negative impact on LRI0 in the second half of April 

and a positive during the first half of March and the second halves of January and October. 

Mean temperature had a positive influence during the first half of April. For the second 

half of April LRI0 had a positive PE on resistant varieties and a negative PE on 

susceptible varieties. Wind speed had a positive influence on LRI0 in the second half of 

November, and a negative influence during the second half of December. 

Tab. 6-8: F-measure, recall, precision, predicted positives (ppos), observed positives (pos), and true 
positives (TP) for the logistic regression model derived for the probability to exceed 0% leaf rust incidence 
for each repetition number according to the 10-fold cross-validation sample. 

 

Va ria b le Estima te p 5 p 95
Intercept -3.041 -3.235 -2.879
Resgr_lr -0.588 -0.718 -0.465
prec_12 -0.212 -0.321 -0.107
prec_14*Resgr_lr 0.164 0.014 0.318
prec_2*Resgr_lr 0.138 0.042 0.225
prec_20 0.220 0.111 0.325
prec_5*Resgr_lr -0.173 -0.308 -0.052
prec_7 0.301 0.193 0.424
prec_8 0.297 0.148 0.426
prec_9*Resgr_lr 0.300 0.103 0.463
temp_10 0.145 0.108 0.180
temp_13 0.141 0.096 0.184
temp_5 0.116 0.055 0.175
wind_11 -0.343 -0.468 -0.213
wind_6 0.243 0.032 0.430

Re p e titio n p p o s p o s tp re ca ll p re c is io n fme a sure
1 27 33 18 0.545 0.667 0.638
2 27 33 17 0.515 0.630 0.603
3 20 33 13 0.394 0.650 0.575
4 19 33 13 0.394 0.684 0.596
5 26 33 19 0.576 0.731 0.693
6 22 34 16 0.471 0.727 0.656
7 23 34 17 0.500 0.739 0.675
8 22 34 13 0.382 0.591 0.533
9 21 35 14 0.400 0.667 0.588
10 23 35 15 0.429 0.652 0.591
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Results 

Tab. 6-9: Parameter estimates and 5%- and 95%-confidence limits for the final selected leaf rust (lr) model 
generated to model the probability to exceed 0% leaf rust incidence. The abbreviation “Resgr” stands for 
the resistance group. Interactions are indicated by *.The numbers linked with the abbreviated variable 
identify the 15-day interval over which the variable was aggregated. 

 

6.3.1.3 30% incidence threshold 

The f-measure validation results obtained for the regression models, identified by 

applying a 10-fold cross-validation on the test samples are presented in Tab. 6-10. 

Tab. 6-10: F-measure, recall, precision, predicted positives (ppos), observed positives (pos), and true 
positives (TP) for the logistic regression model derived for the probability to exceed 30% leaf rust incidence 
for each repetition number according to the 10-fold cross-validation sample. 

 
 

The binary logistic model for a threshold of 30% leaf rust incidence (LRI30) with the 

maximum f-measure for the test sample was selected and included 10 variables (Tab. 

6-11). The PEs revealed that precipitation had a positive impact during the second half of 

January. For the second half of May LRI30 had a positive PE on resistant and a negative 

PE on susceptible varieties. Mean temperature had a positive impact on LRI30 between 

20th of September and 20th of October and during the first half of April. Mean temperature 

had a negative PE for late August and early September. Wind speed had a positive 

influence on LRI30 for the first half of March and a negative for the second half of 

December. During the second half of March wind speed had a negative PE on resistant 

varieties and a positive PE on susceptible varieties. For the first half of April wind speed 

Va ria b le Estima te p 5 p 95
Intercept -0.241 -0.358 -0.124
Resgr_lr -0.460 -0.568 -0.360
prec_10 0.380 0.244 0.523
prec_16 0.169 0.064 0.274
prec_4 -0.205 -0.308 -0.103
prec_7 0.290 0.186 0.381
temp_4*Resgr_lr 0.120 0.069 0.170
temp_5 0.110 0.062 0.160
wind_12 -0.217 -0.346 -0.087
wind_14 0.312 0.162 0.479

Re p e titio n p p o s p o s tp re ca ll p re c is io n fme a sure
1 1 6
2 2 7 1 0.143 0.500 0.333
3 1 7
4 1 7 1 0.143 1.000 0.455
5 1 7
6 0 7
7 4 7 2 0.286 0.500 0.435
8 1 7
9 2 7
10 3 8 2 0.250 0.667 0.500
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had a positive influence on LRI30 on resistant varieties and a negative influence on 

susceptible varieties. 

Tab. 6-11: Parameter estimates and 5%- and 95%-confidence limits for the final selected leaf rust (lr) model 
generated to model the probability to exceed 30% leaf rust incidence. The abbreviation “Resgr” stands for 
the resistance group. Interactions are indicated by *.The numbers linked with the abbreviated variable 
identify the 15-day interval over which the variable was aggregated. 

 
 

6.3.2 Powdery mildew 

6.3.2.1 Raw incidence data 

The MSE validation results obtained for the 10 regression models, identified by applying 

a 10-fold cross-validation on the test samples are shown in Tab. 6-12.  

Tab. 6-12: MSE-V for the logistic regression model derived using raw powdery mildew data for each 
repetition number according to the 10-fold cross-validation sample. 

 
The logistic model for the raw data on powdery mildew incidence (PMI) with the 

minimum MSE value for the test sample was selected and included 19 variables (Tab. 

6-13). Precipitation had a positive effect on PMI during the last 15 days before the disease 

assessment and at the end of August and beginning of September. A negative effect of 

rainfall was identified for the second half of March, the latter half of January, the first 

half of December, the second half of October, and late September. Mean temperature had 

Va ria b le Estima te p 5 p 95
Intercept -2.927 -3.191 -2.707
prec_10 0.286 0.052 0.498
prec_2*Resgr_lr 0.172 0.040 0.307
temp_17 0.238 0.131 0.358
temp_18 0.153 0.057 0.254
temp_20 -0.144 -0.250 -0.035
temp_5 0.229 0.134 0.329
wind_12 -0.804 -1.180 -0.453
wind_5*Resgr_lr 0.628 0.279 1.010
wind_6*Resgr_lr -0.395 -0.724 -0.088
wind_7 0.690 0.421 0.943

Re p e titio n MSE-V
1 0.086
2 0.079
3 0.076
4 0.091
5 0.074
6 0.092
7 0.094
8 0.078
9 0.094
10 0.070
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a negative influence on PMI during the first half of May, the second half of October, and 

late August. It had a negative influence on PMI on resistant varieties and a positive on 

susceptible varieties during the first halves of April and March and late September. A 

positive impact on PMI on resistant and a negative on susceptible varieties was detected 

for the 15-day period before the disease assessment. Finally, wind speed had a positive 

influence on PMI in the first half of May and a negative influence during the second half 

of April, the first half of January, and the second half of November. The resistance group 

had, similar to leaf rust, a negative parameter estimate, implying that a higher resistance 

had a negative effect on disease incidence. 

Tab. 6-13: Parameter estimates and 5%- and 95%-confidence limits for the final selected powdery mildew 
(pm) model using raw incidence data. The abbreviation “Resgr” stands for the resistance group. Interactions 
are indicated by *.The numbers linked with the abbreviated variable identify the 15-day interval over which 
the variable was aggregated. 

 

6.3.2.2 0% incidence threshold 

The f-measure validation results obtained for the 10 regression models, identified by 

applying a 10-fold cross-validation on the test samples are presented in Tab. 6-14. The 

binary logistic model for a threshold of 0% powdery mildew incidence (PMI0) that 

achieved the maximum f-measure for the test sample was selected and included eight 

variables (Tab. 6-15). The model showed that precipitation had a negative impact on 

PMI0 during the second halves of April, November, and October. Mean temperature had 

a negative influence on PMI0 on resistant varieties and a positive one on susceptible 

Va ria b le Estima te p 5 p 95
Intercept -0.999 -1.095 -0.911
Resgr_pm -0.399 -0.478 -0.317
prec_1 0.091 0.035 0.148
prec_10 -0.204 -0.296 -0.109
prec_13 -0.152 -0.254 -0.061
prec_16 -0.373 -0.464 -0.283
prec_18 -0.252 -0.333 -0.174
prec_20 0.135 0.060 0.206
prec_6 -0.182 -0.262 -0.108
temp_1*Resgr_pm 0.075 0.039 0.110
temp_16 -0.080 -0.116 -0.043
temp_18*Resgr_pm -0.080 -0.119 -0.042
temp_20 -0.085 -0.146 -0.031
temp_3 -0.042 -0.075 -0.004
temp_5*Resgr_pm -0.092 -0.131 -0.053
temp_7*Resgr_pm -0.065 -0.093 -0.039
wind_11 -0.150 -0.231 -0.066
wind_14 -0.192 -0.285 -0.105
wind_3 0.350 0.120 0.613
wind_4 -0.413 -0.565 -0.260
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varieties during the second halves of March and November. Wind speed had a positive 

influence on PMI0 in the first half of February and a negative one during the second half 

of February and the first half of December. 

Tab. 6-14: F-measure, recall, precision, predicted positives (ppos), observed positives (pos), and true 
positives (TP) for the logistic regression model derived for the probability to exceed 0% powdery mildew 
incidence for each repetition number according to the 10-fold cross-validation sample. 

 

Tab. 6-15: Parameter estimates and 5%- and 95%-confidence limits for the final selected powdery mildew 
(pm) model generated to model the probability to exceed 0% powdery mildew incidence. The abbreviation 
“Resgr” stands for the resistance group. Interactions are indicated by *.The numbers linked with the 
abbreviated variable identify the 15-day interval over which the variable was aggregated. 

 

6.3.2.3 50% incidence threshold 

The f-measure validation results obtained for the 10 regression models, identified by 

applying a 10-fold cross-validation on the test samples are shown in Tab. 6-16. The binary 

logistic model for a threshold of 50% powdery mildew incidence (PMI50) that achieved 

the maximum f-measure for the test sample was selected and included 18 variables (Tab. 

6-17). Precipitation had a negative effect on PMI50 during the second halves of March, 

January, October, and September. During the second half of August and the 15-day period 

before the disease assessment precipitation showed a positive impact on PMI50 on 

resistant varieties and a negative impact on susceptible varieties. For the second halves 

of April and December and the first halves of March and January precipitation had a 

negative PE on resistant varieties and a positive PE on susceptible varieties. Mean 

Re p e titio n p p o s p o s tp re ca ll p re c is io n fme a sure
1 81 70 64 0.914 0.790 0.812
2 83 70 65 0.929 0.783 0.808
3 86 70 69 0.986 0.802 0.833
4 81 70 64 0.914 0.790 0.812
5 88 71 70 0.986 0.795 0.827
6 80 71 63 0.887 0.788 0.806
7 80 71 64 0.901 0.800 0.818
8 83 71 67 0.944 0.807 0.831
9 87 71 65 0.915 0.747 0.776
10 86 71 66 0.930 0.767 0.795

Va ria b le Estima te p 5 p 95
Intercept 1.111 1.005 1.223
prec_14 -0.308 -0.430 -0.190
prec_16 -0.459 -0.570 -0.356
prec_4 -0.189 -0.293 -0.091
temp_14*Resgr_pm -0.112 -0.161 -0.063
temp_6*Resgr_pm -0.085 -0.142 -0.022
wind_13 -0.262 -0.414 -0.099
wind_8 -0.165 -0.268 -0.066
wind_9 0.215 0.088 0.336
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temperature had a negative influence on PMI50 during the 15-day period before the 

monitoring date and the first halves of May and April. A positive PE was determined for 

the first half of November. In addition, mean temperature had a positive PE on resistant 

varieties and a negative PE on susceptible varieties during the 15-day period before 

disease assessment. During March and the second half of August mean temperature had 

a negative impact on PMI50 on resistant varieties and a positive impact on susceptible 

varieties. 

Tab. 6-16: F-measure, recall, precision, predicted positives (ppos), observed positives (pos), and true 
positives (TP) for the logistic regression model derived for the probability to exceed 50% powdery mildew 
incidence for each repetition number according to the 10-fold cross-validation sample. 

 

Tab. 6-17: Parameter estimates and 5%- and 95%-confidence limits for the final selected powdery mildew 
(pm) model generated to model the probability to exceed 50% powdery mildew incidence. The abbreviation 
“Resgr” stands for the resistance group. Interactions are indicated by *.The numbers linked with the 
abbreviated variable identify the 15-day interval over which the variable was aggregated. 

 

Re p e titio n p p o s p o s tp re ca ll p re c is io n fme a sure
1 5 19 3 0.158 0.600 0.385
2 3 19 2 0.105 0.667 0.323
3 5 19 4 0.211 0.800 0.513
4 4 19 3 0.158 0.750 0.429
5 1 19 1 0.053 1.000 0.217
6 5 19 1 0.053 0.200 0.128
7 6 19 5 0.263 0.833 0.581
8 5 19 4 0.211 0.800 0.513
9 8 19 2 0.105 0.250 0.196
10 4 20 3 0.150 0.750 0.417

Va ria b le Estima te p 5 p 95
Intercept -1.377 -1.517 -1.244
prec_1*Resgr_pm 0.154 0.074 0.237
prec_10 -0.258 -0.456 -0.088
prec_11*Resgr_pm -0.167 -0.297 -0.051
prec_12*Resgr_pm -0.157 -0.264 -0.062
prec_16 -0.278 -0.448 -0.134
prec_18 -0.342 -0.489 -0.205
prec_20*Resgr_pm 0.135 0.023 0.236
prec_4*Resgr_pm -0.190 -0.303 -0.072
prec_6 -0.210 -0.344 -0.094
prec_7*Resgr_pm -0.428 -0.594 -0.284
temp_1 -0.069 -0.141 -0.004
temp_1*Resgr_pm 0.105 0.044 0.170
temp_15 0.070 0.014 0.127
temp_20*Resgr_pm -0.139 -0.223 -0.055
temp_3 -0.109 -0.169 -0.057
temp_5 -0.121 -0.194 -0.054
temp_6*Resgr_pm -0.108 -0.182 -0.040
temp_7*Resgr_pm -0.120 -0.165 -0.074
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6.4 Validation of the logistic regression equations 

The leaf rust model using raw incidence data had a mean error of 17.2% and the powdery 

mildew model a mean error of 26.6%. Comparing predicted and observed mean values 

over all stations and years for the period 1976 to 2010 revealed an error of 0.05% for the 

LRI model and 0.36% for the PMI model. The annual mean values had a RMSE of 2.71% 

for the LRI model and 8.18% for the PMI model. 

 

 
 

Fig. 6-7 Observed (blue) and predicted (red) disease incidence of leaf rust (a) and powdery mildew (b) on 
winter wheat in percent during the period 1976 to 2010: The mean values (filled dots), medians (crossbars 
in the box), interquartile ranges (box heights), 5%- and 95%-percentiles (whiskers), and outliers (circles) 
are shown. 
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Results 

Figure 6-7a reveals that mean annual LRI was slightly overestimated for smaller values 

and slightly underestimated for some of the larger values. The annual variability was 

underestimated for most years. Figure 6-7b shows the mean annual PMI being 

underestimated for high values and overestimated for smaller values. The annual 

variability was underestimated in every year. Station-wise mean values showed a RMSE 

of 7.56% for the LRI model and 8.18% for the PMI model. 

 

 
Fig. 6-8: Differences between observed and predicted station-wise mean disease incidence of leaf rust (a, 
b) and powdery mildew (c, d) on susceptible (a, c) and resistant (b, d) wheat varieties. 
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Figure 6-8 shows the regional differences between observed and predicted LRI and PMI 

on susceptible and resistant varieties. The LRI on susceptible varieties was 

underestimated in the central and eastern parts of the state and overestimated in the 

remaining parts. On resistant varieties the LRI was slightly over- or underestimated at 

most stations, but errors were smaller compared to susceptible varieties. The PMI on 

susceptible varieties revealed a rather heterogeneous pattern with a tendency towards 

underestimation in the central parts and overestimation in the northern part of the state. 

The PMI on resistant varieties showed heterogeneous distributed errors without a distinct 

pattern. The area under the receiver operator curve (ROC AUC) had a value of 0.80 for 

the LRI model and 0.71 for the PMI model. The plots of Pearson Chi-Square residuals 

show non-constant variance of the residuals with respect to the linear predictor for the 

LRI and PMI model (Fig. 6-9). In addition, the residuals for the PMI model identified a 

negative trend. 

 

 
Fig. 6-9: Pearson Chi-Square Residuals plotted against the values of the linear predictor of the logistic 
regression model using raw leaf rust (a) and powdery mildew (b) incidence. 
 

The model for LRI0 showed an f-measure of 0.67 with recall = 0.51 and precision = 0.73. 

The overall mean values of predicted and observed LRI0 for the period 1976 to 2010 

revealed an error of 0.23%. The annual mean values had a RMSE of 15.68% and the 

station-wise means a RMSE of 18.97%. Annual mean LRI0 was underestimated for some 

of the years with higher probability and overestimated for most of the years with smaller 

probability (Fig. 6-10a). The differences between observed and predicted station-wise 

LRI0 averages on susceptible varieties (Fig. 6-11a) revealed a heterogeneous pattern with 

a strong tendency for underestimation in the central part of the state. On resistant varieties 

figure 6-11b shows a highly heterogeneous pattern with relatively high error for the whole 

state. The PMI0 model had an f-measure of 0.82 with recall = 0.97 and precision = 0.79. 
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Overall mean values of predicted and observed PMI0 showed an error of 0.06%. Annual 

mean values had a RMSE of 15.57% and station-wise mean values a RMSE of 22.25%. 

Annual PMI0 averages were mainly underestimated before 1998 and mainly 

overestimated after (Fig. 6-10b). Figure 6-11 shows that PMI0 was underestimated for 

most stations on susceptible varieties and strongly overestimated for most stations on 

resistant varieties. The ROC AUC had a value of 0.72 for the LRI0 model and 0.68 for 

the PMI0 model. The plots of Pearson Chi-Square residuals revealed non-constant 

variance of the residuals with respect to the linear predictor and a slight negative trend of 

the errors for the LRI0 and PMI0 model (Fig. 6-12). 
 

 
 

Fig. 6-10: Mean observed (blue) and predicted (red) annual probabilities of exceeding 0% leaf rust (a) and 
powdery mildew (b) incidence during the period 1976 to 2010 in percent. 
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Fig. 6-11: Differences between observed and predicted station-wise mean probabilities to exceed 0% leaf 
rust (a, b) and powdery mildew (c, d) incidence on susceptible (a, c) and resistant (b, d) wheat varieties. 
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Fig. 6-12: Pearson Chi-Square Residuals plotted against the values of the linear predictor of the logistic 
regression model projecting the probability to exceed 0% leaf rust (a) and powdery mildew (b) incidence. 
 

The f-measure for the LRI30 model was 0.42 with recall = 0.17 and precision = 0.67. The 

overall mean values of predicted and observed LRI30 for the period 1976 to 2010 

identified an error of -0.37%. Annual means had a RMSE of 6.18% and station-wise mean 

values a RMSE of 11.17%. Annual mean values were overestimated for years with lower 

LRI30 and underestimated for most of the years with higher LRI30 (Fig. 6-13a). Fig. 

6-15a shows that LRI30 on susceptible varieties was strongly underestimated in the 

central and eastern parts and overestimated in the northern and southern parts of the state. 

LRI30 on resistant varieties revealed smaller differences between observed and predicted 

values with a tendency towards overestimation in the central, western, and southern parts 

of the state (Fig. 6-15b). The PMI50 model had an f-measure of 0.51 with recall = 0.21 

and precision = 0.78. The overall mean value of PMI50 showed an error of -0.36%. The 

annual mean values revealed a RMSE of 9.64% and the station-wise means a RMSE of 

9.87%. Annual mean values were overestimated for years with smaller PMI50 and 

underestimated in years with higher PMI50 (Fig. 6-13b). The differences between 

observed and predicted PMI50 on susceptible varieties revealed a heterogeneous pattern 

with strong underestimation in the central and eastern parts and strong overestimation in 

the northern parts of the state (Fig. 6-15c). On resistant varieties fig. 6-15d shows a very 

heterogeneous pattern with slight to strong overestimation in the northwestern part and 

slight underestimation in the northeastern part of the state. The ROC AUC had a value of 

0.77 for the LRI30 model and 0.74 for the PMI50 model. Both plots of Pearson Chi-

Square residuals revealed non-constant variance of the residuals with respect to the linear 

predictor (Fig. 6-14). 
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Fig. 6-13: Mean observed (blue) and predicted (red) annual probabilities of exceeding 30% leaf rust (a) and 
50% powdery mildew (b) incidence during the period 1976 to 2010 in percent. 
 

 
Fig. 6-14: Pearson Chi-Square Residuals plotted against the values of the linear predictor of the logistic 
regression model projecting the probability to exceed 30% leaf rust (a) and 50% powdery mildew (b) 
incidence. 

76 

 



Results 

 
Fig. 6-15: Differences between observed and predicted station-wise mean probabilities to exceed 0% leaf 
rust (a, b) and 50% powdery mildew (c, d) incidence on susceptible (a, c) and resistant (b, d) wheat varieties. 
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6.5 Climate change scenarios 

6.5.1 Changes of annual meteorological characteristics 

Fig. 6-16 demonstrates a significant increase of annual mean temperature comparing the 

scenario period 2031 to 2060 with the base period 1981 to 2010 assuming an increase in 

the temperature forcing. The temperature rose stronger in the central German drylands, 

the Harz Mountains, and the northwestern part of the state under the 3K-scenario (Fig. 6-

17). The amount of freezing and icy days decreased significantly with an increase in the 

temperature forcing. The decrease revealed values up to 35 freezing days and 15 icy days 

under the 3K-scenario (Fig. 6-18). 

 

 
Fig. 6-16: Differences in mean temperature between long-term means calculated for the base period 1981 
to 2010 and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, and 3K-scenario. The medians 
calculated over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 5%- and 
95%-percentiles (whiskers) are shown. 
 

Precipitation significantly decreased only under the 3K-scenario (Fig. 6-19). No 

significant differences were detected between the scenarios analyzed. Parallel to the 

reduction in rainfall the amount of days with precipitation decreased significantly with an 

increase in mean temperature (Fig. 6-20). The reduction was strongest under the 3K-

scenario with a decrease by 27 days. Precipitation under the 3K-scenario decreased 

strongest in the Harz Mountains (Fig. 6-21). The weakest decrease was detected for the 

central, northwestern, and southeastern parts of the state. 
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Fig. 6-17: Station-wise differences in mean temperature between long-term means calculated for the base 
period 1981 to 2010 and the scenario period 2031 to 2060 under the 3K-scenario. 
 

 
Fig. 6-18: Differences in the annual number of freezing days (a) and icy days (b) between long-term means 
calculated for the base period 1981 to 2010 and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, 
and 3K-scenario. The medians calculated over all STARS realizations (crossbars in the box), interquartile 
ranges (box heights), 5%- and 95%-percentiles (whiskers) are shown. 
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Fig. 6-19: Differences in annual precipitation sums between long-term means calculated for the base period 
1981 to 2010 and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, and 3K-scenario. The medians 
calculated over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 5%- and 
95%-percentiles (whiskers) are shown. 
 

 
Fig. 6-20: Differences in the annual number of days with precipitation between long-term means calculated 
for the base period 1981 to 2010 and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, and 3K-
scenario. The medians calculated over all STARS realizations (crossbars in the box), interquartile ranges 
(box heights), 5%- and 95%-percentiles (whiskers) are shown. 
 

The results for wind speed revealed no significant difference between both periods under 

any scenario (Fig. 6-22). A slight negative tendency was shown assuming a rise in mean 

temperature. Regional differences under the 3K-scenario revealed a decrease in mean 

wind speed for the northern part of the Harz Mountains and areas adjacent northwards 
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(Fig. 6-23). An increase in mean wind speed was detected for the southern parts of the 

state. 

 
Fig. 6-21: Station-wise differences in annual precipitation sums between long-term means calculated for 
the base period 1981 to 2010 and the scenario period 2031 to 2060 under the 3K-scenario. 

 
Fig. 6-22: Differences in wind speeds between long-term means calculated for the base period 1981 to 2010 
and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, and 3K-scenario. The medians calculated 
over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 5%- and 95%-
percentiles (whiskers) are shown. 
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Fig. 6-23: Station-wise differences in wind speed between long-term means calculated for the base period 
1981 to 2010 and the scenario period 2031 to 2060 under the 3K-scenario. 
 

6.5.2 Changes of seasonal meteorological characteristics 

A significant increase in mean temperature between base and scenario period was 

identified for all seasons analyzed (Fig. 6-24). The difference was larger for the winter 

months (DJF) and smaller for the summer months (JJA). 

During winter temperature increased stronger for the central German drylands and the 

northwestern part of the state. The increase was weakest for the northern Harz Mountains. 

The strongest increase during spring (MAM) was revealed for the central Harz Mountains 

and the northwestern part of the state. The southern part exhibited the smallest increase. 

Summer temperature increased strongest in and around the Harz Mountains and in the 

northwestern part of the state. The northeast showed the slightest increase. In autumn the 

northern Harz Mountains and adjacent areas exhibited the weakest temperature increase. 

The largest differences were detected in the northwestern, southern, and eastern parts of 

the state (Fig. 6-25). 
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Fig. 6-24: Differences in mean temperature between long-term seasonal means calculated for the base 
period 1981 to 2010 and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, and 3K-scenario. 
Seasonal differences for winter (a), spring (b), summer (c), and autumn (d) are displayed. The medians 
calculated over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 5%- and 
95%-percentiles (whiskers) are shown. 
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Fig. 6-25: Station-wise differences in mean temperature between long-term seasonal means calculated for 
the base period 1981 to 2010 and the scenario period 2031 to 2060 under the 3K-scenario. Seasonal 
differences for winter (a), spring (b), summer (c), and autumn (d) are displayed. 
 

Analyzes comparing mean precipitation sums between base and scenario period showed 

differing results depending on the season focused on (Fig. 6-26). Rainfall was not 

significantly different during winter and spring under all scenarios. During summer 

precipitation was significantly lower for all warming scenario periods compared to the 

base period. The results exhibited a decrease up to 40 mm for the 3K-scenario. 

Precipitation differences in autumn were significant only under the 3K-scenario. All 

scenarios presented a negative difference and were not significantly different from each 

other. 
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Fig. 6-26: Differences in seasonal precipitation sums between long-term means calculated for the base 
period 1981 to 2010 and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, and 3K-scenario. 
Seasonal differences for winter (a), spring (b), summer (c), and autumn (d) are displayed. The medians 
calculated over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 5%- and 
95%-percentiles (whiskers) are shown. 
 

Precipitation differences between base and scenario period during winter were positive 

for most parts of the state. The highest values were detected in the central Harz Mountains 

exhibiting an increase in precipitation up to 25 mm. Differences for spring precipitation 

revealed a smaller deviation from zero compared to winter. Rainfall decreased strongest 

in the Harz Mountains and increased strongest in the central and northwestern parts of the 

state. The summer season revealed the strongest differences overall and detected 

exclusively negative differences. Rainfall decreased strongest in parts of the Harz 

Mountains and slightest in the central and southern parts of the state. In autumn 
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precipitation decreased for the whole state. The Harz Mountains showed the strongest 

decrease with values below -25 mm (Fig. 6-27). 

 

 
Fig. 6-27: Station-wise differences in seasonal precipitation sums between long-term means calculated for 
the base period 1981 to 2010 and the scenario period 2031 to 2060 under the 3K-scenario. Seasonal 
differences for winter (a), spring (b), summer (c), and autumn (d) are displayed. 
 

Results for mean wind speed during winter revealed significant positive differences 

between base and scenario period under the 2K- and 3K-scenario (Fig. 6-28). The 

difference increased with an increase in mean temperature. Mean wind speed during the 

scenario period was lower compared to the base period during the other three seasons. 

The difference increased assuming an increase in mean temperature. Under the 3K-
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scenario the difference was significant during spring, summer, and autumn. Significant 

differences under the 1K- and 2K-scenario were only identified during summer. 

 

 
Fig. 6-28: Differences in mean wind speeds between long-term seasonal means calculated for the base 
period 1981 to 2010 and the scenario periods 2031 to 2060 under the 0K-, 1K-, 2K-, and 3K-scenario. 
Seasonal differences for winter (a), spring (b), summer (c), and autumn (d) are displayed. The medians 
calculated over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 5%- and 
95%-percentiles (whiskers) are shown. 
 

The wind speed differences calculated for each weather station revealed positive and 

negative values for all seasons. During winter wind speed decreased strongest in the 

northern and northeastern part of the Harz Mountains. The strongest increase was detected 

for the southern parts of the state. The same patterns including similar values of the 

differences were identified during spring, summer, and autumn (Fig. 6-29). 
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Fig. 6-29: Station-wise differences in wind speeds between long-term seasonal means calculated for the 
base period 1981 to 2010 and the scenario period 2031 to 2060 under the 3K-scenario. Seasonal differences 
for winter (a), spring (b), summer (c), and autumn (d) are displayed. 
 

6.6 Disease potential according to the fuzzy approach 

During the base period (1981 to 2010) the disease potential (DP) of leaf rust showed a 

clear dominance of medium potential. 48 of the 61 stations had medium, 12 stations low, 

and one station high DP. In contrast to the base period the distribution of DP changed 

towards more stations with medium DP and less stations with low and high DP during 

the scenario period (2031 to 2060) under the 3K-scenario. The number of stations 

exhibiting medium DP increased assuming a rise in mean temperature (Fig. 6-30a-d). The 
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changes identified 11 stations less exhibiting low DP, 12 stations more having medium 

DP, and 1 station less showing high DP during the scenario period compared to the base 

period. 

Concerning powdery mildew most stations (51 of 61) were characterized by low DP 

during the base period. The remaining stations distributed equally on medium to very 

high DP. Compared to the base period the potential during the scenario period shifted 

towards low DP (Fig. 6-30e-h). The number of stations exhibiting medium, high, and very 

high DP decreased with an increase in mean temperature. The number of stations showing 

low DP increased by 9 under the 3K-scenario. Only one station remained with very high 

DP. The station located at the Brocken, the highest mountain in northern Germany. 
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Fig. 6-30: Differences in station counts between disease potential classes calculated using long-term means 
of meteorological variables computed for the base period 1981 to 2010 and the scenario periods 2031 to 
2060 under the 0K- (a, e), 1K- (b, f), 2K- (c, g), and 3K-scenario (d, h). Disease potential classes “Low”, 
“Medium”, and “High” for leaf rust (a-d) and including the additional class “Very high” for powdery 
mildew (e-h) are displayed. 
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6.7 Trends of mean disease incidence and threshold exceeding 

probability in Saxony-Anhalt between 2011 and 2060 

6.7.1 Leaf rust 

The time series of mean LRI on susceptible wheat varieties (Fig. 6-31a) revealed a strong 

increase under the 3K-scenario between 2011 and 2060, a slight increase for the 1K- and 

2K-scenarios, and no increase for the 0K-scenario. Linear trend analyses of LRI 

development between 2011 and 2060 showed positive trends (ΔLRI) for all scenarios. 

Only the trend of the 3K-scenario showed a significant increase with ΔLRI = 14% and  

α = 5% (Fig. 6-32a). With regard to the four climate scenarios LRI patterns on resistant 

varieties were similar, but the increases in LRI for the 1K-, 2K-, and 3K-scenario were 

much smaller (Fig. 6-31d). This was supported by positive linear trends for all scenarios 

including a significant trend with ΔLRI = 8% and α = 5% for the 3K-scenario (Fig. 6-32d). 

The mean LRI0 on susceptible varieties did not change for the 0K-scenario but decreased 

slightly under the other scenarios (Fig. 6-31b). All linear trend estimates had a value close 

to 0 and none were significant (Fig. 6-32b). The mean LRI0 on resistant varieties showed 

no change for the 0K-scenario and strong increases for the other climate scenarios (Fig. 

6-31e). Concerning all scenarios the trend estimates were positive. ΔLRI0 increased with 

an increase of the temperature forcing. The only significant trend was identified for the 

3K-scenario with ΔLRI0 = 17% and α = 5% (Fig. 6-32e). 

The mean LRI30 on susceptible varieties did not change for the 0K-scenario, increased 

slightly under the 1K- and 2K-scenario, and increased stronger under the 3K-scenario 

between 2011 and 2060 (Fig. 6-31c). The trend estimates revealed no significant trend 

for any scenario. But the trend for the 3K-scenario (ΔLRI30 = 10%) was much stronger 

compared to the 1K- and 2K-scenario (Fig. 6-32c). Similar change patterns were detected 

for the mean LRI30 on resistant varieties for all climate scenarios (Fig. 6-31f). Trend 

analyses showed no significant trend for any scenario, but positive trends strengthened 

with increasing temperature forcing (Fig. 6-32f). 
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Fig. 6-31: Projected leaf rust incidence (a, d) and probabilities exceeding 0% (b, e) and 30% (c, f) incidence 
on susceptible (a-c) and resistant (d-f) wheat varieties in percent during the period 2011 to 2060 for the 
0K-, 1K-, 2K-, and 3K-scenario: The annual median values (straight lines), 5%-, and 95%-percentiles 
(interrupted lines) are shown. 
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Fig. 6-32: Trends in leaf rust incidence (a, d) and probabilities exceeding 0% (b, e) and 30% (c, f) incidence 
on susceptible (a-c) and resistant (d-f) wheat varieties in percent during the period 2011 to 2060 for the 
0K-, 1K-, 2K-, and 3K-scenario. The medians calculated over all STARS realizations (crossbars in the box), 
interquartile ranges (box heights), 5%- and 95%-percentiles (whiskers) are shown. 
 

6.7.2 Powdery mildew 

The time series of mean PMI on susceptible wheat varieties showed no tendency for all 

climate scenarios between 2011 and 2060 (Fig. 6-33a). The mean trend estimates had a 

negative tendency in consequence to an increasing temperature forcing, but the estimates 

for all climate scenarios were not significant (Fig. 6-34a). A decreasing tendency was 

present on resistant varieties for all scenarios but the 0K-scenario (Fig. 6-33d). Trend 

estimates were negative for the 1K-, 2K-, and 3K-scenario and significant for the 2K- and 

3K-scenario with ΔPMI = -9% and ΔPMI = -13%, respectively, at α = 5% (Fig. 6-34d). 

The mean PMI0 on susceptible varieties showed no tendency for the 0K-scenario, a slight 

increase for the 1K-scenario, and stronger increasing tendencies under the 2K- and 3K-

scenario (Fig. 6-33b). The trend analyses confirmed these findings (Fig. 6-34b). The mean 

trend estimates revealed no trend for the 0K-scenario, a positive but not significant trend 

for the 1K- and 2K-scenario, and a significant positive trend for the 3K-scenario. The 

trend under the 3K-scenario was significant with ΔPMI0 = 8% at α = 5%. The mean PMI0 

on resistant varieties showed no tendency for the 0K-scenario, a slight negative one for 
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the 1K-scenario, and a strong negative tendency under the 2K- and 3K-scenario (Fig. 

6-33e). Trend estimates for all scenarios had a negative sign and decreased assuming a 

rise in mean temperature (Fig. 6-34e). The trend for the 3K-scenario was the only 

significant one with ΔPMI0 = -14% at α = 5%. 

 
Fig. 6-33: Projected powdery mildew incidence (a, d) and probabilities exceeding 0% (b, e) and 50% (c, f) 
incidence on susceptible (a-c) and resistant (d-f) wheat varieties in percent during the period 2011 to 2060 
for the 0K-, 1K-, 2K-, and 3K-scenario: The annual median values (straight lines), 5%-, and 95%-
percentiles (interrupted lines) are shown. 
 

The mean PMI50 on susceptible varieties did not change markedly for the 0K- and 1K-

scenario and increased slightly for the 2K- and 3K-scenario between 2011 and 2060 (Fig. 

6-33c). The mean trends for all scenarios, except the 0K-scenario, were positive but not 

significant at α = 5% (Fig. 6-34c). With increasing the temperature forcing the trend 

estimates increased, too. The mean PMI50 on resistant varieties decreased under all 

scenarios but the 0K-scenario, which showed no change (Fig. 6-33f). All trend estimates 
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for scenarios of elevated temperature forcing were significantly negative and decreased 

as a result of increasing mean temperature (Fig. 6-34f). Trend estimates were significant 

at α = 5% with ΔPMI50(1K) = -9%, ΔPMI50(2K) = -12%, ΔPMI50(3K) = -15%. 

 
Fig. 6-34: Trends in powdery mildew incidence (a, d) and probabilities exceeding 0% (b, e) and 50% (c, f) 
incidence on susceptible (a-c) and resistant (d-f) wheat varieties in percent during the period 2011 to 2060 
for the 0K-, 1K-, 2K-, and 3K-scenario. The medians calculated over all STARS realizations (crossbars in 
the box), interquartile ranges (box heights), 5%- and 95%-percentiles (whiskers) are shown. 
 

6.8 Comparing future and present mean disease incidence and 

threshold exceeding probability in Saxony-Anhalt 

6.8.1 Leaf rust 

A comparison of mean LRI values on susceptible varieties in Saxony-Anhalt between the 

periods 1976-2010 (base period) and 2031-2060 (scenario period) revealed a significant 

positive difference (α = 5%) for the 3K-climate scenario (Fig. 6-35a). The value of the 

mean difference between both periods (ΔLRI) increased from -4% ΔLRI(0K) to 6% 

ΔLRI(3K) in consequence to an increasing temperature forcing. Resistant varieties 

showed a similar behavior with significant positive differences (α = 5%) for the 2K- and 

3K-scenario (Fig. 6-35d). The increasing temperature forcing elevated the mean 

differences from about -1% (0K-scenario) to about 6% (3K-scenario). 
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Fig. 6-35: Differences in leaf rust incidence (a, d) and the probability to exceed 0% (b, e) and 30% incidence 
(c, f) on susceptible (a-c) and resistant (d-f) wheat varieties in percent between long-term means calculated 
for the 0K-scenario and the 1K-, 2K-, and 3K-scenario during the period 2031 to 2060. The medians 
calculated over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 5%- and 
95%-percentiles (whiskers) are shown. 
 

Comparing base and scenario period on susceptible varieties by calculating ΔLRI0 

revealed no significant difference from zero for all climate scenarios, except the 0K-

scenario, at α = 5% (Fig. 6-35b). All scenarios showed mean differences between -3% 

and -5%. On resistant varieties ΔLRI0 was significantly positive for all scenarios, but the 

0K-scenario (Fig. 6-35e). The mean of ΔLRI0 increased from ΔLRI0(0K) = 2.5% to 

ΔLRI0(3K) = 14%, an increasing temperature forcing provided. ΔLRI30 was 

significantly positive for the 3K-scenario at α = 5% on susceptible varieties (Fig. 6-35c). 

The mean of ΔLRI30 increased from ΔLRI30(0K) = -2% to ΔLRI30(3K) = 6.5% for an 

increase in mean temperature. Resistant varieties showed a significant positive difference 

for all scenarios (Fig. 6-35f). The mean of ΔLRI30 increased from ΔLRI30(0K) = 3% to 

ΔLRI30(3K) = 12.5% assuming a rise in mean temperature. 

6.8.2 Powdery mildew 

The calculation of ΔPMI values between base and scenario period on susceptible varieties 

revealed no significant differences for all climate scenarios at α = 5% (Fig. 6-36a). Mean 

ΔPMI slightly decreased from ΔPMI(0K) = 1.5% to ΔPMI(3K) = -0.5% with increasing 
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temperature forcing. On resistant varieties ΔPMI was significantly negative for the 1K-, 

2K-, and 3K-scenario (Fig. 6-36d). Mean ΔPMI decreased from ΔPMI(0K) = 0% to 

ΔPMI(3K) = -11% for an increase in mean temperature. Differences in PMI0 on 

susceptible varieties were not significant for the 0K-, 1K-, and 2K-scenario and 

significantly positive for the 3K-scenario (Fig. 6-36b). Increasing the temperature 

forcing, mean ΔPMI0 increased from ΔPMI0(0K) = -3% to ΔPMI0(3K) = 5%. On 

resistant varieties ΔPMI0 was significantly different from zero for all climate scenarios, 

except the 0K-scenario (Fig. 6-36e). Mean ΔPMI0 decreased from ΔPMI0(0K) = -2% to 

ΔPMI0(3K) = -12% for an increase in mean temperature. 

PMI50 values on susceptible varieties were significantly different between base and 

scenario period with α = 5% for the 1K-, 2K-, and 3K-scenario (Fig. 6-36c). Mean 

ΔPMI50 rose from ΔPMI50(0K) = 3% to ΔPMI50(3K)=8.5% with increasing 

temperature forcing. On resistant varieties ΔPMI50 was significantly negative for the 2K- 

and 3K-scenario (Fig. 6-36f). Mean ΔPMI50 decreased from ΔPMI50(0K) = 1% to 

ΔPMI50(3K) = -10% assuming a rise in mean temperature. 

 

 
Fig. 6-36: Differences in powdery mildew incidence (a, d) and the probability to exceed 0% (b, e) and 30% 
incidence (c, f) on susceptible (a-c) and resistant (d-f) wheat varieties in percent between long-term means 
calculated for the 0K-scenario and the 1K-, 2K-, and 3K-scenario during the period 2031 to 2060. The 
medians calculated over all STARS realizations (crossbars in the box), interquartile ranges (box heights), 
5%- and 95%-percentiles (whiskers) are shown. 
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6.9 Spatial trend patterns of future disease incidence and threshold 

exceeding probability in Saxony-Anhalt 

6.9.1 Leaf rust 

No significant LRI trend was identified on susceptible and resistant varieties (Fig. 6-37) 

under the 0K- and 1K-scenario during the timeframe 2011 to 2060 for any Thiessen 

polygon. Trends for most parts of Saxony-Anhalt for the 0K-scenario were slightly 

positive with ΔLRI between 0% and 5%, except for the Harz Mountains and the most 

southern part of the state having a slightly negative trend. Trends for most parts of the 

state were slightly positive under the 1K-scenario, too, except for the region in the vicinity 

of the Harz Mountains showing a stronger positive trend. The 2K-scenario on susceptible 

varieties exhibited positive LRI trends for the whole state. Significance was demonstrated 

in some central areas of Saxony-Anhalt. The trends on resistant varieties were less 

positive than those on susceptible varieties for half of the polygons. Only few areas 

appeared to be significant. Nearly all polygons showed significant positive trends of LRI 

on susceptible varieties under the 3K-scenario with ΔLRI over 10%, except for the Harz 

Mountains with positive but not significant trends. The same spatial pattern of 

significance was prevalent on resistant varieties, but trends had smaller positive values 

with ΔLRI between 5% and 10%. 

No significant trend was identified for all scenarios of LRI0 on susceptible varieties (Fig. 

6-38). The trends for all scenarios and all areas were between 0% and -5%, except for 

some of the most western parts with values between 0% and 5%. The trends for LRI0 on 

resistant varieties were not significant for the 0K-, 1K-, and 2K-scenario (Fig. 6-38). The 

0K-scenario had trends between 0% and 5% ΔLRI0, the 1K-scenario between 5% and 

10% ΔLRI0, and the 2K-scenario between 10% and 15% ΔLRI0 for most of the polygons. 

The 3K-scenario revealed significant trends for most parts of Saxony-Anhalt with  

ΔLRI0 > 15%, except for single areas around the Harz Mountains. 
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Fig. 6-37: Station-wise trends in leaf rust incidence on susceptible (a-d) and resistant (e-h) wheat varieties 
in percent during the period 2011 to 2060 for the 0K- (a, e), 1K- (b, f), 2K- (c, g), and 3K-scenario (d, h). 
 

 
Fig. 6-38: Station-wise trends in the probability to exceed 0% leaf rust incidence on susceptible (a-d) and 
resistant (e-h) wheat varieties in percent during the period 2011 to 2060 for the 0K- (a, e), 1K- (b, f), 2K- 
(c, g), and 3K-scenario (d, h). 
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Fig. 6-39: Station-wise trends in the probability to exceed 30% leaf rust incidence on susceptible (a-d) and 
resistant (e-h) wheat varieties in percent during the period 2011 to 2060 for the 0K- (a, e), 1K- (b, f), 2K- 
(c, g), and 3K-scenario (d, h). 
 

Figure 6-39 shows trends for LRI30 on susceptible varieties. All scenario trends were not 

significant and increased for all polygons with increasing temperature forcing. Trends in 

the Harz Mountains and the eastward adjacent highlands were higher compared to those 

of the lower areas under the 3K-scenario. Similar patterns were observed for the LRI30 

trends on resistant varieties for the 0K-, 1K-, and 2K-scenario (Fig. 6-39). The 3K-

scenario revealed lower ΔLRI30 values for the central part of the state compared to the 

remaining areas. Significant trends were detected for some areas east of the Harz 

Mountains. 

6.9.2 Powdery mildew 

The PMI trends on susceptible varieties showed no significant areas for all climate 

scenarios with ΔPMI between -5% and 5% (Fig. 6-40). PMI trends were not significant 

on resistant varieties under the 0K- and 1K-scenario and significant under the 2K- and 

3K-scenario for most of the polygons (Fig. 6-40). Trends increased with increasing 
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temperature forcing and trend patterns revealed higher trends east of the Harz Mountains 

compared to the remaining parts of the state under the 2K- and 3K-scenario. 

 

 
Fig. 6-40: Station-wise trends in powdery mildew incidence on susceptible (a-d) and resistant (e-h) wheat 
varieties in percent during the period 2011 to 2060 for the 0K- (a, e), 1K- (b, f), 2K- (c, g), and 3K-scenario 
(d, h). 
 

PMI0 trends on susceptible varieties were not significant under the 0K-, 1K-, and 2K-

scenario and significantly positive for some areas in central Saxony-Anhalt with ΔPMI0 

between 5% and 10% (Fig. 6-41). ΔPMI0 increased for all areas with increasing 

temperature forcing. PMI0 trends on resistant varieties were not significant for the 0K- 

and 1K-scenario with negative values between 0% and -5%. Under the 2K- and 3K-

scenario trend values decreased further and reached significance for certain areas in the 

central and northern part of the state with ΔPMI0 between -10% and -15% and in few 

areas even below -15% (Fig. 6-41). 

 

101 

 



Results 

 
Fig. 6-41: Station-wise trends in the probability to exceed 0% powdery mildew incidence on susceptible 
(a-d) and resistant (e-h) wheat varieties in percent during the period 2011 to 2060 for the 0K- (a, e), 1K- (b, 
f), 2K- (c, g), and 3K-scenario (d, h). 
 

PMI50 trends on susceptible varieties showed no significant trends for any area under any 

climate scenario (Fig. 6-42). Trend values increased with increasing temperature forcing, 

especially in the Harz Mountains. ΔPMI50 decreased on resistant varieties for all areas 

for an increase in mean temperature (Fig. 6-42). The 0K- and 1K-scenario had few to 

none areas with significant trends. The 2K- and 3K-scenario showed significance with 

ΔPMI50 values below -15% for all areas. 
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Fig. 6-42: Station-wise trends in the probability to exceed 50% powdery mildew incidence on susceptible 
(a-d) and resistant (e-h) wheat varieties in percent during the period 2011 to 2060 for the 0K- (a, e), 1K- (b, 
f), 2K- (c, g), and 3K-scenario (d, h). 
 

6.10 Spatial differences of future disease incidence and threshold 

exceeding probability in Saxony-Anhalt 

6.10.1 Leaf rust 

The differences between the scenarios under elevated mean temperature and the 0K-

scenario of LRI on susceptible varieties were increasingly positive for the whole state 

assuming an increase in mean temperature (Fig. 6-43). The increase in LRI was relatively 

uniform for the whole state, except for the Harz Mountains, where the increase was 

smaller. LRI even decreased for the Brocken station. For LRI large-scale significant 

increases were only detected under the 3K-scenario. LRI increased stronger in the lee of 

the Harz Mountains and the southern central part of the state. LRI showed a relatively 

uniform increase for the whole state on resistant varieties, except for the Harz Mountains 

exhibiting a smaller increase (Fig. 6-43). A significant increase of LRI was detected for 

the 2K-scenario in the central and southern parts of the state. The increase was significant 

for all but the stations situated in the Harz Mountains for the 3K-scenario. The increase 
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was stronger for areas in the lee of the Harz Mountains and the polygons at the 

northwestern state border. 

 

 
Fig. 6-43: Station-wise differences in leaf rust incidence on susceptible (a-c) and resistant (d-f) wheat 
varieties in percent between long-term means calculated for the 0K-scenario and the 1K- (a, d), 2K- (b, e), 
and 3K-scenario (c, f) during the period 2031 to 2060. 
 

Comparing LRI0 on susceptible varieties for the 1K-, 2K-, and 3K-scenario with the 0K-

scenario revealed no significances for the whole state (Fig. 6-44). ΔLRI0 fluctuated 

between zero and slight negative values for most areas. The 3K-scenario presented slight 

negative differences for all but the southern and southwestern parts of the state. ΔLRI0 

on resistant varieties had positive values for all scenarios and increased with increasing 

temperature forcing for the whole state (Fig. 6-44). The increase was smaller in the lee of 

the Harz Mountains and in some central parts of the state for the 1K- and 2K-scenario. 

The 3K-scenario revealed a significant increase of LRI0 for most areas in Saxony-Anhalt, 

except the Harz Mountains, some adjacent areas, and the northeastern part of the state. 
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Fig. 6-44: Station-wise differences in the probability to exceed 0% leaf rust incidence on susceptible (a-c) 
and resistant (d-f) wheat varieties in percent between long-term means calculated for the 0K-scenario and 
the 1K- (a, d), 2K- (b, e), and 3K-scenario (c, f) during the period 2031 to 2060. 
 

Differences between the scenarios of elevated mean temperature and the 0K-scenario of 

LRI30 on susceptible varieties were increasingly positive for the whole state with an 

increasing temperature forcing (Fig. 6-45). The increase was only significant under the 

3K-scenario and only significant in most parts of the state, except the Harz Mountains 

and certain areas in the north. ΔLRI30 increased strongest in the areas east and northeast 

of the Harz Mountains. ΔLRI30 was positive for all scenarios on resistant varieties, but 

significance was only detected under the 3K-scenario (Fig. 6-45). The 1K- and 2K-

scenario showed a uniform increase of LRI30 for the whole state. The 3K-scenario 

revealed regional differences. The strongest increase concerning the 3K-scenario was 

detected in the lee of the Harz Mountains, the northwestern, and southeastern parts of the 

state. Significant increases were detected for the whole state, except for two areas in the 

Harz Mountains and the southwestern part of the state. 
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Fig. 6-45: Station-wise differences in the probability to exceed 30% leaf rust incidence on susceptible (a-
c) and resistant (d-f) wheat varieties in percent between long-term means calculated for the 0K-scenario 
and the 1K- (a, d), 2K- (b, e), and 3K-scenario (c, f) during the period 2031 to 2060. 
 

6.10.2 Powdery mildew 

Comparing PMI on susceptible varieties for the 1K-, 2K-, and 3K-scenario with the 0K-

scenario revealed no significances for the whole state (Fig. 6-46). ΔPMI fluctuated 

between zero and slight negative values in most areas. Under the 1K-scenario most areas 

had ΔPMI values around zero. Under the 2K- and 3K-scenario ΔPMI was slightly 

negative for most parts of the state, except some areas in the vicinity of the Harz 

Mountains. ΔPMI on resistant varieties was negative under all scenarios for the whole 

state (Fig. 6-46). The difference further increased for an increase in mean temperature. 

Differences were not significant under the 1K-scenario for the whole state and significant 

for the 2K- and 3K-scenario for most parts of the state. The strongest decrease was found 
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for areas east and northeast of the Harz Mountains. The smallest decrease was detected 

in the southern part of the state. 

 
Fig. 6-46: Station-wise differences in powdery mildew incidence on susceptible (a-c) and resistant (d-f) 
wheat varieties in percent between long-term means calculated for the 0K-scenario and the 1K- (a, d), 2K- 
(b, e), and 3K-scenario (c, f) during the period 2031 to 2060. 
 

Differences between the scenarios of elevated mean temperature and the 0K-scenario of 

PMI0 on susceptible varieties were increasingly positive for the whole state with an 

increasing temperature forcing (Fig. 6-47). For the 1K- and 2K-scenario ΔPMI0 showed 

few to none regional differences and no significances. The 3K-scenario revealed a 

pronounced regional difference in ΔPMI0 values. ΔPMI0 had the smallest increase in the 

northern part of the state and increased southwards. Differences were significant for the 

central, eastern, western, and northern part of the state, except for the Harz Mountains 

and the area around the capital. ΔPMI0 on resistant varieties was negative for the whole 

state, but showed no significant differences for the 1K- and 2K-scenario (Fig. 6-47). 

ΔPMI0 values further decreased with increasing temperature forcing for all polygons. 
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The difference was stronger for the northwest and one station in the south under the 2K-

scenario. In contrast, differences were greater in the northern, central, and southern parts 

of the state and weakest in the Harz Mountains under the 3K-scenario. Most of the 

significant differences were located in the northern and central part of Saxony-Anhalt. 

 

 
Fig. 6-47: Station-wise differences in the probability to exceed 0% powdery mildew incidence on 
susceptible (a-c) and resistant (d-f) wheat varieties in percent between long-term means calculated for the 
0K-scenario and the 1K- (a, d), 2K- (b, e), and 3K-scenario (c, f) during the period 2031 to 2060. 
 

Differences between the scenarios of elevated mean temperature and the 0K-scenario of 

PMI50 on susceptible varieties were increasingly positive for the majority of stations 

assuming an increase in mean temperature (Fig. 6-48). The increase in ΔPMI50 was 

strongest in the Harz Mountains, the northwestern part of the state, and the area around 

the capital. None of the differences were significant. ΔPMI50 on resistant varieties was 

negative for the whole state and for all scenarios (Fig. 6-48). The difference increased 

with increasing temperature forcing for all stations. The increase in ΔPMI50 was uniform 
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across the state, except for certain stations in the Harz Mountains and the northwestern 

part of the state. Significant differences were detected for the northern, northeastern, 

eastern, and central parts of the state under 2K-scenario. Differences under the 3K-

scenario were significant for the whole state. 

 

 
Fig. 6-48: Station-wise differences in the probability to exceed 50% powdery mildew incidence on 
susceptible (a-c) and resistant (d-f) wheat varieties in percent between long-term means calculated for the 
0K-scenario and the 1K- (a, d), 2K- (b, e), and 3K-scenario (c, f) during the period 2031 to 2060. 
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7 Discussion 

7.1 Influence of single meteorological variables on the pathogens 

7.1.1 Leaf rust 

Temperature 

The positive influence of higher temperatures during most parts of the vegetation period 

on the development and incidence of leaf rust on winter wheat identified, agreed with the 

findings of laboratory studies (Chester 1946, Hassebrauk 1959, Zadoks 1965) and 

statistical analyses of monitored data (Chester 1946, Hogg 1969, Burleigh et al. 1972a, b, 

Daamen et al. 1992, Jahn et al. 1996, Eversmeyer & Kramer 1998, Moschini & Pérez 

1999, Wiik & Ewaldz 2009). The results of the regression analyses confirmed the 

importance of temperature and pointed out the most influential periods during the 

vegetation period. Especially in winter and spring, temperatures play a major role in 

determining the amount of urediniospores managing to overwinter and increasing the 

amount of initial inoculum available for epidemic development on host plants in spring 

(Burleigh et al. 1969; Eversmeyer & Kramer 1994, 1995, 1996, 1998). Higher spring 

temperatures can accelerate the development of uredia and urediniospores, shorten 

latency and incubation times, and increase the number of leaf rust generations until 

anthesis of wheat. Lower temperatures slow down the development of leaf rust and 

decrease the amount of disease cycles until anthesis (Roelfs & Bushnell 1985, 

Eversmeyer & Kramer 1996). The identified correlations showed the importance of air 

temperatures during the transition from autumn to winter and from winter to spring, when 

temperatures are at the lower limit of leaf rust development (Chester 1946). 

 

Precipitation 

The influence of precipitation on the development of leaf rust spores was often described 

in the literature (Daamen et al. 1992, Heitefuss et al. 1993, Wiik & Ewaldz 2009). 

Precipitation is an important source of humidity and is essential for urediniospore 

germination and infection. This was confirmed by the positive correlated periods in 

August, October, and May. The findings for August agreed with those of Wiik & Ewaldz 

(2009). In late summer, humidity is an important prerequisite for leaf rust survival 

throughout the crop-free period as it provides moisture for volunteers. Precipitation in 
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late summer results in lower insolation, raising the chances for leaf rust to over-summer 

(Zadoks 1965, Eversmeyer & Kramer 1998). 

In autumn, leaf rust infects newly sown winter wheat. Its population size and spatial 

distribution can expand if weather conditions are good enough. Sufficient precipitation is 

needed as a source of moisture for leaf wetness, a major determinant of optimal infection 

and germination. The results revealed that these conditions seem to be similarly important 

in spring and especially in May. During spring leaf rust is in the crucial phase determining 

disease incidence during anthesis. The wetter and warmer the conditions during this 

period are, the shorter the latency and infection periods get, and the more generations are 

produced (Hogg 1969). 

 

Snowfall 

The positive correlations between precipitation in January and February and leaf rust 

incidence cannot be completely explained as a result of the presence of the necessary 

humidity, but rather with an isolating effect of snowfall at lower temperatures in contrast 

to freezing temperatures without snowfall. However, this isolating effect was not 

observed in the correlogram for snowfall days. The results showed the exact opposite of 

an isolation effect by snow cover. Snow-free periods during winter are needed for re-

infection of host material and are important for leaf rust survival (Eversmeyer & Kramer 

1998). As the results only presented correlograms for snowfall and disease incidence no 

conclusions could be drawn regarding the influence of snow cover on urediniospores. The 

amount of snowfall being zero does not allow the conclusion of no snow cover present. 

Additionally, the calculated variable snowfall was dominated by low temperatures and 

the expected precipitation signal was mainly absent. Further studies will be needed to 

determine whether this method for calculating days with snowfall is useful or has to be 

changed. 

 

Radiation 

The effects of sunshine duration and radiation on the development of leaf rust are known 

(de Vallavieille-Pope et al. 2002). The findings from the literature were confirmed by the 

correlations. Urediniospores are affected by intense solar radiation during transport 

(Sache 2000), germination, infection, reproduction, and sporulation. As expected, 

correlations between sunlight hours and leaf rust incidence showed patterns similar to 

those between disease incidence and mean temperatures over long periods of time. During 
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winter the correlation structures for sunlight duration were contrary to those for mean 

temperature. This could be explained by the decoupling of radiation and temperature 

during winter months. Sunny days and high radiation are common during winter weather 

situations with persistent high-pressure systems, which cause cold air masses to cover 

Central Europe. Surprisingly, sunshine duration showed no significant correlations 

regarding the conditions in March and early April. The negative correlated period around 

day 290 corresponded with the findings of the correlograms for precipitation and findings 

from literature (Roelfs & Bushnell 1985). More precipitation and less sunshine duration 

in late August increase the probability of leaf rust spores surviving the crop-free period 

in summer by exploiting the abundance of volunteer wheat, referred to as the “green 

bridge”. 

 

Wind 

Wind speed is often used to explain the introduction of exogenous inoculum into new 

regions, initiating leaf rust epidemics or strengthening them (Hirst et al. 1967a, b, Sache 

2000). Contrary to the findings in literature the correlogram for wind speed identified 

mainly negative correlations. This indicated wind speed being too high for urediniospores 

to adhere to leaf surfaces before appressorium development was able to start. But it is 

unlikely that this effect could hinder the development of leaf rust for a long period of 

time. Thus, the strongest effect of wind speed on leaf rust incidence detected in the results 

could be attributed to the accelerated drying of leaf surfaces at higher wind speeds. Under 

these conditions leaf wetness is lowered below the level required for infection, the 

germination of leaf rust spores, and the formation of appressoria (Stuckey & Zadoks 

1989). According to the results, leaf wetness accelerated the development of leaf rust in 

late summer, early autumn, at the time of winter wheat sowing, and during spring. But 

long periods of leaf dryness can result in massive obstruction or even long-term 

interruption of the developmental cycle of P. triticina (de Vallavieille-Pope et al. 1995). 

7.1.2 Powdery mildew 

Temperature 

Powdery mildew is likely to capitalize from warmer temperatures in winter. Mild winters 

allow more conidia to survive resulting in more initial inoculum at the beginning of spring 

(Boland et al. 2004). The findings supported this theory as they showed significant 

positive relationships between minimum temperatures and powdery mildew incidence at 
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the beginning of February until early December. Minimum temperatures seemed to 

approach the lower limit for powdery mildew development from March to December, 

because minimum temperatures during the time frame were positively correlated with 

disease incidence. A similar pattern was shown by the correlogram for freezing days and 

disease incidence. 

The negative correlations between mid-October and late November found in this study 

were not discussed in literature. No biological process explaining this phenomenon was 

found. Mean temperature in late autumn exhibits values between 5 and 9°C and is much 

lower than required for optimal disease development (Bouma 2008). Hence, it is unlikely 

for higher temperatures to impede the development of powdery mildew in autumn. 

Temperature sensitivity of powdery mildew was observed during the three months before 

the monitoring date and in late August of the preceding year. This effect was also 

documented by Stephan (1984) and Aust (1981). In consequence, before anthesis and 

during late summer temperatures were too high for volunteer wheat to develop. Hence, 

the “green bridge” for conidia was missing. 

An interesting difference in patterns was recognized in March and April between 

correlograms for minimum temperature and disease incidence and maximum temperature 

and disease incidence. According to the correlograms minimum temperatures seemed to 

approach the lower limit of powdery mildew development, as indicated by the positive 

correlations, and maximum temperatures seemed to approach the upper limit of powdery 

mildew development, as indicated by negative correlations. This indicated an extremely 

small temperature range for the optimal development of powdery mildew during spring. 

Stephan (1984) demonstrated that powdery mildews do in fact have a rather small window 

of optimal temperature for overall development. Moreover, the results contradicted the 

findings of Te Beest et al. (2008), who did not find maximum temperatures in spring and 

early summer approaching the upper temperature limit for powdery mildew. According 

to their data, warmer temperatures supported the development of powdery mildew 

beginning in spring. This was confirmed by the correlogram for minimum temperature. 

However, the results indicated that minimum temperatures in March and April were 

critical for powdery mildew incidence. The analysis of correlations between disease 

incidence and the number of days with temperatures between 17 and 23°C supported the 

observations further. The findings obtained for minimum temperature confirmed the 

results obtained by Morgounov et al. (2011). The results for March and April presented 

an interesting analogy to Chester’s findings on March as the “critical month” of leaf rust 
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development (Chester 1946). According to Chester warmer conditions during the critical 

month can support leaf rust by shortening latency and infection periods and by amplifying 

the number of generations until anthesis.  

The negative influence of very high temperatures on powdery mildew incidence in the 

weeks before the monitoring date and in late summer goes hand in hand with high 

radiation periods having a significantly negative impact on disease incidence. This 

correspond to the findings of Spencer (1978) and Martin et al (1975), who found that high 

insolation conditions and therefore higher leaf surface temperatures (Te Beest et al. 2008) 

can hamper germination of powdery mildew conidia. 

 

Precipitation 

The correlogram obtained for precipitation sums and powdery mildew incidence displays 

two patterns. Firstly, precipitation averaged over periods of at least one month had a 

significantly negative effect on disease incidence during the whole vegetation period and 

especially in autumn. Secondly, precipitation sums aggregated over the first 20 days 

before monitoring revealed significant positive correlations with disease incidence. 

The first pattern was in agreement with the findings of Spencer (1978) and Boughey 

(1949), who stated that powdery mildew is more dangerous under drier conditions. In 

addition, laboratory experiments showed that the conidia of powdery mildew have higher 

moisture content than for example urediniospores of leaf rust. Thus, precipitation events 

are not necessarily needed for moisture supply (Yarwood et al. 1954). The second pattern 

indicated that the additional moisture content is not sufficient at higher temperatures 

during summer. Precipitation events had to provide additional moisture for infection and 

germination of conidia. High relative humidity is a well known prerequisite for the 

developmental processes of powdery mildew (Hassebrauk 1959, MerchánVargas 1984, 

Friedrich 1994, Prigge et al. 2005). 

7.2 Influence of combined meteorological variables on the diseases 

The parameter estimates of the logistic regression models confirmed the most important 

findings of the “window pane” approach for both diseases. Because logistic regression 

models selected only the most important variables and were constructed under the 

constraint to avoid overfitting, not all results achieved by the correlation approach were 

reflected by the model parameters. In addition, some effects detected by the regression 
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analyses were not revealed by the correlograms, because the correlation analyses did not 

account for effects of variety susceptibility. 

7.2.1 Leaf rust 

The positive parameter estimates for temperature in April, January, and December 

supported theories from the literature. Higher temperatures during spring (Chester 1946, 

Hogg 1969) and winter support the development of leaf rust inoculum. Higher winter 

temperatures allow a higher number of leaf rust spores to overwinter and build a bigger 

inoculum source for the coming growth season (Burleigh et al 1969, Eversmeyer & 

Kramer 1994, 1995, 1996, 1998). Higher spring temperatures allow the surviving 

inoculum to get an earlier start into the growth period and thus build more generations of 

the pathogen (Chester 1946). The finding of temperature in late August having a negative 

impact on LRI may represent the negative effect of higher temperature on the “green 

bridge”, allowing inoculum to survive on volunteers during the summer months (Hassan 

et al. 1986). 

The regression analyses confirmed a supporting effect of moisture on leaf rust 

development mainly during spring and autumn and during the second half of May on 

resistant varieties. The findings contradicted those of Jahn et al. (1996), who found out 

that leaf rust infestation on winter wheat increases under drier future conditions. In 

addition, the parameter estimates indicated that precipitation could also have a negative 

effect on leaf rust occurrence during two distinct periods: one in late December and the 

second one during April. The first period may be addressed to an isolating effect of snow 

cover, causing temperature under the snow cover to be higher than above. The isolating 

effect can of course only be present, when temperature is low enough to cause 

precipitation to be transformed into snowfall. These requirements are met between 

November and February. The latter period could be attributed to a negative effect of heavy 

precipitation events in spring washing off leaf rust conidia from the host tissue and 

thereby reducing the amount of inoculum available to infect the wheat plant (Sache 2000). 

The different signs of parameter estimates for wind speed during March and the first half 

of April resulted out of two concurring processes. On one hand, higher wind speed let 

wheat leaves dry faster thereby lowering leaf wetness over longer time periods. Leaf 

wetness is necessary for the formation of appressoria and for the germination of leaf rust 

spores on the leaf surface (de Vallavieille-Pope et al. 1995). On the other hand, higher 

wind speed supports the distribution of leaf rust spores over large areas (Hirst et al.  
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1967a, b) and thus increases the overall incidence in the federal state. The negative impact 

of wind speed on leaf rust between mid December and mid January could be attributed to 

wind chill. It describes the effect of wind lowering the temperature above a surface by 

removing the boundary layer above the surface. 

7.2.2 Powdery mildew 

The regression models verified the negative influence of mean temperature on powdery 

mildew incidence. Daamen et al. (1992) determined a negative impact in the Netherlands 

between April and June. Wiik & Ewaldz (2009) observed a negative correlation during 

the whole growth period in Sweden. Cao et al. (2012) detected a negative influence in 

China, especially during growth stages 5 to 10 on the Zadoks scale (Zadoks et al. 1974). 

The results of the regression approach demonstrated not only negative impacts of 

temperature during May and June but impacts depending on the susceptibility of the 

wheat variety, especially during the two weeks before the disease assessment and during 

March. The negative impact observed on susceptible varieties and the positive impact on 

resistant varieties may be connected to the fact that wheat leaves senesce earlier if 

temperatures are high and precipitation is low in early summer (Aust 1981). A faster 

senescence of wheat leaves can result in senescence-induced resistance of wheat leaves, 

which hampers leaf rust development. Aust (1981) showed this behavior for leaf rust, but 

it may be transferable to powdery mildew, too. The negative impact of temperature during 

March and early April on PMI on resistant varieties was in agreement with the results of 

the author mentioned above. But the positive impact on susceptible varieties is 

contradictory. A possible explanation includes the impact of temperature on the growth 

of the host plant. At lower temperatures Gramineae may produce more young and 

susceptible tissues, enhancing the susceptibility of the plants to biotrophic pathogens 

(Evans et al. 1964, Friend 1966, Lindner 1989, Stephan 1984). Unfortunately, the 

literature results for field studies are hard to compare with the results of this study. 

Daamen et al. (1992) used a mixture of more and less susceptible varieties, Wiik & 

Ewaldz (2009) did not reveal any details about the susceptibility of the varieties 

considered, and Cao et al. (2012) based their calculations on observations on a highly 

susceptible variety over the course of only three years. 

The parameter estimates for the relationships between PMI and precipitation changed 

signs over the course of the epidemic year. During early summer (two weeks before the 

disease monitoring) and late August of the previous year precipitation played a very 
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important role in supplying the spores with the moisture needed for infection of the host 

tissue. Between these periods, moisture was detrimental to powdery mildew 

development, though. This is in agreement with studies by Spencer (1978), Boughey 

(1949), Cao et al. (2012), Aust & von Hoyningen-Huene (1986), Kolesnikov et al. (2009), 

and Polley & King (1973), who stated that precipitation is negatively correlated with 

powdery mildew incidence. Cao et al. (2012) revealed that air humidity has a positive 

influence on spore germination, infection, and production, but a negative effect on spore 

liberation. Other processes, which influence powdery mildew negatively through high 

precipitation, are wash-out (Hirst et al. 1967a, b) and wash-off (Merchán Vargas & Kranz 

1986). This could be the reason why only few periods with very weak impacts of moisture 

on powdery mildew incidence and threshold exceeding probability were observed. 

Another interesting observation was that most parameter estimates of the PMI50 model 

showed similar signs, compared to the PMI and PMI0 model, only on resistant varieties. 

Precipitation had a negative influence on PMI50 on susceptible varieties during June and 

August of the previous year and a positive impact for most periods in between. The 

explanation for the opposing behavior can be found in Te Beest et al. (2008), who 

mentioned the opposing effects of rainfall on powdery mildew severity. The results of 

this study indicated the damaging influence of heavy rainfall during the summer months 

and the supporting influence of increased humidity after rainfall events during the 

remaining year, especially being important for powdery mildew incidence to exceed the 

50% threshold on susceptible varieties. On resistant varieties and for modeling PMI and 

PMI0, the damaging effect of precipitation prevailed for most parts of the season and the 

supporting effect of raised humidity only mattered during summer. 

Wind speed has already been identified by Hirst et al. (1967a) as a supporting factor for 

pathogens in general and by Cao et al. (2012) as a supporting factor for powdery mildew 

epidemics. This was only reflected by the positive parameter estimates during early May 

and early February in this study. The opposing effect of wind speed, discussed by Te 

Beest et al. (2008) for Great Britain, was observed for winter months and late April in 

this study. Higher wind speed, especially during the early season, promotes faster drying 

of leaf surfaces, creates a drier environment, and hampers powdery mildew infection. In 

contrast to Te Beest et al. (2008), who identified the effect to be the most important factor 

for the occurrence of a damaging epidemic, wind speed was not selected as an important 

parameter for the PMI50 model. 
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7.3 Non-climatic influences on disease incidence 

7.3.1 Leaf rust 

It was slightly surprising that no non-climatic variables, except for doy of monitoring and 

resistance degree, had a significant influence on LRI. Especially the variables influencing 

the nutrition and the developmental stage of the host plant, like useable field capacity and 

day of sowing, were thought to show an impact on LRI (Howard et al. 1994, Dordas 

2008). Another interesting result was the negative impact of the monitoring doy on LRI. 

The results indicated that the later the disease was assessed, the smaller the incidence 

detected was. This supported the results for the resistance degree, when considering that 

resistance increases with increasing age of the host plant (Tivoli et al. 2012). The higher 

the resistance of the variety, the lower the incidence measured was. According to the 

results of the Kruskal-Wallis and Kolmogorov-Smirnov tests for the resistance degree, 

two groups of varieties were built as input for the regression procedure. The group 

including susceptible varieties, consisted of the resistance degrees two to five and the 

group, including resistant varieties, consisted of degrees six to nine. The groups exhibited 

large differences regarding their number of observations. Only two groups were built to 

adapt the variable susceptibility to the binary logistic regression scheme. In addition, both 

groups were constructed under the precondition of containing an equal amount of 

observations.  

The autocorrelation function of mean LRI time-series presented an influence of LRI of 

the preceding year on LRI of the current year. Despite the significance of the 

autocorrelation function at a lag of one year, the correlation was rather weak with r~0.5. 

Another significant autocorrelation emerged at a lag of seven years with r~0.4, which, in 

addition to the whole autocorrelation function, indicated a cyclic behaviour of LRI with 

a recurrence interval of seven years. One study concerning the cyclic behaviour of leaf 

rust was found (Yang 1995). But the study dealt with the cycles of leaf rust phenotypes 

in Canada and detected recurrence for lags of 1, 4, and 10 years. A connection to the 

results of this study seems unlikely. The only climatic oscillations with recurrence 

intervals of around seven years are the El Niño-Southern Oscillation (Hanson et al. 1989) 

and a seven year cycle in European rainfall patterns (Vines 1985). 
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7.3.2 Powdery mildew 

The positive correlations for the day of sowing and emergence and the negative 

correlation of the monitoring day fit together well concerning the negative impact of the 

length of the vegetation period. The later the wheat is sown and the earlier anthesis starts, 

the shorter the vegetation period and the faster wheat plants develop. Thus, fast growing 

wheat varieties and weather conditions, conducive to a fast wheat development, increased 

the PMI, as well as a late sowing date. This contradicts the position of Kluge (1990), who 

revealed that wheat plots with late emerging plants had less PMI during anthesis. As an 

exception after mild winters, Kluge identified higher PMI during disease assessments in 

spring (BBCH 30-32) for late sown wheat. The possible cause of the positive relationship 

between sowing and PMI and the negative relationship between the length of the 

vegetation periods and PMI is the development of age-related resistance in wheat plants. 

Early sown plants have more time to accumulate silica in the upper two leaves. As a side 

effect of an adaptation to microclimatic conditions of the upper two leaves (Aust 1981), 

wheat plants surveyed for this study may have benefited from the longer growing time 

and therefore having a higher degree of silification of the upper two leaves by developing 

an age-related resistance for powdery mildew. 

The negative correlation between the usable field capacity of the underlying soil and PMI 

identified can be interpreted as an indirect relationship. Higher water availability granted 

by a higher usable field capacity strengthens the growing conditions of wheat. By offering 

soil bound water during dry phases, water and nutrient availability improves the growth 

of the wheat plant. Due to the fast growth of the plant new leaves develop faster and 

infections are “transported downwards” faster on the plant, which lowers powdery 

mildew incidence on the upper leaves in turn. The effect of a faster growing host on 

powdery mildew was described for early and late sown wheat in (Graf-Marin 1934, 

Spencer 1978) and is comparable to the fast growth induced by higher water availability. 

The speculated negative effect of higher nutrient availability is in agreement with the 

negative correlation of PMI and potential cation exchange capacity identified. But the 

results are contradictory to studies attesting nutrients, especially nitrogen, a supporting 

role for higher PMI (Kluge 1990, Kádár et al. 1999, Dordas 2008). 

The analysis showed a significant impact of the preceding crop on PMI. Further analyses 

were not conducted, because of the strongly differing number of observations between 

the preceding crops. 
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For the influence of the susceptibility degree on PMI results similar to those for LRI were 

achieved. The higher the susceptibility of the wheat variety, the higher the PMI was. 

Based upon the differences in mean values and the distribution of PMI between 

susceptibility degrees and under the precondition of groups with nearly equal numbers of 

observations, two groups with different degrees of resistance to powdery mildew were 

constructed. Resistance degrees one to four were categorized as resistant and degrees five 

to nine as susceptible. 

Unfortunately, only the variables resistance degree and monitoring doy were available for 

the whole timeframe 1976 to 2010. All other variables were observed between 1990 and 

2010. Hence, only variety resistance, compiled as resistance groups, was included in the 

logistic regression procedures for both pathogens. In contrast to leaf rust, the mean PMI 

time-series did not show any periodicity. 

7.4 Comparing both diseases 

Only few statistical modeling approaches for powdery mildew exist compared to the 

modeling of leaf rust incidence. The fact can be attributed to the higher importance of leaf 

rust compared to powdery mildew for most wheat growing areas. The comparison of the 

results for both pathogens clearly demonstrated fundamental differences between the 

influences of the climatic and the non-climatic variables. For leaf rust, temperatures in 

winter, sunshine duration in spring and fall, and precipitation in spring had positive 

impacts on the incidence and the probability of exceeding different incidence thresholds. 

Detrimental effects of temperature in spring, early summer, and fall and negative effects 

of sunshine duration in the two months before the monitoring date were observed for 

powdery mildew. In spring, the moisture requirements for powdery mildew were nearly 

the opposite of those for leaf rust. The sunshine requirements were opposed, too. 

In this study, 23% of the parameter estimates of the leaf rust models compared to 36% of 

those of the powdery mildew models showed an interaction with the susceptibility class 

of the host plant variety. This leads to the conclusion that the relationships between 

meteorological variables and powdery mildew are more dependent on the susceptibility 

of the specific variety compared to leaf rust. The feature was already considered in a 

statistical approach by Daamen et al. (1992). Furthermore, Colhoun (1973) mentioned 

that the susceptibility of the host to infection could be temperature-dependent. In addition, 
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the author observed that plant nutrition could affect host susceptibility and relationships 

between the host and other environmental aspects, such as climatic factors, too.  

Besides meteorological influences non-climatic effects were reported to play an important 

role for both pathogens by the literature. Environmental variables such as susceptibility 

(Aust 1981), nutritional conditions (Dordas 2008, Lindner 1989, Neumann et al. 2004), 

variety of the host plant (Li et al. 2012, Tivoli et al. 2012), cultivation measures (Han et 

al. 2013, Kluge 1990), disease incidence in the previous season (Stephan 1984), and soil 

properties have a significant impact. The results of this study revealed many differences 

and single analogies regarding the effect of non-climatic influences on both diseases. 

Overall, leaf rust proved to be much less affected by non-climatic variables compared to 

powdery mildew. As expected, both pathogens were supported by a higher susceptibility 

of the host. Powdery mildew was more affected by agricultural practices and site specific 

conditions, represented by the soil characteristics. On the contrary, leaf rust showed a 

relationship with the incidence of the preceding year and signs of a cyclic behavior based 

on a seven year recurrence interval. In comparison to powdery mildew this result 

indicated a stronger dependence of leaf rust on the summer survival of urediniospores. 

7.5 Climatic changes in Saxony-Anhalt 

The annual warming trend projected for the whole state was expected considering that 

the temperature trend was prescribed in the STARS algorithm. The increase in annual 

mean temperature and the stronger increase in winter temperature detected by the 

simulations confirmed the results derived by WETTREG and REMO (Kropp et al. 2009). 

The magnitude of changes differed between STARS and both models from the literature, 

because different 30-year periods were compared. 1961 to 1990 with 2041 to 2070 for 

WETTREG and REMO compared to 1981 to 2010 with 2031 to 2060 for STARS. Despite 

the differences the 2K-scenario of STARS showing a warming of 1.7°C revealed a 

warming comparable to the A1B-scenario of WETTREG (1.4°C) and REMO (1.8°C). 

The regional warming trends calculated for the 3K-scenario presented similarities to the 

results derived by WETTREG (A2-scenario), projecting a stronger warming in the 

northwest, and REMO (A2-scenario), projecting a stronger warming in the southeast and 

a weaker warming in the northern part of the state and the medieval mountains. The 

seasonal distribution of mean temperature revealed similarities and differences between 

STARS and both models. Compared to the STARS results in this study both models 
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exhibited a similar increase in winter temperature. In contrast to the stronger increase in 

summer temperature projected by REMO the results of this study indicated a smaller 

increase during summer. 

Regarding precipitation differences between base and scenario period the results obtained 

by STARS showed a decrease in annual precipitation sums similar to WETTREG. The 

results disagreed with REMO, projecting an increase in precipitation sums. The regional 

precipitation changes based on the STARS 3K-scenario revealed results similar to the 

A2-scenario of REMO by indicating the strongest decrease to be located in the Harz 

Mountains. In contrast to STARS and REMO, WETTREG detected an increase in annual 

precipitation sums for the medieval mountains. The seasonal changes identified in the 

study mainly confirmed the projections derived by WETTREG and REMO. All models 

projected a decrease in summer precipitation and an increase in winter precipitation. But 

only a slight increase in winter precipitation was projected by STARS compared to the 

other models. The increase in spring and autumn precipitation projected by REMO was 

not present in the STARS simulations. 

A more detailed description and discussion of WETTREG and REMO simulations as well 

as a comparison with STARS simulations for Saxony-Anhalt can be found in Kropp et al. 

(2009). 

7.6 Future development of leaf rust and powdery mildew in Saxony-

Anhalt 

7.6.1 Leaf rust 

The results of this study confirmed the increasing importance of leaf rust of wheat for 

agriculture in Germany found in the literature (Jahn et al. 1996, Racca et al. 2012, 

Bregaglio et al. 2013). In addition, the study verified the hypothesis deducted from 

calculating disease scenarios based on the logical equations of the “Befallsatlas” (Kluge 

et al. 1999). With the methods used, it was possible to conduct more detailed analyses on 

the behavior of the pathogen for varieties with different susceptibility to the particular 

disease and to discover changes in the distribution of the incidence. The differences 

between present and future mean probability to exceed the 0% and 30% threshold already 

showed some differences for the 0K-scenario. This could be attributed to the 

overdispersion of the model residuals and to the different number of observations 
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analyzed when comparing present and future means. The results of this study revealed 

that leaf rust incidence will increase on susceptible and resistant varieties. Significant 

increases were detected on susceptible varieties only for the 3K-scenario, but a marked 

increase will already occur with an increase of mean German temperature by 2°C. A mean 

temperature increase of at least 2°C would cause a significant increase in leaf rust 

incidence on resistant varieties. 

But, the cause of the increase in LRI was different on susceptible and resistant varieties. 

On susceptible varieties ΔLRI30 increased with increasing mean temperature, whereas 

ΔLRI0 changed only marginally, for all warming scenarios. On resistant varieties ΔLRI0 

and ΔLRI30 increased for higher mean temperatures in Saxony-Anhalt and the 

differences was already significant at a warming trend of 1°C for Germany. Analysis of 

linear trends for time-series of future leaf rust development supported the results on 

differences further. Hence, the incidence on susceptible varieties will increase due to a 

higher frequency of high incidence cases, whereas the incidence on resistant varieties will 

increase due to a higher frequency of cases with incidence detected. In addition, leaf rust 

on resistant varieties reacted faster on rising mean temperatures and showed a significant 

increase in a 1 to 2°C warmer climate, already. In contrast, leaf rust on susceptible 

varieties needed a 2 to 3°C warmer climate for significant changes to be detected. 

The results on spatial patterns of LRI, LRI0, and LRI30 in reaction to a rise in mean 

temperature showed only small regional differences. The reason was a lack of the models 

to reproduce the variability of the present data observations. The underestimation of cases 

with high incidence or probability and overestimation of cases with low incidence or 

probability led to a smaller range of projections. Despite these shortcomings, some 

regional differences could be demonstrated by the results.  

The importance of leaf rust on susceptible varieties will be subject to a stronger increase 

in the central parts of Saxony-Anhalt compared to the remaining state. This will be caused 

due to a stronger increase in temperature projected for this area. The smaller increase in 

importance in the northern parts of the state and the Harz Mountains can be attributed to 

the smaller increase in temperature projected for these areas. The changes projected will 

favor leaf rust on resistant varieties, especially in the central and northwestern parts of 

the state. 
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7.6.2 Powdery mildew 

Contrary views on future development of powdery mildew in Germany were found in the 

literature (von Tiedemann 1996, Volk et al. 2010, Racca et al. 2012). The trend and 

comparison results of this study for PMI, PMI0, and PMI50 on resistant varieties 

supported the hypothesis that powdery mildew will lose importance in German 

agriculture. A decrease in importance was also projected by using the equations of the 

“Befallsatlas” (Kluge et al. 1999). An increase in mean German temperature of 1°C was 

projected to be sufficient for PMI and PMI0 to decline significantly. The decline for 

PMI50 was projected to be similarly strong, but significance was only detected for a mean 

warming of at least 2°C. Hence, an increase of mean German temperature by 1°C would 

already significantly raise the incidence of powdery mildew by increasing the probability 

that plots become infected. Assuming an increase of mean temperature by more than 1°C, 

incidence will become even higher supported by a significant higher probability for plots 

to exceed the 50% threshold and thus be infected severely. In contrast, findings on 

susceptible varieties strengthened the insecurity about the future development of the 

disease. PMI trends and comparisons with present PMI showed a slight and not significant 

decline in importance under the assumption of rising mean temperature. But, results for 

PMI0 and PMI50 revealed an increase in observations exceeding the thresholds. The 

increase in PMI0 on susceptible varieties was still slight compared to the projected 

changes in PMI0 on resistant varieties, but still significant for an increase in mean 

temperature of 3°C. The projected increase in PMI50 was higher compared to PMI0 and 

already significant for an increase in mean temperature of 1°C. 

The results on spatial patterns of PMI, PMI0, and PMI50 in reaction to a rise in mean 

temperature showed only small regional differences. Similar to leaf rust, the models 

lacked in reproducing the variability of the present data observations. Despite these 

shortcomings, regional differences could be demonstrated by the results. 

7.7 Methods for analyzing weather-disease relationships 

7.7.1 Long-term weather and disease data 

Long-term data on fungal infestation levels in cereals and site-related weather data can 

be used to determine the influence of different weather periods on infestation levels 

empirically. Analyses of long-term data was already conducted by several authors 
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(Coakley et al. 1988, Coakley 1989, Calvero Jr. et al. 1996, Jahn et al. 1996, Jahn & Freier 

2001, Pietravalle et al. 2003, Te Beest et al. 2008, 2009) and granted insight into 

relationships between weather and disease occurrence under field conditions on different 

temporal and spatial resolutions. Unfortunately, long-term disease data are scarce (Jeger 

& Pautasso 2008). This is mainly due to an underestimation of the disease importance, 

their changing importance over time (Hodson 2011), and the very high financial and time 

investments required for data collection. Long-term disease monitoring is not only 

beneficial for empirical analyses but also for the development of better mathematical 

disease models (Juroszek & von Tiedemann 2013). Simulation models often lack 

sufficient temporal and/or spatial resolution of monitoring data for proper evaluation (e.g. 

Klose 1974, Räder 2007). The statewide monitoring system in the former GDR took 

enormous efforts to monitor plant diseases. Because many of these structures are still 

existent, long-term disease data on leaf rust and powdery mildew of winter wheat 

collected from up to 35 monitoring sites for up to 34 years were available for the analysis. 

This collection of data for both plant pathogens is unique in Germany: The data were 

compiled in a database at the Federal Research Institute for Cultivated Plants (Julius 

Kühn-Institute, JKI). The data collection has been supported by a consistent computer-

aided data acquisition system for plant disease infestation called ISIP since 2004 

(Kleinhenz & Röhrig 2003). In contrast to most studies found in the literature, disease 

incidence was chosen instead of severity for the analyses. The monitoring of incidence 

was considered more precise than severity with regard to the method of measurement. 

Besides disease monitoring data, a sufficient number of weather stations were needed for 

a meaningful assignment of the monitoring sites. Daily weather records from the German 

Weather Service provided a valuable source of weather data for this study. But the 

reduction of the German Weather Service’s observational network in 2009 proved to be 

detrimental to the allocation of monitoring sites and weather stations. The reduction of 

weather stations by 50% lowered the spatial resolution of the analyses by increasing the 

distances between the weather stations and the locations of disease monitoring. However, 

the replacement of missing data and correction of data showing inhomogeneities by the 

PIK ensured high quality weather records. 

To connect data points measured at different locations the weather dataset was 

interpolated. Despite more sophisticated interpolation methods available, e.g. Kriging, 

Triangulation, and Splines, inverse distance weighting was used to calculate Thiessen 
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polygons. The method is fast and easy to perform (Kropp et al. 2009) but can result in 

sharp contrasts between polygons. 

7.7.2 “Window pane” approach 

Analyses of daily weather variables provide evidence of important time intervals during 

the wheat growing period. But the identification of periods of strongest influence is not 

possible using daily weather data because the explanatory power of correlations between 

daily weather variables and disease data is very limited and contains many spurious 

relationships. No evidence was found in the literature that daily weather measured a few 

months before the monitoring date for a fungal disease could possibly influence disease 

incidence every year similarly. Hence, meteorological variables, like mean temperature 

and precipitation, aggregated over many days and the sum of days with favorable or 

unfavorable conditions occurring in a specific time interval are more valuable when 

included in the analyses (Burleigh et al. 1972a). Therefore, daily weather data were 

accumulated on different time scales to gain further insight into disease-weather 

relationships. 

The “Window Pane” algorithm produced reasonable results. The algorithm is a useful 

tool for investigating disease-weather relationships, because all time periods that could 

possibly explain variations in disease levels can be evaluated rather than only a few 

selected intervals. Coakley (1988) and Te Beest et al. (2008) used this method for 

preliminary variable selection before regression modeling when a large amount of 

possible explanatory variables had to be processed. As a next step explanatory variables 

were condensed to those explaining the biggest part of variability of the predictand. 

Hence, Calvero Jr. et al. (1996), Pietravalle et al. (2003) and Te Beest et al. (2008, 2009) 

mentioned only the “best” correlations for each variable but provided no overview of the 

calculated results. 

In this study the approach was used to get an overview of the timescales on which 

meteorological variables influenced leaf rust and powdery mildew incidence in Saxony-

Anhalt and to identify the position and length of the most important windows on the 

developmental timeline of both pathogens. By displaying the results as correlograms the 

interpretation of correlation structures in dependence of window position and length was 

simplified and autocorrelations for each meteorological variable and their influence on 

analyses of relationships with disease incidence were revealed. 
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The Goldwin correlogram (Goldwin 1982) is an excellent method for obtaining an 

overview of all significantly correlated time windows. The use of correlograms offered 

the possibility for presenting not only significance or non-significance, but also the 

direction of correlation between infestation data and meteorological variables. Over 

350,000 correlations were analyzed per disease. 

Non-parametric Kendall correlation coefficients were used in the analyses to account for 

the non-normal distribution of the disease data. By transforming the original data to ranks 

and calculating the correlation between the ranks of both datasets, Kendall’s method 

allows analyses on relationships between normal distributed and non-normal distributed 

data. The results demonstrated that the majority of the correlations investigated were 

significant despite their small correlation coefficient. The values of the correlation 

coefficient turned out to be small due to different factors introducing noise into the 

analyses. First, the monitoring data was collected at different locations every year. 

Second, after connecting disease and weather data, no weather station had a continuous 

time series of disease incidence. Third, the incidence was measured for wheat plants of 

strongly varying susceptibility to each disease, respectively. Fourth, other effects 

introducing noise, e.g. soil parameters, varied over time and place. Despite the multitude 

of noise parameters potentially limiting correlation coefficients, most of the coefficients 

were significant because of the large number of observation used. 

7.7.3 Regression models 

Regression models are a valuable tool to identify relationships between the incidence of 

important plant pathogens and environmental conditions. Methods used to analyze data 

on plant disease occurrence often concentrated on analyzing the development of 

epidemics during the course of an epidemic year (Burleigh et al. 1972a, Daamen 1991, 

Eversmeyer & Kramer 1996). Only few dealt with the analysis of disease occurrence 

during the time of peak incidence (Coakley et al. 1988, Daamen et al. 1992, Te Beest et 

al. 2008, Wiik & Ewaldz 2009). Many of these studies were based on strong assumptions 

(e.g. normal distribution of disease data) and methods that do not account for data with 

fixed boundaries at zero and one. 

In the present study logistic regression analysis of raw and dichotomized incidence data 

was used to avoid these problems. Logistic regression has very few limitations regarding 

input data and can even be applied to data with strongly skewed distributions (Fletcher et 

al. 2005, Allison 2012) and data confined to a specific interval (Hastie et al. 2009). 
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Another benefit of using logistic regression is the ability to analyze the influence of 

variables on the probability of exceeding a predefined threshold by dividing the data into 

values below and above the threshold. Thresholds of 0% and 30% were used for leaf rust 

incidence and thresholds of 0% and 50% for powdery mildew incidence. The 30% and 

50% thresholds were selected based on the definition of a damaging leaf rust and powdery 

mildew epidemic by Beer (2005). 

To calculate logistic regression models for both diseases only the most important 

meteorological variables were selected to fit the disease data. Three meteorological 

variables of those analyzed with the correlation approach were selected as possible 

predictors to avoid strongly correlated predictors, e.g. mean temperature and sunshine 

duration, entering the regression procedure. Multicollinearity between predictor variables 

can severely distort the variable selection and induce bias into the parameter estimation 

(Harrell Jr. 2010). Correlated predictors may explain similar parts of the variability of the 

predictand. The importance of meteorological variables can be significantly 

overestimated in the presence of multicollinearity. 

In this study the meteorological variables were deseasonalized and aggregated over 

15-day periods to reduce autocorrelation effects within the meteorological time series. 

Given a mean persistence of large-scale atmospheric circulation patterns over Europe 

with a minimum of 3 to 6 days (Bárdossy & Caspary 1990, Kysely 2008), autocorrelation 

effects were reduced by deseasonalization and aggregating the weather data over 15-day 

intervals. Hence, the weather variables from different intervals could be defined as 

independent. The multicollinearity remaining in the meteorological data after the 

adjustments did not affect the predicted values, because the dataset of future climatic 

conditions contained the same degree of multicollinearity (Harell Jr. 2010). 

7.7.4 Variable selection 

The MSE is a standard measure for the evaluation of prediction errors (Rawlings et al. 

1998). It was used as the variable and model selection statistic for the logistic regression 

procedure with raw disease data. For the logistic regression models using dichotomized 

disease data, the f-measure developed by Torgo & Ribeiro (2006) was applied. The 

f-measure represents an alternative to the widely used misclassification rate. Furthermore, 

the f-measure is a valuable statistic for variable and model selection, especially when 

modeling the occurrence of plant diseases. The calculation of the f-measure can be 

adjusted to the needs of the disease expert by changing β. To increase the importance of 
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precision false positives can be given more weight, which improves the model’s ability 

to avoid unnecessary spraying of wheat when no disease has occurred. Thus, one aim 

could be to avoid spraying, which generates unnecessary costs and environmental 

pollution. The other aim could be to avoid failure to detect the target disease, which would 

generate higher costs due to yield loss. This aim could be approached by giving recall and 

false negatives more weight. However, it is impossible to decide which strategy is the 

best. It depends on the expert’s opinion of which failure outweighs the other. By choosing 

β = 0.5 this study followed the recommendation of Ribeiro & Torgo (2009) favoring a 

higher importance of precision compared to recall for numerical prediction tasks. This 

conservative approach was chosen, because avoiding false negatives was considered 

more important than predicting all observed positives correctly at all costs. 

Both measures were calculated for the training data set to determine the best variable to 

be included in the model at each step. The same measures were calculated at each step 

for an independent validation sample to stop the variable selection, when the optimal 

amount of variables was reached without overfitting the data. This validation strategy, 

also known as cross-validation, is an often used method (Harrell Jr. 2010) and was 

implemented in the model procedure as leave-one-out cross-validation. 

7.7.5 Model selection and validation 

After stopping the variable selection the predictive performance of the resulting model 

had to be evaluated. Because the validation sample of the inner cross-validation was 

already used to validate the temporary models during the variable selection for fulfilling 

the stop criterion another independent sample was needed. Anderssen (2006) found out 

that models using cross-validation for the model fitting procedure did not give good 

estimates of the predictive value. This justified the need for a second validation, which 

was implemented by using a test sample originating from the outer 10-fold cross-

validation. MSE and f-measure, calculated for the test sample, were used as measures to 

estimate the predictive performance of the 10 candidate models and to select the model 

performing best. 

The quality of the final “best” model identified for each pathogen and input data type 

(raw data and dichotomized data including two different thresholds) was then assessed 

using all data available, including data used for generating the model. The selected models 

where then applied to the climate scenario data.  
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Models for both pathogens based upon raw incidence had high mean RMSE values. 

Errors for the whole base period and RMSE values of annual and station-wise averages 

gave a more detailed picture of the quality of both models. The LRI model replicated the 

overall and annual mean values with small errors. The error for station-wise averages was 

higher but still allowed for inference about future conditions. The PMI model had similar 

errors compared to the LRI model, but replicated the annual means with less accuracy. 

Both models exhibited good performance according to the ROC AUC. Both models 

underestimated the sample variance demonstrated by the non-constant variance of the 

residuals with respect to the linear predictor. In addition, the residuals of the PMI model 

showed a trend, which indicated the logit-link function not being the optimal choice for 

modeling the data. 

The models simulating the probability to exceed 0% incidence for both pathogens showed 

good performance according to the f-measure. The PMI0 model predicted nearly all 

observed positive values correctly at a high value of precision. The LRI0 model predicted 

about half of the observed positives correctly with high precision. The ROC AUC values 

of both models underlined the good predictive quality. Both models exhibited small errors 

in predicting the overall probability to exceed 0% incidence during the period 1976 to 

2010. But both models had difficulties in simulating mean annual and station-wise 

probabilities. The lower prediction quality of annual and station-wise averages can be 

attributed to the weakness of the models reproducing the sample variance. Similar to the 

models for raw disease data sample variance is underestimated by the model approach. 

As supposed, the f-measure of the LRI30 and PMI50 model indicated a lower quality 

compared to the models for the 0% threshold, because much fewer observations 

exceeding the thresholds were present in the data and the f-measure weights were adjusted 

to use a conservative approach for model validation. High values of precision compared 

to low values of recall for both models supported this hypothesis further. Despite smaller 

values for the f-measure both models had smaller errors in predicting the annual and 

station-wise means of threshold exceedance compared to the LRI0 and PMI0 model. The 

ROC AUC results of both models were more optimistic than the f-measure regarding the 

predictive accuracy. Plots of residuals versus the linear predictor revealed an 

underestimation of the sample variance, resulting in less accurate prediction results for 

the annual and station-wise averages similar to the models for a threshold of 0%. 

To explain the cause of the overdispersion detected within the generated models, it has to 

be taken into account that the logistic regression function can also be interpreted as a 
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generalized linear model with the logit (or log odds) function representing a link function 

utilizing the binomial distribution. The link function is used to link the responses to the 

linear predictors. In contrast to a linear model the logistic model does not estimate the 

variance independently from the mean, but already contains a specification of the 

relationship between mean and variance through the binomial distribution. If 

overdispersion is detected for a logistic regression model, the difference between 

observed and predicted values was larger than assumed by using the binomial distribution 

(Allison 2012). 

Three causes of overdispersion were described in the literature (Allison 2012, Garson 

2012): the variance function determined by the distributional assumption underestimated 

the variance, the sampling was not randomized, or important covariates were missing in 

the model. 

The first cause can be approached by adjusting the covariance matrix introducing a scale 

parameter. But this only adjusts the test subjects for chi-square-based goodness-of-fit 

tests, which were not used to assess the model quality in this study. The second cause did 

not apply to the data used for this study, as the data collection was randomized according 

to Schwähn & Röder (1982). The third cause can only be approached by including more 

covariates in the model. As the models generated for this study already included the 

maximum amount of predictors without overfitting the model, more data has to be 

collected to justify the integration of a larger amount of predictors into the models. 

Hence, it can be concluded that the logistic link function was not the optimal choice for 

modelling the data. A link function supporting a higher amount of extreme values may 

lead to better modelling results. In addition, the integration of more non-climatic 

variables, for example the variables analyzed in this study by a correlation approach, may 

help to describe the variability more accurately. To include these variables an important 

pre-condition is the availability of non-climatic data for the whole timeframe of interest 

in a regular spatial resolution. The inclusion of soil parameters as location characterizing 

variables recorded for each monitoring spot and the precise recording of the monitoring 

spot via GPS coordinates is strongly recommended for future data collections of 

agricultural diseases. 

7.7.6 STARS simulation 

The STARS model was used, because the calculations of STARS-scenarios are much 

faster compared to those needed when working with dynamical regional climate models. 
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Hence a bigger ensemble of future climate scenarios was available. Despite the absence 

of complex differential equations and large amounts of parameterizations, included in 

dynamical climate models, validation results (Orlowsky et al. 2008) and the amount of 

climate impact studies successfully utilizing STARS (Liersch et al. 2013, Lutz et al. 2013) 

supported the quality of STARS simulations and underlined the usefulness of the model. 

Nevertheless, the value of STARS as a model to project future climate development has 

to be questioned. In a recent study Wechsung & Wechsung (2014) revealed that STARS 

generates predictable outcomes exemplified by the projection of wetter winter and drier 

summer conditions for Germany. This can be attributed to STARS translating short-term 

interannual variability between temperature and covariables into long-term climate 

trends. Thus, climate impact projections, calculated by implementing STARS simulations 

as input for future climatic conditions, have to be treated as reactions to a selected type 

of climate change (Bloch et al. 2015). 
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8 Conclusions  

In conclusion, this study demonstrated the importance of long-term pathogen time-series 

and proposed ways to organize and analyze non-normally distributed data on disease 

incidence using the examples of leaf rust (P. triticina) and powdery mildew (B. graminis 

f.sp. tritici) in winter wheat. An effective and easy to use method demonstrated how 

meteorological observations can be connected with disease information. Moving window 

correlation approaches presented interesting insight into relationships between 

meteorological variables and disease incidence on various timescales during the 

vegetation period. Multivariate logistic regression models identified the most important 

relationships and quantified them on the basis of a generalized linear regression 

framework. Impacts of climatic changes on the future incidence of both diseases were 

quantified by utilizing the generated regression models in combination with climate 

scenarios derived from a statistical climate model. 

Analyzes showed that meteorological variables affected both pathogens very differently. 

Temperature and precipitation had a mainly positive influence on leaf rust and a negative 

one on powdery mildew during most parts of the vegetation period. But, to improve the 

quality of statistical models for both diseases, more extreme probability distributions have 

to be considered when utilizing a generalized linear regression framework. 

The model results indicated that leaf rust incidence in Saxony-Anhalt will increase and 

incidence of powdery mildew will decrease in the future according to simulations of 

changing climatic conditions projected for the state. In addition, the study demonstrated 

that the relationships and changes will be dependent on the varieties used. 

This study also demonstrated that the effects of non-climatic factors like soil properties, 

variety characteristics, and cultivation methods have to be considered as additional effects 

when modeling plant disease occurrence. In addition, auto-regressive effects and 

interactions between both diseases may have to be implemented. Therefore, it is 

concluded that more data on soil-variety-cultivation subgroups and longer time series are 

needed to construct better models and to develop better scenarios of disease incidence in 

the future. 

A larger database on the occurrence of plant diseases would set the preconditions to 

comply with the demand for more empirical studies on plant diseases under field 

conditions (Chakraborty & Newton 2011). Empirical studies are urgently needed to 

develop options for crop adaptation and disease management under changing climatic 
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conditions. The adaptation of crops and the management of plant diseases are essential 

preconditions to increase the productivity of agricultural systems in the future in order to 

adequately meet the nutritional demands of a fast growing world population (Borlaug 

1965, 1997, 2007). 

 

 

134 

 



Bibliography 

9 Bibliography 

9.1 Written sources 

ALLISON, P.D. (2012): Logistic Regression Using SAS: Theory and Application. 2nd 

Edition, Cary (N.C.), SAS Institute Inc. 

 

ANDERSSEN, E., K., DYRSTAD, F., WESTAD, H., MARTENS (2006): Reducing over-

optimism in variable selection by cross-model validation. In: Chemometrics and 

Intelligent Laboratory Systems 84, 69-74. 

 

ARYA, H.C., M.S., GEMAWAT (1953): Occurrence of powdery mildew of wheat in the 

neighbourhood of Jodhpur. In: Indian Phytopathology 6, 123-130. 

 

ASUYAMA, H. (1939): On the period of infection of wheat seedlings by leaf rust, Puccinia 

rubigovera tritici. In: Annals of the Phytopathological Society of Japan 8, 298-308. 

 

AUST, H.J. (1973): Wirkung verschiedener Anzuchtbedingungen auf die Keimung des 

Gerstenmehltaues (Erysiphe graminis DC.f.sp. hordei Marchal). In: Journal of 

Phytopathology 76, 179-181. 

 

AUST, H.J. (1981): Über den Verlauf von Mehltauepidemien innerhalb des Agro- 

Ökosystems Gerstenfeld. In: Acta Phytomedica, 7. 

 

AUST, H.J., B., HAU, J., KRANZ (1983): EPIGRAM – a simulator of barley powdery 

mildew. In: Journal of Plant Diseases and Protection 90, 244-250. 

 

AUST, H.J., J. VON, HOYNINGEN-HUENE (1986): Microclimate in Relation to Epidemics 

of Powdery Mildew. In: Annual Review of Phytopathology 24, 491-510. 

 

BÁRDOSSY, A., H.J., CASPARY (1990): Detection of climate change in Europe by 

analyzing European atmospheric circulation patterns from 1881 to 1989. In: Theoretical 

and Applied Climatology 42 (3), 155-167. 

 
135 

 



Bibliography 

BEER, E. (2005): Arbeitsergebnisse aus der Projektgruppe „Krankheiten im Getreide“ der 

Deutschen Phytomedizinischen Gesellschaft e.V. In: Gesunde Pflanzen 57, 59-70. 

 

BÉLANGER, R.R., W.R., BUSHNELL, A.J., DIK, T.L.W., CARVER (2002): The powdery 

mildews: a comprehensive treatise. St.Paul (Minn.,USA), APS Press. 

 

BERNHOFER, CH., V., GOLDBERG, J., FRANKE, M., SURKE, J., ADAM (2008): REKLI – 

Sachsen-Anhalt II. Regionale Klimadiagnose für Sachsen-Anhalt. Final report of the 

„Technische Universität Dresden“. In: Berichte des Landesamtes für Umweltschutz 

Sachsen-Anhalt Sonderheft 5. Halle / Saale. 

 

BLOCH, R., F., WECHSUNG, J., HEß, J., BACHINGER (2015): Climate change impacts of 

legume-grass swards: implications for organic farming in the Federal State of 

Brandenburg, Germany. In: Regional Environmental Change 15, 405-414. 

 

BLUMER, S. (1967): Echte Mehltaupilze (Erysiphaceae) – Ein Bestimmungsbuch für die 

in Europa vorkommenden Arten. Jena (Germany), Gustav Fischer Verlag. 

 

BOCKUS, W.W., R.L., BOWDEN, R.M., HUNGER, W.L., MORRILL, T.D., MURRAY [Eds.] 

(2010): Compendium of wheat diseases and pests.3rd Edition, St. Paul (MN), American 

Phytopathological Society. 

 

BOLAND, G. J., M.S., MELZER, A., HOPKIN, V., HIGGINS, A., NASSUTH (2004): Climate 

change and plant diseases in Ontario. In: Canadian Journal of Plant Pathology 26 (3), 

335-350. 

 

BOLTON, M.D, J.A., KOLMER, D.F., GARVIN (2008): Wheat leaf rust caused by Puccinia 

triticina. In: Molecular Plant Pathology 9 (5), 563-575. 

 

BORLAUG, N.E. (1965): Wheat, Rust, and People. In: Phytopathology 55, 1088-1098. 

 

BORLAUG, N.E. (1997): Feeding a world of 10 Billion people: The miracle ahead. In: In 

Vitro Cellular & Developmental Biology – Plant 38 (2), 221-228. 

 
136 

 



Bibliography 

BORLAUG, N.E. (2007): Feeding a hungry world. In: Science 318 (5849), 359. 

 

BOUGHEY, A.S. (1949): The ecology of fungi which cause economic plant diseases. In: 

Transactions of the British Mycological Society 32 (2), 179-189. 

 

BOUMA, E. (2008): Wetter und Pflanzenschutz. Zutphen (Netherlands), Roodbont-Verlag. 

 

BRAUN, U. (1995): The powdery mildews (Erysiphales) of Europe. Jena (Germany), VEB 

Gustav Fischer Verlag. 

 

BREGAGLIO, S., M., DONATELLI, R., CONFALONIERI (2013): Fungal infections of rice, 

wheat, and grape in Europe in 2030-2050. In: Agronomy for sustainable development 33, 

767-776. 

 

BRENNAN, R.F., K.W., JAYASENA (2007): Increasing applications of potassium fertiliser 

to barley crops grown on deficient sandy soils increased grain yields while decreasing 

some foliar diseases. In: Australian Journal of Agricultural Research 58, 680-689. 

 

BRUNS, J.B. (1997): Untersuchungen zur wetterbasierten Befallssimulation und 

Verlustprognose von Echtem Mehltau (Erysiphe graminis D.C. f. sp. tritici Marchal) an 

Winterweizen. PhD thesis, Universität Göttingen. 

 

BRYZGALOVA, V.A. (1937): Temperatures of Spore Germination of Puccinia triticina 

Erickss. in Eastern Siberia. In: Trudy po Zashchite Rastenii Vostoch-noi Sibiri 5, 89-94. 

 

BURLEIGH, J.R., A.A., SCHULZE, M.G., EVERSMEYER (1969): Some aspects of the summer 

and winter ecology of wheat rust fungi. In: Plant Disease Reporter 53 (8), 648-651. 

 

BURLEIGH, J.R., M.G., EVERSMEYER, A.P., ROELFS (1972a): Development of linear 

equations for predicting wheat leaf rust. In: Phytopathology 62, 947-953. 

 

BURLEIGH, J.R., A.P., ROELFS, M.G., EVERSMEYER (1972b): Estimating damage to wheat 

caused by Puccinia recondita tritici. In: Phytopathology 62, 944-946. 

 
137 

 



Bibliography 

CALVERO JR., S.B., S.M., COAKLEY, P.S., TENG (1996): Development of empirical 

forecasting models for rice blast based on weather factors. In: Plant pathology 45, 667-

678. 

 

CAMPBELL, C.L., L.V., MADDEN (1990): Introduction to Plant Disease Epidemiology. 

New York (USA), Wiley. 

 

CAO, X., X., DUAN, Y., ZHOU, Y., LUO (2012): Dynamics in concentrations of Blumeria 

graminis f. sp tritici conidia and its relationship to local weather conditions and disease 

index in wheat. In: European Journal of Plant Pathology 132 (4), 525-535. 

 

CHAKRABORTY, S., J., LUCK, G., HOLLAWAY, G., FITZGERALD, N., WHITE (2011): Rust-

proofing wheat for a changing climate. In: Euphytica 179 (1), 19-32. 

 

CHAKRABORTY, S., A.C., NEWTON (2011): Climate change, plant diseases and food 

security: an overview. In: Plant Pathology 60 (1), 2-14. 

 

CHANNON, A.G. (1981): Forecasting barley mildew development in West Scotland. In: 

Annals of Applied Biology 97, 43-53. 

 

CHARLES, R., E., CHOLLEY, P., FREI, F., MASCHER (2011): Krankheiten beim 

Winterweizen: Einfluss des Anbausystems und Auswirkungen auf den Ertrag. In: 

Agrarforschung Schweiz 2 (6), 264-271. 

 

CHEREWICK, W.J. (1944): Studies on the biology of Erysiphe graminis DC. In: Canadian 

Journal of Research 22, 52-86. 

 

CHESTER, K.S. (1946): The nature and prevention of the cereal rusts as exemplified in the 

leaf rust of wheat. Waltham (Mass.), Chronica Botanica Co. 

 

COAKLEY, S.M., L.R., MCDANIEL, G., SHANER (1985): Model for predicting severity of 

Septoria tritici blotch on winter wheat. In: Phytopathology 75, 1245-1251. 

 

138 

 



Bibliography 

COAKLEY, S.M. (1988): Variation in climate and prediction of disease in plants. In: 

Annual Review of Phytopathology 26, 163-181. 

 

COAKLEY, S.M., R.F., LINE, L.R., MCDANIEL (1988): Predicting stripe rust severity on 

winter wheat using an improved method for analyzing meteorological and rust data. In: 

Phytopathology 78, 543-550. 

 

COAKLEY, S.M. (1989): Historical weather data: Its use in epidemiology. In: LEONARD, 

K., W., FRY [Eds.]: Plant Disease epidemiology. Vol II, Chapter 3. New York, McGraw-

Hill Publishing Co., 54-83. 

 

COAKLEY, S.M., H., SCHERM, S., CHAKRABORTY (1999): Climate change and plant 

disease management. In: Annual Review of Phytopathology 37, 399-426. 

 

COCHRAN, W.G. (1977): Sampling techniques. 3rd Edition, New York, John Wiley & 

Sons. 

 

COLHOUN, J. (1973): Effects of environmental factors on plant disease. In: Annual Review 

of Phytopathology 11, 343-364. 

 

DAAMEN, R.A. (1991): An advisory model for control of Puccinia recondita in winter 

wheat. In: Netherlands Journal of Plant Pathology 97, 275-288. 

 

DAAMEN, R.A., R.W., STUBBS, W., STOL (1992): Surveys of cereal diseases and pests in 

the Netherlands. 4. Occurrence of powdery mildew and rusts in winter wheat. In: 

Netherlands Journal of Plant Pathology 98 (5), 301-312. 

 

DE VALLAVIEILLE-POPE, C., L., HUBER, M., LECONTE, H., GOYEAU (1995): Comparative 

effects of temperature and interrupted wet periods on germination, penetration, and 

infection of Puccinia recondita f.sp. tritici and P.striiformis on wheat seedlings. In: 

Phytopathology 85 (4), 409-415. 

 

139 

 



Bibliography 

DE VALLAVIEILLE-POPE, C., L., HUBER, M., LECONTE, O., BETHENOD (2002): 

Preinoculation Effects of Light Quantity on Infection Efficiency of Puccinia striiformis 

and P. triticina on Wheat Seedlings. In: Phytopathology 92 (12), 1308-1314. 

 

DIRKS, V.A., R.W., ROMIG (1970): Linear models applied to variation in numbers of 

cereal rust Urediospores. In: Phytopathology 60, 246-251. 

 

DITSCH, D.C., J.H., GROVE (1991): Influence of tillage on plant populations, disease 

incidence, and grain yield of two soft red winter wheat cultivars. In: Journal of 

Production Agriculture 4 (3), 360-365. 

 

D’OLIVEIRA, B., D.J., SAMBORSKI (1966): Aecial stage of Puccinia recondita on 

Ranunculaceae and Boraginaceae in Portugal. In: Proceedings of Cereal Rust 

Conferences, 1964, 133-150. 

 

DORDAS, C. (2008): Role of nutrients in controlling plant diseases in sustainable 

agriculture: A review. In: Agronomy for Sustainable Development 28 (1), 33-46. 

 

DUBIN, H.J., E., TORRES (1981): Causes and consequences of the 1976-1977 wheat leaf 

rust epidemic in northwest Mexico. In: Annual Review of Phytopathology 19, 41-49. 

 

DUTZMANN, S. (1985): Zur Analyse der Beziehung zwischen Klimadaten und 

Sporenproduktion sowie Sporenverbreitung von Erysiphe graminis f.sp. hordei. In: 

Journal of Plant Diseases and Protection 92, 629-642. 

 

EASTBURN, D.M., A.J., MCELRONE, D.D., BILGIN (2011): Influence of atmospheric and 

climate change on plant-pathogen interactions. In: Plant pathology 60, 54-69. 

 

EFRON, B., R.J., TIBSHIRANI (1998): An introduction to the bootstrap. 1st Reprint, Boca 

Raton (FL), Chapman & Hall/CRC Press. 

 

EVANS, L.T., I.F., WARDLAW, C.N., WILLIAMS (1964): Environmental control of growth. 

In: BARNYARD, C. [Ed.]: Grasses and Grasslands. London, Macmillan and Company 

Limited, 102-125. 
140 

 



Bibliography 

 

EVERSMEYER, M.G., J., BURLEIGH (1970): A method of predicting epidemic development 

of wheat leaf rust. In: Phytopathology 60 (5), 805-811. 

 

EVERSMEYER, M.G., C.L., KRAMER, L.E., BROWDER (1980): Effect of temperature and 

host-parasite combination on the latent period of Puccinia recondita in seedling wheat 

plants. In: Phytopathology 70 (10), 938-941. 

 

EVERSMEYER, M.G., C.L., KRAMER (1994): Survival of Puccinia recondita and P. 

graminis urediniospores as affected by exposure to weather conditions at one meter. In: 

Phytopathology 84, 332-335. 

 

EVERSMEYER, M.G., C.L., KRAMER (1995): Survival of Puccinia recondita and P. 

graminis urediniospores exposed to temperatures from subfreezing to 35 C. In: 

Phytopathology 85, 161-164. 

 

EVERSMEYER, M.G., C.L., KRAMER (1996): Modeling winter and early spring survival of 

Puccinia recondita in wheat nurseries during 1980 and 1993. In: Plant Disease 80, 490-

493. 

 

EVERSMEYER, M.G., C.L., KRAMER (1998): Models of early spring survival of wheat leaf 

rust in the central Great Plains. In: Plant Disease 82 (11), 987-991. 

 

EVERSMEYER, M.G., C.L., KRAMER (2000): Epidemiology of wheat leaf and stem rust in 

the central great plains of the USA. In: Annual Review of Phytopathology 38, 491-513. 

 

FABIG, I. (2007): Die Niederschlags- und Starkregenentwicklung der letzten 100 Jahre 

im Mitteldeutschen Trockengebiet als Indikator möglicher Klimaänderungen. PhD thesis, 

Martin-Luther-Universität Halle-Wittenberg. 

 

FITT, B.D.L., B.A., FRAAIJE, P., CHANDRAMOHAN, M.W., SHAW (2011): Impacts of 

changing air composition on severity of arable crop disease epidemics. In: Plant 

pathology 60, 44-53. 

 
141 

 



Bibliography 

FLETCHER, D., D., MACKENZIE, E., VILLOUTA (2005): Modelling skewed data with many 

zeros: A simple approach combining ordinary and logistic regression. In: Environmental 

and Ecological Statistics 12, 45-54. 

 

FRAHM, J., T., VOLK (1993): PRO-PLANT - a computer-based decision support system 

for cereal disease control. In: EPPO Bull 23, 685–694. 

 

FRANKE, J., S., GEBHARDT, G., MENZ, H.-P., HELFRICH (2009): Geostatistical analysis of 

the spatiotemporal dynamics of powdery mildew and leaf rust in wheat. In: 

Phytopathology 99 (8), 974-984. 

 

FRIEDRICH, S. (1994): Prognose der Infektionswahrscheinlichkeit durch Echten Mehltau 

an Winterweizen (Erysiphe graminis DC. f.sp. tritici) anhand meteorologischer 

Eingangsparameter. PhD thesis, Technische Universität Braunschweig. 

 

FRIEND, D.J.C. (1966): The effects of light and temperature on the growth of cereals. In: 

MILTHORPE, F.L., J.D., IVINS [Eds.]: The growth of cereals and grasses. London, 

Butterworth, 181-199. 

 

GARRETT, K.A., G.A., FORBES, S., SAVARY, P., SKELSEY, A.H., SPARKS, C., VALDIVIA, 

A.H.C., VAN BRUGGEN, L., WILLOCQUET, A., DJURLE, E., DUVEILLER, H., ECKERSTEN, S., 

PANDE, C., VERA CRUZ, J., YUEN (2011): Complexity in climate-change impacts: an 

analytical framework for effects mediated by plant disease. In: Plant pathology 60, 15-

30. 

 

GARSON, G.D. (2012): Logistic regression: binary and multinomial. Asheboro (USA), 

Statistical Associates Publishing. 

 

GERSTENGARBE, F.W., P.C., WERNER (2013): Szenarios: Der Blick in eine mögliche 

Zukunft 2.1 Das Klimaszenario: Modellauswahl und Datengrundlage. In: 

GERSTENGARBE, F.W., H., WELZER [Eds.]: Zwei Grad mehr in Deutschland. Frankfurt / 

Main (Germany), Fischer Taschenbuch, 31-43. 

 

 
142 

 



Bibliography 

GHINI, R., E., HAMADA, W., BETTIOL (2008): Climate change and plant diseases. In: 

Scientia agricola 65 (Sp.Iss.), 98-107. 

 

GIVAN, C.V., K.R., BROMFIELD (1964): Light inhibition of uredospore germination in 

Puccinia graminis var. tritici. In: Phytopathology 54, 382-384. 

 

GOLDWIN, G.K. (1982): A technique for studying the association between components of 

the weather and horticultural parameters. In: Scientia Horticulturae 16, 101-107. 

 

GRAF-MARIN, A. (1934): Studies on powdery mildew of cereals. In: Memoirs of the 

Cornell University Agricultural Experiment Station 157, 1-48. 

 

GRAINGER, J. (1947): The ecology of Erysiphe graminis DC. In: Transactions of the 

British Mycological Society 31, 54-65. 

 

GREGORY, P.J., S.N., JOHNSON, A.C., NEWTON, J.S.I., INGRAM (2009): Integrating pests 

and pathogens into the climate change / food security debate. In: Journal of Experimental 

Botany 60 (10), 2827-2838. 

 

GUTSCHE, V., E., KLUGE, A., SCHULTZ, P., MUELLER (1986): PESTSIM-ERY A model 

for simulation of infection with powdery mildew (Erysiphe graminis DC). In: 

Tagungsbericht-Akademie der Landwirtschaftswissenschaften der DDR (German DR). 

Comuter-aided modelling and simulation of the winter wheat agroecosystem 

(AGROSIM-W) for integrated pest management, Halle (German D.R.), 26-30 Sep 1984. 

 

Gutsche, V. (1987): Development and use of simulation models in GDR crop protection. 

In: Tagungsbericht-Akademie der Landwirtschaftswissenschaften der DDR (German 

DR). Microelectronics in agriculture, forestry and primary food industry, Berlin (German 

D.R.), 4-7 Nov 1986. 

 

GUTSCHE, V., U., GROLL, E., KLUGE, G., GÜNTHER, M., OSCHMANN (1987). Model-aided 

regional forecasting and field-related decision making on control of powdery mildew on 

wheat and barley and eyespot on wheat. In: Nachrichtenblatt für den Pflanzenschutz in 

der DDR 41, 16-19. 
143 

 



Bibliography 

 

HAMMARLUND, C. (1925): Zur Genetik, Biologie und Physiologie einiger Erysiphaceen. 

In: Hereditas 6, 1-126. 

 

HAN, H., T., NING, Z., LI (2013): Effects of tillage and weed management on the vertical 

distribution of microclimate and grain yield in a winter wheat field. In: Plant Soil 

Environment 59 (5), 201-207. 

 

HANSON, K., G.W., BRIER, G.A., MAUL (1989): Evidence of significant nonrandom 

behavior in the recurrence of strong El Niño between 1525 and 1988. In: Geophysical 

Research Letters 16 (10), 1181-1184. 

 

HARRELL JR., F.E. (2010): Regression modeling strategies : with applications to linear 

models, logistic regression and survival analysis. New York (USA), Springer. 

 

HARTUNG, J., B., ELPELT, K.-H., KLÖSENER (2009): Statistik : Lehr- und Handbuch der 

angewandten Statistik. 15th Edition, Munich (Germany), Oldenbourg Verlag. 

 

HASSAN, Z.M., C., KRAMER, M.G., EVERSMEYER (1986): Summer and winter survival of 

Puccinia recondite and infection by soilborne urediniospores. In: Transactions of the 

British Mycological Society 86 (3), 365-372. 

 

HASSEBRAUK, K. (1959): Uredinales (Rostpilze). 

 

HASTIE, T. , R., TIBSHIRANI, J.H., FRIEDMAN (2009): The elements of statistical learning: 

Data mining, inference, and prediction. 2nd Edition, New York (USA), Springer. 

 

HAU, B. (1985): Epidemiologische Simulatoren als Instrumente der Systemanalyse mit 

besonderer Berücksichtigung eines Modells des Gerstenmehltaus. In: Acta Phytomedica 

9, 1-101. 

 

HAU, B. (1988): Ein erweitertes analytisches Modell für Epidemien von 

Pflanzenkrankheiten. Habilitation, Universität Gießen. 

 
144 

 



Bibliography 

HAU, B. (1990): Analytical models of plant disease in a changing environment. In: Annual 

Review of Phytopathology 28, 221-245. 

 

HEITEFUSS, R., K., KÖNIG, A., OBST (1993): Pflanzenkrankheiten und Schädlinge im 

Ackerbau. 3rd Edition, Frankfurt/Main (Germany), DLG Verlag. 

 

HIRST, J.M., O.J., STEDMAN, W.H., HOGG (1967a): Long-distance spore transport: 

Methods of measurement, vertical spore profiles and the detection of immigrant spores. 

In: Journal of General Microbiology 48 (3), 329-355. 

 

HIRST, J.M., O.J., STEDMAN, W.H., HOGG (1967b): Long-distance spore transport: vertical 

sections of spore clouds over the sea. In: Journal of General Microbiology 48 (3), 357-

377. 

 

HODSON, D.P. (2011): Shifting boundaries: challenges for rust monitoring. In: Euphytica 

179, 93-104. 

 

HOGG, W.H. [Ed.] (1969): Meteorological factors affecting the epidemiology of wheat 

rusts: report of the working group on Meteorological factors affecting the epidemiology 

of wheat rusts of the Commission for Agricultural Meteorology. In: Technical report 238. 

Geneve (Switzerland), World Meteorological Organization (Working Group on 

Meteorological Factors Affecting the Epidemiology of Wheat Rusts). 

 

HOWARD, D.D., A.Y., CHAMBERS, J., LOGAN (1994): Nitrogen and fungicide effects on 

yield components and disease severity in wheat. In: Journal of Production Agriculture 7 

(4), 448-454. 

 

HUSSAIN, Z., M.H., LEITCH (2005): The effect of applied sulphur on the growth, grain 

yield and control of powdery mildew in spring wheat. In: Annals of Applied Biology 147, 

49-56. 

 

IPCC (2013): Climate change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change. STOCKER, T.F., D., QIN, G.-K., PLATTNER, M., TIGNOR, S.K., ALLEN, J., 
145 

 



Bibliography 

BOSCHUNG, A., NAUELS, Y., XIA, V., BEX, P.M., MIDGLEY [Eds.]. Cambridge (UK), New 

York (NY, USA), Cambridge University Press. 

 

IPCC (2014): Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: 

Regional Aspects. Contibution of Working Group II to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. BARROS, V.R., C.B., FIELD, D.J., DOKKEN, 

M.D., MASTRANDREA, K.J., MARCH, T.E, BILIR, M., CHATTERJEE, K.L., EBI, Y.O., 

ESTRADA, R.C., GENOVA, B., GIRMA, E.S., KISSEL, A.N., LEVY, S., MACCRACKEN, P.R., 

MASTRANDREA, L.L., WHITE [Eds.]. Cambridge (UK), New York (NY, USA), 

Cambridge University Press. 

 

JACOB, D., B.J.J.M., VAN DEN HURK, U., ANDRAE, G., ELGERED, C., FORTELIUS, L.P., 

GRAHAM, S.D., JACKSON, U., KARSTENS, CHR., KOEPKEN, R., LINDAU, R., PODZUN, B., 

ROCKEL, F., RUBEL, B.H., SASS, R., SMITH, X., YANG (2001): A Comprehensive Model 

Intercomparison Study Investigating the Water Budget During the PIDCAP Period. In: 

Meteorology and Atmospheric Physics 77 (1-4), 19-44. 

 

JACZEWSKA-KALICKA, A. (2007): The influence of pathogenic fungi and weather 

conditions on winter wheat yield. In: Journal of Plant Protection Research 47 (2), 147-

160. 

 

JAHN, M., B., FREIER (2001): Changes in the Occurrence of Plant Diseases, Pests, and 

Beneficials. In: LOZÁN, J.L., H., GRASSL, P., HUPFER [Eds.]: Climate of the 21st century: 

changes and risks, scientific facts. Hamburg, Wissenschaftliche Auswertungen, 307-310. 

 

JAHN, M., E., KLUGE, S., ENZIAN (1996): Influence of climate diversity on fungal diseases 

on field crops – evaluation of long-term monitoring data. In: Aspects of Applied Biology 

45, 247-252. 

 

JAMES, W.C., P.S., TENG, P.W., NUTTER (1990): Estimated losses of crops from plant 

pathogens. In: PIMENTEL, D. [Ed.]: CRC Handbook of Pest Management in Agriculture, 

Volume I. 2nd Edition, Boca Raton (FL), CRC Press, 15-52. 

 

146 

 



Bibliography 

JEGER, M.J., M., PAUTASSO (2008): Plant disease and global change – the importance of 

long-term data sets. In: New Phytologist 177, 8-11. 

 

JOHNEN, A., J., FRAHM, M., GRÜNEWALD (1995): New ways in controlling oil seed rape 

pests with the aid of the decision support system PRO_PLANT. In: European Journal of 

Plant Pathology. Abstracts of the XIII International Plant Protection Congress, The 

Hague, The Netherlands, 2-7 July 1995, 939. 

 

JOHNSTON, H.W. (1974): Overwintering of Erysiphe graminis f.sp. tritici on maritime 

grown winter wheat. In: Canadian Plant Disease Survey 54, 71-73. 

 

JONES, D.G., B.C., CLIFFORD (1983):Cereal diseases – Their pathology and control. 2nd 

Edition, New York (USA), John Wiley & Sons. 

 

JUROSZEK, P., A. VON, TIEDEMANN (2011): Potential strategies and future requirements 

for plant disease management under a changing climate. In: Plant Pathology 60 (1), 100-

112. 

 

JUROSZEK, P., A. VON, TIEDEMANN (2013): Climate change and potential future risks 

through wheat diseases: a review. In: European Journal of Plant Pathology 136, 21-33. 

 

JOSHI, L.M., K.D., SRIVASTAVA, D.V., SINGH, K., RAMANUJAM (1980): Wheat rust 

epidemics in India since 1970. In: Cereal Rusts Bulletin 8 (1), 17-21. 

 

KÁDÁR, I., E., ELEK (1999): Mineral nutrition of wheat (Triticum aestivum L.) on 

calcareous chernozem soil. I. In: Növénytermelés 48 (3), 311-322. 

 

KÁDÁR, I., B., KAZÓ, T., BÁRTFAI, P., ZILAHY (1999): Mineral nutrition of wheat 

(Triticum aestivum L.) on calcareous chernozem soil. II. In: Növénytermelés 48 (5), 523-

534. 

 

KIRALY, Z. (1976): Plant disease resistance as influenced by biochemical effects of 

nutrients in fertilizers. In: Proceedings of the 12th Colloquium of the International Potash 

Institute. Worblaufen-Bern (Switzerland), International Potash Institute, 33-46. 
147 

 



Bibliography 

 

KLEINHENZ, B., M., RÖHRIG (2003): So arbeitet das Portal ISIP. In: DLG-Mitteilungen 2, 

52-54. 

 

KLOSE, A. (1974): Untersuchungen zur Epidemiologie und Prognose von Mehltau 

(Erysiphe graminis f. sp. hordei) an Sommergerste. PhD thesis, Technische Universität 

München. 

 

KLUGE, E., V., GUTSCHE, G., GÜNTHER (1989): Computergestütztes Verfahren zur 

Prognose und Bekämpfungssteuerung des Mehltaus an Winterweizen und Wintergerste 

(ERYPROG) – Ergebnisse der Erprobung 1986-1988. In: Nachrichtenblatt des 

Pflanzenschutzdienstes der DDR 43, 161-165. 

 

KLUGE, E. (1990): Einfluß acker- und pflanzenbaulicher Faktoren auf die Entwicklung 

des Mehltaus an Winterweizen. In: Archives of Phytopathology & Plant Protection 26 

(6), 541-550. 

 

KLUGE, E., S., ENZIAN, V., GUTSCHE (1999): Atlas der potentiellen Befallsgefährdung 

durch wichtige Schadorganismen im Ackerbau Deutschlands. Ribbesbüttel (Germany), 

Saphir Verlag. 

 

KOCH, G. (1991): Pilzliche Schaderreger an Winterweizen im Vergleich zweier 

konventioneller Betriebe und eines biologisch-dynamischen Betriebes in Hessen. In: 

Journal of Plant Diseases and Protection 98 (2), 125-136. 

 

KOCOUREK, F., L., VĚCHET (1984): Über ein temperaturabhängiges Modell zur 

Vorhersage der Entwicklungsgeschwindigkeit bei Erysiphe graminis f.sp. tritici. In: 

Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 57, 15-18. 

 

KOLESNIKOV, L.E., E., VLASOVA, Y., KOLESNIKOVA (2009): Effect of natural climatic 

factors on the dynamics of pathogenesis of wheat disease pathogens. In: Russian 

Agricultural Sciences 35 (2), 90-93. 

 

148 

 



Bibliography 

KOLMER, J.A. (2005): Tracking wheat rust on a continental scale. In: Current Opinion in 

Plant Biology 8, 441-449. 

 

KOTLARSKI, S., A., BLOCK, U., BÖHM, D., JACOB, K., KEULER, R., KNOCHE, D., RECHID, 

A., WALTER (2005): Regional Climate Model Simulations as Input for Hydrological 

Applications: Evaluation of Uncertainties. In: Advances in Geosciences 5, 119-125. 

 

KRAUß, A. (1969): Einfluß der Ernährung der Pflanzen mit Mineralstoffen auf den Befall 

mit parasitären Krankheiten und Schädlingen. In: Journal of Plant Nutrition and Soil 

Science 124 (2), 129-147. 

 

KRÉDL, Z., T., STREDA, R., POKORNÝ, M., KMOCH, J., BROTAN (2012): Microclimate in 

the vertical profile of wheat, rape and maize canopies. In: Acta universitatis agriculturae 

et silviculturae mendelianae brunensis 60 (1), 79-90. 

 

KROPP, J., O., ROITHMEIER, F., HATTERMANN, C., RACHIMOW, A., LÜTTGER, F., 

WECHSUNG, P., LASCH, E.S., CHRISTIANSEN, C., REYER, F., SUCKOW, M., GUTSCH, A., 

HOLSTEN, T., KARTSCHALL, M., WODINSKI, Y., HAUF, T., CONRADT, H., ÖSTERLE, C., 

WALTHER, T., LISSNER, N., LUX, V., TEKKEN, S., RITCHIE, J., KOSSAK, M., KLAUS, L., 

COSTA, T., VETTER, M., KLOSE (2009): Klimawandel in Sachsen-Anhalt - 

Verletzlichkeiten gegenüber den Folgen des Klimawandels. In: Final report by the 

Potsdam Institute for Climate Impact Research (PIK). 

 

KRUPINSKY, J.M., K.L., BAILEY, M.P., MCMULLEN, B.D., GOSSEN, T.K., TURKINGTON 

(2002): Managing plant disease risk in diversified cropping systems. In: Agronomy 

Journal 94, 198-209. 

 

KYSELY, J. (2008): Influence of the persistence of circulation patterns on warm and cold 

temperature anomalies in Europe: Analysis over the 20th century. In: Global and 

Planetary Change 62, 147-163. 

 

LAST, F.T. (1953): Some effects of temperature and nitrogen supply on wheat powdery 

mildew. In: Annals of Applied Biology 40, 312-322. 

 
149 

 



Bibliography 

LAST, F.T. (1963): Effect of temperature on cereal powdery mildews. In: Plant Pathology 

12, 132-133. 

 

LEONARD, K., W., FRY [Eds.] (1986): Plant Disease Epidemiology. Vol. I. Population 

Dynamics and Management. New Jersey (USA), Macmillan Publishing Company. 

 

LEONARD, K., W., FRY [Eds.] (1989): Plant Disease epidemiology. Vol II.Genetics, 

Resistance, and Management. New York (USA), Macmillan Publishing Company. 

 

LI, Q., J., YUN, W., LIU, S., ZHOU, L., LI, J., NIU, H., NIU, Y., MA (2012): Determination 

of Optimum Growing Degree-Days (GDD) Range Before Winter for Wheat Cultivars 

with Different Growth Characteristics in North China Plain. In: Journal of Integrative 

Agriculture 11 (3), 405-415. 

 

LIERSCH, S., J., COOLS, B., KONE, H., KOCH, M., DIALLO, J., REINHARDT, S., FOURNET, V., 

AICH, F.F., HATTERMANN (2013): Vulnerability of rice production in the Inner Niger 

Delta to water resources management under climate variability and change. In: 

Environmental Science & Policy 34, 18-33. 

 

LINDNER, B. (1989): Die koinzidente Entwicklung von Sommergerste und dem Echten 

Mehltau (Erysiphe graminis f.sp. hordei). In: Journal of Plant Diseases and Plant 

Protection 96 (1), 27-38. 

 

LUCK, J., M., SPACKMAN, A., FREEMAN, P., TREBICKI, W., GRIFFITHS, K., FINLAY, S., 

CHAKRABORTY (2011): Climate change and diseases of food crops. In: Plant pathology 

60, 113-121. 

 

LUTZ, J., J., VOLKHOLZ, F.-W., GERSTENGARBE (2013): Climate projections for southern 

Africa using complementary methods. In: International Journal of Climate Change 

Strategies and Management 5 (2), 130-151. 

 

MAGAREY, R.D., T.B., SUTTON, C.L., THAYER (2005): A simple generic infection model 

for foliar fungal plant pathogens. In: Phytopathology 95, 92-100. 

 
150 

 



Bibliography 

MAHIR, M.A. (2000): Development of linear equations for predicting wheat rust 

epidemics in New Halfa, Sudan. In: The Eleventh Regional Wheat Workshop for Eastern, 

Central and Southern Africa, Addis Ababa, Ethiopia, 18-22 September, 2000. Addis 

Ababa (Ethiopia), CIMMYT, 195-207. 

 

MANNERS, J.G., S.M.M., HOSSAIN (1963): Effects of temperature and humidity on 

conidial germination in Erysiphe graminis. In: Transactions of the Bristish Mycological 

Society 46, 225-234. 

 

MARTIN, T.J., R.E., STUCKEY, G.R., SAFIR, A.H., ELLINGBOE (1975): Reduction of 

transpiration from wheat caused by germinating conidia of Erysiphe graminis f.sp. tritici. 

In: Physiological Plant Pathology 7, 71-77. 

 

MERCHÁN VARGAS, V.M. (1984): Einfluß von Klimafaktoren insbesondere Blattnässe auf 

den Befall durch Erysiphe graminis DC.f.sp.tritici Marchal. PhD thesis, Justus-Liebig-

Universität Gießen. 

 

MERCHÁN VARGAS, V.M., J., KRANZ (1986): The effect of rain on the development of 

wheat powdery mildew (Erysiphe graminis DC. f. sp. tritici Marchal). In: Zeitschrift für 

Pflanzenkrankheiten und Pflanzenschutz 93 (3), 262-270. 

 

METZGER, M.J., R.G.H., BUNCE, R.H.G., JONGMAN, C.A., MÜCHER, J.W., WATKINS 

(2005): A climatic stratification of the environment of Europe. In: Global Ecology and 

Biogeography 14 (6), 549-563. 

 

MORGOUNOV, A., H.A., TUFAN, R., SHARMA, B., AKIN, A., BAGCI, H.-J., BRAUN, Y., 

KAYA, M., KESER, T.S., PAYNE, K., SONDER, R., MCINTOSH (2011): Global incidence of 

wheat rusts and powdery mildew during 1969-2010 and durability of resistance of winter 

wheat variety Bezostaya 1. In: European Journal of Plant Pathology 132 (3), 323-340. 

 

MOSCHINI, R.C., B.A., PÉREZ (1999): Predicting wheat leaf rust severity using planting 

date, genetic resistance, and weather variables. In: Plant Disease 83 (4), 381-384. 

 

151 

 



Bibliography 

MOSEMAN, J.G., H.R., POWERS JR. (1957): Function and longevity of cleistothecia of 

Erysiphe graminis f.sp. hordei. In: Phytopathology 47, 53-56. 

 

MOTHA, R. (2007): Implications of climate change on long-lead forecasting and global 

agriculture. In: Australian Journal of Agricultural Research 58, 939-944. 

 

MÜLLER, P. (1988): Untersuchungen zur Biologie des Echten Mehltaus an Winterweizen 

und Winterroggen unter kontrollierten Bedingungen. In: Tagungsbericht der Akademie 

der Landwirtschaftswissenschaften der DDR 271, Berlin. 

 

NEUMANN, S., N.D., PAVELEY, F.D., BEED, R., SYLVESTER-BRADLEY (2004): Nitrogen 

per unit leaf area affects the upper asymptote of Puccinia striiformis f.sp. tritici epidemics 

in winter wheat. In: Plant Pathology 53, 725-732. 

 

NEWTON, A.C., I.K., TOTH, P., NEAVE, L.J., HYMAN (2004): Bacterial inoculum from a 

previous crop affects fungal disease development on subsequent nonhost crops. In: New 

Phytologist 163, 133-138. 

 

NOETHER, G.E. (1967): Elements of nonparametric statistics. New York, John Wiley & 

Sons. 

 

NOUR, M.A. (1958): Studies on Leveillula taurica (Lev.) Arn. and other powdery 

mildews. In: Transactions of the British Mycological Society 41, 17-38. 

 

OBST, A., H.V., PAUL (1993): Krankheiten und Schädlinge des Getreides. Gelsenkirchen-

Buer, Verlag Th. Mann. 

 

OERKE, E.-C. (2006): Crop losses to pests. In: Journal of Agricultural Science 144, 31-

43. 

 

OLESEN, J.E., L.N., JORGENSEN, J., PETERSEN, J.V, MORTENSEN (2003): Effects of rates 

and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. 2. Crop 

growth and disease development. In: Journal of Agricultural Science 140, 15-29. 

 
152 

 



Bibliography 

ORLOWSKY, B., F.-W., GERSTENGARBE, P.C., WERNER (2008): A resampling scheme for 

regional climate simulations and its performance compared to a dynamical RCM. In: 

Theoretical and Applied Climatology 92, 209-223. 

 

PANGGA, I.B., J., HANAN, S., CHAKRABORTY (2011): Pathogen dynamics in a crop canopy 

and their evolution under changing climate. In: Plant pathology 60, 70-81. 

 

PAUVERT, P. (1976); Sporulation of barley powdery mildew. In: Annals de 

Phytopathologie 8 (2), 131-140. 

 

PETOUKHOV, V., V.A., SEMENOV (2010): A link between reduced Barents-Kara sea ice 

and cold winter extremes over northern continents. In: Journal of Geophysical Research: 

Atmospheres 115 (D21), 1-11. 

 

PIEPHO, H.P. (1998): Auswertung von Bonituren des Typs "Prozent Befall" mit Hilfe von 

SAS Prozeduren für Generalisierte Lineare Modelle. In: Zeitschrift für Agrarinformatik 

6, 26-37. 

 

PIETRAVALLE, S., M.W., SHAW, S.R., PARKER, F., VAN DEN BOSCH (2003): Modeling of 

Relationships Between Weather and Septoria tritici Epidemics on Winter Wheat: A 

Critical Approach. In: Phytopathology 93 (10), 1329-1339. 

 

POLLEY, R.W., J.E., KING (1973): A preliminary proposal for the detection of barley 

mildew infection periods. In: Plant Pathology 22, 11-16. 

 

PRABHU, A.S., U., RAJENDRAN, R., PRASADA (1962): Moisture requirement for the 

germination of Erysiphe graminis f. sp. tritici. In: Indian Phytopathology 15, 280-286. 

 

PRATT, R. (1943): Influence of temperature on the infection of wheat by the powdery 

mildew, Erysiphe graminis tritici. In: Bulletin of the Torrey Botanical Club 70, 378-385. 

 

PRIGGE, G., M., GERHARD, J., HABERMEYER (2005): Pilzkrankheiten und Schadsymptome 

im Getreidebau. Münster, Landwirtschaftsverlag Münster. 

 
153 

 



Bibliography 

RACCA, P., D., RICHERZHAGEN, C., KUHN, B., KLEINHENZ, B., HAU (2012): Einfluss des 

Klimawandels auf die Ontogenese und die Blattkrankheiten Mehltau (Blumeria 

graminis), Braunrost (Puccinia triticina) und DTR (Drechslera tritici-repentis) des 

Winterweizens in Niedersachsen. In: Julius-Kühn-Archiv 438, 135-136. 

 

RÄDER, T. (2007): Entwicklung eines Prognose- und Entscheidungsmodells zur 

Braunrostbekämpfung in Winterroggen und Winterweizen. PhD thesis, Gottfried 

Wilhelm Leibniz Universität Hannover. 

 

RÄDER, T., P., RACCA, E., JÖRG, B., HAU (2007): PUCREC/PUCTRI - a decision support 

system for the control of leaf rust of winter wheat and winter rye. In: OEPP/EPPO 

Bulletin 37, 378-382. 

 

RAWLINGS, J.O., S.G., PANTULA, D.A., DICKEY (1998): Applied regression analysis: a 

research tool. 2nd Edition, New York, Springer. 

 

RIBEIRO, R.P., L., TORGO (2009): Precision and Recall for Regression. In: GAMA, J., V., 

SANTOS COSTA, A.M., JORGE, P.B., BRAZDIL [Eds.]: Proceedings of 12th International 

Conference on Discovery Science (DS'09), LNCS Vol.5808. Berlin (Germany), Springer, 

332-346. 

 

RICHERZHAGEN, D., P., RACCA, B., HAU, P., JUROSZEK, A. VON, TIEDEMANN (2013): Mehr 

Roste, weniger Mehltau. In: DLG-Mitteilungen 3, 64-66. 

 

RODGERS-GRAY, B.S., M.W., SHAW (2000): Substantial reductions in winter wheat 

diseases caused by addition of straw but not manure to soil. In: Plant Pathology 49, 590-

599. 

 

RODGERS-GRAY, B.S., M.W., SHAW (2004): Effects of straw and silicon soil amendments 

on some foliar and stem-base diseases in pot-grown winter wheat. In: Plant Pathology 

53, 733-740. 

 

ROELFS, A.P., W.R., BUSHNELL (1984): The cereal rusts. Vol.I Origins, Specificity, 

Structure, and Physiology. Orlando (FL), Academic Press. 
154 

 



Bibliography 

 

ROELFS, A.P., W.R., BUSHNELL (1985): The cereal rusts. Vol.II Diseases, Distribution, 

Epidemiology and Control. Orlando (FL), Academic Press. 

 

ROSSI, V., P., RACCA, G., GIOSUE, D., PANCALDI, I., ALBERTI (1997): A simulation model 

for the development of brown rust epidemics in winter wheat. In: European Journal of 

Plant Pathology 103 (5), 453-465. 

 

ROSSI, V., S., GIOSUÈ (2003): A dynamic simulation model for powdery mildew 

epidemics on winter wheat. In: EPPO Bulletin 33, 389–396. 

 

RUSSELL, G., B., MARSHALL, P.G., JARVIS [Eds.] (1989): Plant canopies: Their growth, 

form and function. Cambridge (UK), Cambridge University Press. 

 

SACHE, I. (2000): Short-distance dispersal of wheat rust spores by wind and rain. In: 

Agronomie 20, 757-767. 

 

SAMBORSKI, D.J. (1985): Wheat leaf rust. In: ROELFS, A.P., W.R., BUSHNELL [Eds.]: The 

cereal rusts. Vol.II Diseases, Distribution, Epidemiology and Control. Orlando (FL), 

Academic Press, 39-60. 

 

SAS INSTITUTE INC [Ed.] (2008): SAS/STAT® 9.2 User's Guide: The LOGISTIC 

Procedure (Book Excerpt). Cary (NC), SAS Institute Inc. 

 

SCHRÖDER, H. (2000): Abriß der physischen Geographie und Aspekte des Natur- und 

Umweltschutzes Sachsen-Anhalts. Flensburg (Germany), Deutsche Akademie für 

Landeskunde. 

 

SCHWÄHN, P., K., RÖDER (1982): Methodische Anleitung zur Schaderreger- und 

Bestandesüberwachung auf EDV-Basis. Markleeberg, Landwirtschaftsausstellung der 

DDR. 

 

SEN, A., M., SRIVASTAVA (1990): Regression Analysis: Theory, Methods, and 

Applications. New York (USA), Springer. 
155 

 



Bibliography 

 

SHAW, M.W., T.M., OSBORNE (2011): Geographic distribution of plant pathogens in 

response to climate change. In: Plant pathology 60, 31-43. 

 

SHEPARD, D. (1968): A two-dimensional interpolation function for irregularly-spaced 

data. In: ROSENBERG, A.M., R.B., BLUE [Eds.]: Proceedings of the 1968 ACM National 

Conference. New York (USA), ACM Press, 517–524. 

 

SPEKAT, A., W., ENKE, F., KREIENKAMP (2007): Neuentwicklung von regional hoch 

aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios 

auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell 

WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM 

T63L31 2010 bis 2100 für die SRES- Szenarios B1, A1B und A2. Final report. 

 

SPENCER, D.M. [Ed.] (1978): The powdery mildews. London (UK), Academic Press. 

 

STEPHAN, S. (1980): Inkubationzeit und Sporulation des Gerstenmehltaus (Erysiphe 

graminis DC.) in Abhängigkeit von meteorologischen Faktoren. In: Archives of 

Phytopathology and Plant Protection 16 (3), 173-181. 

 

STEPHAN, S. (1984): Untersuchungen zum Epidemieverlauf des Gerstenmehltaus. In: 

Archives of Phytopathology and Plant Protection 20 (1), 39-52. 

 

STÖßEL, B., B., FREIER, F., WECHSUNG (2013): Study on the influence of weather periods 

on the occurrence of leaf rust and powdery mildew in winter wheat using an interval-

based correlation approach. In: Journal of Cultivated Plants 65 (8), 315-327. 

 

STUBBS, R.W., J.M., PRESCOTT, E.E., SAARI, H.J., DUBIN (1986): Cereal Disease 

Methodology Manual. Mexico, Centro Internacional de Mejoramiento de Maíz y Trigo 

(CIMMYT). 

 

STUCKEY, R.E., J.C., ZADOKS (1989): Effect of interrupted leaf wetness periods on pustule 

development of Puccinia recondita f.sp. tritici. In: Netherlands Journal of Plant 

Pathology 95 (Suppl. 1), 175-185. 
156 

 



Bibliography 

 

TE BEEST, D.E., M.W., SHAW, S., PIETRAVALLE, F., VAN DEN BOSCH (2009): A predictive 

model for early warning of Septoria leaf blotch on winter wheat. In: European Journal of 

Plant Pathology 124 (3), 413-425. 

 

TE BEEST, D.E., N.D., PAVELEY, M.W., SHAW, F., VAN DEN BOSCH (2008): Disease-

weather relationships for powdery mildew and yellow rust on winter wheat. In: 

Phytopathology 98 (5), 609-617. 

 

TENG, P.S. (1985): A comparison of simulation approaches to epidemic modeling. In: 

Annual Review of Phytopathology 23, 351-379. 

 

TIEDEMANN, A. VON (1996): Globaler Wandel von Atmosphäre und Klima - welche 

Folgen ergeben sich für den Pflanzenschutz? In: Nachrichtenblatt des Deutschen 

Pflanzenschutzdienstes 48 (4), 73-79. 

 

TIVOLI, B., A., CALONNEC, B., RICHARD, B., NEY, D., ANDRIVON (2012): Current 

knowledge on plant/canopy architectural traits that reduce the expression and 

development of epidemics. In: European Journal of Plant Pathology 135, 471-478. 

 

TOMERLIN, J.R., M.G., EVERSMEYER, C.L., KRAMER, L.E., BROWDER (1983): 

Temperature and host effects on latent and infectious periods and on urediniospore 

production of Puccinia recondita f. sp. tritici. In: Phytopathology 73 (3), 414-419. 

 

TORGO, L., R.P., RIBEIRO (2006): Predicting rare extreme values. In: NG, W.K., M., 

KITSUREGAWA, J., LI [Eds.]: Proceedings of the 10th Pacific-Asia Conference on 

Knowledge Discovery and Data Mining (PAKDD’2006), number 3918 in Lecture Notes 

in Artificial Intelligence, 2006. Berlin (Germany), Springer, 816-820. 

 

VAN DER LINDEN, P., J.F.B., MITCHELL [Eds.] (2009): ENSEMBLES: climate change and 

its impacts: Summary of research and results from the ENSEMBLES project. Exeter 

(UK), Met Office Hadley Centre. 

 

157 

 



Bibliography 

VĚCHET, L. (2003): Development of powdery mildew and leaf rust epidemics in winter 

wheat cultivars. In: Plant Soil Environment 49 (10), 439-442. 

 

VINES, R.G. (1985): European rainfall patterns. In: Journal of Climatology 5, 607-616. 

 

VOLK, T., A., JOHNEN, J.S. VON, RICHTHOVEN (2010): Klimawandel in Nordrhein 

Westfalen. Auswirkungen auf Schädlinge und Pilzkrankheiten wichtiger 

Ackerbaukulturen. Final report. 

 

WAGGONER, P.E. (1974): Simulation of epidemics. In: KRANZ, J. [Ed.]: Epidemics of 

Plant Diseases. Berlin (Germany), Springer Verlag, 137–160. 

 

WARD, S.V., J.G., MANNERS (1974): Environmental effects on the quantity and viability 

of conidia produced by Erysiphe graminis. In: Transactions of the British Mycological 

Society 62, 119-128. 

 

WECHSUNG, F., M., WECHSUNG (2014): Dryer years and brighter sky – the predictable 

simulation outcomes for Germany’s warmer climate from the weather resampling model 

STARS. In: [Online] International Journal of Climatology. 

 

WERNER, A. (1992): Auswirkungen geänderter Saatstärke und Reihenzahl zur 

Durchführung von Gülleinjektionen auf Bestandesaufbau und Ertragsbildung von 

Winterweizen. In: Die Bodenkultur – Journal for Land Management, Food and 

Environment 43, 203-217. 

 

WIESE, M.V. (1987): Compendium of wheat diseases. 2nd Edition, St.Paul (MN), 

American Phytopathological Society. 

 

WIIK, L., T., EWALDZ (2009): Impact of temperature and precipitation on yield and plant 

diseases of winter wheat in southern Sweden 1983-2007. In: Crop Protection 28 (11), 

952-962. 

 

WILKS, D.S. (1995): Statistical methods in the atmospheric sciences: An Introduction. 

San Diego (USA), Academic Press. 
158 

 



Bibliography 

 

WÓJTOWICZ, A. (2007): Effect of environmental conditions on the development of disease 

symptoms caused by Puccinia recondite on winter wheat seedlings. In: Journal of Plant 

Protection Research 47 (2), 161-166. 

 

YANG, X.B. (1995): Analysis of the long-term dynamics of stem and leaf rusts of wheat 

in North America using a time-series approach. In: Journal of Phytopathology 143, 651-

657. 

 

YARWOOD, C.E., S., SIDKY, M., COHEN, V., SANTILLI (1954): Temperature relations of 

powdery mildews. In: Hilgardia 22 (17), 603-622. 

 

YARWOOD, C.E. (1957). Powdery mildews. In: The Botanical Review 23, 235-300. 

 

YI, Y., S., KIM, M., KIM, G.J., CHOI, K.Y., CHO, J., SONG, Y., LIM (2004): Antifungal 

activity of Streptomyces sp. against Puccinia recondita causing wheat leaf rust. In: 

Journal of Microbiology and Biotechnology 14 (2), 422-425. 

 

ZADOKS, J.C. (1961): Yellow rust on wheat - studies in epidemiology and physiologic 

specialization. In: Tijdschrift Over Plantenziekten 67 (3), 69-256. 

 

ZADOKS, J.C. (1965): Epidemiology of wheat rusts in Europe. In: FAO Plant Bulletin 13, 

97-108. 

 

ZADOKS, J.C., T.T., CHANG, C.F., KONZAK (1974): A decimal code for the growth stages 

of cereals. In: Weed Research 14 (6), 415-421. 

 

ZADOKS, J.C., F.H., RIJSDIJK (1984): Agro-ecological Atlas of Cereal Growing in Europe 

Vol.III: Atlas of cereal diseases and pests in Europe. Wageningen (Netherlands), Center 

Agricultural Pub & Document. 

 

ZENTRALE FÜR SORTENWESEN DER DEUTSCHEN DEMOKRATISCHEN REPUBLIK [Ed.] 

(1976-1989): Sortenliste 1976-1989 für landwirtschaftliche Kulturpflanzenarten, 

Gemüse, Arznei- und Gewürzpflanzen, Obst. Berlin, Deutscher Landwirtschaftsverlag. 
159 

 



Bibliography 

 

9.2 Data sources 

BGR – BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE [Ed.] (2007): 

Nutzungsdifferenzierte Bodenübersichtskarte der Bundesrepublik Deutschland 

1:1.000.000 (BÜK 1000 N2.3). 

 

FEDERAL PLANT VARIETY OFFICE [Ed.] (1990-1993): Beschreibende Sortenliste für 

Getreide, Mais, Ölfrüchte, Leguminosen und Hackfrüchte. Frankfurt, M. Strothe Verlag. 

 

FEDERAL PLANT VARIETY OFFICE [Ed.] (1994-2003): Beschreibende Sortenliste für 

Getreide, Mais, Ölfrüchte, Leguminosen und Hackfrüchte. Hannover, Landbuch-Verlag. 

 

FEDERAL PLANT VARIETY OFFICE [Ed.] (2004-2006): Beschreibende Sortenliste für 

Getreide, Mais, Ölfrüchte, Leguminosen und Hackfrüchte. Hannover, Deutscher 

Landwirtschaftsverlag GmbH. 

 

FEDERAL PLANT VARIETY OFFICE [Ed.] (2007-2009): Beschreibende Sortenliste für 

Getreide, Mais, Ölfrüchte, Leguminosen und Hackfrüchte. Hannover, Bundessortenamt. 

 

FEDERAL PLANT VARIETY OFFICE [Ed.] (2010): Beschreibende Sortenliste für Getreide, 

Mais, Öl- und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte. Hannover, 

Bundessortenamt. 

 

JARVIS, A., H.I., REUTER, A., NELSON, E., GUEVARA (2008): Hole-filled seamless SRTM 

data V4. International Centre for Tropical Agriculture (CIAT). 

 

 

 

 

 

160 

 



Bibliography 

9.3 Internet sources 

Potsdam Institute for Climate Impact Research (PIK) e.V. (2012). 

<http://www.klimafolgenonline.com/> (04.11.2012). 

 

Statistisches Bundesamt (2015). 

<https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFis

cherei/FeldfruechteGruenland/Tabellen/AckerlandHauptfruchtgruppenFruchtarten.html

> (26.03.2015). 

 

161 

 



Curriculum Vitae

Persönliche Daten

Name Bastian Stößel

Anschrift Brandenburgische Straße 1

10713 Berlin

Geburtsdatum 07.01.1982

Geburtsort Schweinfurt

Staatsangehörigkeit Deutsch

Familienstand ledig

Ausbildung

1992 – 2001 Walther-Rathenau-Gymnasium, Schweinfurt; Abschluss: 

Allgemeine Hochschulreife

2002 – 2003 Lehramtsstudium der Mathematik und Physik an der 

Julius-Maximilians-Universität Würzburg; o. Abschluss

2003 – 2009 Diplomstudiengang Geographie an der Julius-

Maximilians-Universität Würzburg

Nebenfächer: Statistik, Botanik; Abschluss: Diplom

Berufstätigkeit

2009 – 2010  Wissenschaftliche Hilfskraft am Geographischen

Institut der Universität Würzburg, Lehrstuhl für Physische 

Geographie

2010 – 2013 Wissenschaftlicher Mitarbeiter am Potsdam Institut für 

Klimafolgenforschung e.V., Research Domain II – Climate

Impacts & Vulnerabilities und am 

Bundesforschungsinstitut für Kulturpflanzen bzw. Julius-

Kühn-Institut, Institut für Strategien und 

Folgenabschätzung

2013 – 2014 Projektkoordinator und wissenschaftlicher Mitarbeiter an 

Freie Universität Berlin & Botanischer Garten und 

Botanisches Museum Berlin

Berlin, den 31.03.2015 Bastian Stößel


