8. DETAILED DESIGN OF COPING

Katahira \& Engineers
International

Notes on General Design and Location Features

(1) Maintainability (AASHTO LRFD Section 2.5.2.3)

Areas around bearing seats and under deck joints shall be designed to facilitate jacking, repair and replacement of bearings and joints.
Jacking points shall be indicated on the plans and the structure shall be designed for jacking forces.
The design forces for jacking in service shall not be less than 1.3 times the permanent load reaction at the bearing adjacent to the point of jacking (AASHTO Article 3.4.3). The bridge shall be assumed to be closed to traffic during jacking operations.

(2) Criteria for Deflection (AASHTO LRFD Section 2.5.2.6.2)

The following deflection limits shall be considered:

- Vehicular load on cantilever arms.

Span/300

(3) Load Factors for Construction Loads (AASHTO LRFD Section 3.4.2)

Load factors for the weight of the structure and appurtenances shall not be taken as less than 1.25.

The load factor for construction loads and for dynamic effects shall not be less than 1.5.

Notes on Structural Analysis and Application of Design Vehicular Loads

(1) Equivalent width of Deck Overhang (AASHTO LRFD Table 4.6.2.1.3-1)

The width of the equivalent strip of deck overhangs (cantilever slabs) shall be as follows:
Width of primary strip $(\mathrm{mm})=1140+0.833 X$ \qquad .(Equation 1)
where:
$X=$ distance from load to point of support
Given that the deck overhang on the coping is not a continuous slab, Equation 1 above shall be modified to account for edge loading in accordance with AASHTO LRFD Article 4.6.2.1.4 as follows:

Width of primary strip $(\mathrm{mm})=570+0.416 \mathrm{X}$ \qquad .(Equation 1A)

(2) Application of Load (AASHTO LRFD Article 3.6.1.3)

The design truck shall be positioned transversely such that the center of any wheel is not closer than:

- For the design of deck overhang -300 mm from the face of the curb or railing

Notes on Flexural Design

(1) Loads and Load Combinations

The loads and load combinations are taken from Section 6 and summarized in the following pages. Both ultimate limit state and serviceability limit state combinations were included in the design in accordance with the Design Criteria.

(2) Ultimate Moment Capacity (AASHTO LRFD Section 5.7)

Ultimate moment capacity of reinforced concrete beams is determined in accordance with AASHTO LRFD Article 5.7.3.2.3 as follows.

The nominal flexural resistance of a singly reinforced beam without compression reinforcement is given as:

$$
\begin{equation*}
M_{n}=A_{s} \cdot f_{y} \cdot\left(d_{s}-\frac{a}{2}\right) . \tag{Equation1}
\end{equation*}
$$

where:
$A_{s}=\quad$ area of non prestressed tensile reinforcement
$f_{y}=\quad$ yield strength of reinforcing bars
$d_{s}=\quad$ distance from extreme compression fiber to the centroid of non prestressed tensile reinforcement
$a=\quad$ depth of equivalent stress block, $c \cdot \beta_{1}$
(Equation 2)
$c=\quad$ distance from extreme compression fiber to the neutral axis
$\beta_{1}=\quad$ stress block factor
Assuming rectangular section behavior and yielding of reinforcement:
$c=\frac{A_{s} \cdot f_{y}}{0.85 \cdot f_{c} \cdot \beta_{1} \cdot b}$
(Equation 3)
where:
$b=\quad$ width of rectangular section
$f_{c}=\quad$ compressive strength of concrete
Substituting Equation 2 and 3 into Equation 1 gives:
$M_{n}=A_{s} \cdot f_{y} \cdot\left(d_{s}-\frac{1}{2} \cdot \frac{A_{s} \cdot f_{y}}{0.85 \cdot f_{c} b}\right)$
Rearranging Equation 4 and dividing all terms by $\left(d_{s}^{2} \cdot b\right)$ gives:
$\left(\frac{A_{s}{ }^{2} \cdot f_{y}^{2}}{2 \cdot 0.85 \cdot f_{c} \cdot d_{s}^{2} b^{2}}\right)-\frac{A_{s} \cdot f_{y}}{d_{s} \cdot b}+\frac{M_{n}}{d_{s}^{2} \cdot b}=0.0$.
Defining terms:
$\rho=\frac{A_{\mathrm{s}}}{d_{\mathrm{s}} \cdot b}$
Katahira \& Engineers
International
$M=\frac{0.85 \cdot f_{c}}{f_{y}}$
$M_{n}=\frac{M_{U}}{\phi}$
where:
$M_{U}=\quad$ applied ultimate moment from factored loads
$\phi=$ strength reduction factor for flexure
Substituting defined terms into Equation 5 and dividing through by f_{y} gives:
$\left(\frac{\rho^{2}}{2 \cdot M}\right)-\rho+\frac{M_{U}}{\phi \cdot d_{s}^{2} \cdot b \cdot f_{y}}=0.0 \ldots .$. (Equation 6)
Defining terms:
$R=\frac{M_{U}}{\phi \cdot d_{s}^{2} \cdot b \cdot f_{y}}$
Substituting defined terms into Equation 6 gives:
$\left(\frac{\rho^{2}}{2 \cdot M}\right)-\rho+R=0.0$. (Equation 7)

Solving the quadratic Equation 7 gives:
$\rho=M \cdot\left(1-\sqrt{1-\frac{2 \cdot R}{M}}\right)$.(Equation 8)

Equation 8 gives directly the percentage of reinforcement required to resist the applied factored loads.

The Ultimate Moment Capacity of reinforced concrete columns is determined using the computer program PCACOL. This is based on ACI-95 and is consistent with the requirements of AASHTO LRFD.

(3) Service Moment Capacity (AASHTO LRFD Section 5.7)

The solution for the analysis of reinforced concrete sections in flexure under no axial loading and no compression reinforcement is derived from:

- Linear stress-stress relations
- Plane sections remain plane under flexure
- Equilibrium of internal forces (compressive force in concrete is equal the tensile force in the reinforcement)
With reference to the illustration below for a rectangular section:

Defining terms:
$C=\quad$ Compressive force in concrete
$T=\quad$ Tensile force in reinforcing steel
$d_{e}=\quad$ Effective depth from extreme compressive fiber to centroid of tensile reinforcement
$c=\quad$ Depth of concrete in compression
$b=\quad$ Width of rectangular section
$\varepsilon_{c}=\quad$ Compressive strain in concrete at extreme compressive fiber
$\varepsilon_{s}=\quad$ Tensile strain in reinforcement
$E_{c}=\quad$ Modulus of elasticity of concrete
$E_{s}=\quad$ Modulus of elasticity of reinforcement
$\alpha=\quad$ Modular ratio, $\alpha=\frac{E_{S}}{E_{C}}$
Establishing equilibrium of forces gives the following:
$T=C$.(Equation 1)
$T=A_{S} \cdot \varepsilon_{S} \cdot E_{S}$.(Equation 2)
$C=\frac{b \cdot c}{2} \cdot \varepsilon_{c} \cdot E_{c}$ (Equation 3)

From considerations of compatibility of strains:
$\frac{\varepsilon_{C}}{c}=\frac{\varepsilon_{s}}{d_{e}-c}$
$\alpha=\frac{E_{S}}{E_{C}}$ (Equation 5)

Substituting Equation 2 to Equation 5 into Equation 1 gives:

$$
\begin{equation*}
A_{S} \cdot \varepsilon_{S} \cdot E_{S}=\frac{b \cdot c}{2} \cdot \frac{\varepsilon_{S}}{d_{e}-c} \cdot c \cdot \frac{E_{S}}{\alpha} . \tag{Equation6}
\end{equation*}
$$

Dividing all terms of Equation 6 by $\left(\varepsilon_{S} \cdot E_{S}\right)$ and rearranging gives:
$\frac{b \cdot c^{2}}{2 \cdot \alpha}+A_{s} \cdot c-A_{s} \cdot d_{e}=0.0$. (Equation 7)

Solving the quadratic Equation 7 gives:
$c=\frac{\left(\sqrt{A_{s}^{2}+\frac{2 \cdot b \cdot A_{s} \cdot d_{e}}{\alpha}}-A_{s}\right)}{b} \cdot \alpha$ (Equation 8)

Equation 8 gives directly the depth of concrete in compression, c, for a given area of reinforcing steel A_{s}.
The lever arm of the reinforcing steel, \mathbf{z}, with respect to the centroid of the compressive force in the concrete is then obtained from:

$$
z=d_{e}-\frac{c}{3}
$$

The stress in the reinforcement, f_{s}, can then be determined from:

$$
\begin{equation*}
f_{s}=\frac{M_{S}}{A_{s} \cdot z} \tag{Equation10}
\end{equation*}
$$

where:
$M_{S}=\quad$ applied serviceability limit state moment from factored loads.
For beams with multiple layers of tensile reinforcement, As1, As2, As3,Asn, located at effective depths $d 1, d 2, d 3, \ldots . . . d n$, Equation 8 is modified as follows:
$c=\frac{\left(\sqrt{A_{T}^{2}+\frac{2 \cdot b \cdot B}{\alpha}}-A_{T}\right)}{b} \cdot \alpha$
where:
$A_{T}=\quad$ Total area of tensile reinforcement, $A_{T}=A_{S 1}+A_{S 2}+A_{S 3}+\ldots A_{S n}$
$B=\quad A_{s 1} \cdot d 1+A_{s 2} \cdot d 2+A_{s 3} \cdot d 3+\ldots \ldots A_{s n} \cdot d n$

AASHTO Article 5.7.3.4 requires that components shall be so proportioned that the tensile stress in the mild steel reinforcement at the service limit state does not exceed $f_{s a}$, determined as:
$f_{s a}=\frac{Z}{\left(d_{c} \cdot A\right)^{\frac{1}{3}}} \leq 0.6 \cdot f_{y}$
where:
$d_{c}=\quad$ depth of concrete from extreme tension fiber to center of bar (mm)
$A=\quad$ area of concrete having the same centroid as the principal tensile reinforcement and bounded by the surfaces of the cross-section and a straight line parallel to the neutral axis, divided by the number of bars (mm^{2})
$Z=\quad$ crack width parameter $(\mathrm{N} / \mathrm{mm})$
For moderate exposure conditions, Z shall not exceed $30000 \mathrm{~N} / \mathrm{mm}$.
The Design Criteria established for the project (based on current Indonesian Standards and BMS) specifies that the allowable stress of reinforcing bars in tension shall be 0.5 fy or 170MPa, whichever is smaller. (Design Criteria Table 2.4.2-2)
Given that for Grade 40 reinforcement fy $=390 \mathrm{MPa}$, the 170 MPa allowable stress implies a limit of 0.43 fy .
The Design Criteria are therefore considered more onerous and will be applied for the serviceability checks on the coping.

(4) Limits for Reinforcement (AASHTO LRFD Article 5.7.3.3)

Maximum Reinforcement

The maximum area of longitudinal reinforcement for RC columns shall be such that:
$\frac{c}{d_{e}} \leq 0.42$
where:
$c=\quad$ distance from extreme compression fiber to the neutral axis

$$
c=\frac{A_{s} \cdot f_{y}}{0.85 \cdot f_{c} \cdot \beta_{1} \cdot b}
$$

$d_{e}=\quad$ distance from extreme compression fiber to the centroid of non prestressed tensile reinforcement
$\beta_{1}=\quad$ stress block factor
$f_{y}=\quad$ yield strength of reinforcing bars
$f_{c}=\quad$ compressive strength of concrete

Minimum Reinforcement

The amount of tensile reinforcement shall be adequate to develop a factored flexural resistance, M_{r}, at least equal to the lesser of:

- 1.2 times the cracking moment, $M_{C R}$, determined on the basis of elastic stress distribution and the modulus of rupture, f_{r}, of the concrete:
$f_{r}=0.63 \cdot \sqrt{f_{c}}$ in MPa
For monolithic construction:
$M_{C R}=S_{C} \cdot f_{r}$
where:
$S_{c}=$ section modulus for the extreme fiber of the section where tensile stress is caused
- 1.33 times the factored moment required by the applicable ultimate load combinations

Notes on Shear Design - Reinforced Concrete Coping

(1) General

Refer to Notes on Shear Design - Reinforced Concrete for the design approach.

(2) Column Connections (AASHTO LRFD Article 5.10.11.4.3)

The nominal shear resistance, V_{n}, provided by the concrete in the joint of a frame or bent in the direction under consideration, shall satisfy:
$V_{n} \leq 1.0 \cdot b \cdot d \cdot \sqrt{f_{c}}$

(3) Brackets and Corbels (AASHTO LRFD Article 5.13.2.4)

The requirements of AASHTO are satisfied in the design of the components of the pier coping that can be considered as brackets and corbels.

(4) Beam Ledges (AASHTO LRFD Article 5.13.2.5)

The requirements of AASHTO are satisfied in the design of the components of the pier coping that can be considered as beam ledges.

Notes on Joint Conection Design

References :

R1. SEISMIC DESIGN AND RETROFIT OF BRIDGES - M.J.N Priestley, F. Sieble, G.M. Calvi. R2. SEISMIC DESIGN OF REINFORCED CONCRETE BRIDGES - Yan Xiao

Moment-Resisting Conection Between Column and Beam

Connections are key elements that maintain the integrity of overall structure, they should be designed carefully to ensure the full transfer of seismic forces and moments. Because of their importance, complexity, and difficulty of repair if damaged, connections are typically provided with a higher degree of safety and conservativeness than column or beam members. Current AASHTO-LRFD Code do not provide specific design requirements for joint, except requiring the lateral reinforcement for columns to be extended into column/footing or column cap beam joint. A new design approach recently developed by Priestly \& Calvi guidelines design is summarized bellow:

Design Force

In moment-resisting frame structures, the force transfer typically results in sudden changes (magnitude and direction) of moments at connections. Sudden moment change cause significant shear forces. Thus, joint shear design is the major concern of column and beam connection, as well as that longitudinal reinforcement of beam and column are to be properly anchored or continued through the joint to transmit. For seismic design, joint shear force can be calculated based on the equilibrium condition using force generated by maximum plastic moment acting on the boundary of connections.

Momen Redistribution of Design Action

Cap beam design moments.

Beam Design for Flexure and Shear for beam are follow AASHTO LRFD Section 5.7 Flexure Design and AASHTO LRFD Section 5.8 Shear Design

Truss mechanism contribution for beam is illustrated by twin-column bent of figure bellow :

At section 1-1

$$
P:=F_{p}-V_{\text {col. } 1} \quad \text { hence }
$$

$$
\mathrm{V}_{\mathrm{p}}:=0.85\left(\mathrm{~F}_{\mathrm{p}}-\mathrm{V}_{\mathrm{col} .1}\right) \tan (\alpha)
$$

At section 2-2
$\mathrm{P}^{\prime}:=\mathrm{F}_{\mathrm{p}}-\mathrm{V}_{\mathrm{col} .2}$
$\mathrm{V}_{\mathrm{p}}:=0.85\left(\mathrm{~F}_{\mathrm{p}}-\mathrm{V}_{\mathrm{col} .2}\right) \tan (\alpha)$
hence
\qquad

Design of Beam-Column Joint

Shear Force in Beam-Column Joint

The traditional approach for investigating force transfer in beam-column joint has been based on an assessment of the joint shear force developed from equilibrium considerations of the member force acting at the joint boundary.
Consider knee joint in twin column P6 where column moment is overstrength, corresponding to plastic moment capacity in accordance with section 7 Column Design the column is considered as an independent member extending to the top of joint, with the influence of the beam or beams represented by force T, C, and V_{B} applied to this independent member.

The overstrength moment M^{0} continues to increase above the level of the beam soffit until the line of action of the beam force C . The moment slope reverse under this force, decreasing to zero at the height of the upper stress resultant T. Note that an incremental moment decrease $\Delta \mathrm{M}$ is shown at the beam lower stress resultant due to moment provided by the beam shear.

$$
\begin{align*}
\Delta \mathrm{M} & :=\mathrm{V}_{\mathrm{b}} \cdot \frac{\mathrm{~h}_{\mathrm{c}}}{2} \\
\mathrm{~V}_{\mathrm{jh}} & :=\frac{\mathrm{Mo}}{\mathrm{~h}_{\mathrm{b}}} \tag{R1}
\end{align*}
$$

$$
\ldots .5 .81 a(R 1)
$$

In similar fashion, the force acting on beam, considered to extend through the joint given

$$
\begin{equation*}
\mathrm{V}_{\mathrm{jv}}:=\frac{\mathrm{V}_{\mathrm{jh}} \cdot \mathrm{~h}_{\mathrm{b}}}{\mathrm{~h}_{\mathrm{c}}} \tag{R1}
\end{equation*}
$$

Knee Joints

Knee joints are the most common type of joint occurring in multi column bridge bents when transverse response is considered. Equilibrium under closing and opening moment are represented in Figures bellow :

In these figures, the beam tensile, compressive and shear stress resultants are indicate by T_{b}, C_{b}, and V_{b}, with T_{c}, C_{c}, and $V_{c o l}$ being corresponding force for column. Axial forces P_{c} and P_{b} are present in the column and beam, respectively, and prestress force F is shown, which will, of course, be zero if the cap bem is reinforced conventionally. Moment M_{b} and M_{c} on the joint boundaries induce the flexural stress resultant note above. Equilibrium equations governing the relationships between the various force are summarized (R1) bellow :

Action	Closing Joint	Opening Joint	
Beam moment	$M_{b}=T_{b}\left(d-\frac{a_{b}}{2}\right)$	(same)	(5.85a)
	$+P_{b}\left(\frac{h_{b}}{2}-\frac{a_{b}}{2}\right)$		
Beam axial force	$P_{b}=(F)+V_{\text {col }}$	$P_{b}=(F)-V_{\text {col }}$	(5.85b)
Beam compressive force	$C_{b}=T_{b}+P_{b}$	(same)	(5.85c)
Column moment	$M_{c}=M_{b}+V_{b} \frac{h_{c}}{2}-V_{\text {col }} \frac{h_{b}}{2}$	(same)	(5.85d)
	$\approx T_{c}\left(0.7 h_{c}-\frac{a_{c}}{2}\right)$	(same)	(5.85e)
	$+P_{c}\left(\frac{h_{c}}{2}-\frac{a_{\mathrm{c}}}{2}\right)$		

Column

$$
C_{c}=T_{c}+P_{c}
$$

compressive
force
Horizontal
$V_{j h}=T_{b}(+0.5 F)$
$V_{j h}=C_{b}(-0.5 F)$
joint shear
force
Vertical joint
shear force

$$
V_{j v} \approx \frac{V_{j h} h_{b}}{h_{c}}
$$

(5.85f)
(same)

Nominal Shear Stress
The nominal shear stress in beam-column joints can be found directly from the joint shear force as :

$$
\begin{aligned}
\mathrm{v}_{\mathrm{jh}} & :=\frac{\mathrm{v}_{\mathrm{jh}}}{\mathrm{~b}_{\mathrm{je}} \cdot \mathrm{~h}_{\mathrm{c}}} \\
\mathrm{v}_{\mathrm{jv}} & :=\frac{\mathrm{V}_{\mathrm{jv}}}{\mathrm{~b}_{\mathrm{je} \cdot} \cdot \mathrm{~h}_{\mathrm{b}}}
\end{aligned}
$$

Where $b_{j e}$ is the effective width of the joint.

Design of Uncracked Joint

Joint can be conservatively designed based on elastic theory for not permitting cracks. In this approach, the principal tensile stress within a connection is calculated and compared with allowable tensile strength . The principal tensile stress, p_{t} and principal compression stress, p_{c} with a simple Mohr’s circle analysis for stress shows that nominal principal stresses in joint region are given :

$$
\begin{aligned}
& p_{c}:=\frac{f_{v}+f_{h}}{2}+\sqrt{\left(\frac{f_{v}-f_{h}}{2}\right)^{2}+v_{j}^{2}} \quad \leq 0.3 f^{\prime} \mathrm{c} \\
& \mathrm{p}_{\mathrm{t}}:=\frac{f_{\mathrm{v}}+\mathrm{f}_{\mathrm{h}}}{2}-\sqrt{\left(\frac{f_{v}-f_{h}}{2}\right)^{2}+\mathrm{v}_{\mathrm{j}}^{2}} \quad \begin{array}{l}
\mathrm{f}_{\mathrm{t}} \leq 0.29 \sqrt{\mathrm{f}^{\prime} \mathrm{c}} \cdot \mathrm{MPa} \\
\text { where : }
\end{array} \\
& \mathrm{f}_{\mathrm{h}}:=\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{~b}_{\mathrm{b}} \cdot \mathrm{~h}_{\mathrm{b}}} \\
& \mathrm{f}_{\mathrm{v}}:=\frac{P_{\mathrm{c}} \quad \text { and }}{\mathrm{b}_{\mathrm{je}} \cdot\left(\mathrm{~h}_{\mathrm{c}}+0.5 \cdot \mathrm{~h}_{\mathrm{b}}\right)}
\end{aligned}
$$

Mechanism of Force Tranfer in Cracked Joints
When principal tension stresses excided the joint tension strength, cracking occurs and the force transfer from beam to column implied by equilibrium considerations can no longer be based on assumptions of isotropic material performance. Typical pattern of cracks developed in knee joint under closing and opening moments.

a. Closing Moment

The amount of transverse hoop reinforcement required to provide anchorage of column reinforcement after splitting crack develop can be calculated by a shear friction approach. The hoop reinforcement should not excided that corresponding to a strain $\varepsilon \sigma=0.0015$, since higher strains appear to result in excessive dilation of circumferential crack with reduced efficiency of the shear friction mechanism. A required volumetric ratio of transverse reinforcement to avoid anchorage failure is :

$$
\begin{equation*}
\rho_{\mathrm{s} 1}:=\frac{0.46 \cdot \mathrm{~A}_{\mathrm{sc}} \cdot \mathrm{fo}_{\mathrm{yc}}}{\mathrm{D}_{\mathrm{r}} \cdot \mathrm{l}_{\mathrm{a}} \cdot \mathrm{f}_{\mathrm{sh}}} \tag{R1}
\end{equation*}
$$

$\mathrm{A}_{\mathrm{sc}}=$ Total area of column longitudinal reinforcement.
$\mathrm{fo}_{\mathrm{yc}}=$ is overstrength stress in the column reinforcement, including strain hardening and yield overstrength.
$=1.4 \mathrm{fy}$
$\mathrm{f}_{\text {sh }}=0.0015$ Es
again, the minimum requirement should be satisfied :

$$
\begin{equation*}
\rho_{\text {smin }}:=\frac{0.29 \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa}}{\mathrm{f}_{\mathrm{y}}} \tag{R1}
\end{equation*}
$$

b. Opening Moment

Three mechanisms to avoid the potential failure under opening moment, as show

The solution (a) and (b) is likely to cause unacceptable congestion and would require each of the tails of the column bars to be anchored with the resisting force of not less than $0.0033 \mathrm{~A}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}}$.
Total area of vertical stirrup reinforcement required is

$$
\begin{equation*}
\mathrm{A}_{\mathrm{jv}}:=0.25 \mathrm{~A}_{\mathrm{sc}} \cdot \frac{\mathrm{fo}_{\mathrm{yc}}}{\mathrm{f}_{\mathrm{yv}}} \tag{R1}
\end{equation*}
$$

If $\mathrm{fo}_{\mathrm{yc}}=1.4 \mathrm{f}_{\mathrm{yc}}$ for grade 60 rebar design , placing this amount vertical
reinforcement can be difficult.
Horizontal hoops are needed, that amount of hoop reinforcement is given by

$$
\rho_{\mathrm{s}}:=\frac{0.6 \mathrm{~A}_{\mathrm{sc}} \cdot \mathrm{fo}_{\mathrm{yc}}}{\mathrm{l}_{\mathrm{a}}{ }^{2} \cdot \mathrm{f}_{\mathrm{yh}}}
$$

\qquad
The mechanism (c) required amount of vertical beam stirrups reinforcement is

$$
\mathrm{A}_{\mathrm{jv}}:=0.125 \mathrm{~A}_{\mathrm{sc}} \cdot \frac{\mathrm{fo}_{\mathrm{yc}}}{\mathrm{f}_{\mathrm{yv}}}
$$

\qquad
And the additional area of beam bottom reinforcement required is thus :

$$
\Delta \mathrm{A}_{\mathrm{sb}}:=0.0625 \mathrm{~A}_{\mathrm{sc}} \cdot \frac{\mathrm{fo}_{\mathrm{yc}}}{\mathrm{f}_{\mathrm{yb}}}
$$

\qquad

P3 Expansion Coping

Katahira \& Engineers
International

KATAHIRA \& ENGINEERS

INTERNATIONAL

Project:	Detailed Design Study of North Java Corridor Flyover Pr
Calculation:	Detailed Design Substructure Balaraja Flyover Coping Design - Pier P3

Layout

Detailed Design Study of
BALARAJA FLYOVER
North Java Corridor
Flyover Project

Coping Cross Section

Pier Coping Data

Overall width of deck	B	13000	mm
Offset to bearing - PC deck	h1 ${ }_{\text {c }}$	3175	mm
Offset to bearing - Steel deck	$h 1_{\text {s }}$	3075	mm
Edge distance	h2	800	mm
Side slope width	h3	316	mm
Cantilever length	h4	2160	mm
Beam ledge width	h5	975	mm
Beam ledge soffit width	h6	950	mm
Width of coping	b_{f}	3350	mm
Total depth at coping	v1	2732	mm
Beam ledge height at column	v2	1200	mm
Beam ledge height at bearing	v3	1200	mm
Upstand to const. joint	v4	300	mm
Bearing width	W	800	mm
Bearing length	L	620	mm
Column Diameter	D	1700	mm
Concrete Comp Strength	f_{c}	30	MPa
Rebar Yield Strength	f_{y}	390	MPa
Strength Reduction Factor - Bending		0.8	
Strength Reduction Factor - Shear		0.7	
Mod. Elasticity - Concrete	E_{c}	27628	MPa
Mod. Elasticity - Steel	$\mathrm{E}_{\text {s }}$	200000	MPa
Modular Ratio		7.24	
Height of piers supporting deck	H	9912	mm
Length of deck btwn. Joints	L_{d}	73.6	m
Deck skew	S_{k}	0	Deg

$\mathrm{B}:=\mathrm{B} \cdot \mathrm{mm}$
$\mathrm{h} 1_{\mathrm{C}}:=\mathrm{h} 1_{\mathrm{C}} \cdot \mathrm{mm}$
$\mathrm{h} 1_{\mathrm{S}}:=\mathrm{h} 1_{\mathrm{S}} \cdot \mathrm{mm}$
h2 := h2•mm
h3 := h3•mm
$\mathrm{h} 4:=\mathrm{h} 4 \cdot \mathrm{~mm}$
h5: h $5 \cdot \mathrm{~mm}$
$\mathrm{h} 6:=\mathrm{h} 6 \cdot \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}:=\mathrm{b}_{\mathrm{f}} \cdot \mathrm{mm}$
$\mathrm{v} 1:=\mathrm{v} 1 \cdot \mathrm{~mm}$
v2 := v2•mm
v3 := v3•mm
$\mathrm{v} 4:=\mathrm{v} 4 \cdot \mathrm{~mm}$
$\mathrm{D}:=\mathrm{D} \cdot \mathrm{mm}$
$\mathrm{L}:=\mathrm{L} \cdot \mathrm{mm}$
$\mathrm{W}:=\mathrm{W} \cdot \mathrm{mm}$
$\mathrm{f}_{\mathrm{C}}:=\mathrm{f}_{\mathrm{C}} \cdot \mathrm{MPa}$
$\mathrm{f}_{\mathrm{y}}:=\mathrm{f}_{\mathrm{y}} \cdot \mathrm{MPa}$
$\mathrm{E}_{\mathrm{C}}:=\mathrm{E}_{\mathrm{C}} \cdot \mathrm{MPa}$
$\mathrm{E}_{\mathrm{S}}:=\mathrm{E}_{\mathrm{S}} \cdot \mathrm{MPa}$

Analysis Output

The analysis output for deck reactions at the expansion piers, obtained from the SAP 3D model, is presented below for:

- Nominal deck dead load case - used for erection case
- Nominal superimposed dead load case
- ULS Combination 1 - live load
- SLS Combination 1 - live load
- Nominal earthquake effects ($\mathrm{R}=1.0$)

The frame elements selected are as follows:

- D34 - end span frame in span 3 (PC deck) adjacent to pier 3
- D41 - end span frame in span 3 (Steel Deck) adjacent to pier 3

NOMINAL DECK DEAD LOAD

TABLE: Element Forces - Deck Dead Load Reactions						
Frame	Station	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION		
Text	m	KN	KN	KN-m		
DECK34	Min	1342.9	-0.4	-0.6		
DECK34	Max	1342.9	-0.4	-0.6		
DECK41	Min	-1505.0	-1.1	2.2		
DECK41	Max	-1505.0	-1.1	2.2		

$$
\mathrm{V} 2_{\mathrm{dl}}:=\mathrm{V} 2_{\mathrm{dl}} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\mathrm{dl}}:=\mathrm{V} 3_{\mathrm{dl}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{dl}}:=\mathrm{T}_{\mathrm{dl}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

NOMINAL SUPERIMPOSED DEAD LOAD

TABLE: Element Forces -Superimposed Load Reaction						
Frame	Station	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION		
Text	m	KN	KN	KN-m		
DECK34	Min	244.6	0.0	0.0		
DECK34	Max	244.6	0.0	0.0		
DECK41	Min	-289.9	-0.2	0.4		
DECK41	Max	-289.9	-0.2	0.4		

$$
\mathrm{V}_{\mathrm{sdl}}:=\mathrm{V} 2_{\mathrm{sdl}} \cdot \mathrm{kN} \quad \mathrm{V3}_{\mathrm{sdl}}:=\mathrm{V}_{\mathrm{sdl}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{sdl}}:=\mathrm{T}_{\mathrm{sdl}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

ULS COMBINATION 1 - LIVE LOAD

TABLE: Element Forces - Deck COMB1 ULS Reactions					
Frame	Step Type	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION	
Text	Text	KN	KN	KN-m	
DECK34	Min	1911.7	-39.1	-900.2	
DECK34	Max	6180.6	36.3	896.3	
DECK41	Min	-6701.7	-68.4	-951.3	
DECK41	Max	-2076.1	59.8	969.1	

$$
\mathrm{V} 2_{\mathrm{u}}:=\mathrm{V} 2_{\mathrm{u}} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\mathrm{u}}:=\mathrm{V} 3_{\mathrm{u}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{u}}:=\mathrm{T}_{\mathrm{u}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

SLS COMBINATION 1 - LIVE LOAD

TABLE: Element Forces - Deck COMB1 SLS Reactions					
Frame	Step Type	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION	
Text	Text	KN	KN	KN-m	
DECK34	Min	1289.6	-22.8	-501.6	
DECK34	Max	3974.7	20.0	497.7	
DECK41	Min	-4463.8	-41.1	-527.8	
DECK41	Max	-1344.5	32.8	544.9	

$$
\mathrm{V2}_{\mathrm{s}}:=\mathrm{V} 2_{\mathrm{s}} \cdot \mathrm{kN} \quad \mathrm{V3}_{\mathrm{s}}:=\mathrm{V} 3_{\mathrm{s}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{s}}:=\mathrm{T}_{\mathrm{s}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

NOMINAL EARTHQUAKE LOAD - EQX (R=1)

TABLE: Element Forces - EQX					
Frame	Step Type	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION	
Text	Text	KN	KN	KN-m	
DECK34	Min	1147.0	-1395.6	-4245.8	
DECK34	Max	2028.0	1394.8	4244.6	
DECK41	Min	-2437.3	-2453.4	-1369.2	
DECK41	Max	-1152.6	2450.8	1374.4	

$$
\mathrm{V} 2_{\mathrm{eqx}}:=\mathrm{V} 2_{\mathrm{eqx}} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\mathrm{eqx}}:=\mathrm{V} 3_{\mathrm{eqx}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{eqx}}:=\mathrm{T}_{\mathrm{eqx}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

NOMINAL EARTHQUAKE LOAD - EQY (R=1)

Frame	Step Type	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION
Text	Text	KN	KN	KN-m
DECK34	Min	1291.4	-2022.4	-6090.3
DECK34	Max	1883.6	2021.6	6089.1
DECK41	Min	-2203.7	-3501.8	-1914.9
DECK41	Max	-1386.1	3499.2	1920.1

$$
\mathrm{V} 2_{\text {eqy }}:=\mathrm{V} 2_{\text {eqy }} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\text {eqy }}:=\mathrm{V} 3_{\text {eqy }} \cdot \mathrm{kN} \quad \mathrm{~T}_{\text {eqy }}:=\mathrm{T}_{\text {eqy }} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

MAXIMUM SHEAR FORCE DUE TO PLASTIC HINGING

The maximum shear force that the bearings will be subject to in the tranverse direction is the shear force due to plastic hinging at the base of the column.

The shear force due to plastic hinging at the base of the column

$$
\mathrm{V}_{\mathrm{P}}:=2612 \cdot \mathrm{kN}
$$

This shear force should be carried by the transverse shear key on each bearing shelf or carried by the bearings directly on on bearing shelf. The shear forces given above for earthquake loading should be used in the design if they are smaller than the plastic hinging effects.

Minimum Displacement Requirements (AASHTO LRFD Article 4.7.4.4)

Bridge seat widths at expansion bearings without restrainers, STU's or dampers shall either accommodate the greater of the maximum displacement calculated from the seismic analysis or a percentage of the emprical seat width, N, specified below.

The percentage of N applicable to the bridge seismic zone shall be 150%.

The length of the bridge deck
to the adjacent expansion joint

$$
\mathrm{L}_{\mathrm{d}}:=\mathrm{L}_{\mathrm{d}} \cdot \mathrm{~m} \quad \mathrm{~L}_{\mathrm{d}}=73.6 \mathrm{~m}
$$

The height of the columns

$$
\mathrm{H}:=\mathrm{H} \cdot \mathrm{~mm} \quad \mathrm{H}=9912 \mathrm{~mm}
$$ supporting the deck

Skew of the support

$$
\mathrm{S}_{\mathrm{k}}=0
$$

measured from line normal to span
The empirical seat width shall be taken as:

$$
\begin{aligned}
& \mathrm{N}:=\left(200+0.0017 \cdot \frac{\mathrm{~L}}{\mathrm{~mm}}+0.0067 \cdot \frac{\mathrm{H}}{\mathrm{~mm}}\right) \cdot\left(1+0.000125 \cdot \mathrm{~S}_{\mathrm{k}}^{2}\right) \cdot \mathrm{mm} \\
& \mathrm{~N}=267 \mathrm{~mm}
\end{aligned}
$$

Check that the seat width provided is greater than 150% of N :
Seat width $\quad \mathrm{h} 5=975 \mathrm{~mm}$
$150 \% \cdot \mathrm{~N}=401 \mathrm{~mm}$
Seat $_{\text {Width }}:=\left\lvert\, \begin{aligned} & \text { "OK" if } \mathrm{h} 5 \geq \mathrm{N} \cdot 150 \% \\ & \text { "INADEQUATE" otherwise }\end{aligned}\right.$
SeatWidth = "OK"

Critical Sections for Design of Pier Coping

Design for Erection Case

During erection the deck dead loads are supported by the partially constructed pier coping.
Partial construction is required to accommodate the prestressing jacks of the PC deck.
To take account of construction equipment on the deck a construction load of $2 \mathrm{kN} / \mathrm{m}^{2}$ is applied over the full deck area in addition to the deck dead load.
Cross sectional area of coping during erection:

$$
A_{c e}:=v 3 \cdot b_{f}+(v 2-v 3) \cdot D+113 m m \cdot h 5+(v 1-v 2) \cdot\left(b_{f}-2 \cdot h 5\right) \quad A_{c e}=6.275 m^{2}
$$

Coping self weight during erection:

$$
\mathrm{w}_{\mathrm{ce}}:=\mathrm{A}_{\mathrm{ce}} \cdot 24.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \quad \mathrm{w}_{\mathrm{ce}}=153.7 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

PC Deck Dead Load Reaction - max at the bearing

$$
\mathrm{V} 2_{\mathrm{pc}}:=\left|\frac{\mathrm{V} 2_{\mathrm{dl}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{dl}_{2}}\right|}{\mathrm{h} 1_{\mathrm{c}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{pc}}=671.5 \mathrm{kN}
$$

Steel Deck Dead Load Reaction - max at the bearing

$$
\mathrm{V} 2_{\mathrm{st}}:=\left|\frac{\mathrm{V}^{2} \mathrm{dl}_{3}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{dl}_{3}}\right|}{\mathrm{h} 1_{\mathrm{s}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{st}}=752.9 \mathrm{kN}
$$

Erection Load Reaction-20m PC deck - per bearing - assuming 45\% total reaction into bearing

$$
\mathrm{V}_{\mathrm{ERpc}}:=2 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \cdot \mathrm{~B} \cdot(20 \mathrm{~m}) \cdot 45 \% \cdot \frac{1}{2} \mathrm{~V} 2_{\mathrm{ERpc}}=117.0 \mathrm{kN}
$$

Erection Load Reaction - 31m Steel deck - per bearing - assuming 45% total reaction into bearing

$$
\mathrm{V}_{\mathrm{ERst}}:=2 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \cdot \mathrm{~B} \cdot(31 \mathrm{~m}) \cdot 45 \% \cdot \frac{1}{2} \quad \mathrm{~V} 2_{\mathrm{ERst}}=181.3 \mathrm{kN}
$$

Design for Flexure (AASHTO LRFD Section 5.7)

Bending moment in coping at face of column during erection

Coping self weight

$$
\mathrm{M}_{\mathrm{ce}}:=\mathrm{w}_{\mathrm{ce}} \cdot \frac{\left(\max \left(\mathrm{~h} 1_{\mathrm{c}}, \mathrm{~h} 1_{\mathrm{s}}\right)+\mathrm{h} 2+\frac{\mathrm{h} 3}{2}-\frac{\mathrm{D}}{2} \cdot .8\right)^{2}}{2}
$$

$$
\mathrm{M}_{\mathrm{ce}}=916.5 \mathrm{kN} \cdot \mathrm{~m}
$$

PC deck

$$
\mathrm{M}_{\mathrm{pc}}:=\mathrm{V} 2_{\mathrm{pc}} \cdot\left(\mathrm{~h} 1_{\mathrm{c}}-\frac{\mathrm{D}}{2} \cdot .8\right)
$$

reaction

$$
\mathrm{M}_{\mathrm{pc}}=1675.5 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\mathrm{M}_{\mathrm{st}}:=\mathrm{V} 2_{\mathrm{st}} \cdot\left(\mathrm{~h} 1_{\mathrm{s}}-\frac{\mathrm{D}}{2} \cdot .8\right)
$$

Steel deck reaction

$$
\mathrm{M}_{\mathrm{st}}=1803.1 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\mathrm{M}_{\mathrm{ER}}:=\mathrm{V} 2_{\mathrm{ERpc}} \cdot\left(\mathrm{~h} 1_{\mathrm{C}}-\frac{\mathrm{D} \cdot .8}{2}\right)+\mathrm{V} 2_{\mathrm{ERst}}\left(\mathrm{~h} 1_{\mathrm{s}}-\frac{\mathrm{D} \cdot .8}{2}\right) \quad \mathrm{M}_{\mathrm{ER}}=726.2 \mathrm{kN} \cdot \mathrm{~m}
$$

Erection load reaction

Total bending moment in coping at face of column during erection - Ultimate Limit State

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{EU}}:=\left(\mathrm{M}_{\mathrm{ce}}+\mathrm{M}_{\mathrm{pc}}+\mathrm{M}_{\mathrm{st}}\right) \cdot 1.25+\mathrm{M}_{\mathrm{ER}} \cdot 1.5 \\
& \mathrm{M}_{\mathrm{EU}}=6583.3 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Depth of section:

$$
\mathrm{h}_{\mathrm{s}}:=\mathrm{v} 2+\mathrm{v} 4 \quad \mathrm{~h}_{\mathrm{s}}=1500 \mathrm{~mm}
$$

Effective depth of coping during erection:

$$
\mathrm{d}_{\mathrm{e}}:=\left(\mathrm{h}_{\mathrm{s}}-100 \mathrm{~mm}\right) \quad \mathrm{d}_{\mathrm{e}}=1400 \mathrm{~mm}
$$

Width of coping at column:

$$
\mathrm{b}:=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 6 \cdot 2 \quad \mathrm{~b}=1450 \mathrm{~mm}
$$

Strength reduction factor for flexure:

$$
\Phi=0.8
$$

Determine area of reinforcement, A_{f}, in the coping to resist flexure (ref AASHTO LFRD Article 5.7.3.2.3-see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{EU}}}{\Phi \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}^{2} \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{R}=0.0074 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.007902
\end{array}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{f}}:=\rho \cdot \mathrm{d}_{\mathrm{e}} \cdot \mathrm{~b} \\
& \mathrm{~A}_{\mathrm{f}}=16040.9 \mathrm{~mm}^{2}
\end{aligned}
$$

Using $32 \mathrm{~mm} \phi$ bars gives total number of bars to be distributed across the coping:

$$
\mathrm{n}_{\mathrm{bf}}:=\frac{\mathrm{A}_{\mathrm{f}}}{804 \cdot \mathrm{~mm}^{2}} \quad \mathrm{n}_{\mathrm{bf}}=20
$$

Provide 30 No $32 \mathrm{~mm} \phi$ bars in two layers

$$
\mathrm{A}_{\mathrm{f}}:=30 \cdot 804 \cdot \mathrm{~mm}^{2}
$$

Calculate the stress block factor, β_{1} :

$$
\begin{aligned}
& \beta_{1}:=\left\lvert\, \begin{array}{l}
\beta_{1} \leftarrow 0.85 \\
\beta_{1} \leftarrow \beta_{1}-0.05 \cdot \frac{\mathrm{f}_{\mathrm{c}}-28 \mathrm{MPa}}{7 . \mathrm{MPa}} \text { if } \mathrm{f}_{\mathrm{C}}>28 \mathrm{MPa} \\
0.65 \text { if } \beta_{1}<0.65
\end{array}\right. \\
& \beta_{1}=0.836
\end{aligned}
$$

For rectangular sections, the depth of concrete in compression, c , is given by:

$$
\mathrm{c}:=\frac{\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \beta_{1} \cdot \mathrm{~b}} \quad \mathrm{c}=304 \mathrm{~mm}
$$

Check that the required amount of reinforcement does not exceed the maximum allowed by the code:

$$
\begin{aligned}
& \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}}=0.22 \\
& \mathrm{Max}_{\text {Limit }}:=\left\lvert\, \begin{array}{l}
\text { "OK" if } \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}} \leq 0.42 \\
\text { "EXCEEDED" otherwise }
\end{array}\right.
\end{aligned}
$$

Calculate the modulus of rupture, f_{r}, of the concrete:

$$
\mathrm{f}_{\mathrm{r}}:=0.63 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \quad \mathrm{f}_{\mathrm{r}}=3.451 \mathrm{MPa}
$$

Section modulus for the extreme fiber of the section, assuming rectangular section of width b :

$$
\mathrm{S}_{\mathrm{C}}:=\frac{\mathrm{b} \cdot \mathrm{~h}_{\mathrm{s}}{ }^{2}}{6} \quad \mathrm{~S}_{\mathrm{C}}=0.544 \mathrm{~m}^{3}
$$

Moment resisting by reinforcemen provided

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{EUR}}:=\Phi \cdot \mathrm{c} \cdot \mathrm{~b} \cdot\left(\mathrm{~d}_{\mathrm{e}}-\frac{\mathrm{c}}{2}\right) \cdot 0.85 \cdot \mathrm{f}_{\mathrm{C}} \\
& \mathrm{M}_{\mathrm{EUR}}=11236.1 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

The cracking moment, M_{cr}, is the given by:

$$
\mathrm{M}_{\mathrm{Cr}}:=\mathrm{S}_{\mathrm{C}} \cdot \mathrm{f}_{\mathrm{r}}
$$

$$
\mathrm{M}_{\mathrm{cr}}=1876 \mathrm{kN} \cdot \mathrm{~m}
$$

Check that the reinforcement can develop a resistance moment Mr at least equal to the lesser of:

- 1.2 times the cracking moment Mcr
- 1.33 times the factored moment required by the applicable strength load combination

$$
\text { Minimum }_{\text {Steel }}:=\left\{\begin{array}{l}
\mathrm{M}_{\mathrm{r}} \leftarrow \frac{\mathrm{M}_{\mathrm{EUR}}}{\Phi} \\
\mathrm{M} \leftarrow \min \left(1.2 \mathrm{M}_{\mathrm{Cr}}, 1.33 \cdot \mathrm{M}_{\mathrm{EU}}\right) \\
\text { "OK" if } \mathrm{M}_{\mathrm{r}} \geq \mathrm{M} \\
\text { "NOT SATISFIED" otherwise }
\end{array} \quad \text { Minimum }_{\text {Steel }}=\right.\text { "OK" }
$$

Design for Shear (AASHTO LRFD Section 5.8)

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{s}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{s}} \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=1260 \mathrm{~mm}
\end{aligned}
$$

Shear in coping at critical section during erection

Coping self weight

$$
\mathrm{V}_{\mathrm{ce}}:=\mathrm{w}_{\mathrm{ce}} \cdot\left(\max \left(\mathrm{~h} 1_{\mathrm{c}}, \mathrm{~h} 1_{\mathrm{s}}\right)+\mathrm{h} 2+\frac{\mathrm{h} 3}{2}-\frac{\mathrm{D}}{2} \cdot 8-\mathrm{d}_{\mathrm{v}}\right) \mathrm{V}_{\mathrm{ce}}=337.1 \mathrm{kN}
$$

PC deck reaction	$\mathrm{V}_{\mathrm{pc}}:=\mathrm{V} 2_{\mathrm{pc}}$	$\mathrm{V}_{\mathrm{pc}}=671.5 \mathrm{kN}$
Steel deck reaction	$\mathrm{V}_{\mathrm{St}}:=\mathrm{V} 2_{\mathrm{st}}$	$\mathrm{V}_{\mathrm{St}}=752.9 \mathrm{kN}$
Erection load reaction	$\mathrm{V}_{\mathrm{ER}}:=\mathrm{V} 2_{\mathrm{ERpc}}+\mathrm{V}_{\mathrm{ERst}}$	$\mathrm{V}_{\mathrm{ER}}=298.4 \mathrm{kN}$

Total shear force in coping at face of column during erection - Ultimate Limit State

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EU}}:=\left(\mathrm{V}_{\mathrm{ce}}+\mathrm{V}_{\mathrm{pc}}+\mathrm{V}_{\mathrm{st}}\right) \cdot 1.3+\mathrm{V}_{\mathrm{ER}} \cdot 1.3 \\
& \mathrm{~V}_{\mathrm{EU}}=2677.9 \mathrm{kN}
\end{aligned}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{V}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=1661 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{S}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{S}}:=\left\lvert\, \begin{aligned}
& \mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{EU}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{S}}=2164 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
& 0 \mathrm{kN} \text { otherwise }
\end{aligned}\right.
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=13702.5 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array}\right. \\
& \text { CHECK }=\text { "OK" }
\end{aligned}
$$

Provide 19mm ϕ shear links wth 4 legs across the section:

$$
\begin{aligned}
& \phi_{\text {link }}:=19 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{V}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{v}}=1134 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\| \begin{aligned}
& \mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
& \mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
& \mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
& \mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{aligned} \quad \mathrm{s}_{\mathrm{t}}=257 \mathrm{~mm}
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{v}_{\mathrm{EU}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=2.094 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:

$$
\begin{aligned}
& \mathrm{s}_{\text {max }}:=\left\lvert\, \begin{array}{ll}
\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{C}} \\
\min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) & \text { otherwise }
\end{array}\right. \\
& \mathrm{s}_{\text {max }}=600 \mathrm{~mm}
\end{aligned}
$$

Determine maximum required spacing of transverse reinforcement:

$$
\begin{aligned}
& \mathrm{s}_{\text {t.erection }}:=\left\lvert\, \begin{array}{l}
\mathrm{s}_{\text {max }} \text { if } \mathrm{s}_{\max } \leq \mathrm{s}_{\mathrm{t}} \\
\mathrm{~s}_{\mathrm{t}} \text { otherwise }
\end{array}\right. \\
& \mathrm{s}_{\text {t.erection }}=257 \mathrm{~mm}
\end{aligned}
$$

Design for Permanent Condition

Cross sectional area of coping at support:

$$
A_{c}:=v 3 \cdot b_{f}+(v 2-v 3) \cdot D+\left(b_{f}-h 5 \cdot 2\right) \cdot(v 1-v 2)+113 m m \cdot h 5
$$

$$
\mathrm{A}_{\mathrm{C}}=6.275 \mathrm{~m}^{2}
$$

Coping self weight - main body:

$$
\mathrm{w}_{\mathrm{C}}:=\mathrm{A}_{\mathrm{c}} \cdot 24.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}}
$$

$$
\mathrm{w}_{\mathrm{C}}=153.7 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

Coping self weight - cantilever wings:

$$
\mathrm{w}_{\mathrm{cw}}:=\frac{0.25 \mathrm{~m}+0.45 \mathrm{~m}}{2} \cdot\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2\right) 24.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \quad \mathrm{w}_{\mathrm{cw}}=12.0 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

Superimposed dead load:

$$
\mathrm{w}_{\mathrm{sdl}}:=0.125 \mathrm{~m} \cdot\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2\right) 22.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \quad \quad \mathrm{w}_{\mathrm{sdl}}=3.9 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

Railing dead load - each side:

$$
\mathrm{W}_{\mathrm{r}}:=\frac{0.433}{2} \mathrm{~m}^{2} \cdot\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2\right) 24.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \quad \mathrm{~W}_{\mathrm{r}}=7.4 \mathrm{kN}
$$

D live loading on coping:

$$
\mathrm{w}_{\mathrm{d}}:=9.0 \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \cdot\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2\right)
$$

$$
\mathrm{w}_{\mathrm{d}}=12.6 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

PC Deck Dead Load Reaction - max at the bearing - ULS Comb1

$$
\mathrm{V} 2_{\mathrm{upc}}:=\left|\frac{\mathrm{V}_{\mathrm{u}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{u}_{2}}\right|}{\mathrm{h} 1_{\mathrm{c}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{upc}}=3231.4 \mathrm{kN}
$$

Steel Deck Dead Load Reaction - max at the bearing - ULS Comb1

$$
\mathrm{V} 2_{\mathrm{ust}}:=\left|\frac{\mathrm{V}_{\mathrm{u}_{3}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{u}_{3}}\right|}{\mathrm{h} 1_{\mathrm{s}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{ust}}=3505.5 \mathrm{kN}
$$

Design for Flexure (AASHTO LRFD Section 5.7)

Nominal bending moment in coping at face of column
$\begin{aligned} & \text { Coping main body } \\ & \text { self weight }\end{aligned} \mathrm{M}_{\mathrm{cb}}:=\mathrm{w}_{\mathrm{C}} \cdot \frac{\left(\max \left(\mathrm{h} 1_{\mathrm{C}}, \mathrm{h} 1_{\mathrm{s}}\right)+\mathrm{h} 2+\frac{\mathrm{h} 3}{2}-\frac{\mathrm{D}}{2} \cdot 8\right)^{2}}{2} \quad \mathrm{M}_{\mathrm{cb}}=916.5 \mathrm{kN} \cdot \mathrm{m}$

Coping cantilever self weight

$$
\mathrm{M}_{\mathrm{CW}}:=\mathrm{w}_{\mathrm{CW}} \cdot \mathrm{~h} 4 \cdot\left(\max \left(\mathrm{~h} 1_{\mathrm{C}}, \mathrm{~h} 1_{\mathrm{s}}\right)+\mathrm{h} 2+\mathrm{h} 3+\frac{\mathrm{h} 4}{2}-\frac{\mathrm{D}}{2} \cdot .8\right) \mathrm{M}_{\mathrm{CW}}=121.6 \mathrm{kN} \cdot \mathrm{~m}
$$

Railing
weight

$$
\mathrm{M}_{\mathrm{r}}:=\mathrm{W}_{\mathrm{r}}\left(\max \left(\mathrm{~h} 1_{\mathrm{C}}, \mathrm{~h} 1_{\mathrm{s}}\right)+\mathrm{h} 2+\mathrm{h} 3+\mathrm{h} 4-\frac{\mathrm{D}}{2} \cdot .8\right)
$$

$$
\mathrm{M}_{\mathrm{r}}=42.9 \mathrm{kN} \cdot \mathrm{~m}
$$

Superimposed dead load on coping

$$
\mathrm{M}_{\mathrm{sdl}}:=\mathrm{w}_{\mathrm{sdl}} \frac{\left(5.75 \mathrm{~m}-\frac{\mathrm{D} \cdot .8}{2}\right)^{2}}{2}
$$

$$
\mathrm{M}_{\mathrm{sdl}}=50.6 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\mathrm{M}_{\mathrm{d}}:=\mathrm{w}_{\mathrm{d}} \cdot \frac{\left(5.75 \mathrm{~m}-\frac{\mathrm{D} \cdot .8}{2}\right)^{2}}{2}
$$

D live load on coping

$$
\mathrm{M}_{\mathrm{d}}=161.9 \mathrm{kN} \cdot \mathrm{~m}
$$

Ultimate bending moment in coping from max bearing reactions at face of column:

PC deck

 reaction$$
\mathrm{M}_{\mathrm{upc}}:=\mathrm{V} 2_{\mathrm{upc}} \cdot\left(\mathrm{~h} 1_{\mathrm{c}}-\frac{\mathrm{D}}{2} \cdot .8\right)
$$

$\mathrm{M}_{\mathrm{upc}}=8062.4 \mathrm{kN} \cdot \mathrm{m}$

Steel deck
reaction

$$
\mathrm{M}_{\mathrm{ust}}:=\mathrm{V} 2_{\mathrm{ust}}\left(\mathrm{~h} 1_{\mathrm{s}}-\frac{\mathrm{D}}{2} \cdot .8\right)
$$

$$
\mathrm{M}_{\mathrm{ust}}=8395.7 \mathrm{kN} \cdot \mathrm{~m}
$$

Total bending moment in coping at face of column - Ultimate Limit State
Moment from loads

$$
\mathrm{M}_{\mathrm{CU}}:=\left(\mathrm{M}_{\mathrm{cb}}+\mathrm{M}_{\mathrm{cW}}+\mathrm{M}_{\mathrm{r}}\right) \cdot 1.3+\mathrm{M}_{\mathrm{sdl}} \cdot 2.0+\mathrm{M}_{\mathrm{d}} \cdot 1.8
$$

on coping body

$$
\mathrm{M}_{\mathrm{CU}}=1798.0 \mathrm{kN} \cdot \mathrm{~m}
$$

Moment from max loads on bearings

$$
M_{\mathrm{BU}}:=\mathrm{M}_{\mathrm{upc}}+\mathrm{M}_{\mathrm{ust}}
$$

$$
\mathrm{M}_{\mathrm{BU}}=16458.1 \mathrm{kN} \cdot \mathrm{~m}
$$

Total ULS moment

$$
\mathrm{M}_{\mathrm{U}}:=\mathrm{M}_{\mathrm{CU}}+\mathrm{M}_{\mathrm{BU}}
$$

$$
\mathrm{M}_{\mathrm{U}}=18256.1 \mathrm{kN} \cdot \mathrm{~m}
$$

Depth of section:

$$
\mathrm{h}_{\mathrm{s}}:=\mathrm{v} 1
$$

Effective depth of coping:

$$
\mathrm{d}_{\mathrm{e}}:=\left(\mathrm{h}_{\mathrm{s}}-150 \mathrm{~mm}\right) \quad \mathrm{d}_{\mathrm{e}}=2582 \mathrm{~mm}
$$

Width of coping at column:

$$
\mathrm{b}:=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 6 \cdot 2
$$

Strength reduction factor for
flexure:

$$
\Phi=0.8
$$

Determine area of reinforcement, A_{f}, in the coping to resist flexure (ref AASHTO LFRD Article 5.7.3.2.3 - see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{U}}}{\Phi \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}^{2} \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{R}=0.0061 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{C}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.006363 \\
\mathrm{~A}_{\mathrm{f}}:=\rho \cdot \mathrm{d}_{\mathrm{e}} \cdot \mathrm{~b} \\
\mathrm{~A}_{\mathrm{f}}=23821 \mathrm{~mm}^{2} &
\end{array}
$$

Using 32mm ϕ bars gives total number of bars to be distributed across the coping:

$$
\mathrm{n}_{\mathrm{bf}}:=\frac{\mathrm{A}_{\mathrm{f}}}{804 \cdot \mathrm{~mm}^{2}} \quad \mathrm{n}_{\mathrm{bf}}=29.6
$$

Provide 36 No $32 \mathrm{~mm} \phi$ bars

$$
\mathrm{n}_{\text {bars }}:=36 \quad \mathrm{~A}_{\mathrm{f}}:=\mathrm{n}_{\text {bars }} \cdot 804 \cdot \mathrm{~mm}^{2}
$$

Calculate the stress block factor, β_{1} :

$$
\begin{aligned}
& \beta_{1}:=\left\lvert\, \begin{array}{l}
\beta_{1} \leftarrow 0.85 \\
\beta_{1} \leftarrow \beta_{1}-0.05 \cdot \frac{\mathrm{f}_{\mathrm{c}}-28 \mathrm{MPa}}{7 . \mathrm{MPa}} \text { if } \mathrm{f}_{\mathrm{c}}>28 \mathrm{MPa} \\
0.65 \text { if } \beta_{1}<0.65
\end{array}\right. \\
& \beta_{1}=0.836
\end{aligned}
$$

For rectangular sections, the depth of concrete in compression, c , is given by:

$$
\mathrm{c}:=\frac{\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \beta_{1} \cdot \mathrm{~b}} \quad \mathrm{c}=365 \mathrm{~mm}
$$

Check that the required amount of reinforcement does not exceed the maximum allowed by the code:

$$
\begin{aligned}
& \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}}=0.14 \\
& \text { Max }_{\text {Limit }}:= \\
& \text { "EXCEEDED" otherwise }
\end{aligned} \quad \begin{aligned}
& \text { "OK" if } \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}} \leq 0.42 \\
& \text { Max } \\
& \text { Limit }
\end{aligned}=\text { "OK" }
$$

Calculate the modulus of rupture, f_{r}, of the concrete:

$$
\mathrm{f}_{\mathrm{r}}:=0.63 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \quad \mathrm{f}_{\mathrm{r}}=3.451 \mathrm{MPa}
$$

Section modulus for the extreme fiber of the section, assuming rectangular section of width b :

$$
\mathrm{S}_{\mathrm{C}}:=\frac{\mathrm{b} \cdot \mathrm{~h}_{\mathrm{s}}^{2}}{6} \quad \mathrm{~S}_{\mathrm{C}}=1.804 \mathrm{~m}^{3}
$$

Moment resisting by reinforcemen provided

$$
\begin{aligned}
& M_{E U R}:=\Phi \cdot \mathrm{c} \cdot \mathrm{~b} \cdot\left(\mathrm{~d}_{\mathrm{e}}-\frac{\mathrm{c}}{2}\right) \cdot 0.85 \cdot \mathrm{f}_{\mathrm{C}} \\
& \mathrm{M}_{\mathrm{EUR}}=25926.8 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

The cracking moment, M_{cr}, is the given by:

$$
\mathrm{M}_{\mathrm{cr}}:=\mathrm{S}_{\mathrm{C}} \cdot \mathrm{f}_{\mathrm{r}} \quad \mathrm{M}_{\mathrm{cr}}=6224 \mathrm{kN} \cdot \mathrm{~m}
$$

Check that the reinforcement can develop a resistance moment Mr at least equal to the lesser of:

- 1.2 times the cracking momen Mcr
- 1.33 times the factored moment required by the applicable strength load combination

FINAL LAYOUT OF LONGITUDINAL REBAR

CHECK STRESSES AT SLS (AASHTO LRFD Article 5.7.3.4)

With reference to the illustration above - the final layout of reinforcement features three layers of rebar as follows:

Layer 1-36 No. $32 \mathrm{~mm} \phi$ bars	$\mathrm{A}_{\mathrm{f} 1}:=36 \cdot 804 \mathrm{~mm}^{2}$	$\mathrm{~d}_{1}:=\mathrm{v} 1-150 \mathrm{~mm}$
Layer 2-28 No. $32 \mathrm{~mm} \phi$ bars	$\mathrm{A}_{\mathrm{f} 1}=28944 \mathrm{~mm}^{2}$	$\mathrm{~d}_{1}=2582 \mathrm{~mm}$
	$\mathrm{~A}_{\mathrm{f} 2}:=26 \cdot 490 \mathrm{~mm}^{2}$	$\mathrm{~d}_{2}:=\mathrm{v} 2+\mathrm{v} 4-100 \mathrm{~mm}$
Layer 3-20 No. $25 \mathrm{~mm} \phi$ bars	$\mathrm{A}_{\mathrm{f} 2}=12740 \mathrm{~mm}^{2}$	$\mathrm{~d}_{2}=1400 \mathrm{~mm}$
	$\mathrm{~A}_{\mathrm{f} 3}:=20 \cdot 491 \mathrm{~mm}^{2}$	$\mathrm{~d}_{3}:=\mathrm{v} 2$
Total area	$\mathrm{A}_{\mathrm{f} 3}=9820 \mathrm{~mm}^{2}$	$\mathrm{~d}_{3}=1200 \mathrm{~mm}$
	$\mathrm{~A}_{\mathrm{T}}:=\mathrm{A}_{\mathrm{f} 1}+\mathrm{A}_{\mathrm{f} 2}+\mathrm{A}_{\mathrm{f} 3}$	
Lever arm factor	$\mathrm{A}_{\mathrm{T}}=51504 \mathrm{~mm}^{2}$	
	$\mathrm{~B}:=\mathrm{A}_{\mathrm{f} 1} \cdot \mathrm{~d}_{1}+\mathrm{A}_{\mathrm{f} 2} \cdot \mathrm{~d}_{2}+\mathrm{A}_{\mathrm{f} 3} \cdot \mathrm{~d}_{3}$	

The depth of concrete in compression, C , at the serviceability limit state, assuming three levels of rebar, is given by:

$$
C:=\frac{\sqrt{A_{T}^{2}+\frac{2 \cdot b \cdot B}{\alpha}}-A_{T}}{b} \cdot \alpha \quad C=796 \mathrm{~mm}
$$

PC Deck Dead Load Reaction - max at the bearing - SLS Comb1

$$
\mathrm{V} 2_{\mathrm{spc}}:=\left|\frac{\mathrm{V} 2_{\mathrm{s}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{S}_{2}}\right|}{\mathrm{h} 1_{\mathrm{c}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{spc}}=2065.7 \mathrm{kN}
$$

Steel Deck Dead Load Reaction - max at the bearing - SLS Comb1

$$
\mathrm{V}_{\mathrm{sst}}:=\left|\frac{\mathrm{V}_{\mathrm{s}_{3}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{s}_{3}}\right|}{\mathrm{h} 1_{\mathrm{s}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{sst}}=2317.7 \mathrm{kN}
$$

Service bending moment in coping from max bearing reactions at face of column:
PC deck reaction

$$
\mathrm{M}_{\mathrm{spc}}:=\mathrm{V} 2_{\mathrm{spc}} \cdot\left(\mathrm{~h} 1_{\mathrm{c}}-\frac{\mathrm{D}}{2} \cdot .8\right)
$$

$$
\mathrm{M}_{\mathrm{spc}}=5154.0 \mathrm{kN} \cdot \mathrm{~m}
$$

Steel deck reaction $\quad \mathrm{M}_{\mathrm{sst}}:=\mathrm{V} 2_{\mathrm{sst}} \cdot\left(\mathrm{h} 1_{\mathrm{S}}-\frac{\mathrm{D}}{2} \cdot .8\right)$

$$
\mathrm{M}_{\text {sst }}=5550.9 \mathrm{kN} \cdot \mathrm{~m}
$$

Total bending moment in coping at face of column - Service Limit State

$$
\begin{array}{ll}
\text { Moment from loads } & \mathrm{M}_{\mathrm{CS}}:=\left(\mathrm{M}_{\mathrm{cb}}+\mathrm{M}_{\mathrm{cW}}+\mathrm{M}_{\mathrm{r}}\right) \cdot 1.0+\mathrm{M}_{\mathrm{sdl}} \cdot 1.0+\mathrm{M}_{\mathrm{d}} \cdot 1.0 \\
\text { on coping body }
\end{array} \quad \mathrm{M}_{\mathrm{CS}}=1293.6 \mathrm{kN} \cdot \mathrm{~m} \mathrm{C} .
$$

Total SLS moment

$$
\mathrm{M}_{\mathrm{S}}:=\mathrm{M}_{\mathrm{CS}}+\mathrm{M}_{\mathrm{BS}}-0.5 \cdot\left(\mathrm{M}_{\mathrm{ce}}+\mathrm{M}_{\mathrm{pc}}+\mathrm{M}_{\mathrm{st}}\right)
$$

$$
\mathrm{M}_{\mathrm{S}}=9800.9 \mathrm{kN} \cdot \mathrm{~m}
$$

NOTE!: The maximum service moment has been reduced to account for the staged construction of the coping. 50% of the erection stage moments - carried by the lower reinforcement - have been subtracted. The full amount of the erection stage moments have not been subtrated given that creep effects will transfer loads to the permanent stage.
Calculate the maximum stress in the reinforcement (IN LAYER 1) at SLS:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{s}}:=\frac{\mathrm{M}_{\mathrm{S}}}{A_{\mathrm{f} 1} \cdot\left(d_{1}-\frac{C}{3}\right)+\mathrm{A}_{\mathrm{f} 2} \cdot \frac{d_{2}-C}{d_{1}-C} \cdot\left(d_{2}-\frac{C}{3}\right)+\mathrm{A}_{\mathrm{f} 3} \cdot \frac{d_{3}-C}{d_{1}-C} \cdot\left(d_{3}-\frac{C}{3}\right)} \\
& \mathrm{f}_{\mathrm{s}}=132 \mathrm{MPa}
\end{aligned}
$$

Check that stress in reinforcement does not exceed limit, $f_{\text {sa }}$:

Crack width parameter

Depth of concrete from
extreme tensile fiber to center of bar
Area of concrete with same centoid per bar

$$
\mathrm{f}_{\mathrm{sa}}:=\left\{\begin{array}{l}
\mathrm{f}_{\mathrm{sa}} \leftarrow \frac{\mathrm{Z}}{{ }^{\frac{1}{3}}} \\
\left.\mathrm{~d}_{\mathrm{c}} \cdot \mathrm{~A}\right)^{\frac{1}{3}} \\
\mathrm{f}_{\mathrm{sa}} \text { if } \mathrm{f}_{\mathrm{sa}}<170 \mathrm{MPa} \\
170 \cdot \mathrm{MPa} \text { otherwise }
\end{array}\right.
$$

$$
\text { Stress }_{\text {Check }}:=\left\lvert\, \begin{aligned}
& \text { "OK" if } \mathrm{f}_{\mathrm{s}} \leq \mathrm{f}_{\text {sa }} \\
& \text { "NOT SATISFIED" otherwise }
\end{aligned} \quad\right. \text { Stress }_{\text {Check }}=\text { "OK" }
$$

Calculate forces in section to check calculation result:
Total force in rebar

$$
T_{S}:=\left(A_{f 1}+A_{f 2} \cdot \frac{d_{2}-C}{d_{1}-C}+A_{f 3} \cdot \frac{d_{3}-C}{d_{1}-C}\right) \cdot f_{s} \quad T_{S}=4697 \mathrm{kN}
$$

Stress in concrete

$$
\mathrm{f}_{\mathrm{sc}}:=\mathrm{f}_{\mathrm{s}} \cdot \frac{\mathrm{C}}{\mathrm{~d}_{1}-\mathrm{C}} \cdot \frac{1}{\alpha} \quad \mathrm{f}_{\mathrm{sC}}=8.1 \mathrm{MPa}
$$

Force in concrete

$$
\mathrm{C}_{\mathrm{C}}:=\mathrm{f}_{\mathrm{sc}} \cdot \frac{\mathrm{~b} \cdot \mathrm{C}}{2}
$$

$$
\mathrm{C}_{\mathrm{C}}=4697 \mathrm{kN}
$$

Design for Shear (AASHTO LRFD Section 5.8)

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \quad \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{s}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{s}} \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=2323.8 \mathrm{~mm}
\end{aligned}
$$

Shear in coping at critical section due to loads applied on coping body

Coping self weight

$$
\mathrm{V}_{\mathrm{C}}:=\mathrm{w}_{\mathrm{C}} \cdot\left(\max \left(\mathrm{~h} 1_{\mathrm{C}}, \mathrm{~h} 1_{\mathrm{s}}\right)+\mathrm{h} 2+\frac{\mathrm{h} 3}{2}-\frac{\mathrm{D}}{2} \cdot .8-\mathrm{d}_{\mathrm{v}}\right) \quad \mathrm{V}_{\mathrm{C}}=173.6 \mathrm{kN}
$$

Coping cantilever self weight

$$
\mathrm{V}_{\mathrm{cw}}:=\mathrm{w}_{\mathrm{cw}} \cdot \mathrm{~h} 4
$$

$$
\mathrm{V}_{\mathrm{CW}}=25.9 \mathrm{kN}
$$

Railing

$$
\mathrm{V}_{\mathrm{r}}:=\mathrm{W}_{\mathrm{r}}
$$

$$
\mathrm{V}_{\mathrm{r}}=7.4 \mathrm{kN}
$$

weight

$$
\mathrm{V}_{\mathrm{sdl}}:=\mathrm{w}_{\mathrm{sdl}} \cdot\left(5.75 \mathrm{~m}-\frac{\mathrm{D} \cdot .8}{2}-\mathrm{d}_{\mathrm{v}}\right)
$$

$$
\mathrm{V}_{\mathrm{sdl}}=10.8 \mathrm{kN}
$$

dead load on coping

$$
\mathrm{V}_{\mathrm{d}}:=\mathrm{w}_{\mathrm{d}} \cdot\left(5.75 \mathrm{~m}-\frac{\mathrm{D} \cdot .8}{2}-\mathrm{d}_{\mathrm{v}}\right)
$$

D live load on coping

$$
\mathrm{V}_{\mathrm{d}}=34.6 \mathrm{kN}
$$

Ultimate shear force in coping from max bearing reactions at face of column:

$$
\begin{array}{lll}
\text { PC deck reaction } & \mathrm{V}_{\mathrm{pc}}:=\mathrm{V} 2_{\mathrm{upc}} & \mathrm{~V}_{\mathrm{pc}}=3231.4 \mathrm{kN} \\
\text { Steel deck reaction } & \mathrm{V}_{\mathrm{st}}:=\mathrm{V} 2_{\mathrm{ust}} & \mathrm{~V}_{\mathrm{st}}=3505.5 \mathrm{kN}
\end{array}
$$

Total shear force in coping at face of column - Ultimate Limit State

Shear from loads on coping body

$$
\mathrm{V}_{\mathrm{CU}}:=\left(\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{cW}}+\mathrm{V}_{\mathrm{r}}\right) \cdot 1.3+\mathrm{V}_{\mathrm{sdl}} \cdot 2.0+\left(\mathrm{V}_{\mathrm{d}}\right) \cdot 1.8
$$

$$
\mathrm{V}_{\mathrm{CU}}=353.0 \mathrm{kN}
$$

Shear from max loads on bearings

$$
\mathrm{V}_{\mathrm{BU}}:=\mathrm{V}_{\mathrm{pc}}+\mathrm{V}_{\mathrm{st}}
$$

$$
\mathrm{V}_{\mathrm{BU}}=6736.9 \mathrm{kN}
$$

Total shear force

$$
\mathrm{V}_{\mathrm{U}}=7090 \mathrm{kN}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=3064 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{s}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}:=\left\lvert\, \begin{array}{l}
\mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{U}}}{\Phi_{\mathrm{s}}}-\mathrm{V}_{\mathrm{C}} \\
\mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
0 \mathrm{kN} \text { otherwise }
\end{array}\right. \\
& \mathrm{V}_{\mathrm{S}}=7065 \mathrm{kN}
\end{aligned}
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{c}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=25271.3 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array} \quad\right. \text { CHECK }=\text { "OK" }
\end{aligned}
$$

Provide 19mm ϕ shear links wth 4 legs across the section

$$
\begin{aligned}
& \phi_{\text {link }}:=19 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{v}}=1134 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\lvert\, \begin{aligned}
& \mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
& \mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
& \mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
& \mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{aligned} \quad \mathrm{s}_{\mathrm{t}}=145 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{V}_{\mathrm{U}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=3.006 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:

$$
\begin{aligned}
& \mathrm{s}_{\text {max }}:=\| \begin{array}{ll}
\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{c}} \\
\min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) & \text { otherwise }
\end{array} \\
& \mathrm{s}_{\text {max }}=600 \mathrm{~mm}
\end{aligned}
$$

Determine maximum required spacing of transverse reinforcement:

$$
s_{t}:=\left\lvert\, \begin{aligned}
& s_{\max } \text { if } s_{\max } \leq s_{t} \\
& s_{t} \text { otherwise }
\end{aligned} \quad s_{t}=145 \mathrm{~mm}\right.
$$

Provide $19 \mathrm{~mm} \phi$ links at $100 \mathrm{c} / \mathrm{c}$ in outer legs and $19 \mathrm{~mm} \phi$ links at $200 \mathrm{c} / \mathrm{c}$ in inner legs giving 150 mm c/c spacing overall

Design of Cantilever Slab

Equivalent Width of Deck Overhang (AASHTO LRFD Table 4.6.2.1.3-1)

Width of coping slab at support:

$$
\mathrm{b}:=\mathrm{b}_{\mathrm{f}}-2 \cdot \mathrm{~h} 5 \quad \mathrm{~b}=1400 \mathrm{~mm}
$$

Distance from outermost load to point of support:

$$
X:=(h 4-300 \mathrm{~mm}-350 \mathrm{~mm}) \quad X=1510 \mathrm{~mm}
$$

Equivalent width of deck overhang:

$$
\mathrm{b}_{\mathrm{ew}}:=\left\lvert\, \begin{aligned}
& \mathrm{b}_{\mathrm{ew}} \leftarrow 570 \mathrm{~mm}+0.416 \cdot \mathrm{X} \quad \mathrm{~b}_{\mathrm{ew}}=1198 \mathrm{~mm} \\
& \mathrm{~b}_{\mathrm{ew}} \text { if } \mathrm{b}_{\mathrm{ew}} \leq \mathrm{b} \\
& \mathrm{~b} \text { otherwise }
\end{aligned}\right.
$$

Check Deflection of Cantilever Slab (AASHTO LRFD Article 2.5.2.6.2)

Depth of cantilever slab in main deck section at support:

$$
\mathrm{h}_{\mathrm{ds}}:=450 \mathrm{~mm}
$$

Span length of cantilever slab in main deck section:

$$
\mathrm{l}_{\mathrm{ds}}:=2645 \mathrm{~mm}
$$

Depth of deck overhang at support to match main deck outline:

$$
\mathrm{h}_{\mathrm{cs} 1}:=\left(\mathrm{h}_{\mathrm{ds}}-250 \mathrm{~mm}\right) \cdot \frac{\mathrm{h} 4}{\mathrm{l}_{\mathrm{ds}}}+250 \mathrm{~mm}
$$

$$
\mathrm{h}_{\mathrm{cs} 1}=413 \mathrm{~mm}
$$

Depth of deck overhang at outermost load point:

$$
\mathrm{h}_{\mathrm{cs} 2}:=\left(\mathrm{h}_{\mathrm{ds}}-250 \mathrm{~mm}\right) \cdot \frac{350 \mathrm{~mm}+300 \mathrm{~mm}}{\mathrm{l}_{\mathrm{ds}}}+250 \mathrm{~mm} \quad \mathrm{~h}_{\mathrm{cs} 2}=299 \mathrm{~mm}
$$

Depth of deck overhang at innermost load point:

$$
\mathrm{h}_{\mathrm{cs} 3}:=\left\{\begin{array}{l}
\mathrm{h}_{\mathrm{cs} 3} \leftarrow\left(\mathrm{~h}_{\mathrm{ds}}-250 \mathrm{~mm}\right) \cdot \frac{350 \mathrm{~mm}+300 \mathrm{~mm}+1750 \mathrm{~mm}}{\mathrm{l}_{\mathrm{ds}}}+250 \mathrm{~mm} \\
\mathrm{~h}_{\mathrm{cs} 3} \text { if } \mathrm{h}_{\mathrm{cs} 3} \leq \mathrm{h}_{\mathrm{cs} 1} \\
\mathrm{~h}_{\mathrm{cs} 1} \text { otherwise } \quad \mathrm{h}_{\mathrm{cs} 3}=413 \mathrm{~mm}
\end{array}\right.
$$

Distance from innermost load to point of support:

$$
\mathrm{X} 3:=\left\lvert\, \begin{array}{ll}
\text { X3 } \leftarrow \mathrm{h} 4-300 \mathrm{~mm}-350 \mathrm{~mm}-1750 \mathrm{~mm} \\
\text { X3 if X3 }>0 \\
0 \mathrm{~m} \text { otherwise }
\end{array} \quad \mathrm{X} 3=0 \mathrm{~mm}\right.
$$

Moment of inertia of equivalent width of deck overhang assuming cracked section:

$$
\begin{array}{ll}
\text { at support } & \mathrm{I}_{\mathrm{ew} 1}:=40 \cdot \% \cdot \frac{\mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~h}_{\mathrm{cs} 1}{ }^{3}}{12} \\
\text { at outer load point } & \mathrm{I}_{\mathrm{ew} 2}:=40 \cdot \% \cdot \frac{\mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~h}_{\mathrm{cs} 2}^{3}}{12} \\
\text { at innermost load point } \mathrm{I}_{\mathrm{ew} 3}:=40 \cdot \% \cdot \frac{\mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~h}_{\mathrm{cs} 3} 3^{3}}{12}
\end{array}
$$

The deflection under the applied wheel loads is then given by (increaseed by 30% to account for dynamic loading):

$$
\delta_{\mathrm{T}}:=\frac{112.5 \cdot k N \cdot 130 \%}{E_{C}} \cdot\left[\int_{0}^{X}\left[\frac{x^{2}}{I_{e w 2}+\left(I_{e w 1}-I_{e w} 2\right) \cdot \frac{x}{X}}\right] d x+\int_{0}^{X 3}\left[\frac{x^{2}}{I_{e w 3}+\left(I_{e w 1}-I_{e w 3}\right) \cdot \frac{x}{X 3}}\right] d x\right]
$$

$\delta_{\mathrm{T}}=2.61 \mathrm{~mm}$
Check that the deflection does not exceed the limit for vehicular load on cantilever arms:

$$
\begin{aligned}
& \delta_{\text {LIMIT }}:=\frac{\mathrm{X}}{300} \quad \delta_{\text {LIMIT }}=5.03 \mathrm{~mm} \\
& \text { DEFLECTION }_{\text {CHECK }}:=\left\lvert\, \begin{array}{lll}
\text { "OK" if } \delta_{\mathrm{T}} \leq \delta_{\text {LIMIT }} \\
\text { "FAIL" } & \text { otherwise }
\end{array}\right. \\
& \text { DEFLECTION }_{\text {CHECK }}=\text { "OK" }
\end{aligned}
$$

Design for Flexure (AASHTO LRFD Section 5.7)

Nominal bending moment in slab at support

Coping cantilever self weight

$$
\mathrm{M}_{\mathrm{cW}}:=\mathrm{w}_{\mathrm{cw}} \cdot \frac{\mathrm{~h} 4^{2}}{2}
$$

$$
\mathrm{M}_{\mathrm{CW}}=28.0 \mathrm{kN} \cdot \mathrm{~m}
$$

Detailed Design Study of North Java Corridor Flyover Project

BALARAJA FLYOVER
Coping Design

Railing

$$
\mathrm{M}_{\mathrm{r}}:=\mathrm{W}_{\mathrm{r}} \cdot(\mathrm{~h} 4+0.15 \mathrm{~m}-0.25 \mathrm{~m})
$$

weight

$$
\mathrm{M}_{\mathrm{r}}=15.3 \mathrm{kN} \cdot \mathrm{~m}
$$

Superimposed dead load on coping

T live load on coping
$\mathrm{M}_{\mathrm{sdl}}:=\mathrm{w}_{\mathrm{sdl}} \frac{(\mathrm{h} 4-350 \mathrm{~mm})^{2}}{2}$
$\mathrm{M}_{\mathrm{sdl}}=6.4 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{M}_{\mathrm{t}}=169.9 \mathrm{kN} \cdot \mathrm{m}$

Total bending moment in slab at face of support - Ultimate Limit State

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{SU}}:=\left(\mathrm{M}_{\mathrm{CW}}+\mathrm{M}_{\mathrm{r}}\right) \cdot 1.3+\mathrm{M}_{\mathrm{sdl}} \cdot 2.0+\left(\mathrm{M}_{\mathrm{t}} \cdot 1.3\right) \cdot 1.8 \\
& \mathrm{M}_{\mathrm{SU}}=466.7 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Depth of section:

$$
\mathrm{h}_{\mathrm{cs}}:=\mathrm{h}_{\mathrm{cs} 1} \quad \mathrm{~h}_{\mathrm{CS}}=413 \mathrm{~mm}
$$

Effective depth of slab:

$$
\mathrm{d}_{\mathrm{e}}:=\left(\mathrm{h}_{\mathrm{cs}}-90 \mathrm{~mm}\right) \quad \mathrm{d}_{\mathrm{e}}=323 \mathrm{~mm}
$$

Effective width of coping slab at support:

$$
\mathrm{b}_{\mathrm{ew}}=1198 \mathrm{~mm}
$$

Strength reduction factor for flexure: $\quad \Phi=0.8$
Determine area of reinforcement, A_{f}, in the coping to resist flexure
(ref AASHTO LFRD Article 5.7.3.2.3 - see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{SU}}}{\Phi \cdot \mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~d}_{\mathrm{e}}^{2} \cdot \mathrm{f}_{\mathrm{y}}} \mathrm{R}=0.0119 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{C}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.013294 \\
\mathrm{~A}_{\mathrm{f}}:=\rho \cdot \mathrm{d}_{\mathrm{e}} \cdot \mathrm{~b} & \mathrm{~b}=1400 \mathrm{~mm} \\
\mathrm{~A}_{\mathrm{f}}=6017.5 \mathrm{~mm}^{2} &
\end{array}
$$

Using $32 \mathrm{~mm} \phi$ bars gives total number of bars to be distributed across the coping:

$$
\mathrm{n}_{\mathrm{bf}}:=\frac{\mathrm{A}_{\mathrm{f}}}{804 \cdot \mathrm{~mm}^{2}} \quad \mathrm{n}_{\mathrm{bf}}=7.5
$$

Provide 10 No $32 \mathrm{~mm} \phi$ bars

$$
\mathrm{n}_{\text {bars }}:=10 \quad \mathrm{~A}_{\mathrm{f}}:=\mathrm{n}_{\text {bars }} \cdot 804 \cdot \mathrm{~mm}^{2} \quad \quad \mathrm{~A}_{\mathrm{f}}=8040 \mathrm{~mm}^{2}
$$

Calculate the stress block factor, β_{1} :

$$
\begin{aligned}
& \beta_{1}:=\left\lvert\, \begin{array}{l}
\beta_{1} \leftarrow 0.85 \\
\beta_{1} \leftarrow \beta_{1}-0.05 \cdot \frac{\mathrm{f}_{\mathrm{c}}-28 \mathrm{MPa}}{7 . \mathrm{MPa}} \text { if } \mathrm{f}_{\mathrm{c}}>28 \mathrm{MPa} \\
0.65 \text { if } \beta_{1}<0.65
\end{array}\right. \\
& \beta_{1}=0.836
\end{aligned}
$$

For rectangular sections, the depth of concrete in compression, c , is given by:

$$
\mathrm{c}:=\frac{\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \beta_{1} \cdot \mathrm{~b}} \quad \mathrm{c}=105 \mathrm{~mm}
$$

Check that the required amount of reinforcement does not exceed the maximum allowed by the code:

$$
\begin{aligned}
& \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}}=0.33 \\
& \text { Max }_{\text {Limit }}:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}} \leq 0.42 \\
\text { "EXCEEDED" } & \text { otherwise }
\end{array} \quad\right. \text { Max }_{\text {Limit }}=\text { "OK" }
\end{aligned}
$$

Calculate the modulus of rupture, f_{r}, of the concrete:

$$
\mathrm{f}_{\mathrm{r}}:=0.63 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \quad \mathrm{f}_{\mathrm{r}}=3.451 \mathrm{MPa}
$$

Section modulus for the extreme fiber of the section, assuming rectangular section of width b :

$$
\mathrm{S}_{\mathrm{c}}:=\frac{\mathrm{b} \cdot \mathrm{~h}_{\mathrm{cs}}^{2}}{6} \quad \mathrm{~S}_{\mathrm{C}}=0.04 \mathrm{~m}^{3}
$$

The cracking moment, M_{cr}, is the given by:

$$
\mathrm{M}_{\mathrm{Cr}}:=\mathrm{S}_{\mathrm{C}} \cdot \mathrm{f}_{\mathrm{r}} \quad \mathrm{M}_{\mathrm{Cr}}=138 \mathrm{kN} \cdot \mathrm{~m}
$$

Check that the reinforcement can develop a resistance moment Mr at least equal to the lesser of:

- 1.2 times the cracking momen Mcr
- 1.33 times the factored moment required by the applicable strength load combination

$$
\text { Minimum }_{\text {Steel }}:=\left\{\begin{array}{l}
\mathrm{M}_{\mathrm{r}} \leftarrow \frac{\mathrm{M}_{\mathrm{SU}}}{\Phi} \\
\mathrm{M} \leftarrow \min \left(1.2 \mathrm{M}_{\mathrm{Cr}}, 1.33 \cdot \mathrm{M}_{\mathrm{EU}}\right) \\
\text { "OK" if } \mathrm{M}_{\mathrm{r}} \geq \mathrm{M} \\
\text { "NOT SATISFIED" otherwise }
\end{array} \quad \text { Minimum }_{\text {Steel }}=\right.\text { "OK" }
$$

CHECK STRESSES AT SLS (AASHTO LRFD Article 5.7.3.4)

The depth of concrete in compression, C , at the serviceability limit state, assuming one level of rebar, is given by:

$$
C:=\frac{\sqrt{A_{f}^{2}+\frac{2 \cdot b \cdot A_{f} \cdot d_{e}}{\alpha}}-A_{f}}{b} \cdot \alpha \quad C=128 \mathrm{~mm}
$$

Calculate lever arm, z:

$$
\mathrm{z}:=\mathrm{d}_{\mathrm{e}}-\frac{\mathrm{C}}{3} \quad \mathrm{z}=281 \mathrm{~mm}
$$

Total bending moment in slab at face of support - Service Limit State

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{SS}}:=\left(\mathrm{M}_{\mathrm{CW}}+\mathrm{M}_{\mathrm{r}}\right) \cdot 1.0+\mathrm{M}_{\mathrm{Sdl}} \cdot 1.0+\left(\mathrm{M}_{\mathrm{t}} \cdot 1.3\right) \cdot 1.0 \\
& \mathrm{M}_{\mathrm{SS}}=270.6 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Calculate the maximum stress in the reinforcement at SLS:

$$
\mathrm{f}_{\mathrm{s}}:=\frac{\mathrm{M}_{\mathrm{SS}}}{\mathrm{~A}_{\mathrm{f}} \mathrm{z}} \quad \mathrm{f}_{\mathrm{s}}=120 \mathrm{MPa}
$$

Check that stress in reinforcement does not exceed limit, $f_{\text {sa }}$:

Crack width parameter
Depth of concrete from extreme tensile fiber to center of bar

Area of concrete with same centoid per bar

$$
\mathrm{f}_{\mathrm{sa}}:=\left\lvert\, \begin{aligned}
& \mathrm{f}_{\mathrm{sa}} \leftarrow \frac{\mathrm{Z}}{\frac{1}{\frac{1}{3}}} \\
& \left(\mathrm{~d}_{\mathrm{c}} \cdot \mathrm{~A}\right)^{3} \\
& \mathrm{f}_{\mathrm{sa}} \quad \text { if } \mathrm{f}_{\mathrm{sa}}<170 \mathrm{MPa} \\
& 170 \cdot \mathrm{MPa} \text { otherwise }
\end{aligned}\right.
$$

$$
\text { Stress }_{\text {Check }}:=\left\lvert\, \begin{aligned}
& \text { "OK" if } \mathrm{f}_{\mathrm{s}} \leq \mathrm{f}_{\text {sa }} \\
& \text { "NOT SATISFIED" otherwise }
\end{aligned} \quad\right. \text { Stress }^{\text {Check }}=\text { "OK" }
$$

Calculate forces in section to check calculation result:
Total force in rebar Stress in concrete

$$
\mathrm{T}_{\mathrm{S}}:=\left(\mathrm{A}_{\mathrm{f}}\right) \cdot \mathrm{f}_{\mathrm{S}} \quad \mathrm{~T}_{\mathrm{S}}=964 \mathrm{kN} \quad \mathrm{f}_{\mathrm{SC}}:=\mathrm{f}_{\mathrm{s}} \cdot \frac{\mathrm{C}}{\mathrm{~d}_{\mathrm{e}}-\mathrm{C}} \cdot \frac{1}{\alpha} \quad \mathrm{f}_{\mathrm{SC}}=10.8 \mathrm{MPa}
$$

Force in concrete

$$
\mathrm{C}_{\mathrm{C}}:=\mathrm{f}_{\mathrm{sc}} \cdot \frac{\mathrm{~b} \cdot \mathrm{C}}{2} \quad \mathrm{C}_{\mathrm{C}}=964 \mathrm{kN}
$$

Design for Shear (AASHTO LRFD Section 5.8)

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{cs}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{cs}} \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=298 \mathrm{~mm}
\end{aligned}
$$

Shear in coping slab at critical section due to loads applied on coping body

Coping cantilever self weight	$\mathrm{V}_{\mathrm{CW}}:=\mathrm{w}_{\mathrm{CW}} \cdot\left(\mathrm{h} 4-\mathrm{d}_{\mathrm{v}}\right)$	$\mathrm{V}_{\mathrm{CW}}=22.4 \mathrm{kN}$
Railing weight	$\mathrm{V}_{\mathrm{r}}:=\mathrm{W}_{\mathrm{r}}$	$\mathrm{V}_{\mathrm{r}}=7.4 \mathrm{kN}$
Superimposed dead load on coping	$\mathrm{V}_{\mathrm{sdl}}:=\mathrm{w}_{\mathrm{sdl}} \cdot\left(\mathrm{h} 4-600 \mathrm{~mm}-\mathrm{d}_{\mathrm{v}}\right)$	$\mathrm{V}_{\mathrm{sdl}}=5.0 \mathrm{kN}$
T live load on coping	$\mathrm{V}_{\mathrm{t}}:=112.5 \cdot \mathrm{kN}$	$\mathrm{V}_{\mathrm{t}}=112.5 \mathrm{kN}$

Total shear force in coping slab at face of support - Ultimate Limit State

Shear from loads on coping body

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{SU}}:=\left(\mathrm{V}_{\mathrm{CW}}+\mathrm{V}_{\mathrm{r}}\right) \cdot 1.3+\mathrm{V}_{\mathrm{sdl}} \cdot 2.0+\left(\mathrm{V}_{\mathrm{t}} \cdot 1.4\right) \cdot 1.8 \\
& \mathrm{~V}_{\mathrm{SU}}=332.2 \mathrm{kN}
\end{aligned}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{V}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=379 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{S}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{S}}:=\left\lvert\, \begin{aligned}
& \mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{SU}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{S}}=96 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
& 0 \mathrm{kN} \text { otherwise }
\end{aligned}\right.
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=3124.8 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array} \quad\right. \text { CHECK }=\text { "OK" }
\end{aligned}
$$

Provide 13mm ϕ shear links with 4 legs across the section

$$
\begin{aligned}
& \phi_{\text {link }}:=13 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{V}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{V}}=531 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\{\begin{array}{l}
\mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
\mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
\mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
\mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{array} \quad \mathrm{s}_{\mathrm{t}}=644 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{V}_{\mathrm{SU}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=1.139 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:

```
\(\mathrm{s}_{\text {max }}:=\left\lvert\, \begin{array}{ll}\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{C}} \\ \min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) & \text { otherwise }\end{array}\right.\)
\(\mathrm{s}_{\text {max }}=238 \mathrm{~mm}\)
```

Determine maximum required spacing of transverse reinforcement:
$s_{t}:=\left\lvert\, \begin{aligned} & s_{\text {max }} \text { if } s_{\text {max }} \leq s_{t} \\ & s_{t} \text { otherwise }\end{aligned}\right.$
$\mathrm{s}_{\mathrm{t}}=238 \mathrm{~mm}$

Provide 13mm ϕ links at 150c/c

Beam Ledge Design AASHTO LRFD Article 5.13.2.5

General, Article 5.13.2.5.1

As illustrated below, beam ledges shall resist:

- Flexure, shear and horizontal forces at the loaction of Crack 1;
- Tension force in the supporting element at the location of Crack 2;
- Punching shear at points of loading at the location of Crack 3; and
- Bearing forces at the location of Crack 4

Design for Shear, Article 5.13.2.5.2

Design of beam ledges for shear shall be in accordance with the requirements of shear friction in Article 5.8.4.

The width of the concrete face assumed to participate shall not exceed the width ilustrated below:

Edge distance of bearing

$$
\mathrm{C}:=\mathrm{h} 2
$$

$\mathrm{C}=800 \mathrm{~mm}$
Depth of beam ledge

$$
\mathrm{h}:=\mathrm{v} 3
$$

$$
\mathrm{h}=1200 \mathrm{~mm}
$$

Effective depth

$$
\mathrm{d}_{\mathrm{e}}:=\mathrm{h}-65 \mathrm{~mm}
$$

$$
\mathrm{d}_{\mathrm{e}}=1135 \mathrm{~mm}
$$

Width of the interface

$$
\mathrm{b}_{\mathrm{v}}:=2 \cdot \mathrm{C}
$$

$$
\mathrm{b}_{\mathrm{v}}=1600 \mathrm{~mm}
$$

Area of concrete
resisting shear transfer

$$
\mathrm{A}_{\mathrm{cv}}:=\mathrm{b}_{\mathrm{v}} \cdot \mathrm{~d}_{\mathrm{e}} \quad \mathrm{~A}_{\mathrm{cv}}=1.816 \mathrm{~m}^{2}
$$

Loads on Ledge

Ultimate shear force in coping from max bearing reactions at face of column:
PC deck
$\mathrm{V}_{\mathrm{upc}}:=\mathrm{V}_{\mathrm{upc}}$
$\mathrm{V}_{\mathrm{upc}}=3231.4 \mathrm{kN}$
reaction
$\mathrm{V}_{\mathrm{ust}}:=\mathrm{V} 2_{\text {ust }}$
$\mathrm{V}_{\text {ust }}=3505.5 \mathrm{kN}$
Steel deck
reaction

Maximum design shear
force
$\mathrm{V}_{\mathrm{u}}:=\max \left(\mathrm{V}_{\mathrm{upc}}, \mathrm{V}_{\mathrm{ust}}\right) \quad \mathrm{V}_{\mathrm{u}}=3506 \mathrm{kN}$

Calculate limiting nominal shear strength

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=\left\{\begin{array}{l}
0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}} \text { if } 0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}}<5.5 \cdot \frac{\mathrm{~A}_{\mathrm{CV}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \\
5.5 \cdot \frac{\mathrm{~A}_{\mathrm{CV}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \text { otherwise }
\end{array}\right. \\
& \mathrm{V}_{\text {nlimit }}=9988 \mathrm{kN}
\end{aligned}
$$

Calculate required nominal shear strength and check beam ledge depth

$$
\begin{gathered}
\mathrm{V}_{\mathrm{n}}:=\frac{\mathrm{V}_{\mathrm{u}}}{\Phi_{\mathrm{s}}} \quad \mathrm{~V}_{\mathrm{n}}=5007.9 \mathrm{kN} \\
\text { Beam }_{\text {Ledge }}:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{n}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "INADEQUATE" otherwise }
\end{array} \quad\right. \text { Beam }{ }_{\text {Ledge }}=\text { "OK" }
\end{gathered}
$$

Calculate shear friction reinforcement, $\mathbf{A}_{\text {vf }}$

Cohesion and friction values for monolithically cast concrete

$$
\begin{aligned}
\mathrm{c} & :=1.0 \mathrm{MPa} \\
\lambda & :=1.00 \\
\mu & :=1.4 \cdot \lambda
\end{aligned}
$$

Shear reinforcement is then given by:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{vf}}:=\left\{\begin{array}{l}
\mathrm{A}_{\mathrm{vf} 1} \leftarrow \frac{\mathrm{v}_{\mathrm{n}}-\mathrm{c} \cdot \mathrm{~A}_{\mathrm{cv}}}{\mathrm{f}_{\mathrm{y}} \cdot \mu} \\
\mathrm{~A}_{\mathrm{vf} 2} \leftarrow 0.35 \cdot \frac{\mathrm{~b}_{\mathrm{v}}}{\mathrm{~mm}} \cdot \frac{\mathrm{MPa}}{\mathrm{f}_{\mathrm{y}}} \cdot \mathrm{~mm}^{2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 1} \text { if } \mathrm{A}_{\mathrm{vf} 1}>\mathrm{A}_{\mathrm{vf} 2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 2} \text { if } \mathrm{A}_{\mathrm{vf} 2}>\mathrm{A}_{\mathrm{vf} 1} \\
0 \text { if } \frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{cv}}}<0.7 \mathrm{MPa} \\
\mathrm{~A}_{\mathrm{cv}}
\end{array}=2.758 \mathrm{MPa}\right. \\
& \mathrm{A}_{\mathrm{vf}}=5845.9 \mathrm{~mm}^{2}
\end{aligned}
$$

Design for Flexure and Horizontal Force, Article 5.13.2.5.3

The area of total primary tension reinforcement shall satisfy the requirements of Article 5.13.2.4.2.
The primary tension reinforcement shall be spaced uniformly with the region 2C.
The section at the face of the support shall be designed to resist simultaneously a factored shear force V_{u}, a factored moment M_{u} and a concurrent factored horizontal tensile force N_{uc}.
$N_{u c}$ shall not be taken to be less than $0.2 \mathrm{~V}_{\mathrm{u}}$ and shall be regarded as a live load, even where it results from creep, shrinkage or temperature change.

These provisions apply to beam ledges:

- with a shear span-to-depth ratio $\mathrm{av} / \mathrm{d}_{\mathrm{e}}$ not greater than unity
- subject to a horizontal tensile force Nuc not larger than Vu

The depth at outside edge of bearing shall not be less than 0.5 de , where d_{e} is effective depth.

Horizontal tensile force	$\mathrm{N}_{\mathrm{uc}}:=0.2 \cdot \mathrm{~V}_{\mathrm{u}}$	$\mathrm{N}_{\mathrm{uc}}=701.1 \mathrm{kN}$
Shear span	$\mathrm{a}_{\mathrm{v}}:=\frac{\mathrm{h} 5}{2} \quad \mathrm{a}_{\mathrm{v}}=488 \mathrm{~mm}$	
Design Moment	$\mathrm{M}_{\mathrm{u}}:=\mathrm{V}_{\mathrm{u}} \cdot \mathrm{a}_{\mathrm{v}}+\mathrm{N}_{\mathrm{uc}} \cdot\left(\mathrm{h}-\mathrm{d}_{\mathrm{e}}\right)$	$\mathrm{M}_{\mathrm{u}}=1754.5 \mathrm{kN} \cdot \mathrm{m}$

Design the primary tensile force reinforcement A_{s} :
Strength reduction factor for bending $\quad \Phi=0.8$
Width of section $\quad b:=2 \cdot C \quad b=1600 \mathrm{~mm}$
Determine area of primary reinforcement, A_{s}, to resist flexure (ref AASHTO LFRD Article 5.7.3.2.3 - see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{u}}}{\Phi \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}^{2} \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{R}=0.0027 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.002788 \\
\mathrm{~A}_{\mathrm{s}}:=\rho \cdot \mathrm{b} \cdot \mathrm{~d}_{\mathrm{e}} & \mathrm{~A}_{\mathrm{s}}=5062.5 \mathrm{~mm}^{2}
\end{array}
$$

Design the tensile force reinforcement A_{n} :

$$
\mathrm{A}_{\mathrm{n}}:=\frac{\mathrm{N}_{\mathrm{uc}}}{\Phi \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{~A}_{\mathrm{n}}=2247 \mathrm{~mm}^{2}
$$

Check that the Area of Primary Reinforcement, A_{s}, satisfies code requirements:

$$
\begin{aligned}
& A_{s}:=\left\lvert\, \begin{array}{l}
A_{s} \text { if } A_{s}>\frac{2}{3} \cdot A_{v f}+A_{n} \\
\frac{2}{3} \cdot A_{v f}+A_{n} \text { otherwise }
\end{array}\right. \\
& A_{s}:= \begin{cases}0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \text { if } A_{s}<0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \\
A_{S} \text { otherwise } & b=1.6 \mathrm{~m}\end{cases} \\
& A_{S}=6144 \mathrm{~mm}^{2} \\
& \mathrm{~A}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s}}}{\mathrm{~b}} \quad \mathrm{~A}_{\mathrm{s}}=3.84 \frac{\mathrm{~mm}^{2}}{\mathrm{~mm}} \\
& \frac{A_{s}}{201 \mathrm{~mm}^{2}}=30.569
\end{aligned}
$$

check area of steel required

$$
\rho_{\text {REQUIRED }}:=\frac{\mathrm{A}_{\mathrm{s}} \cdot \mathrm{~m}}{\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}} \cdot 100 \quad \rho_{\text {REQUIRED }}=0.21 \quad \text { PERCENT }
$$

Determine area of closed stirrups or ties, Ah:

$$
A_{h}:=0.5 \cdot\left(A_{s} \cdot b-A_{n}\right) \quad A_{h}=1949 m^{2}
$$

This reinforcement shall be uniformly distributed within two-thirds of the effective depth of the beam ledge adjacent to As.

Anchorage of primary reinforcement:

At the front face of the beam ledge, the primary tension reinforcement, As, shall be anchored by one of the following:
a) a structural weld to a transverse bar of at least equal size; weld to be designed to develop specified yield strength fy of As bars
b) bending primary tension bars As back to form a horizontal loop
c) some other means of positive anchorage

The bearing area of load on the bracket or corbel shall not project beyond interior face of transverse anchor bar (if one is provided).

Design for Punching Shear, Article 5.13.2.5.4

The truncated pyramids assumed as failure surfaces for punching shear, as illustrated below, shall not overlap.

Applied ultimate reaction

$$
\mathrm{V}_{\mathrm{u}}=3506 \mathrm{kN}
$$

Width of bearing $\quad \mathrm{L}=620 \mathrm{~mm}$
Length of bearing $\quad \mathrm{W}=800 \mathrm{~mm}$
Effective depth

$$
\mathrm{d}_{\mathrm{e}}=1135 \mathrm{~mm}
$$

Bearing pad spacing

$$
\mathrm{S}:=\min \left(\mathrm{h} 1_{\mathrm{C}}, \mathrm{~h} 1_{\mathrm{S}}\right) \cdot 2 \quad \mathrm{~S}=6150 \mathrm{~mm}
$$

Nominal punching shear resistance, V_{n}, shall be taken as:

- At interior pads, or exterior pads, where the end distance C is greater than half the pad spacing S/2:

$$
\mathrm{V}_{\mathrm{n} 1}:=0.328 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot\left(\mathrm{~W}+2 \cdot \mathrm{~L}+2 \cdot \mathrm{~d}_{\mathrm{e}}\right) \cdot \mathrm{d}_{\mathrm{e}} \quad \quad \mathrm{~V}_{\mathrm{n} 1}=8788 \mathrm{kN}
$$

- At exterior pads where the end distance C is less than half the pad spacing $\mathrm{S} / 2$ and $\mathrm{C}-0.5 \mathrm{~W}$ is less than d_{e} :

$$
\mathrm{V}_{\mathrm{n} 2}:=0.328 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot\left(\mathrm{~W}+\mathrm{L}+\mathrm{d}_{\mathrm{e}}\right) \cdot \mathrm{d}_{\mathrm{e}} \quad \mathrm{~V}_{\mathrm{n} 2}=5210 \mathrm{kN}
$$

- At exterior pads where the end distance C is less than half the pad spacing $\mathrm{S} / 2$ but $\mathrm{C}-0.5 \mathrm{~W}$ is greater than d_{e} :

$$
\mathrm{V}_{\mathrm{n} 3}:=0.328 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot\left(0.5 \mathrm{~W}+\mathrm{L}+\mathrm{d}_{\mathrm{e}}+\mathrm{C}\right) \cdot \mathrm{d}_{\mathrm{e}} \quad \mathrm{~V}_{\mathrm{n} 3}=6025 \mathrm{kN}
$$

Determine the nominal punching resistance:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}}:=\left\lvert\, \begin{array}{l}
\mathrm{v}_{\mathrm{n} 1} \text { if } \mathrm{C} \geq \frac{\mathrm{s}}{2} \\
\mathrm{~V}_{\mathrm{n} 2} \text { if }\left(\mathrm{C}<\frac{\mathrm{S}}{2}\right) \cdot\left[(\mathrm{C}-0.5 \cdot \mathrm{~W}) \leq \mathrm{d}_{\mathrm{e}}\right] \\
\mathrm{V}_{\mathrm{n} 3} \text { otherwise }
\end{array}\right. \\
& \mathrm{V}_{\mathrm{n}}=5210 \mathrm{kN}
\end{aligned}
$$

Check that the nominal punching resistance is adequate:

$$
\text { PunchingShear }_{\text {CHECK }}:=\left\lvert\, \begin{aligned}
& \text { "SATISFIED" if } \mathrm{V}_{\mathrm{n}} \cdot \Phi_{\mathrm{s}} \geq \mathrm{V}_{\mathrm{u}} \\
& \text { "FAIL" otherwise }
\end{aligned}\right.
$$

[^0]
Design for Hanger Reinforcement, Article 5.13.2.5.5

Hanger reinforcement specified herein shall be provided in addition to the lesser shear reinforcement required on either side of the beam reaction being supported.

The distance from the top of the ledge to the compression reinforcement as illustrated above is d_{f}.

$$
\mathrm{b}_{\mathrm{f}}=3350 \mathrm{~mm} \quad \mathrm{~d}_{\mathrm{f}}:=\mathrm{d}_{\mathrm{e}}-40 \mathrm{~mm} \quad \mathrm{~d}_{\mathrm{f}}=1095 \mathrm{~mm}
$$

The nominal shear resistance of ledges of inverted T-beams shall be the lessor of the following:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{N} 1}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right):=\frac{\mathrm{A}_{\mathrm{hr}} \cdot \mathrm{f}_{\mathrm{y}}}{\mathrm{~s}} \cdot \mathrm{~S} \tag{Equation1}\\
& \mathrm{~V}_{\mathrm{N} 2}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right):=0.165 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}_{\mathrm{f}} \cdot \mathrm{~d}_{\mathrm{f}}+\frac{\mathrm{A}_{\mathrm{hr}} \cdot \mathrm{f}_{\mathrm{y}}}{\mathrm{~s}} \cdot\left(\mathrm{~W}+2 \mathrm{~d}_{\mathrm{f}}\right)
\end{align*}
$$

(Equation 2)

In the case of the applied design, the edge distance between the exterior bearing pad and the end of the shelf is less than d_{f}. Equation 2 above is therefore modified as shown below:

$$
\mathrm{V}_{\mathrm{N} 2}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right):=0.165 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}_{\mathrm{f}} \cdot \mathrm{~d}_{\mathrm{f}}+\frac{\mathrm{A}_{\mathrm{hr}} \cdot \mathrm{f}_{\mathrm{y}}}{\mathrm{~s}} \cdot(2 \cdot \mathrm{C})
$$

(Equation 3)

Try $25 \mathrm{~mm} \phi$ rebar at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Area of one leg of hanger reinforcement $A_{h r}$ and spacing s are then:

$$
\mathrm{A}_{\mathrm{hr}}:=\frac{\pi \cdot(25 \mathrm{~mm})^{2}}{4} \quad \mathrm{~s}:=100 \mathrm{~mm}
$$

Total number of bars required:

$$
\mathrm{n}_{\text {bars }}:=\frac{2 \cdot \mathrm{C}}{\mathrm{~s}}
$$

$$
\mathrm{n}_{\text {bars }}=16.0
$$

This gives:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{N} 1}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right)=11774 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{N} 2}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right)=6378 \mathrm{kN}
\end{aligned}
$$

The minimum nominal shear resistance is then given by:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}}:=\min \left(\mathrm{V}_{\mathrm{N} 1}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right), \mathrm{V}_{\mathrm{N} 2}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right)\right) \\
& \mathrm{V}_{\mathrm{n}}=6378 \mathrm{kN}
\end{aligned}
$$

Max shear force from the bearings:

$$
\mathrm{V}_{\mathrm{u}}=3506 \mathrm{kN}
$$

Check that the nominal shear resistance is adequate

$$
\begin{aligned}
& \text { Hanger }_{\text {CHECK }}:=\left\lvert\, \begin{array}{l}
\text { "SATISFIED" if } \mathrm{V}_{\mathrm{n}} \cdot \Phi_{\mathrm{s}} \geq \mathrm{V}_{\mathrm{u}} \\
\text { "FAIL" otherwise }
\end{array}\right. \\
& \text { Hanger }_{\text {CHECK }}=\text { "SATISFIED" }
\end{aligned}
$$

Check Torsional Requirements (AASHTO LRFD Section 5.8)

Check the torsional moment requirements of the beam ledge assuming the bearings (on the steel deck side) are fully loaded and the opposite bearings (on the PC deck side) are loaded only with permanent load:

PC Deck Dead Load Reaction - max at the bearing

$$
\mathrm{V} 2_{\mathrm{pc}}=672 \mathrm{kN}
$$

Superimposed Dead Load PC Deck Reaction - max at the bearing

$$
\mathrm{V} 2_{\mathrm{sdl}_{2}}=245 \mathrm{kN}
$$

Ultimate limit state reaction in bearing under permanent load:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{upc}}:=\mathrm{V}_{\mathrm{pc}} \cdot 1.3+\mathrm{V}_{\mathrm{sdl}_{2}} \cdot 2.0 \\
& \mathrm{~V}_{\mathrm{upc}}=1362 \mathrm{kN}
\end{aligned}
$$

Calculate torsion in the coping:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{c}}:=\left(\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{upc}}\right)\left(\frac{\mathrm{b}_{\mathrm{f}}}{2}-\frac{\mathrm{h} 5}{2}\right) \\
& \mathrm{T}_{\mathrm{C}}=2545 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Associated shear force:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TU}}:=\mathrm{V}_{\mathrm{CU}}+\mathrm{V}_{\mathrm{ust}}+\mathrm{V}_{\mathrm{upc}} \\
& \mathrm{~V}_{\mathrm{TU}}=5221 \mathrm{kN}
\end{aligned}
$$

The coping will resist torsion moment with two torson blocks as illustrated below. The torsion moment will be distributed into each torsion block in accordance with the relative area of each block.

Dimensions of the torsion blocks are as follows:
Torsion block 1

$$
\mathrm{h} 1=2732 \mathrm{~mm}
$$

Torsion block 1

$$
\begin{aligned}
\mathrm{h} 1 & :=\mathrm{v} 1 \\
\mathrm{~b} 1 & :=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2 \\
\mathrm{~h} 2 & :=\frac{2}{3} \cdot \mathrm{v} 3 \\
\mathrm{~b} 2 & :=\mathrm{b}_{\mathrm{f}}
\end{aligned}
$$

$$
\mathrm{b} 1=1400 \mathrm{~mm}
$$

$$
\mathrm{b} 2=3350 \mathrm{~mm}
$$

Area enclosed with centerline of transverse rebar

Torsion block 1
$A_{\text {oh1 }}:=(b 1-40 \mathrm{~mm} \cdot 2-19 \mathrm{~mm}) \cdot(\mathrm{h} 1-40 \mathrm{~mm} \cdot 2-19 \mathrm{~mm})$
Torsion block 2
$A_{\mathrm{oh} 2}:=(\mathrm{b} 2-40 \mathrm{~mm} \cdot 2-16 \mathrm{~mm}) \cdot(\mathrm{h} 2-40 \mathrm{~mm} \cdot 2-16 \mathrm{~mm})$
Area enclosed by shear flow path
Torsion block 1

$$
\mathrm{A}_{\mathrm{o} 1}:=0.85 \mathrm{~A}_{\mathrm{oh} 1}
$$

Torsion block 2
$\mathrm{A}_{\mathrm{o} 2}:=0.85 \mathrm{~A}_{\mathrm{oh} 2}$
Calculate torsion moments carried by each block:
Torsion block 1
$\mathrm{T}_{\mathrm{C} 1}:=\frac{\mathrm{A}_{\mathrm{o} 1}}{\mathrm{~A}_{\mathrm{o} 1}+\mathrm{A}_{\mathrm{o} 2}} \cdot \mathrm{~T}_{\mathrm{C}}$
$\mathrm{T}_{\mathrm{C} 1}=1525 \mathrm{kN} \cdot \mathrm{m}$
Torsion block $2 \quad \mathrm{~T}_{\mathrm{c} 2}:=\frac{\mathrm{A}_{\mathrm{o} 2}}{\mathrm{~A}_{\mathrm{o} 1}+\mathrm{A}_{\mathrm{o} 2}} \cdot \mathrm{~T}_{\mathrm{c}}$
$\mathrm{T}_{\mathrm{c} 2}=1020 \mathrm{kN} \cdot \mathrm{m}$

Transverse Reinforcement for Shear and Torsion - Torsion Block 1

Depth of section:

$$
\mathrm{h}_{\mathrm{s}}:=\mathrm{v} 1
$$

Effective depth of coping:

$$
\mathrm{d}_{\mathrm{e}}:=\left(\mathrm{h}_{\mathrm{s}}-150 \mathrm{~mm}\right) \quad \mathrm{d}_{\mathrm{e}}=2582 \mathrm{~mm}
$$

Width of coping:

$$
\mathrm{b}:=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2 \quad \mathrm{~b}=1400 \mathrm{~mm}
$$

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{S}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{s}} \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=2323.8 \mathrm{~mm}
\end{aligned}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=2958 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{S}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{S}}:=\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{TU}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \\
\mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
0 \mathrm{kN} \text { otherwise }
\end{array}\right.
$$

$$
\mathrm{V}_{\mathrm{S}}=4500 \mathrm{kN}
$$

Provide $19 \mathrm{~mm} \phi$ shear links wth 4 legs across the section

$$
\begin{aligned}
& \phi_{\text {link }}:=19 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\pi \frac{\phi_{\mathrm{link}}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{v}}=1134 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t} 1}:=\left\{\begin{array}{l}
\mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
\mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
\mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
\mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{array} \quad \mathrm{s}_{\mathrm{t} 1}=228 \mathrm{~mm}\right.
$$

For reinforced concrete the angle of inclination of diagonal stresses, θ, can be assumed to be 45 degrees:

$$
\theta:=45 \mathrm{deg}
$$

Determine required transverse reinforcement for torsion:
$\begin{aligned} & \text { Area of one leg of transverse } \\ & \text { torsion reinforcement }\end{aligned} \quad A_{t}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \quad A_{t}=284 \mathrm{~mm}^{2} \quad \phi_{\text {link }}=19 \mathrm{~mm}$
Required spacing of torsional reinforcement

$$
\mathrm{s}_{\mathrm{t} 2}:=\frac{2 \cdot \mathrm{~A}_{\mathrm{o} 1} \cdot \mathrm{~A}_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \cot (\theta)}{\mathrm{T}_{\mathrm{c} 1}} \cdot \Phi_{\mathrm{s}} \quad \mathrm{~s}_{\mathrm{t} 2}=296 \mathrm{~mm}
$$

Calculate combined spacing of shear and torsion transverse reinforcement:

$$
\left(\frac{1}{s_{\mathrm{t} 1}}+\frac{1}{\mathrm{~s}_{\mathrm{t} 2}}\right)^{-1}=128.833 \mathrm{~mm}
$$

Provide 19 mm dia transverse reinforcement at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in main body of coping

Transverse Reinforcement for Shear and Torsion - Torsion Block 2

Provide $16 \mathrm{~mm} \phi$ shear links wth 2 legs across the section

$$
\begin{aligned}
& \phi_{\text {link }}:=16 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 2 \quad \mathrm{~A}_{\mathrm{v}}=402 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required transverse reinforcement for torsion:

Required spacing of torsional reinforcement

$$
\mathrm{s}_{\mathrm{t} 2}:=\frac{2 \cdot \mathrm{~A}_{\mathrm{o} 2} \cdot \mathrm{~A}_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \cot (\theta)}{\mathrm{T}_{\mathrm{c} 2}} \cdot \Phi_{\mathrm{s}} \quad \mathrm{~s}_{\mathrm{t} 2}=210 \mathrm{~mm}
$$

Provide 16mm dia transverse reinforcement at 200 mm c/c in beam ledges

Design for Loads from Deck Jacking

AASHTO LRFD requires that the beam ledge is designed to resist deck jacking forces.
The deck jacking loads shall not be less than 1.3 times the permanent load reaction at the bearing adjacent to the point of jacking.

PC Deck Dead Load Reaction - max at the bearing

$$
\mathrm{Vdl}_{\mathrm{pc}}:=\left|\frac{\mathrm{V} 2_{\mathrm{dl}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{dl}_{2}}\right|}{\mathrm{h}_{1} \cdot 2} \quad \mathrm{Vdl}_{\mathrm{pc}}=671.5 \mathrm{kN}
$$

Steel Deck Dead Load Reaction - max at the bearing

$$
\mathrm{Vdl}_{\mathrm{st}}:=\left|\frac{\mathrm{V2}_{\mathrm{dl}_{3}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{dl}_{3} \mid}\right|}{\mathrm{h}_{\mathrm{s}} \cdot 2} \quad \mathrm{Vdl}_{\mathrm{st}}=752.9 \mathrm{kN}
$$

PC Deck Superimposed Dead Load Reaction - max at the bearing

$$
\mathrm{Vsdl}_{\mathrm{pc}}:=\left|\frac{\mathrm{V}_{\mathrm{sdl}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{sdl}_{2}}\right|}{\mathrm{h}_{\mathrm{c}} \cdot 2} \quad \mathrm{Vsdl}_{\mathrm{pc}}=122.3 \mathrm{kN}
$$

Steel Deck Superimposed Dead Load Reaction - max at the bearing

$$
\mathrm{Vsdl}_{\mathrm{st}}:=\left|\frac{\mathrm{V}_{\mathrm{sdl}_{3}}}{2}\right|+\frac{\mid \mathrm{T}_{\mathrm{sdl}_{3} \mid}}{\mathrm{h}_{\mathrm{s}} \cdot 2} \quad \mathrm{Vsdl}_{\mathrm{st}}=145.0 \mathrm{kN}
$$

Maximum design load reaction due to deck jacking:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{Jack}}:=1.3 \max \left(\mathrm{Vdl}_{\mathrm{pc}}+\mathrm{Vsdl}_{\mathrm{pc}}, \mathrm{Vdl}_{\mathrm{st}}+\mathrm{Vsdl}_{\mathrm{st}}\right) \\
& \mathrm{V}_{\mathrm{Jack}}=1167 \mathrm{kN}
\end{aligned}
$$

Assuming the worst case for positioning of the jack and ignoring width of loaded area from jack gives:

Horizontal tensile force	$\mathrm{N}_{\mathrm{uc}}:=0.2 \cdot \mathrm{~V}_{\text {Jack }}$	$\mathrm{N}_{\mathrm{uc}}=233.4 \mathrm{kN}$
Shear span	$\mathrm{a}_{\mathrm{v}}:=\mathrm{h} 5$	$\mathrm{a}_{\mathrm{v}}=975 \mathrm{~mm}$
Design Moment	$\mathrm{M}_{\mathrm{u}}:=\mathrm{V}_{\text {Jack }} \cdot \mathrm{a}_{\mathrm{v}}+\mathrm{N}_{\mathrm{uc}} \cdot\left(\mathrm{h}-\mathrm{d}_{\mathrm{e}}\right)$	$\mathrm{M}_{\mathrm{u}}=815.4 \mathrm{kN} \cdot \mathrm{m}$
Loaded width during jacking	$\mathrm{w}:=1000 \mathrm{~mm}$	$\mathrm{w}=1000 \mathrm{~mm}$
Depth of beam ledge	$\mathrm{h}:=\mathrm{v} 3$	$\mathrm{~h}=1200 \mathrm{~mm}$
Effective depth	$\mathrm{d}_{\mathrm{e}}:=\mathrm{h}-65 \mathrm{~mm}$	$\mathrm{~d}_{\mathrm{e}}=1135 \mathrm{~mm}$
Width of the interface	$\mathrm{b}_{\mathrm{v}}:=\mathrm{w}$	$\mathrm{b}_{\mathrm{v}}=1000 \mathrm{~mm}$
Area of concrete	$\mathrm{A}_{\mathrm{cv}}:=\mathrm{b}_{\mathrm{v}} \cdot \mathrm{d}_{\mathrm{e}}$	$\mathrm{A}_{\mathrm{cv}}=1.135 \mathrm{~m}^{2}$

Calculate required nominal shear strength

$$
\mathrm{V}_{\mathrm{n}}:=\frac{\mathrm{V}_{\text {Jack }}}{\Phi_{\mathrm{s}}} \quad \mathrm{~V}_{\mathrm{n}}=1667.5 \mathrm{kN}
$$

Calculate shear friction reinforcement, $\mathbf{A}_{\text {vf }}$

Cohesion and friction values for monolithically cast concrete

$$
\begin{aligned}
\mathrm{c} & :=1.0 \mathrm{MPa} \\
\lambda & :=1.00 \\
\mu & :=1.4 \cdot \lambda
\end{aligned}
$$

Shear reinforcement is then given by:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{vf}}:=\left\{\begin{array}{l}
\mathrm{A}_{\mathrm{vf} 1} \leftarrow \frac{\mathrm{v}_{\mathrm{n}}-\mathrm{c} \cdot \mathrm{~A}_{\mathrm{cv}}}{\mathrm{f}_{\mathrm{y}} \cdot \mu} \\
\mathrm{~A}_{\mathrm{vf} 2} \leftarrow 0.35 \cdot \frac{\mathrm{~b}_{\mathrm{v}}}{\mathrm{~mm}} \cdot \frac{\mathrm{MPa}}{\mathrm{f}_{\mathrm{y}}} \cdot \mathrm{~mm}^{2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 1} \text { if } \mathrm{A}_{\mathrm{vf} 1}>\mathrm{A}_{\mathrm{vf} 2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 2} \text { if } \mathrm{A}_{\mathrm{vf} 2}>\mathrm{A}_{\mathrm{vf} 1} \\
0 \text { if } \frac{V_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{cv}}}<0.7 \mathrm{MPa}
\end{array}\right. \\
& \mathrm{A}_{\mathrm{vf}}=975.2 \mathrm{~mm}^{2}
\end{aligned}
$$

Design the primary tensile force reinforcement A_{s} :

Strength reduction factor for bending $\quad \Phi=0.8$
Width of section

$$
\mathrm{b}:=1000 \mathrm{~mm}
$$

Determine area of primary reinforcement, A_{s}, to resist flexure
(ref AASHTO LFRD Article 5.7.3.2.3 - see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{u}}}{\Phi \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}{ }^{2} \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{R}=0.0020 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{y}}} \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \mathrm{M}=0.0654 \\
\mathrm{~A}_{\mathrm{s}}:=\rho \cdot \mathrm{b} \cdot \mathrm{~d}_{\mathrm{e}} & \rho=0.002061 \\
& \mathrm{~A}_{\mathrm{S}}=2339.6 \mathrm{~mm}^{2}
\end{array}
$$

Design the tensile force reinforcement A_{n} :

$$
\mathrm{A}_{\mathrm{n}}:=\frac{\mathrm{N}_{\mathrm{uc}}}{\Phi \cdot \mathrm{f}_{\mathrm{y}}}
$$

$$
A_{n}=748 \mathrm{~mm}^{2}
$$

Check that the Area of Primary Reinforcement, $\mathbf{A}_{\mathbf{s}}$, satisfies code requirements:

$$
\begin{aligned}
& A_{s}:=\left\lvert\, \begin{array}{l}
A_{s} \text { if } A_{s}>\frac{2}{3} \cdot A_{v f}+A_{n} \\
\frac{2}{3} \cdot A_{v f}+A_{n} \text { otherwise } \\
A_{s}:=\left\lvert\, \begin{array}{l}
0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \text { if } A_{s}<0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \\
A_{s} \text { otherwise }
\end{array}\right. \\
A_{s}=3492 \mathrm{~mm}^{2} \\
A_{s}:=\frac{A_{s}}{b} \quad A_{s}=3492 \frac{m m^{2}}{m} \\
\text { check area of steel } \\
\text { required } \\
\rho_{\text {REQUIRED }}:=\frac{A_{s} \cdot m}{b \cdot d_{e}} \cdot 100 \quad \rho_{\text {REQUIRED }}=0.31 \quad \text { PERCENT }
\end{array}\right.
\end{aligned}
$$

Determine area of closed stirrups or ties, Ah:

$$
A_{h}:=0.5 \cdot\left(A_{s} \cdot b-A_{n}\right) \quad A_{h}=1372 \mathrm{~mm}^{2}
$$

This reinforcement shall be uniformly distributed within two-thirds of the effective depth of the beam ledge adjacent to As.

Design for Hanger Reinforcement

The nominal shear resistance of ledges of inverted T-beams shall be the lessor of the following:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{N} 1}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right):=\frac{\mathrm{A}_{\mathrm{hr}} \cdot \mathrm{f}_{\mathrm{y}}}{\mathrm{~s}} \cdot \mathrm{~S} \\
& \mathrm{~V}_{\mathrm{N} 2}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right):=0.165 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}_{\mathrm{f}} \cdot \mathrm{~d}_{\mathrm{f}}+\frac{\mathrm{A}_{\mathrm{hr}} \cdot \mathrm{f}_{\mathrm{y}}}{\mathrm{~s}} \cdot \mathrm{~b}
\end{aligned}
$$

Try $19 \mathrm{~mm} \phi$ rebar at 100 mm c/c

Area of one leg of hanger reinforcement $A_{h r}$ and spacing s are then:

$$
\mathrm{A}_{\mathrm{hr}}:=\frac{\pi \cdot(19 \mathrm{~mm})^{2}}{4} \quad \mathrm{~s}:=100 \mathrm{~mm}
$$

Total number of bars required:

$$
\mathrm{n}_{\text {bars }}:=\frac{\mathrm{b}}{\mathrm{~s}} \quad \mathrm{n}_{\text {bars }}=10.0
$$

This gives:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{N} 1}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right)=6800 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{N} 2}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right)=4421 \mathrm{kN}
\end{aligned}
$$

The minimum nominal shear resistance is then given by:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}}:=\min \left(\mathrm{V}_{\mathrm{N} 1}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right), \mathrm{V}_{\mathrm{N} 2}\left(\mathrm{~A}_{\mathrm{hr}}, \mathrm{~s}\right)\right) \\
& \mathrm{V}_{\mathrm{n}}=4421 \mathrm{kN}
\end{aligned}
$$

Max shear force from the jack:

$$
\mathrm{V}_{\text {Jack }}=1167 \mathrm{kN}
$$

Check that the nominal shear resistance is adequate

$$
\begin{aligned}
& \text { Hanger }_{\text {CHECK }}:=\left\lvert\, \begin{array}{l}
\text { "SATISFIED" } \\
\text { "FAIL" } \mathrm{V}_{\mathrm{n}} \cdot \Phi_{\mathrm{s}} \geq \mathrm{V}_{\text {Jack }}
\end{array}\right. \\
& \text { Hanger }_{\text {CHECK }}=\text { "SATISFIED" }
\end{aligned}
$$

CONCLUSION - PROVIDE SAME REINFORCEMENT FOR MAIN BEAM LEDGE DESIGN ACROSS ENTIRE BEAM LEDGE WIDTH - EXCEPT OVER WIDTH OF COLUMN.

JACKING POINTS SHALL NOT BE CLOSER THAN 500mm FROM FACE OF COLUMN.

Design for Loads from Longitudinal Restrainers, Article 3.10.9.5

This calculation note is intended for the design of the reinforced concrete elements of the pier coping supporting the restrainers.

For the design of the restrainers themselves, inlcuding any local bursting reinforcement required, refer to a separatee calculation.

Restrainers shall be designed for a force calculated as the acceleration coefficient times the permanent load of the lighter of the two adjoining spans.
Acceleration coefficient

$$
\mathrm{A}:=0.40
$$

Permanent load of the lighter of the two spans assuming, conservatively that only 40% of the total load appears as a reaction at the pier coping:

$$
\operatorname{PERM}_{\mathrm{LOAD}}:=\left(\mathrm{V} 2_{\mathrm{pc}}+\mathrm{V} 2_{\mathrm{sdl}_{2}}\right) \frac{1}{40 \%} \quad \mathrm{PERM}_{\mathrm{LOAD}}=2290 \mathrm{kN}
$$

Design load in restrainer

$$
\operatorname{REST}_{\mathrm{LOAD}}:=\mathrm{PERM}_{\mathrm{LOAD}} \cdot \mathrm{~A} \quad \mathrm{REST}_{\mathrm{LOAD}}=916 \mathrm{kN}
$$

Required nominal shear strength of pier coping supporting the restrainers:

$$
\mathrm{V}_{\mathrm{nr}}:=\frac{\mathrm{REST}_{\mathrm{LOAD}}}{\Phi_{\mathrm{S}}}
$$

$$
\mathrm{V}_{\mathrm{nr}}=1309 \mathrm{kN}
$$

Assume conservatively that this load is carried at a single point with a $150 \mathrm{~mm} \times 150 \mathrm{~mm}$ bearing plate located at mid height of the PC deck. Given that the applied load will be supported by a coping width that is at least equal to the shear span, a_{v}, of the load - design shear friction reinforcement in accordance with Article 5.13.2.5.2 and Article 5.8.4.

Detailed Design Study of North Java Corridor Flyover Project

BALARAJA FLYOVER
Coping Design
Pier P3

Shear span of the load

$$
\mathrm{a}_{\mathrm{v}}:=\mathrm{v} 1-\mathrm{v} 2-\frac{1200 \mathrm{~mm}}{2} \quad \mathrm{a}_{\mathrm{v}}=932 \mathrm{~mm}
$$

The width of the concrete face assumed to participate in resistance to shear is as defined below:

$$
\mathrm{b}_{\mathrm{v}}:=\left\lvert\, \begin{array}{ll}
\mathrm{S} \leftarrow \min \left(2 \cdot \mathrm{~h} 1_{\mathrm{c}}, 2 \cdot \mathrm{~h} 1_{\mathrm{s}}\right) \\
\mathrm{d}_{\mathrm{w}} \leftarrow 150 \mathrm{~mm}+4 \cdot \mathrm{a}_{\mathrm{v}} \\
\mathrm{~d}_{\mathrm{w}} \text { if } \mathrm{d}_{\mathrm{w}}<\mathrm{S} & \mathrm{~b}_{\mathrm{v}}=3878 \mathrm{~mm} \\
\mathrm{~S} \text { otherwise } &
\end{array}\right.
$$

Depth of support

$$
\mathrm{h}:=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2
$$

$$
\mathrm{h}=1400 \mathrm{~mm}
$$

Effective depth

$$
\mathrm{d}_{\mathrm{e}}:=\mathrm{h}-65 \mathrm{~mm}
$$

$$
\mathrm{d}_{\mathrm{e}}=1335 \mathrm{~mm}
$$

Area of concrete resisting shear transfer

$$
\mathrm{A}_{\mathrm{cv}}:=\mathrm{b}_{\mathrm{v}} \cdot \mathrm{~d}_{\mathrm{e}} \quad \mathrm{~A}_{\mathrm{cv}}=5.177 \mathrm{~m}^{2}
$$

Calculate limiting nominal shear strength

$$
\mathrm{V}_{\text {nlimit }}:=\left\{\begin{array}{l}
0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}} \text { if } 0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}}<5.5 \cdot \frac{\mathrm{~A}_{\mathrm{CV}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \quad \mathrm{~V}_{\text {nlimit }}=28474.2 \mathrm{kN} \\
5.5 \cdot \frac{\mathrm{~A}_{\mathrm{cv}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \text { otherwise }
\end{array}\right.
$$

Check that the required nominal shear strength is less than that provided

$$
\text { PierCoping }_{\text {Capacity }}:=\left\lvert\, \begin{aligned}
& \text { "OK" if } \mathrm{V}_{\mathrm{nr}} \leq \mathrm{V}_{\text {nlimit }} \\
& \text { "INADEQUATE" otherwise }
\end{aligned} \quad\right. \text { PierCoping }_{\text {Capacity }}=\text { "OK" }
$$

Calculate shear friction reinforcement, $\mathbf{A}_{\text {vf }}$

Cohesion and friction values for monolithically cast concrete

$$
\mathrm{c}:=1.0 \mathrm{MPa} \quad \lambda:=1.00 \quad \mu:=1.4 \cdot \lambda
$$

Shear reinforcement is then given by:

$$
\mathrm{A}_{\mathrm{vf}}:= \begin{cases}\mathrm{A}_{\mathrm{vf} 1} \leftarrow \frac{\mathrm{~V}_{\mathrm{nr}}-\mathrm{c} \cdot \mathrm{~A}_{\mathrm{cv}}}{\mathrm{f}_{\mathrm{y}} \cdot \mu} \\ \mathrm{~A}_{\mathrm{vf} 2} \leftarrow 0.35 \cdot \frac{\mathrm{~b}_{\mathrm{v}}}{\mathrm{~mm}} \cdot \frac{\mathrm{MPa}}{\mathrm{f}_{\mathrm{y}}} \cdot \mathrm{~mm}^{2} & \\ \mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 1} \text { if } \mathrm{A}_{\mathrm{vf} 1}>\mathrm{A}_{\mathrm{vf} 2} & \frac{\mathrm{~V}_{\mathrm{nr}}}{\mathrm{~A}_{\mathrm{cv}}}=0.253 \mathrm{MPa} \\ \mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 2} \text { if } \mathrm{A}_{\mathrm{vf} 2}>\mathrm{A}_{\mathrm{vf} 1} & \\ 0 \text { if } \frac{\mathrm{V}_{\mathrm{nr}}}{\mathrm{~A}_{\mathrm{cv}}}<0.7 \mathrm{MPa}\end{cases}
$$

$$
\mathrm{A}_{\mathrm{vf}}=0 \mathrm{~mm}^{2}
$$

Conclude that the concrete section alone has adequate capacity to carry the loads from the longitudinal restrainers without the need for addiional shear reinforcement.

Design the Pier Column/Coping Connection for Flexure and Shear

The pier column/coping conection will be designed to resist the maximum moments and shear forces applied from live loads and earthquake loads.

Analysis Output

The analysis output for load effects at the top of the expansion piers, obtained from the SAP 3D model, is presented below.

The half live load case is with live load only occupying the lanes in one carriageway to create maximum transverse moment at the top of the column.

ULTIMATE FLEXURAL DEMAND AT THE TOP OF THE COLUMN

		KN	$\mathrm{KN}-\mathrm{m}$	$\mathrm{KN}-\mathrm{m}$	$\mathrm{KN}-\mathrm{m}$
COMBINATION 1	max	-5640.0	742.8	0.0	742.8
Full live Load	\min	-10523.7	-752.6	0.0	-752.6
COMBINATION 1	\max	-5840.4	5159.7	0.0	5159.7
Half Live Load	\min	-8317.3	-5171.0	0.0	-5171.0
COMBINATION 5	\max	-4216.6	390.4	1180.1	1243.0
1.0 EQX+ 0.3 EQY	\min	-4593.0	-393.2	-1180.1	1243.9
COMBINATION 5	\max	-4340.9	920.2	465.2	1031.1
0.3 EQX+ 1.0 EQY	\min	-4468.7	-923.0	-465.2	1033.6

$$
\mathrm{P}:=-\mathrm{P} \cdot \mathrm{kN} \quad \mathrm{M}_{\mathrm{d}}:=\sqrt{\mathrm{M}_{\mathrm{d}}{ }^{2}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

Design for Flexure in Column (AASHTO LRFD Section 5.7)

The maximum moment to be used in the fexural design of the connection is given below (maximum of moments obtained from global analysis and longitudinal moment generated by loading only one deck span):

$$
\mathrm{M}_{\max }:=\left\lvert\, \begin{aligned}
& \mathrm{M} 1 \leftarrow \max \left(\mathrm{M}_{\mathrm{d}}\right) \quad \mathrm{M}_{\max }=5171 \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M} 2 \leftarrow \mathrm{~T}_{\mathrm{c}} \cdot 2 \\
& \max (\mathrm{M} 1, \mathrm{M} 2)
\end{aligned}\right.
$$

From inspection above the critical case is due to transverse live load occupying lanes on one side of the deck only. The associated axial load with this case, P, therefore will be intermediate between the maximum and minimm axial loads identified above for the load configuration.

$$
P:=\frac{P_{3}+P_{4}}{2} \quad \mathrm{P}=7079 \mathrm{kN}
$$

PCACol has been used to design the reinforcement concrete column.
Results of the PCACol design are as follows:

Use 36 number 32mm ϕ bars in two bar bundles in a single layer ajaccent to top coping

To aid with reinforcement fixing the bars are placed to give a cover of 60 mm longitudinal bars. This will allow the placing of horizontal shear reinforcement in the faces of the coping beam adjacent to the column rebar. The bar layout is shown below:

Design for Shear in Column (AASHTO LRFD Section 5.8)

Depth of section

$$
\mathrm{h}_{\mathrm{s}}:=\mathrm{D}
$$

$\mathrm{h}_{\mathrm{S}}=1700 \mathrm{~mm}$
Width of section

$$
\mathrm{b}:=\mathrm{D}
$$

$$
\mathrm{b}=1700 \mathrm{~mm}
$$

Diameter of circle passing through centers $\mathrm{D}_{\mathrm{r}}:=\mathrm{h}_{\mathrm{s}}-(2 \cdot 80+32) \cdot \mathrm{mm}$ of longitudinal rebar
Effective depth $\quad d_{e}:=\frac{\mathrm{h}_{\mathrm{S}}}{2}+\frac{\mathrm{D}_{\mathrm{r}}}{\pi}$
Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \quad \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{s}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{s}} \quad \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=1224 \mathrm{~mm}
\end{aligned}
$$

Maximum shear force (from plastic hinging at base of column)

$$
\mathrm{V}_{\mathrm{P}}=2612 \mathrm{kN}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=1892 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{S}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}:=\left\lvert\, \begin{array}{l}
\mathrm{V}_{\mathrm{s}} \leftarrow \frac{\mathrm{~V}_{\mathrm{P}}}{\Phi_{\mathrm{s}}}-\mathrm{V}_{\mathrm{C}} \\
\mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
0 \mathrm{kN} \text { otherwise }
\end{array}\right. \\
& \mathrm{V}_{\mathrm{S}}=1840 \mathrm{kN}
\end{aligned}
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=15606.0 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" } & \text { if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" } & \text { otherwise }
\end{array} \quad\right. \text { CHECK }=\text { "OK" }
\end{aligned}
$$

Provide 19mm ϕ spirals

$$
\begin{aligned}
& \phi_{\text {link }}:=19 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{V}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 2 \quad \mathrm{~A}_{\mathrm{V}}=567 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\lvert\, \begin{aligned}
& \mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
& \mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
& \mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
& \mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{aligned} \quad \mathrm{s}_{\mathrm{t}}=147 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{V}_{\mathrm{P}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=1.793 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:

$$
\begin{aligned}
& \mathrm{s}_{\max }: \| \begin{array}{l}
\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) \quad \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{C}} \\
\min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) \\
\text { otherwise }
\end{array} \\
& \mathrm{s}_{\max }=600 \mathrm{~mm}
\end{aligned}
$$

Determine maximum required spacing of transverse reinforcement:

$$
\begin{aligned}
& s_{t}:=\left\lvert\, \begin{array}{l}
s_{\max } \text { if } s_{\max } \leq s_{t} \\
s_{t} \text { otherwise }
\end{array}\right. \\
& s_{t}=147 \mathrm{~mm}
\end{aligned}
$$

Provide $19 \mathrm{~mm} \phi$ spirals at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Note that although this section will not be subject to plastic hinging, the detailing of the reinforcement will follow the requirements at plastic hinge zones:

- maximum spacing 100 mm
- shear links extended into the support for a distance not less than one half the column diameter column
- the development length of the longitidinal steel shall be 1.25 times that required for the full yield of the reinforcing bar

Design for Shear at Connection (AASHTO LRFD Section 5.8)

The applied loading on the coping will be carried by shear forces in the connection generating tension and compression fields as shown below.

The vertical component of the tension field in the connection will be carried by the main column reinforcement, extended to the top of the connection.

The horizontal component will be carried by additional reinforcement designed to resist the horizontal shear force generated at the connection.

Defining offset "a" to the main rebar in the upper coping beam and offset "b" to cenroid of compression zone in the lower coping beam resisting the applied moment:

$$
\mathrm{a}:=150 \mathrm{~mm} \quad \mathrm{~b}:=100 \mathrm{~mm}
$$

Lever arm in the coping

$$
\mathrm{z}:=\mathrm{v} 1-\mathrm{a}-\mathrm{b} \quad \mathrm{z}=2482 \mathrm{~mm}
$$ at the face of the conection

Calculate the tension T and compression C forces at the connection under maximum applied moment ${ }^{-}$

$$
\mathrm{T}:=-\frac{\mathrm{M}_{\max }}{\mathrm{z}} \quad \mathrm{~T}=-2083 \mathrm{kN} \quad \mathrm{C}:=\frac{\mathrm{M}_{\max }}{\mathrm{z}} \quad \mathrm{C}=2083 \mathrm{kN}
$$

Check the assumed depth of concrete in compression:

$$
\begin{array}{lll}
\text { width of coping } & \mathrm{b}_{\mathrm{w}}:=\mathrm{b}_{\mathrm{f}}-2 \cdot \mathrm{~h} 5 & \mathrm{~b}_{\mathrm{w}}=1400 \mathrm{~mm} \\
\begin{array}{l}
\text { depth of concrete } \\
\text { in compression }
\end{array} & \mathrm{c}:=\frac{\mathrm{C}}{\mathrm{~b}_{\mathrm{w}} \cdot 0.85 \cdot \mathrm{f}_{\mathrm{C}}} & \mathrm{c}=58 \mathrm{~mm}
\end{array}
$$

Given that the depth of concrete in compression is less than the assumed offset to the centroid, accept the assumed values as conservative.

Depth of section	$\mathrm{h}_{\mathrm{s}}:=\mathrm{D}$	$\mathrm{h}_{\mathrm{S}}=1700 \mathrm{~mm}$
Width of section	$\mathrm{b}:=\mathrm{D}$	$\mathrm{b}=1700 \mathrm{~mm}$
Diameter of circle passing through centers of longitudinal rebar in column	$\mathrm{D}_{\mathrm{r}}:=\mathrm{h}_{\mathrm{s}}-(2 \cdot 80+32) \cdot \mathrm{mm}$	
Effective depth	$\mathrm{d}_{\mathrm{e}}:=\frac{\mathrm{h}_{\mathrm{s}}}{2}+\frac{\mathrm{D}_{\mathrm{r}}}{\pi} \quad \mathrm{d}_{\mathrm{e}}=1330 \mathrm{~mm}$	

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{s}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{s}} \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=1224 \mathrm{~mm}
\end{aligned}
$$

Maximum shear force (from maximum moment applied at the connection)

$$
\mathrm{V}_{\mathrm{U}}:=\mathrm{C} \quad \mathrm{~V}_{\mathrm{U}}=2083 \mathrm{kN}
$$

Calculate nominal shear resistance of concrete section at the connection (refer ASHTO LRFD Article 5.10.11.4.3):

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=1.0 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{V}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=11397 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{s}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}:=\left\lvert\, \begin{array}{ll}
\mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{U}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \\
\mathrm{~V}_{\mathrm{S}} & \text { if } \quad \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
0 \mathrm{kN} & \text { otherwise }
\end{array}\right. \\
& \mathrm{V}_{\mathrm{S}}=0 \mathrm{kN}
\end{aligned}
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=15606.0 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array}\right.
\end{aligned}
$$

Provide $19 \mathrm{~mm} \phi$ shear links wth 2 legs across the section - one each face

$$
\begin{aligned}
& \phi_{\text {link }}:=19 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 2 \quad \mathrm{~A}_{\mathrm{v}}=567 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\{\begin{array}{l}
\mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
\mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
\mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
\mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{array} \quad \mathrm{s}_{\mathrm{t}}=286 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{v}_{\mathrm{P}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=1.793 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:

$$
\begin{aligned}
& \mathrm{s}_{\max }:=\| \begin{array}{ll}
\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{C}} \\
\min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) & \text { otherwise }
\end{array} \\
& \mathrm{s}_{\max }=600 \mathrm{~mm}
\end{aligned}
$$

Determine maximum required spacing of transverse reinforcement:

$$
s_{t}:=\left\lvert\, \begin{aligned}
& s_{\text {max }} \text { if } s_{\max } \leq s_{t} \\
& s_{t} \text { otherwise }
\end{aligned}\right.
$$

$$
\mathrm{s}_{\mathrm{t}}=286 \mathrm{~mm}
$$

Provide $19 \mathrm{~mm} \phi$ bar at 200 mm c/c each face

P6 Expansion Coping

Katahira \& Engineers
International

BALARAJA FLYOVER
Coping Design Pier P6

KATAHIRA \& ENGINEERS
INTERNATIONAL

Project:	Detailed Design Study of North Java Corridor Flyover Pr Calculation:
Detailed Design Substructure Balaraja Flyover Coping Design - Pier P6	

Layout

Coping Cross Section

Pier Coping Data

Overall width of deck	B	13000	mm
Offset to bearing - PC deck	h1 ${ }_{\text {c }}$	3175	mm
Offset to bearing - Steel deck	h1 ${ }_{\text {s }}$	3075	mm
Edge distance	h2	800	mm
Side slope width	h3	316	mm
Cantilever length	h4	2160	mm
Beam ledge width	h5	1200	mm
Beam ledge soffit width	h6	950	mm
Width of coping	b_{f}	3800	mm
Total depth at coping	v1	2732	mm
Beam ledge height at column	v2	1200	mm
Beam ledge height at bearing	v3	1200	mm
Upstand to const. joint	v4	300	mm
Bearing width	W	800	mm
Bearing length	L	800	mm
Column Diameter	D	1100	mm
Distance Column to Column	dc	6000	mm
Concrete Comp Strength	f_{c}	30	MPa
Rebar Yield Strength	f_{y}	390	MPa
Strength Reduction Factor - Bending		0.8	
Strength Reduction Factor - Shear		0.7	
Mod. Elasticity - Concrete	E_{c}	27628	MPa
Mod. Elasticity - Steel	$E_{\text {s }}$	200000	MPa
Modular Ratio		7.24	
Height of piers supporting deck	H	9912	mm
Length of deck btwn. Joints	$L_{\text {d }}$	73.6	m
Deck skew	S_{k}	0	Deg

$\mathrm{B}:=\mathrm{B} \cdot \mathrm{mm}$
$\mathrm{h} 1_{\mathrm{C}}:=\mathrm{h} 1_{\mathrm{C}} \cdot \mathrm{mm}$
$\mathrm{h} 1_{\mathrm{S}}:=\mathrm{h} 1_{\mathrm{S}} \cdot \mathrm{mm}$
h2 := h2•mm
h3 := h3•mm
$\mathrm{h} 4:=\mathrm{h} 4 \cdot \mathrm{~mm}$
h5 := h5•mm
h6 := h6•mm
$\mathrm{b}_{\mathrm{f}}:=\mathrm{b}_{\mathrm{f}} \cdot \mathrm{mm}$
$\mathrm{v} 1:=\mathrm{v} 1 \cdot \mathrm{~mm}$
v2 := v2•mm
v3 := v3•mm
$\mathrm{v} 4:=\mathrm{v} 4 \cdot \mathrm{~mm}$
$\mathrm{D}:=\mathrm{D} \cdot \mathrm{mm}$
$\mathrm{d}_{\mathrm{C}}:=\mathrm{d}_{\mathrm{C}} \cdot \mathrm{mm}$
$\mathrm{L}:=\mathrm{L} \cdot \mathrm{mm}$
$\mathrm{W}:=\mathrm{W} \cdot \mathrm{mm}$
$\mathrm{H}:=\mathrm{H} \cdot \mathrm{mm}$
$\mathrm{f}_{\mathrm{C}}:=\mathrm{f}_{\mathrm{C}} \cdot \mathrm{MPa}$
$\mathrm{f}_{\mathrm{y}}:=\mathrm{f}_{\mathrm{y}} \cdot \mathrm{MPa}$
$\mathrm{E}_{\mathrm{C}}:=\mathrm{E}_{\mathrm{C}} \cdot \mathrm{MPa}$
$\mathrm{E}_{\mathrm{S}}:=\mathrm{E}_{\mathrm{S}} \cdot \mathrm{MPa}$

Analysis Output

The analysis output for deck reactions at the expansion piers, obtained from the SAP 3D model, is presented below for:

- Nominal deck dead load case - used for erection case
- Nominal superimposed dead load case
- ULS Combination 1 - live load
- SLS Combination 1 - live load
- Nominal earthquake effects ($\mathrm{R}=1.0$)
- The frame elements selected are as follows:
- D34 - end span frame in span 3 (PC deck) adjacent to pier 3
- D41 - end span frame in span 3 (Steel Deck) adjacent to pier 3

NOMINAL COPING DEAD LOAD

Frame	Statio n	OutputCase	StepTy pe	P	V2	M3
Text	m	Text	Text	KN	KN	KN-m
C Left	0	DEAD-COPING	Max	2.7	459.4	20.6
C Left	3	DEAD-COPING	Min	2.7	-2.3	-665
C Right	0	DEAD-COPING	Max	2.6	2.4	-664.9
C Right	3	DEAD-COPING	Min	2.6	-459.3	20.4
Shear V2			Moment M3			
VCop := V2.kN			MCop := M3.kN•m			

NOMINAL DECK DEAD LOAD

TABLE: Element Forces - Deck Dead Load Reactions						
Frame	Station	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION		
Text	m	KN	KN	KN-m		
DECK64	Min	1504.6	1.8	-4.1		
DECK64	Max	1504.6	1.8	-4.1		
DECK71	Min	-1331.7	8.5	-0.6		
DECK71	Max	-1331.7	8.5	-0.6		

$$
\mathrm{V} 2_{\mathrm{dl}}:=\mathrm{V} 2_{\mathrm{dl}} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\mathrm{dl}}:=\mathrm{V} 3_{\mathrm{dl}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{dl}}:=\mathrm{T}_{\mathrm{dl}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

NOMINAL SUPERIMPOSED DEAD LOAD

Frame	Station	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION
Text	m	KN	KN	KN-m
DECK64	Min	289.5	0.3	-0.7
DECK64	Max	289.5	0.3	-0.7
DECK71	Min	-242.4	1.5	0.0
DECK71	Max	-242.4	1.5	0.0
$\mathrm{V} 2_{\mathrm{sdl}}:=\mathrm{V} 2_{\mathrm{sdl}} \cdot \mathrm{kN}$		$\mathrm{V} 3_{\mathrm{sdl}}:=\mathrm{V} 3_{\mathrm{sdl}} \cdot \mathrm{kN} \quad \mathrm{T}_{\text {sd }}$		$=\mathrm{T}_{\mathrm{sdl}} \cdot \mathrm{kN} \cdot \mathrm{m}$

ULS COMBINATION 1 - LIVE LOAD

TABLE:						Element Forces - Deck COMB1 ULS Reactions
Frame	Step Type	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION		
Text	Text	KN	KN	KN-m		
DECK64	Min	2071.6	-61.2	-1084.6		
DECK64	Max	6693.9	75.4	1052.6		
DECK71	Min	-6138.7	-39.2	-1004.9		
DECK71	Max	-1877.1	107.8	1004.4		

$$
\mathrm{V} 2_{\mathrm{u}}:=\mathrm{V} 2_{\mathrm{u}} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\mathrm{u}}:=\mathrm{V} 3_{\mathrm{u}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{u}}:=\mathrm{T}_{\mathrm{u}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

SLS COMBINATION 1 - LIVE LOAD

TABLE: Element Forces - Deck COMB1 SLS Reactions				
Frame	Step Type	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION
Text	Text	KN	KN	KN-m
DECK64	Min	1341.6	-33.4	-613.2
DECK64	Max	4457.6	47.0	583.5
DECK71	Min	-3942.9	-19.0	-558.6
DECK71	Max	-1255.0	84.7	559.2

$$
\mathrm{V2}_{\mathrm{s}}:=\mathrm{V} 2_{\mathrm{s}} \cdot \mathrm{kN} \quad \mathrm{~V}_{\mathrm{s}}:=\mathrm{V} 3_{\mathrm{s}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{s}}:=\mathrm{T}_{\mathrm{s}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

NOMINAL EARTHQUAKE LOAD - EQX (R=1)

TABLE: Element Forces - EQX					
Frame	Step Type	V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION	
Text	Text	KN	KN	KN-m	
DECK64	Min	1142.0	-2096.0	-3784.7	
DECK64	Max	2446.2	2100.2	3775.1	
DECK71	Min	-2023.2	-1463.9	-269.5	
DECK71	Max	-1125.0	1483.9	268.3	

$$
\mathrm{V} 2_{\mathrm{eqx}}:=\mathrm{V} 2_{\mathrm{eqx}} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\mathrm{eqx}}:=\mathrm{V} 3_{\mathrm{eqx}} \cdot \mathrm{kN} \quad \mathrm{~T}_{\mathrm{eqx}}:=\mathrm{T}_{\mathrm{eqx}} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

NOMINAL EARTHQUAKE LOAD - EQY (R=1)

TABLE:Element Forces - EQY FrameStep Type						V2 SHEAR VERT	V3 SHEAR TRANS	T TORSION
Text	Text	KN	KN	KN-m				
DECK64	Min	1379.1	-3370.1	-5573.0				
DECK64	Max	2209.1	3374.3	5563.4				
DECK71	Min	-1823.9	-2562.4	-279.2				
DECK71	Max	-1324.3	2582.4	278.0				

$$
\mathrm{V} 2_{\text {eqy }}:=\mathrm{V} 2_{\text {eqy }} \cdot \mathrm{kN} \quad \mathrm{~V} 3_{\text {eqy }}:=\mathrm{V} 3_{\text {eqy }} \cdot \mathrm{kN} \quad \mathrm{~T}_{\text {eqy }}:=\mathrm{T}_{\text {eqy }} \cdot \mathrm{kN} \cdot \mathrm{~m}
$$

MAXIMUM SHEAR FORCE DUE TO PLASTIC HINGING

The maximum shear force that the bearings will be subject to in the tranverse direction is the shear force due to plastic hinging at the base of the column.

The shear force due to plastic hinging at the top of the column tranverse direction

$$
\mathrm{V}_{\mathrm{P}}:=1197 \cdot \mathrm{kN}
$$

This shear force should be carried by the transverse shear key on each bearing shelf or carried by the bearings directly on on bearing shelf. The shear forces given above for earthquake loading should be used in the design if they are smaller than the plastic hinging effects.

MAXIMUM \& MINIMUM VERTICAL ORRENPONDING PLASTIC HINGING EFECT
 $P_{\text {max }}:=5542 \mathrm{kN}$
 $$
P_{\text {min }}:=-1052 \mathrm{kN}
$$

Minimum Displacement Requirements (AASHTO LRFD Article 4.7.4.4)

Bridge seat widths at expansion bearings without restrainers, STU's or dampers shall either accommodate the greater of the maximum displacement calculated from the seismic analysis or a percentage of the emprical seat width, N, specified below.

The percentage of N applicable to the bridge seismic zone shall be 150%.
The length of the bridge deck to the adjacent expansion joint

$$
\mathrm{L}_{\mathrm{d}}:=\mathrm{L}_{\mathrm{d}} \cdot \mathrm{~m} \quad \mathrm{~L}_{\mathrm{d}}=73.6 \mathrm{~m}
$$

The height of the columns
$\mathrm{H}=9.912 \mathrm{~m}$
supporting the deck
Skew of the support
$S_{k}=0$ measured from line normal to span

The empirical seat width shall be taken as:

$$
\begin{aligned}
& \mathrm{N}:=\left(200+0.0017 \cdot \frac{\mathrm{~L}}{\mathrm{~mm}}+0.0067 \cdot \frac{\mathrm{H}}{\mathrm{~mm}}\right) \cdot\left(1+0.000125 \cdot \mathrm{~S}_{\mathrm{k}}^{2}\right) \cdot \mathrm{mm} \\
& \mathrm{~N}=268 \mathrm{~mm}
\end{aligned}
$$

Check that the seat width provided is greater than 150% of N :

$$
\text { Seat width } \quad h 5=1200 \mathrm{~mm}
$$

$150 \% \cdot \mathrm{~N}=402 \mathrm{~mm}$

$$
\text { Seat }^{\text {Width }}:=\left\lvert\, \begin{aligned}
& \text { "OK" if h5 } \geq \mathrm{N} \cdot 150 \% \\
& \text { "INADEQUATE" otherwise }
\end{aligned}\right.
$$

$$
\text { Seat }_{\text {Width }}=\text { "OK" }
$$

Design of Pier Coping based on plastic Hinge Force

Beam Column Joint

Bending moment due to plastic hinges force

Plastic Hinge Moment

$$
\mathrm{M}_{\mathrm{P}}:=5542 \mathrm{kN} \cdot \mathrm{~m}
$$

Knee joints are the most common type of joint occuring in multicolumn bridge bents when tranverse response is considered. Equilibriun conditions under openinng and closing momentt are represented in figs. (a) and (b) above respectively. In these figures, the beam tensile, compressive, and shear stress resultants are indicated by T_{b}, C_{b},
and V_{b}, with $T_{c} C_{c}$, and $V_{c o l}$ being the corresponding force for the column. Axial forces P_{c} and P_{b} are present in the colun and beam, respectively. Moments M_{b} and M_{c} on joint boundaries induce the flexural stress resultants noted above.

Dimension :
Beam Coping
$\mathrm{h}_{\mathrm{b}}:=\mathrm{v} 1$
Column
assume beam coping are rectangular for flexural design
$\mathrm{b}:=\mathrm{b}_{\mathrm{f}}-2 \mathrm{~h} 5 \quad \mathrm{~d}_{\mathrm{e}}:=\mathrm{h}_{\mathrm{b}}-100 \mathrm{~mm}$

Design for Flexure (AASHTO LRFD Section 5.7)

(a) Closing moment

Coping Dead Load at joint

$$
\begin{aligned}
& \mathrm{Mdl}:=\mathrm{MCop}_{1} \\
& \mathrm{Mdl}=20.6 \mathrm{kN} \cdot \mathrm{~m} \\
& \mathrm{M}_{\mathrm{EU}}:=\mathrm{M}_{\mathrm{P}}+\mathrm{V}_{\mathrm{P}} \cdot \frac{\mathrm{~h}_{\mathrm{b}}}{2}+\mathrm{Mdl} \\
& \mathrm{M}_{\mathrm{EU}}=7197.7 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Strength reduction factor for flexure:

$$
\Phi=0.8
$$

Determine area of reinforcement, A_{f}, in the coping to resist flexure
(ref AASHTO LFRD Article 5.7.3.2.3-see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{EU}}}{\Phi \cdot \mathrm{~b}^{2} \mathrm{~d}_{\mathrm{e}} \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{R}=0.0024 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{C}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.002424 \\
\mathrm{~A}_{\mathrm{f}}:=\rho \cdot \mathrm{d}_{\mathrm{e}} \cdot \mathrm{~b} & \\
\mathrm{~A}_{\mathrm{f}}=8930.5 \mathrm{~mm}^{2} &
\end{array}
$$

Using $32 \mathrm{~mm} \phi$ bars gives total number of bars to be distributed across the coping:

$$
\mathrm{n}_{\mathrm{bf}}:=\frac{\mathrm{A}_{\mathrm{f}}}{804 \cdot \mathrm{~mm}^{2}} \quad \mathrm{n}_{\mathrm{bf}}=11.1
$$

Provide 18 No $32 \mathrm{~mm} \phi$ bars in two layers

$$
\mathrm{n}_{\mathrm{p}}:=18
$$

$$
\mathrm{A}_{\mathrm{f}}:=\mathrm{n}_{\mathrm{p}} \cdot 804 \cdot \mathrm{~mm}^{2}
$$

Calculate the stress block factor, β_{1} :

$$
\begin{aligned}
& \beta_{1}:=
\end{aligned} \left\lvert\, \begin{aligned}
& \beta_{1} \leftarrow 0.85 \\
& \beta_{1} \leftarrow \beta_{1}-0.05 \cdot \frac{\mathrm{f}_{\mathrm{c}}-28 \mathrm{MPa}}{7 . \mathrm{MPa}} \text { if } \mathrm{f}_{\mathrm{c}}>28 \mathrm{MPa} \\
& 0.65 \text { if } \beta_{1}<0.65
\end{aligned} \beta_{1}=0.836 \mathrm{C}\right.
$$

For rectangular sections, the depth of concrete in compression, c , is given by:

$$
\mathrm{c}:=\frac{\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \beta_{1} \cdot \mathrm{~b}} \quad \mathrm{c}=189 \mathrm{~mm}
$$

Check that the required amount of reinforcement does not exceed the maximum allowed by the code:

$$
\begin{aligned}
& \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}}=0.07 \\
& \text { Max }_{\text {Limit }}:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}} \leq 0.42 \\
\text { "EXCEEDED" } & \text { otherwise }
\end{array} \quad\right. \text { Max }_{\text {Limit }}=\text { "OK" }
\end{aligned}
$$

Calculate the modulus of rupture, f_{r}, of the concrete:

$$
\mathrm{f}_{\mathrm{r}}:=0.63 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \quad \mathrm{f}_{\mathrm{r}}=3.451 \mathrm{MPa}
$$

Section modulus for the extreme fiber of the section, assuming rectangular section of width b :

$$
\mathrm{S}_{\mathrm{C}}:=\frac{\mathrm{b} \cdot \mathrm{~d}_{\mathrm{e}}{ }^{2}}{6} \quad \mathrm{~S}_{\mathrm{C}}=1.616 \mathrm{~m}^{3}
$$

The cracking moment, M_{cr}, is the given by:

$$
\mathrm{M}_{\mathrm{cr}}:=\mathrm{S}_{\mathrm{C}} \cdot \mathrm{f}_{\mathrm{r}} \quad \mathrm{M}_{\mathrm{Cr}}=5578 \mathrm{kN} \cdot \mathrm{~m}
$$

Check that the reinforcement can develop a resistance moment Mr at least equal to the lesser of:

- $\quad 1.2$ times the cracking moment Mcr
- 1.33 times the factored moment required by the applicable strength load combination

$$
\text { Minimum }_{\text {Steel }}:=\left\{\begin{array}{l}
\mathrm{M}_{\mathrm{r}} \leftarrow \frac{\mathrm{M}_{\mathrm{EU}}}{\Phi} \\
\mathrm{M} \leftarrow \min \left(1.2 \mathrm{M}_{\mathrm{Cr}}, 1.33 \cdot \mathrm{M}_{\mathrm{EU}}\right) \\
\text { "OK" if } \mathrm{M}_{\mathrm{r}} \geq \mathrm{M} \\
\text { "NOT SATISFIED" otherwise }
\end{array} \quad \text { Minimum }_{\text {Steel }}=\right.\text { "OK" }
$$

Design for Shear (AASHTO LRFD Section 5.8)

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)
$\mathrm{h}_{\mathrm{s}}:=\mathrm{v} 1$

$$
\mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{aligned}
& 0.9 \cdot \mathrm{~d}_{\mathrm{e}} \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{s}} \\
& 0.72 \cdot \mathrm{~h}_{\mathrm{s}} \text { otherwise }
\end{aligned}\right.
$$

$$
\mathrm{d}_{\mathrm{v}}=2368.8 \mathrm{~mm}
$$

Shear in coping due to plastic hinge force

$$
\mathrm{V}_{\mathrm{D}}:=\frac{2 \cdot \mathrm{M}_{\mathrm{P}}}{\mathrm{~d}_{\mathrm{C}}}+\frac{\mathrm{V}_{\mathrm{P}} \cdot \frac{\mathrm{v} 1}{2}}{\mathrm{~d}_{\mathrm{C}}}+\mathrm{P}_{\max } \quad \quad \mathrm{P}_{\max }=5542 \mathrm{kN}
$$

$\mathrm{V}_{\mathrm{D}}=7662 \mathrm{kN}$

Total shear force in coping at face of column during erection - Ultimate Limit State

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EU}}:=\mathrm{V}_{\mathrm{D}}+\mathrm{VCop}_{1} \\
& \mathrm{~V}_{\mathrm{EU}}=8121.3 \mathrm{kN}
\end{aligned}
$$

Section 1 range of $0 \sim 1 \mathrm{~m}$ from cl of column

$\mathrm{V}_{\mathrm{EU}}=8121 \mathrm{kN}$
Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=3015 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{s}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{s}}:=\left\lvert\, \begin{aligned}
& \mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{EU}}}{\Phi_{\mathrm{s}}}-\mathrm{V}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{S}}=8587 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
& 0 \mathrm{kN} \text { otherwise }
\end{aligned}\right.
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=24872.4 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array}\right.
\end{aligned}
$$

Provide $25 \mathrm{~mm} \phi$ shear links wth 4 legs across the section:

$$
\begin{aligned}
& \phi_{\text {link }}:=25 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{V}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{v}}=1963 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\lvert\, \begin{aligned}
& \mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.0083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
& \mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
& \mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
& \mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{aligned} \quad \mathrm{s}_{\mathrm{t}}=211 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{V}_{\mathrm{EU}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=3.498 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:

$$
\begin{aligned}
& \mathrm{s}_{\max }:=\left\lvert\, \begin{array}{ll}
\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{C}} \\
\min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right)
\end{array}\right. \\
& \mathrm{s}_{\max }=600 \mathrm{~mm}
\end{aligned}
$$

Determine maximum required spacing of transverse reinforcement:

$$
\begin{aligned}
& s_{t}:=\left\lvert\, \begin{array}{l}
s_{\max } \text { if } s_{\max } \leq s_{t} \\
s_{t} \text { otherwise }
\end{array}\right. \\
& s_{t}=211 \mathrm{~mm}
\end{aligned}
$$

Section 2 range of $1 \sim 2 \mathbf{m}$ from cl of column

$$
\mathrm{V}_{\mathrm{D}}:=\frac{2 \cdot \mathrm{M}_{\mathrm{P}}}{\mathrm{~d}_{\mathrm{c}}}+\frac{\mathrm{V}_{\mathrm{P}} \cdot \frac{\mathrm{v} 1}{2}}{\mathrm{~d}_{\mathrm{c}}}+\frac{5}{6} \mathrm{P}_{\max }
$$

$$
\mathrm{V}_{\mathrm{D}}=6738 \mathrm{kN}
$$

Total shear force in coping at face of column during erection - Ultimate Limit State

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EU}}:=\mathrm{V}_{\mathrm{D}}+\mathrm{VCop}_{2} \\
& \mathrm{~V}_{\mathrm{EU}}=6735.9 \mathrm{kN}
\end{aligned}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=3015 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{s}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{s}}:=\| \begin{aligned}
& \mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{EU}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{S}}=6607 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
& 0 \mathrm{kN} \text { otherwise }
\end{aligned}
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=24872.4 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array}\right.
\end{aligned}
$$

Provide $25 \mathrm{~mm} \phi$ shear links wth 4 legs across the section:

$$
\begin{aligned}
& \phi_{\text {link }}:=25 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{v}}=1963 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\{\begin{array}{l}
\mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.0083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
\mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
\mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
\mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{array} \quad \mathrm{s}_{\mathrm{t}}=275 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{V}_{\mathrm{EU}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=2.902 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:
$\mathrm{s}_{\max }:=\left\lvert\, \begin{array}{ll}\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{c}} \\ \min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) & \text { otherwise }\end{array}\right.$
$\mathrm{s}_{\text {max }}=600 \mathrm{~mm}$
Determine maximum required spacing of transverse reinforcement:
$s_{t}:=\left\lvert\, \begin{aligned} & s_{\text {max }} \text { if } s_{\text {max }} \leq s_{t} \\ & s_{t} \text { otherwise }\end{aligned}\right.$
$\mathrm{s}_{\mathrm{t}}=275 \mathrm{~mm}$
Section 3 range of $2 \sim 3 \mathrm{~m}$ from cl of column
$\mathrm{V}_{\mathrm{D}}:=\frac{2 \cdot \mathrm{M}_{\mathrm{P}}}{\mathrm{d}_{\mathrm{C}}}+\frac{\mathrm{V}_{\mathrm{P}} \cdot \frac{\mathrm{v} 1}{2}}{\mathrm{~d}_{\mathrm{C}}}+\frac{4}{6} \mathrm{P}_{\text {max }}$
$\mathrm{V}_{\mathrm{D}}=5815 \mathrm{kN}$

Total shear force in coping at face of column during erection - Ultimate Limit State

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EU}}:=\mathrm{V}_{\mathrm{D}}+\mathrm{VCop}_{3} \\
& \mathrm{~V}_{\mathrm{EU}}=5816.9 \mathrm{kN}
\end{aligned}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{V}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=3015 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{S}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{S}}:=\left\lvert\, \begin{aligned}
& \mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{EU}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{S}}=5295 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
& 0 \mathrm{kN} \text { otherwise }
\end{aligned}\right.
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=24872.4 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array}\right.
\end{aligned}
$$

Provide $19 \mathrm{~mm} \phi$ shear links wth 4 legs across the section:

$$
\phi_{\text {link }}:=25 \mathrm{~mm}
$$

$$
\mathrm{A}_{\mathrm{v}}:=\pi \frac{\phi_{\operatorname{link}}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{v}}=1963 \mathrm{~mm}^{2}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\{\begin{array}{l}
\mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.0083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
\mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
\mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
\mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{array} \quad \mathrm{s}_{\mathrm{t}}=343 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{v}_{\mathrm{EU}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=2.506 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:

$$
\begin{aligned}
& s_{\max }:=\left\lvert\, \begin{array}{ll}
\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{C}} \\
\min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) & \text { otherwise }
\end{array}\right. \\
& \mathrm{s}_{\max }=600 \mathrm{~mm}
\end{aligned}
$$

Determine maximum required spacing of transverse reinforcement:
$s_{t}:=\left\lvert\, \begin{aligned} & s_{\text {max }} \text { if } s_{\text {max }} \leq s_{t} \\ & s_{t} \text { otherwise }\end{aligned}\right.$
$\mathrm{s}_{\mathrm{t}}=343 \mathrm{~mm}$

Design for Opening Moment and Closing Moment

$\mathrm{Mo}_{\mathrm{C}}:=\mathrm{M}_{\mathrm{P}}$	Plastic moment capacity
$\mathrm{Vo}_{\mathrm{col}}:=\mathrm{V}_{\mathrm{P}}$	Plastic hinge shear force
$\mathrm{h}_{\mathrm{b}}:=\mathrm{v} 1$	Depth of beam
$\mathrm{b}_{\mathrm{je}}:=\left(\mathrm{b}_{\mathrm{f}}-2 \cdot \mathrm{~h} 6\right)$	Effective beam width
$\mathrm{h}_{\mathrm{C}}:=\mathrm{D}$	Column width

Calculate Horizontal joint shear force and joint shear stress
Joint shear force
$\mathrm{V}_{\mathrm{jh}}:=\frac{\mathrm{Mo}_{\mathrm{C}}}{\mathrm{h}_{\mathrm{b}}}$
$\mathrm{V}_{\mathrm{jh}}=2028.6 \mathrm{kN}$

Joint shear stress
$\mathrm{v}_{\mathrm{j}}:=\frac{\mathrm{V}_{\mathrm{jh}}}{\mathrm{b}_{\mathrm{je}} \cdot \mathrm{h}_{\mathrm{c}}}$
$\mathrm{v}_{\mathrm{j}}=0.971 \mathrm{MPa}$

CONVENTIONAL CAP BEAM DESIGN
$\mathrm{P}_{\mathrm{C}}:=\max \left(\left|\mathrm{P}_{\max }\right|,\left|\mathrm{P}_{\min }\right|\right)$ Max axial force corresponding plastic hinge effect
$\mathrm{P}_{\mathrm{C}}=5542 \mathrm{kN}$
$\mathrm{P}_{\mathrm{b}}:=\mathrm{Vo}_{\mathrm{col}}$
The vertical and horizontal axial stress in the joint, allowing 45 degree spread into the cap beam , is

Vertical
$\mathrm{f}_{\mathrm{v}}:=\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{b}_{\mathrm{je}} \cdot\left(\mathrm{h}_{\mathrm{c}}+0.5 \cdot \mathrm{~h}_{\mathrm{b}}\right)}$
$\mathrm{f}_{\mathrm{V}}=1.183 \mathrm{MPa}$

Horizontal
$\mathrm{f}_{\mathrm{h}}:=\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{b}_{\mathrm{je}} \cdot \mathrm{h}_{\mathrm{b}}}$
$\mathrm{f}_{\mathrm{h}}=0.231 \mathrm{MPa}$

Detailed Design Study of North Java Corridor Flyover Project

BALARAJA FLYOVER
Coping Design

Principal nominal stress

Compresion
$\mathrm{p}_{\mathrm{C}}:=\frac{\mathrm{f}_{\mathrm{v}}+\mathrm{f}_{\mathrm{h}}}{2}+\sqrt{\left(\frac{\mathrm{f}_{\mathrm{v}}-\mathrm{f}_{\mathrm{h}}}{2}\right)^{2}+\mathrm{v}_{\mathrm{j}}{ }^{2}}$
$\mathrm{p}_{\mathrm{C}}=1.788 \mathrm{MPa}$

Tension
$\mathrm{p}_{\mathrm{t}}:=\frac{\mathrm{f}_{\mathrm{v}}+\mathrm{f}_{\mathrm{h}}}{2}-\sqrt{\left(\frac{\mathrm{f}_{\mathrm{v}}-\mathrm{f}_{\mathrm{h}}}{2}\right)^{2}+\mathrm{v}_{\mathrm{j}}^{2}}$
$p_{t}=-0.374 \mathrm{MPa}$
$\left|\mathrm{p}_{\mathrm{t}}\right|=0.374 \mathrm{MPa}$

The joint principal compression stress recommended limited to

$$
\text { plimit }_{\mathrm{C}}:=0.3 \mathrm{f}_{\mathrm{C}}
$$

CHECK $_{1}:=\left\lvert\, \begin{aligned} & \text { "OK" if } \mathrm{p}_{\mathrm{C}} \leq \text { plimit }_{\mathrm{c}} \\ & \text { "DESIGN WELL-CONFINE JOINT" otherwise }\end{aligned} \quad\right.$ CHECK $_{1}=$ "OK"

The joint principal tension stress recommended limited to

$$
\begin{gathered}
\text { plimit }_{\mathrm{t}}:=0.29 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \\
\mathrm{CHECK}_{2}:=\left\lvert\, \begin{array}{l}
\text { "OK" if }\left|\mathrm{p}_{\mathrm{t}}\right| \leq \text { plimit }_{\mathrm{t}} \\
\text { "DESIGN WELL-CONFINE JOINT" otherwise }
\end{array} \quad \mathrm{CHECK}_{2}=\right.\text { "OK" }
\end{gathered}
$$

Conclution notes : If principal tension stress is less than plimit ${ }_{t}=1.588 \mathrm{MPa}$, no vertical joint reinforcement is needed, and only nominal tranverse hoop reinforcement is required.

Design for Joint Reinforcement

Closing moment

$$
\begin{array}{ll}
\mathrm{d}_{\mathrm{c}}:=60 \mathrm{~mm} & \text { Clear cover to longitudinal bar } \\
\mathrm{n}_{\mathrm{c}}:=24 & \text { Number of column longitudinal reinforcement } \\
\phi_{\mathrm{bar}}:=32 \mathrm{~mm} & \text { Bar diameter } \\
\mathrm{f}_{\mathrm{y}}=390 \mathrm{MPa} & \text { Joint reinforcement nominal yield } \\
\mathrm{f}_{\mathrm{ye}}:=1.1 \mathrm{f}_{\mathrm{y}} & \text { Steel design yield strength } \\
\mathrm{fo}_{\mathrm{yc}}:=1.4 \cdot \mathrm{f}_{\mathrm{y}} & \text { Steel yield overstress } \\
\mathrm{A}_{\mathrm{SC}}:=\mathrm{n}_{\mathrm{c}} \cdot \phi_{\mathrm{bar}}^{2} \cdot \frac{\pi}{4} & \text { Area of column reinforcement } \\
\mathrm{l}_{\mathrm{a}}:=2350 \mathrm{~mm} & \text { Main column reinforcement ajjacent to beam } \\
\mathrm{D}_{\mathrm{r}}:=\mathrm{D}-2 \cdot\left(\mathrm{~d}_{\mathrm{c}}+\frac{\phi_{\mathrm{b}}}{2}\right) & \\
\mathrm{f}_{\mathrm{sh}}:=0.0015 \cdot \mathrm{E}_{\mathrm{S}} &
\end{array}
$$

[^1]Volumetric ratio of tranverse hoop reinforcement for Low principal tension stress
$\rho_{\mathrm{s} 1}:=\frac{0.46 \cdot \mathrm{~A}_{\mathrm{sc}} \cdot \mathrm{fo}_{\mathrm{yc}}}{\mathrm{D}_{\mathrm{r}} \cdot \mathrm{l}_{\mathrm{a}} \cdot \mathrm{f}_{\mathrm{sh}}}$
$\rho_{\mathrm{S} 1}=0.0072536$
$\rho_{\mathrm{s}}:=\max \left(\rho_{\mathrm{s} 1}, \rho_{\mathrm{smin}}\right)$
Calculate hoops reinforcement
$\phi_{\mathrm{h}}:=19 \mathrm{~mm} \quad$ hoop reinforcement diameter
$\mathrm{A}_{\mathrm{h}}:=\frac{\pi \cdot \phi_{\mathrm{h}}{ }^{2}}{4}$
$\mathrm{s}:=\frac{4 \cdot \mathrm{~A}_{\mathrm{h}}}{\rho_{\mathrm{S}} \cdot \mathrm{D}_{\mathrm{r}}} \quad \mathrm{s}=164.928 \mathrm{~mm}$
Opening joint

Anchorage to column bars closest to the cap beam is provided by struts D_{1}, directed toward the column compression resultant C_{C}, nd D_{2} directed outward the column into the beam. The vertical component D_{2}, namely T_{s}, is provided by stirrups close to joint. Tranfers of this tension force to the top of the beam provides the neccesary force to incline the beam compression force C_{b} into major compression arch D_{3}. Horizontal component of D_{1} and D_{2} approximately balance each other, reducing the need for hoop reinforcement.
It is recommended that with this design, 50% of T_{c} (that portion closest to the inner face of the column) be tranferred by this mechanism. Allowing 50\% of this force to be tranferred into to the joint via D_{2}, the tension force T in external beam stirrups is $T_{s}=0.25 T_{c}$. Again, approximating $T_{c}=0.5 A_{s c} F o_{y c}$, the required amount of vertical beam stirrup reinforcement is

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{yv}}:=\mathrm{f}_{\mathrm{y}} \\
& \mathrm{~A}_{\mathrm{jv}}:=0.25 \cdot \mathrm{~A}_{\mathrm{sc}} \cdot \frac{\mathrm{fo}_{\mathrm{yc}}}{\mathrm{f}_{\mathrm{yv}}} \\
& \mathrm{~A}_{\mathrm{jv}}=6755.68 \mathrm{~mm}^{2}
\end{aligned}
$$

Amount vertical reinforcement $\mathrm{A}_{\mathrm{jv}}=6755.68 \mathrm{~mm}^{2}$ to be placed over a length not greater than $0.5 \cdot \mathrm{~h}_{\mathrm{b}}=1366 \mathrm{~mm}$ this is can provide :

$$
\begin{aligned}
& \phi_{\mathrm{V}}:=25 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\frac{\pi \cdot \phi_{\mathrm{v}}^{2}}{4} \\
& \mathrm{n}_{\mathrm{v}}:=\frac{\mathrm{A}_{\mathrm{jv}}}{\mathrm{~A}_{\mathrm{v}}} \\
& \mathrm{n}_{\mathrm{v}}=13.763
\end{aligned}
$$

This can be provided by 14 D25 in 7 layer of 2 stirrup leg each.
The strut D2 imposes additional tension force in the beam bottom flrxural reinforcement, as is apparent from equillibrium of force under D2 an Ts. Assuming the special vertical reinforcement to be place over length 0.5 hb from face of column as calculated above, the additional horizontal force to be resisted by the bottom beam reinforcement will be approximatelly). 5 Ts, the additionall area of beam bottom reinforcement required is thus

$$
\begin{aligned}
& \Delta \mathrm{A}_{\mathrm{sb}}:=0.0625 \mathrm{~A}_{\mathrm{sc}} \cdot \frac{\mathrm{fo}_{\mathrm{yc}}}{\mathrm{f}_{\mathrm{yb}}} \quad \text { where }: \quad \mathrm{f}_{\mathrm{yb}}:=\mathrm{f}_{\mathrm{y}} \\
& \Delta \mathrm{~A}_{\mathrm{sb}}=1688.9 \mathrm{~mm}^{2} \\
& \mathrm{n}_{\mathrm{sb}}:=\frac{\Delta \mathrm{A}_{\mathrm{sb}}}{\mathrm{~A}_{\mathrm{v}}} \\
& \mathrm{n}_{\mathrm{sb}}=3.441
\end{aligned}
$$

To provide assistance in bond tranfer on top reinforcement and to avoid the total beam tension force being tranferred across to the hook, it is recommended that vertical stirrups, inside the column core, be provided for a vertical resisttance equal to $0.5 \mathrm{~T}_{\mathrm{s} \text {. }}$ this requires an internal vertical joint stirrup area of:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{vi}}:=0.0625 \mathrm{~A}_{\mathrm{sc}} \cdot \frac{\mathrm{fo}_{\mathrm{yc}}}{\mathrm{f}_{\mathrm{yb}}} \\
& \mathrm{~A}_{\mathrm{vi}}=1689 \mathrm{~mm}^{2} \\
& \mathrm{n}_{\mathrm{vi}}:=\frac{\mathrm{A}_{\mathrm{vi}}}{\mathrm{~A}_{\mathrm{v}}} \\
& \mathrm{n}_{\mathrm{vi}}=3.441
\end{aligned}
$$

Design of Cantilever Slab

Equivalent Width of Deck Overhang (AASHTO LRFD Table 4.6.2.1.3-1)

Width of coping slab at support:

$$
\mathrm{b}:=\mathrm{b}_{\mathrm{f}}-2 \cdot \mathrm{~h} 5 \quad \mathrm{~b}=1400 \mathrm{~mm}
$$

Distance from outermost load to point of support:

$$
X:=(h 4-300 \mathrm{~mm}-350 \mathrm{~mm}) \quad X=1510 \mathrm{~mm}
$$

Equivalent width of deck overhang:

$$
\mathrm{b}_{\mathrm{ew}}:=\left\lvert\, \begin{aligned}
& \mathrm{b}_{\mathrm{ew}} \leftarrow 570 \mathrm{~mm}+0.416 \cdot \mathrm{X} \quad \mathrm{~b}_{\mathrm{ew}}=1198 \mathrm{~mm} \\
& \mathrm{~b}_{\mathrm{ew}} \text { if } \mathrm{b}_{\mathrm{ew}} \leq \mathrm{b} \\
& \mathrm{~b} \text { otherwise }
\end{aligned}\right.
$$

Check Deflection of Cantilever Slab (AASHTO LRFD Article 2.5.2.6.2)

Depth of cantilever slab in main deck section at support:

$$
\mathrm{h}_{\mathrm{ds}}:=450 \mathrm{~mm}
$$

Span length of cantilever slab in main deck section:

$$
\mathrm{l}_{\mathrm{ds}}:=2645 \mathrm{~mm}
$$

Depth of deck overhang at support to match main deck outline:

$$
\mathrm{h}_{\mathrm{cs} 1}:=\left(\mathrm{h}_{\mathrm{ds}}-250 \mathrm{~mm}\right) \cdot \frac{\mathrm{h} 4}{\mathrm{l}_{\mathrm{ds}}}+250 \mathrm{~mm}
$$

$$
\mathrm{h}_{\mathrm{cs} 1}=413 \mathrm{~mm}
$$

Depth of deck overhang at outermost load point:

$$
\mathrm{h}_{\mathrm{cs} 2}:=\left(\mathrm{h}_{\mathrm{ds}}-250 \mathrm{~mm}\right) \cdot \frac{350 \mathrm{~mm}+300 \mathrm{~mm}}{\mathrm{l}_{\mathrm{ds}}}+250 \mathrm{~mm} \quad \mathrm{~h}_{\mathrm{cs} 2}=299 \mathrm{~mm}
$$

Depth of deck overhang at innermost load point:

$$
\mathrm{h}_{\mathrm{cs} 3}:=\left\{\begin{array}{l}
\mathrm{h}_{\mathrm{cs} 3} \leftarrow\left(\mathrm{~h}_{\mathrm{ds}}-250 \mathrm{~mm}\right) \cdot \frac{350 \mathrm{~mm}+300 \mathrm{~mm}+1750 \mathrm{~mm}}{\mathrm{l}_{\mathrm{ds}}}+250 \mathrm{~mm} \\
\mathrm{~h}_{\mathrm{cs} 3} \text { if } \mathrm{h}_{\mathrm{cs} 3} \leq \mathrm{h}_{\mathrm{cs} 1} \\
\mathrm{~h}_{\mathrm{cs} 1} \text { otherwise } \quad \\
\mathrm{h}_{\mathrm{cs} 3}=413 \mathrm{~mm}
\end{array}\right.
$$

Distance from innermost load to point of support:

$$
X 3:=\left\lvert\, \begin{aligned}
& X 3 \leftarrow h 4-300 \mathrm{~mm}-350 \mathrm{~mm}-1750 \mathrm{~mm} \\
& \text { X3 if X3 }>0 \\
& 0 \mathrm{~m} \text { otherwise }
\end{aligned} \quad \mathrm{X} 3=0 \mathrm{~mm}\right.
$$

Moment of inertia of equivalent width of deck overhang assuming cracked section:

$$
\begin{array}{ll}
\text { at support } & \mathrm{I}_{\mathrm{ew} 1}:=40 \cdot \% \cdot \frac{\mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~h}_{\mathrm{cs} 1} 3^{3}}{12} \\
\text { at outer load point } & \mathrm{I}_{\mathrm{ew} 2}:=40 \cdot \% \cdot \frac{\mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~h}_{\mathrm{cs} 2}{ }^{3}}{12}
\end{array}
$$

$$
\text { at innermost load point } \mathrm{I}_{\mathrm{ew} 3}:=40 \cdot \% \cdot \frac{\mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~h}_{\mathrm{cs} 3}{ }^{3}}{12}
$$

The deflection under the applied wheel loads is then given by (increaseed by 30% to account for dynamic loading):

$$
\delta_{\mathrm{T}}:=\frac{112.5 \cdot \mathrm{kN} \cdot 130 \%}{\mathrm{E}_{\mathrm{C}}} \cdot\left[\int_{0}^{\mathrm{X}}\left[\frac{x^{2}}{\mathrm{I}_{\mathrm{ew} 2}+\left(\mathrm{I}_{\mathrm{ew} 1}-\mathrm{I}_{\mathrm{ew} 2}\right) \cdot \frac{x}{X}}\right] d x+\int_{0}^{\mathrm{X} 3}\left[\frac{x^{2}}{I_{e w 3}+\left(I_{e w 1}-I_{e w 3}\right) \cdot \frac{x}{X 3}}\right] d x\right]
$$

$\delta_{\mathrm{T}}=2.61 \mathrm{~mm}$
Check that the deflection does not exceed the limit for vehicular load on cantilever arms:

DEFLECTION ${ }_{\text {CHECK }}=$ "OK"

Design for Flexure (AASHTO LRFD Section 5.7)

Nominal bending moment in slab at support
Coping self weight - cantilever wings:

$$
\begin{array}{ll}
\mathrm{w}_{\mathrm{CW}}:=\frac{0.25 \mathrm{~m}+0.45 \mathrm{~m}}{2} \cdot\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2\right) 24.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} & \mathrm{w}_{\mathrm{CW}}=12.0 \frac{\mathrm{kN}}{\mathrm{~m}} \\
\mathrm{M}_{\mathrm{cW}}:=\mathrm{w}_{\mathrm{CW}} \cdot \frac{\mathrm{~h} 4^{2}}{2} & \mathrm{M}_{\mathrm{CW}}=28.0 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Railing dead load - each side:

$$
\mathrm{W}_{\mathrm{r}}:=\frac{0.433}{2} \mathrm{~m}^{2} \cdot\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2\right) 24.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \quad \mathrm{~W}_{\mathrm{r}}=7.4 \mathrm{kN}
$$

Railing weight

$$
\mathrm{M}_{\mathrm{r}}:=\mathrm{W}_{\mathrm{r}} \cdot(\mathrm{~h} 4+0.15 \mathrm{~m}-0.25 \mathrm{~m})
$$

$\mathrm{M}_{\mathrm{r}}=15.3 \mathrm{kN} \cdot \mathrm{m}$

Superimposed dead load on coping

$$
\mathrm{w}_{\mathrm{sdl}}:=0.125 \mathrm{~m} \cdot\left(\mathrm{~b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2\right) 22.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \quad \mathrm{w}_{\mathrm{sdl}}=3.9 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

$$
\mathrm{M}_{\mathrm{sdl}}:=\mathrm{w}_{\mathrm{sdl}} \frac{(\mathrm{~h} 4-350 \mathrm{~mm})^{2}}{2}
$$

$$
\mathrm{M}_{\mathrm{sdl}}=6.4 \mathrm{kN} \cdot \mathrm{~m}
$$

T live load on coping

$$
M_{t}:=112.5 \cdot \mathrm{kN} \cdot(\mathrm{X}+\mathrm{X} 3)
$$

$$
\mathrm{M}_{\mathrm{t}}=169.9 \mathrm{kN} \cdot \mathrm{~m}
$$

Total bending moment in slab at face of support - Ultimate Limit State

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{SU}}:=\left(\mathrm{M}_{\mathrm{CW}}+\mathrm{M}_{\mathrm{r}}\right) \cdot 1.3+\mathrm{M}_{\mathrm{sdl}} \cdot 2.0+\left(\mathrm{M}_{\mathrm{t}} \cdot 1.3\right) \cdot 1.8 \\
& \mathrm{M}_{\mathrm{SU}}=466.7 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Depth of section:

$$
\mathrm{h}_{\mathrm{cs}}:=\mathrm{h}_{\mathrm{cs} 1}
$$

$$
\mathrm{h}_{\mathrm{cs}}=413 \mathrm{~mm}
$$

Effective depth of slab:

$$
\mathrm{d}_{\mathrm{e}}:=\left(\mathrm{h}_{\mathrm{cs}}-90 \mathrm{~mm}\right) \quad \mathrm{d}_{\mathrm{e}}=323 \mathrm{~mm}
$$

Effective width of coping slab at support:

$$
\mathrm{b}_{\mathrm{ew}}=1198 \mathrm{~mm}
$$

Strength reduction factor for flexure: $\quad \Phi=0.8$

Determine area of reinforcement, A_{f}, in the coping to resist flexure (ref AASHTO LFRD Article 5.7.3.2.3 - see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{SU}}}{\Phi \cdot \mathrm{~b}_{\mathrm{ew}} \cdot \mathrm{~d}_{\mathrm{e}}^{2} \cdot \mathrm{f}_{\mathrm{y}}} \mathrm{R}=0.0119 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{C}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.013294 \\
\mathrm{~A}_{\mathrm{f}}:=\rho \cdot \mathrm{d}_{\mathrm{e}} \cdot \mathrm{~b} & \mathrm{~b}=1400 \mathrm{~mm} \\
\mathrm{~A}_{\mathrm{f}}=6017.5 \mathrm{~mm}^{2} &
\end{array}
$$

Using $32 \mathrm{~mm} \phi$ bars gives total number of bars to be distributed across the coping:

$$
\mathrm{n}_{\mathrm{bf}}:=\frac{\mathrm{A}_{\mathrm{f}}}{804 \cdot \mathrm{~mm}^{2}} \quad \mathrm{n}_{\mathrm{bf}}=7.5
$$

Provide 10 No $32 \mathrm{~mm} \phi$ bars

$$
\mathrm{n}_{\text {bars }}:=10 \quad \mathrm{~A}_{\mathrm{f}}:=\mathrm{n}_{\text {bars }} \cdot 804 \cdot \mathrm{~mm}^{2} \quad \mathrm{~A}_{\mathrm{f}}=8040 \mathrm{~mm}^{2}
$$

Calculate the stress block factor, β_{1} :

$$
\begin{aligned}
& \beta_{1}:=\left\lvert\, \begin{array}{l}
\beta_{1} \leftarrow 0.85 \\
\beta_{1} \leftarrow \beta_{1}-0.05 \cdot \frac{\mathrm{f}_{\mathrm{c}}-28 \mathrm{MPa}}{7 . \mathrm{MPa}} \text { if } \mathrm{f}_{\mathrm{C}}>28 \mathrm{MPa} \\
0.65 \text { if } \beta_{1}<0.65
\end{array}\right. \\
& \beta_{1}=0.836
\end{aligned}
$$

For rectangular sections, the depth of concrete in compression, c , is given by:

$$
\mathrm{c}:=\frac{\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \beta_{1} \cdot \mathrm{~b}} \quad \mathrm{c}=105 \mathrm{~mm}
$$

Check that the required amount of reinforcement does not exceed the maximum allowed by the code:

$$
\begin{aligned}
& \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}}=0.33 \\
& \text { Max }_{\text {Limit }}:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{e}}} \leq 0.42 \\
\text { "EXCEEDED" } & \text { otherwise }
\end{array} \quad\right. \text { Max }_{\text {Limit }}=\text { "OK" }
\end{aligned}
$$

Calculate the modulus of rupture, f_{r}, of the concrete:

$$
\mathrm{f}_{\mathrm{r}}:=0.63 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \quad \mathrm{f}_{\mathrm{r}}=3.451 \mathrm{MPa}
$$

Section modulus for the extreme fiber of the section, assuming rectangular section of width b :

$$
\mathrm{S}_{\mathrm{C}}:=\frac{\mathrm{b} \cdot \mathrm{~h}_{\mathrm{cs}}^{2}}{6} \quad \mathrm{~S}_{\mathrm{C}}=0.04 \mathrm{~m}^{3}
$$

The cracking moment, M_{cr}, is the given by:

$$
\mathrm{M}_{\mathrm{cr}}:=\mathrm{S}_{\mathrm{c}} \cdot \mathrm{f}_{\mathrm{r}}
$$

$$
\mathrm{M}_{\mathrm{cr}}=138 \mathrm{kN} \cdot \mathrm{~m}
$$

Check that the reinforcement can develop a resistance moment Mr at least equal to the lesser of:

- $\quad 1.2$ times the cracking momen Mcr
- 1.33 times the factored moment required by the applicable strength load combination

$$
\text { Minimum }_{\text {Steel }}:=\left\{\begin{array}{l}
\mathrm{M}_{\mathrm{r}} \leftarrow \frac{\mathrm{M}_{\mathrm{SU}}}{\Phi} \\
\mathrm{M} \leftarrow \min \left(1.2 \mathrm{M}_{\mathrm{Cr}}, 1.33 \cdot \mathrm{M}_{\mathrm{EU}}\right) \\
\text { "OK" if } \mathrm{M}_{\mathrm{r}} \geq \mathrm{M} \\
\text { "NOT SATISFIED" otherwise }
\end{array} \quad \text { Minimum }_{\text {Steel }}=\right.\text { "OK" }
$$

CHECK STRESSES AT SLS (AASHTO LRFD Article 5.7.3.4)

The depth of concrete in compression, C, at the serviceability limit state, assuming one level of rebar, is given by:

$$
C:=\frac{\sqrt{A_{f}^{2}+\frac{2 \cdot b \cdot A_{f} \cdot d_{e}}{\alpha}}-A_{f}}{b} \cdot \alpha \quad C=128 \mathrm{~mm}
$$

Calculate lever arm, z:

$$
\mathrm{z}:=\mathrm{d}_{\mathrm{e}}-\frac{\mathrm{C}}{3} \quad \mathrm{z}=281 \mathrm{~mm}
$$

Total bending moment in slab at face of support - Service Limit State

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{SS}}:=\left(\mathrm{M}_{\mathrm{CW}}+\mathrm{M}_{\mathrm{r}}\right) \cdot 1.0+\mathrm{M}_{\mathrm{Sdl}} \cdot 1.0+\left(\mathrm{M}_{\mathrm{t}} \cdot 1.3\right) \cdot 1.0 \\
& \mathrm{M}_{\mathrm{SS}}=270.6 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Calculate the maximum stress in the reinforcement at SLS:

$$
\mathrm{f}_{\mathrm{S}}:=\frac{\mathrm{M}_{\mathrm{SS}}}{\mathrm{~A}_{\mathrm{f}} \mathrm{z}} \quad \mathrm{f}_{\mathrm{S}}=120 \mathrm{MPa}
$$

Check that stress in reinforcement does not exceed limit, $f_{\text {sa }}$:

Crack width parameter
Depth of concrete from
extreme tensile fiber to center of bar
Area of concrete with same centoid per bar

$$
\mathrm{f}_{\mathrm{sa}}:=\left\lvert\, \begin{aligned}
& \mathrm{f}_{\mathrm{sa}} \leftarrow \frac{\mathrm{Z}}{\frac{1}{\frac{1}{3}}} \\
& \left(\mathrm{~d}_{\mathrm{c}} \cdot \mathrm{~A}\right)^{3} \\
& \mathrm{f}_{\mathrm{sa}} \quad \text { if } \mathrm{f}_{\mathrm{sa}}<170 \mathrm{MPa} \\
& 170 \cdot \mathrm{MPa} \text { otherwise }
\end{aligned}\right.
$$

Calculate forces in section to check calculation result:
Total force in rebar Stress in concrete

$$
\mathrm{T}_{\mathrm{S}}:=\left(\mathrm{A}_{\mathrm{f}}\right) \cdot \mathrm{f}_{\mathrm{S}} \quad \mathrm{~T}_{\mathrm{S}}=964 \mathrm{kN} \quad \mathrm{f}_{\mathrm{SC}}:=\mathrm{f}_{\mathrm{s}} \cdot \frac{\mathrm{C}}{\mathrm{~d}_{\mathrm{e}}-\mathrm{C}} \cdot \frac{1}{\alpha} \quad \mathrm{f}_{\mathrm{SC}}=10.8 \mathrm{MPa}
$$

Force in concrete

$$
\mathrm{C}_{\mathrm{C}}:=\mathrm{f}_{\mathrm{sC}} \cdot \frac{\mathrm{~b} \cdot \mathrm{C}}{2} \quad \mathrm{C}_{\mathrm{C}}=964 \mathrm{kN}
$$

Design for Shear (AASHTO LRFD Section 5.8)

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{Cs}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{CS}} \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=298 \mathrm{~mm}
\end{aligned}
$$

Shear in coping slab at critical section due to loads applied on coping body

Coping cantilever self weight	$\mathrm{V}_{\mathrm{CW}}:=\mathrm{w}_{\mathrm{CW}} \cdot\left(\mathrm{h} 4-\mathrm{d}_{\mathrm{v}}\right)$	$\mathrm{V}_{\mathrm{CW}}=22.4 \mathrm{kN}$
Railing weight	$\mathrm{V}_{\mathrm{r}}:=\mathrm{W}_{\mathrm{r}}$	$\mathrm{V}_{\mathrm{r}}=7.4 \mathrm{kN}$
Superimposed dead load on coping	$\mathrm{V}_{\mathrm{sdl}}:=\mathrm{w}_{\mathrm{sdl}} \cdot\left(\mathrm{h} 4-600 \mathrm{~mm}-\mathrm{d}_{\mathrm{v}}\right)$	$\mathrm{V}_{\mathrm{sdl}}=5.0 \mathrm{kN}$
T live load on coping	$\mathrm{V}_{\mathrm{t}}:=112.5 \cdot \mathrm{kN}$	$\mathrm{V}_{\mathrm{t}}=112.5 \mathrm{kN}$

Total shear force in coping slab at face of support - Ultimate Limit State

Shear from loads on coping body

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{SU}}:=\left(\mathrm{V}_{\mathrm{CW}}+\mathrm{V}_{\mathrm{r}}\right) \cdot 1.3+\mathrm{V}_{\mathrm{sdl}} \cdot 2.0+\left(\mathrm{V}_{\mathrm{t}} \cdot 1.4\right) \cdot 1.8 \\
& \mathrm{~V}_{\mathrm{SU}}=332.2 \mathrm{kN}
\end{aligned}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{V}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=379 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{S}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{S}}:=\left\lvert\, \begin{aligned}
& \mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{SU}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{S}}=96 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
& 0 \mathrm{kN} \text { otherwise }
\end{aligned}\right.
$$

Check that total required nominal shear resistance does not exceed limit:

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=0.25 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \quad \mathrm{~V}_{\text {nlimit }}=3124.8 \mathrm{kN} \\
& \text { CHECK }:=\left\lvert\, \begin{array}{ll}
\text { "OK" if } \mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{s}} \leq \mathrm{V}_{\text {nlimit }} \\
\text { "FAIL" otherwise }
\end{array} \quad\right. \text { CHECK }=\text { "OK" }
\end{aligned}
$$

Provide $13 \mathrm{~mm} \phi$ shear links with 4 legs across the section

$$
\begin{aligned}
& \phi_{\text {link }}:=13 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{v}}=531 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t}}:=\left\{\begin{array}{l}
\mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.0083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
\mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
\mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
\mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{array} \quad \mathrm{s}_{\mathrm{t}}=644 \mathrm{~mm}\right.
$$

Calculate shear stress in order to determine maximum spacing of transverse reinforcement to resist shear:

$$
\mathrm{v}_{\mathrm{u}}:=\frac{\mathrm{V}_{\mathrm{SU}}}{\Phi_{\mathrm{s}} \cdot\left(\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}}\right)} \quad \mathrm{v}_{\mathrm{u}}=1.139 \mathrm{MPa}
$$

Calculate spacing taking into account maximum spacing requirements:
$\mathrm{s}_{\text {max }}:=\left\lvert\, \begin{array}{ll}\min \left(600 \mathrm{~mm}, 0.8 \mathrm{~d}_{\mathrm{v}}\right) & \text { if } \mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{C}} \\ \min \left(300 \mathrm{~mm}, 0.4 \mathrm{~d}_{\mathrm{v}}\right) & \text { otherwise }\end{array}\right.$
$\mathrm{s}_{\text {max }}=238 \mathrm{~mm}$
Determine maximum required spacing of transverse reinforcement:
$s_{t}:=\left\lvert\, \begin{aligned} & s_{\text {max }} \text { if } s_{\text {max }} \leq s_{t} \\ & s_{t} \text { otherwise }\end{aligned}\right.$

$$
\mathrm{s}_{\mathrm{t}}=238 \mathrm{~mm}
$$

Provide 13mm ϕ links at 150c/c

Beam Ledge/Corbel Design AASHTO LRFD Article 5.13.2.5

General, Article 5.13.2.5.1

As illustrated below, beam ledges shall resist:

- Flexure, shear and horizontal forces at the loaction of Crack 1;
- Tension force in the supporting element at the location of Crack 2;
- Punching shear at points of loading at the location of Crack 3; and
- Bearing forces at the location of Crack 4

Design for Shear, Article 5.13.2.5.2

Design of beam ledges for shear shall be in accordance with the requirements of shear friction in Article 5.8.4.

The width of the concrete face assumed to participate shall not exceed the width ilustrated below:

Edge distance of bearing

$$
\mathrm{C}:=\mathrm{h} 2
$$

Depth of beam ledge
Effective depth
Width of the interface
Area of concrete resisting shear transfer

$$
\mathrm{h}:=\mathrm{v} 3
$$

$$
\mathrm{d}_{\mathrm{e}}:=\mathrm{h}-65 \mathrm{~mm}
$$

$$
\mathrm{d}_{\mathrm{e}}=1135 \mathrm{~mm}
$$

Loads on Ledge

PC Deck Dead Load Reaction - max at the bearing - ULS Comb1

$$
\mathrm{V} 2_{\mathrm{upc}}:=\left|\frac{\mathrm{V}_{\mathrm{u}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{u}_{2}}\right|}{\mathrm{h} 1_{\mathrm{c}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{upc}}=3512.7 \mathrm{kN}
$$

Steel Deck Dead Load Reaction - max at the bearing - ULS Comb1

$$
\mathrm{V} 2_{\mathrm{ust}}:=\left|\frac{\mathrm{V}_{\mathrm{u}_{3}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{u}_{3}}\right|}{\mathrm{h} 1_{\mathrm{s}} \cdot 2} \quad \mathrm{~V} 2_{\mathrm{ust}}=3232.7 \mathrm{kN}
$$

Ultimate shear force in coping from max bearing reactions at face of column:
PC deck reaction

$$
\mathrm{V}_{\mathrm{upc}}:=\mathrm{V} 2_{\mathrm{upc}}
$$

$$
\mathrm{V}_{\mathrm{upc}}=3512.7 \mathrm{kN}
$$

Steel deck reaction

$$
\mathrm{V}_{\mathrm{ust}}:=\mathrm{V} 2_{\mathrm{ust}}
$$

$$
\mathrm{V}_{\mathrm{ust}}=3232.7 \mathrm{kN}
$$

Maximum design shear force

$$
\mathrm{V}_{\mathrm{u}}:=\max \left(\mathrm{V}_{\mathrm{upc}}, \mathrm{~V}_{\mathrm{ust}}\right) \quad \mathrm{V}_{\mathrm{u}}=3513 \mathrm{kN}
$$

Calculate limiting nominal shear strength

$$
\begin{aligned}
& \mathrm{V}_{\text {nlimit }}:=\left\lvert\, \begin{array}{l}
0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}} \text { if } 0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}}<5.5 \cdot \frac{\mathrm{~A}_{\mathrm{CV}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \\
5.5 \cdot \frac{\mathrm{~A}_{\mathrm{CV}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \text { otherwise }
\end{array}\right. \\
& \mathrm{V}_{\text {nlimit }}=9988 \mathrm{kN}
\end{aligned}
$$

Calculate required nominal shear strength and check beam ledge depth

$$
\mathrm{V}_{\mathrm{n}}:=\frac{\mathrm{V}_{\mathrm{u}}}{\Phi_{\mathrm{s}}} \quad \mathrm{~V}_{\mathrm{n}}=5018.2 \mathrm{kN}
$$

$$
\text { Beam }_{\text {Ledge }}:=\left\lvert\, \begin{aligned}
& \text { "OK" if } \mathrm{V}_{\mathrm{n}} \leq \mathrm{V}_{\text {nlimit }} \\
& \text { "INADEQUATE" otherwise }
\end{aligned} \quad\right. \text { Beam }_{\text {Ledge }}=\text { "OK" }
$$

Calculate shear friction reinforcement, $A_{\text {vf }}$

Cohesion and friction values for monolithically cast concrete

$$
\mathrm{c}:=1.0 \mathrm{MPa} \quad \lambda:=1.00 \quad \mu:=1.4 \cdot \lambda
$$

Shear reinforcement is then given by:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{vf}}:=\left\{\begin{array}{l}
\mathrm{A}_{\mathrm{vf} 1} \leftarrow \frac{\mathrm{~V}_{\mathrm{n}}-\mathrm{c} \cdot \mathrm{~A}_{\mathrm{cv}}}{\mathrm{f}_{\mathrm{y}} \cdot \mu} \\
\mathrm{~A}_{\mathrm{vf} 2} \leftarrow 0.35 \cdot \frac{\mathrm{~b}_{\mathrm{v}}}{\mathrm{~mm}} \cdot \frac{\mathrm{MPa}}{\mathrm{f}_{\mathrm{y}}} \cdot \mathrm{~mm}^{2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 1} \text { if } \mathrm{A}_{\mathrm{vf} 1}>\mathrm{A}_{\mathrm{vf} 2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 2} \text { if } \mathrm{A}_{\mathrm{vf} 2}>\mathrm{A}_{\mathrm{vf} 1} \\
0 \text { if } \frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{cv}}}<0.7 \mathrm{MPa}
\end{array}\right. \\
& \frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{cv}}}=2.763 \mathrm{MPa}
\end{aligned}
$$

Design for Flexure and Horizontal Force, Article 5.13.2.5.3

The area of total primary tension reinforcement shall satisfy the requirements of Article 5.13.2.4.2.
The primary tension reinforcement shall be spaced uniformly with the region 2C.
The section at the face of the support shall be designed to resist simultaneously a factored shear force V_{u}, a factored moment M_{u} and a concurrent factored horizontal tensile force N_{uc}.
$N_{u c}$ shall not be taken to be less than $0.2 V_{u}$ and shall be regarded as a live load, even where it results from creep, shrinkage or temperature change.

These provisions apply to beam ledges:

- with a shear span-to-depth ratio $\mathrm{av} / \mathrm{d}_{\mathrm{e}}$ not greater than unity
- subject to a horizontal tensile force Nuc not larger than Vu

The depth at outside edge of bearing shall not be less than 0.5 de , where d_{e} is effective depth.

Horizontal tensile force	$\mathrm{N}_{\mathrm{uc}}:=0.2 \cdot \mathrm{~V}_{\mathrm{u}}$	$\mathrm{N}_{\mathrm{uc}}=702.5 \mathrm{kN}$
Shear span	$\mathrm{a}_{\mathrm{v}}:=\frac{\mathrm{h} 5}{2} \quad \mathrm{a}_{\mathrm{v}}=600 \mathrm{~mm}$	
Design Moment	$\mathrm{M}_{\mathrm{u}}:=\mathrm{V}_{\mathrm{u}} \cdot \mathrm{a}_{\mathrm{v}}+\mathrm{N}_{\mathrm{uc}} \cdot\left(\mathrm{h}-\mathrm{d}_{\mathrm{e}}\right)$	$\mathrm{M}_{\mathrm{u}}=2153.3 \mathrm{kN} \cdot \mathrm{m}$

Design the primary tensile force reinforcement A_{s} :

Strength reduction factor for bending $\quad \Phi=0.8$
Width of section $\quad b:=2 \cdot C \quad b=1600 \mathrm{~mm}$
Determine area of primary reinforcement, A_{s}, to resist flexure (ref AASHTO LFRD Article 5.7.3.2.3-see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{u}}}{\Phi \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}^{2} \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{R}=0.0033 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{C}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.003439 \\
\mathrm{~A}_{\mathrm{s}}:=\rho \cdot \mathrm{b} \cdot \mathrm{~d}_{\mathrm{e}} & \mathrm{~A}_{\mathrm{S}}=6244.9 \mathrm{~mm}^{2}
\end{array}
$$

Design the tensile force reinforcement A_{n} :

$$
\mathrm{A}_{\mathrm{n}}:=\frac{\mathrm{N}_{\mathrm{uc}}}{\Phi \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{~A}_{\mathrm{n}}=2252 \mathrm{~mm}^{2}
$$

Check that the Area of Primary Reinforcement, A_{s}, satisfies code requirements:

$$
A_{S}=6245 \mathrm{~mm}^{2}
$$

$$
\mathrm{A}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s}}}{\mathrm{~b}} \quad \mathrm{~A}_{\mathrm{s}}=3903 \frac{\mathrm{~mm}^{2}}{\mathrm{~m}} \quad \mathrm{~A}_{\mathrm{s}}=3.903 \frac{\mathrm{~mm}^{2}}{\mathrm{~mm}}
$$

check area of steel required

$$
\rho_{\text {REQUIRED }}:=\frac{\mathrm{A}_{\mathrm{s}} \cdot \mathrm{~m}}{\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}} \cdot 100 \quad \rho_{\text {REQUIRED }}=0.21 \quad \text { PERCENT }
$$

Determine area of closed stirrups or ties, Ah:

$$
\mathrm{A}_{\mathrm{h}}:=0.5 \cdot\left(\mathrm{~A}_{\mathrm{s}} \cdot \mathrm{~b}-\mathrm{A}_{\mathrm{n}}\right) \quad \mathrm{A}_{\mathrm{h}}=1997 \mathrm{~mm}^{2}
$$

This reinforcement shall be uniformly distributed within two-thirds of the effective depth of the beam ledge adjacent to As.

Anchorage of primary reinforcement:

At the front face of the beam ledge, the primary tension reinforcement, As, shall be anchored by one of the following:
a) a structural weld to a transverse bar of at least equal size; weld to be designed to develop specified yield strength fy of As bars
b) bending primary tension bars As back to form a horizontal loop
c) some other means of positive anchorage

The bearing area of load on the bracket or corbel shall not project beyond interior face of transverse anchor bar (if one is provided).

$$
\begin{aligned}
& A_{s}:=\left\lvert\, \begin{array}{l}
A_{s} \text { if } A_{s}>\frac{2}{3} \cdot A_{v f}+A_{n} \\
\frac{2}{3} \cdot A_{v f}+A_{n} \text { otherwise }
\end{array}\right. \\
& A_{s}:=\left\{\begin{array}{l}
0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \text { if } A_{s}<0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \\
A_{S} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Design for Punching Shear, Article 5.13.2.5.4

The truncated pyramids assumed as failure surfaces for punching shear, as illustrated below, shall not overlap.

Applied ultimate reaction
$\mathrm{V}_{\mathrm{u}}=3513 \mathrm{kN}$
Width of bearing
$\mathrm{L}=800 \mathrm{~mm}$
Length of bearing $\quad \mathrm{W}=800 \mathrm{~mm}$
Effective depth
$\mathrm{d}_{\mathrm{e}}=1135 \mathrm{~mm}$
Bearing pad spacing

$$
\mathrm{S}:=\min \left(\mathrm{h} 1_{\mathrm{C}}, \mathrm{~h} 1_{\mathrm{S}}\right) \cdot 2 \quad \mathrm{~S}=6150 \mathrm{~mm}
$$

Nominal punching shear resistance, V_{n}, shall be taken as:

- At interior pads, or exterior pads, where the end distance C is greater than half the pad spacing S/2:

$$
\mathrm{V}_{\mathrm{n} 1}:=0.328 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot\left(\mathrm{~W}+2 \cdot \mathrm{~L}+2 \cdot \mathrm{~d}_{\mathrm{e}}\right) \cdot \mathrm{d}_{\mathrm{e}} \quad \quad \mathrm{~V}_{\mathrm{n} 1}=9522 \mathrm{kN}
$$

- At exterior pads where the end distance C is less than half the pad spacing $\mathrm{S} / 2$ and $\mathrm{C}-0.5 \mathrm{~W}$ is less than d_{e} :

$$
\mathrm{V}_{\mathrm{n} 2}:=0.328 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot\left(\mathrm{~W}+\mathrm{L}+\mathrm{d}_{\mathrm{e}}\right) \cdot \mathrm{d}_{\mathrm{e}} \quad \mathrm{~V}_{\mathrm{n} 2}=5577 \mathrm{kN}
$$

- At exterior pads where the end distance C is less than half the pad spacing $\mathrm{S} / 2$ but $\mathrm{C}-0.5 \mathrm{~W}$ is greater than d_{e} :

$$
\mathrm{V}_{\mathrm{n} 3}:=0.328 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot\left(0.5 \mathrm{~W}+\mathrm{L}+\mathrm{d}_{\mathrm{e}}+\mathrm{C}\right) \cdot \mathrm{d}_{\mathrm{e}} \quad \mathrm{~V}_{\mathrm{n} 3}=6392 \mathrm{kN}
$$

Determine the nominal punching resistance:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}}:=\left\lvert\, \begin{array}{l}
\mathrm{V}_{\mathrm{n} 1} \text { if } \mathrm{C} \geq \frac{\mathrm{s}}{2} \\
\mathrm{~V}_{\mathrm{n} 2} \text { if }\left(\mathrm{C}<\frac{\mathrm{S}}{2}\right) \cdot\left[(\mathrm{C}-0.5 \cdot \mathrm{~W}) \leq \mathrm{d}_{\mathrm{e}}\right] \\
\mathrm{V}_{\mathrm{n} 3} \text { otherwise }
\end{array}\right. \\
& \mathrm{V}_{\mathrm{n}}=5577 \mathrm{kN}
\end{aligned}
$$

Check that the nominal punching resistance is adequate:

$$
\begin{aligned}
& \text { PunchingShear }_{\text {CHECK }}:=\left\lvert\, \begin{array}{l}
\text { "SATISFIED" if } \mathrm{V}_{\mathrm{n}} \cdot \Phi_{\mathrm{s}} \geq \mathrm{V}_{\mathrm{u}} \\
\text { "FAIL" otherwise }
\end{array}\right. \\
& \text { PunchingShear }_{\text {CHECK }}=\text { "SATISFIED" }
\end{aligned}
$$

Check Torsional Requirements (AASHTO LRFD Section 5.8)

Check the torsional moment requirements of the beam ledge assuming the bearings (on the steel deck side) are fully loaded and the opposite bearings (on the PC deck side) are loaded only with permanent load:
PC Deck Dead Load Reaction - max at the bearing

$$
\begin{aligned}
& \mathrm{V} 2_{\mathrm{pc}}:=\left|\frac{\mathrm{V}_{\mathrm{dl}_{2}}}{2}\right|+\frac{\mid \mathrm{T}_{\mathrm{dl}_{2} \mid}}{\mathrm{h} 1_{\mathrm{c}} \cdot 2} \\
& \mathrm{~V}_{\mathrm{pc}}=752.9 \mathrm{kN}
\end{aligned}
$$

Superimposed Dead Load PC Deck Reaction - max at the bearing

$$
\begin{aligned}
& \mathrm{V} 2_{\mathrm{st}}:=\left|\frac{\mathrm{V}_{2} \mathrm{dl}_{3}}{2}\right|+\frac{\mid \mathrm{T}_{\mathrm{dl}_{3} \mid}}{\mathrm{h} 1_{\mathrm{s}} \cdot 2} \\
& \mathrm{~V} 2_{\mathrm{sdl}_{2}}=290 \mathrm{kN}
\end{aligned}
$$

Ultimate limit state reaction in bearing under permanent load:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{upc}}:=\mathrm{V} 2_{\mathrm{pc}} \cdot 1.3+\mathrm{V} 2_{\mathrm{sdl}_{2}} \cdot 2.0 \\
& \mathrm{~V}_{\mathrm{upc}}=1558 \mathrm{kN}
\end{aligned}
$$

Calculate torsion in the coping:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{c}}:=\left(\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{upc}}\right)\left(\frac{\mathrm{b}_{\mathrm{f}}}{2}-\frac{\mathrm{h} 5}{2}\right) \\
& \mathrm{T}_{\mathrm{C}}=2541 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Total shear force in coping at face of column - Ultimate Limit State

$$
\begin{array}{ll}
\text { Shear from loads } \\
\text { on coping body } & \mathrm{V}_{\mathrm{CU}}:=\left(\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{CW}}+\mathrm{V}_{\mathrm{r}}\right) \cdot 1.3+\mathrm{V}_{\mathrm{sdl}} \cdot 2.0 \\
& \mathrm{~V}_{\mathrm{CU}}=541.1 \mathrm{kN}
\end{array}
$$

Associated shear force:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TU}}:=\mathrm{V}_{\mathrm{CU}}+\mathrm{V}_{\mathrm{ust}}+\mathrm{V}_{\mathrm{upc}} \\
& \mathrm{~V}_{\mathrm{TU}}=5332 \mathrm{kN}
\end{aligned}
$$

The coping will resist torsion moment with two torson blocks as illustrated below. The torsion moment will be distributed into each torsion block in accordance with the relative area of each block.

Dimensions of the torsion blocks are as follows:
Torsion block 1

$$
\begin{aligned}
\mathrm{h} 1 & :=\mathrm{v} 1 \\
\mathrm{~b} 1 & :=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2 \\
\mathrm{~h} 2 & :=\frac{2}{3} \cdot \mathrm{v} 3 \\
\mathrm{~b} 2 & :=\mathrm{b}_{\mathrm{f}}
\end{aligned}
$$

$$
\mathrm{h} 1=2732 \mathrm{~mm}
$$

$$
\mathrm{b} 1=1400 \mathrm{~mm}
$$

Torsion block 1

$$
\mathrm{h} 2=800 \mathrm{~mm}
$$

$$
\mathrm{b} 2=3800 \mathrm{~mm}
$$

Area enclosed with centerline of transverse rebar
Torsion block 1

$$
\mathrm{A}_{\mathrm{oh} 1}:=(\mathrm{b} 1-40 \mathrm{~mm} \cdot 2-19 \mathrm{~mm}) \cdot(\mathrm{h} 1-40 \mathrm{~mm} \cdot 2-19 \mathrm{~mm})
$$

Torsion block 2

$$
A_{\mathrm{oh} 2}:=(\mathrm{b} 2-40 \mathrm{~mm} \cdot 2-16 \mathrm{~mm}) \cdot(\mathrm{h} 2-40 \mathrm{~mm} \cdot 2-16 \mathrm{~mm})
$$

Area enclosed by shear flow path
Torsion block 1

$$
\mathrm{A}_{\mathrm{o} 1}:=0.85 \mathrm{~A}_{\mathrm{oh} 1}
$$

Torsion block 2

$$
\mathrm{A}_{\mathrm{o} 2}:=0.85 \mathrm{~A}_{\mathrm{oh} 2}
$$

Calculate torsion moments carried by each block:
Torsion block $1 \quad \mathrm{~T}_{\mathrm{c} 1}:=\frac{\mathrm{A}_{\mathrm{o} 1}}{\mathrm{~A}_{\mathrm{o} 1}+\mathrm{A}_{\mathrm{o} 2}} \cdot \mathrm{~T}_{\mathrm{C}} \quad \mathrm{T}_{\mathrm{C} 1}=1443 \mathrm{kN} \cdot \mathrm{m}$
Torsion block 2

$$
\mathrm{T}_{\mathrm{C} 2}:=\frac{\mathrm{A}_{\mathrm{o} 2}}{\mathrm{~A}_{\mathrm{o} 1}+\mathrm{A}_{\mathrm{o} 2}} \cdot \mathrm{~T}_{\mathrm{C}} \quad \quad \mathrm{~T}_{\mathrm{c} 2}=1098 \mathrm{kN} \cdot \mathrm{~m}
$$

Transverse Reinforcement for Shear and Torsion - Torsion Block 1

Depth of section:

$$
\mathrm{h}_{\mathrm{s}}:=\mathrm{v} 1
$$

Effective depth of coping:

$$
\mathrm{d}_{\mathrm{e}}:=\left(\mathrm{h}_{\mathrm{s}}-150 \mathrm{~mm}\right) \quad \mathrm{d}_{\mathrm{e}}=2582 \mathrm{~mm}
$$

Width of coping:

$$
\mathrm{b}:=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2 \quad \mathrm{~b}=1400 \mathrm{~mm}
$$

Critical section for shear shall be taken as d_{v} from the internal face of the support (AASHTO LRFD Article 5.8.3.2)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{v}}:=\left\lvert\, \begin{array}{l}
0.9 \cdot \mathrm{~d}_{\mathrm{e}} \text { if } 0.9 \cdot \mathrm{~d}_{\mathrm{e}}>0.72 \cdot \mathrm{~h}_{\mathrm{s}} \\
0.72 \cdot \mathrm{~h}_{\mathrm{s}} \text { otherwise }
\end{array}\right. \\
& \mathrm{d}_{\mathrm{v}}=2323.8 \mathrm{~mm}
\end{aligned}
$$

Calculate nominal shear resistance of concrete section assuming beam section:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}:=0.166 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{MPa}}} \cdot \mathrm{~b} \cdot \mathrm{~d}_{\mathrm{v}} \cdot \mathrm{MPa} \\
& \mathrm{~V}_{\mathrm{C}}=2958 \mathrm{kN}
\end{aligned}
$$

Strength reduction factor for shear:

$$
\Phi_{\mathrm{s}}=0.7
$$

Required nominal shear resistance of transverse reinforcement:

$$
\mathrm{V}_{\mathrm{S}}:=\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{S}} \leftarrow \frac{\mathrm{~V}_{\mathrm{TU}}}{\Phi_{\mathrm{S}}}-\mathrm{V}_{\mathrm{C}} \\
\mathrm{~V}_{\mathrm{S}} \text { if } \mathrm{V}_{\mathrm{S}}>0 \mathrm{kN} \\
0 \mathrm{kN} \text { otherwise }
\end{array}\right.
$$

$$
\mathrm{V}_{\mathrm{S}}=4659 \mathrm{kN}
$$

Provide $19 \mathrm{~mm} \phi$ shear links wth 4 legs across the section

$$
\begin{aligned}
& \phi_{\text {link }}:=19 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{V}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 4 \quad \mathrm{~A}_{\mathrm{V}}=1134 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required spacing of transverse reinforcement

$$
\mathrm{s}_{\mathrm{t} 1}:=\left\{\begin{array}{l}
\mathrm{s}_{\mathrm{t} 1} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}}}{0.0083 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{MPa}}} \cdot \mathrm{MPa} \cdot \mathrm{~b}} \\
\mathrm{~s}_{\mathrm{t} 2} \leftarrow \frac{\mathrm{~A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}} \text { if } \mathrm{V}_{\mathrm{s}}>0 \mathrm{kN} \\
\mathrm{~s}_{\mathrm{t} 2} \text { if }\left(\mathrm{V}_{\mathrm{s}}>0 \mathrm{kN}\right) \cdot\left(\mathrm{s}_{\mathrm{t} 2} \leq \mathrm{s}_{\mathrm{t} 1}\right) \\
\mathrm{s}_{\mathrm{t} 1} \text { otherwise }
\end{array} \quad \mathrm{s}_{\mathrm{t} 1=221 \mathrm{~mm}}\right.
$$

For reinforced concrete the angle of inclination of diagonal stresses, θ, can be assumed to be 45 degrees:

$$
\theta:=45 \mathrm{deg}
$$

Determine required transverse reinforcement for torsion:

| Area of one leg of transverse
 torsion reinforcement |
| :--- |$A_{t}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \quad A_{t}=284 \mathrm{~mm}^{2} \quad \phi_{\text {link }}=19 \mathrm{~mm}$

Required spacing of torsional reinforcement

$$
\mathrm{s}_{\mathrm{t} 2}:=\frac{2 \cdot \mathrm{~A}_{\mathrm{o} 1} \cdot \mathrm{~A}_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \cot (\theta)}{\mathrm{T}_{\mathrm{c} 1}} \cdot \Phi_{\mathrm{s}} \quad \mathrm{~s}_{\mathrm{t} 2}=312 \mathrm{~mm}
$$

Calculate combined spacing of shear and torsion transverse reinforcement:

$$
\left(\frac{1}{s_{\mathrm{t} 1}}+\frac{1}{\mathrm{~s}_{\mathrm{t} 2}}\right)^{-1}=129.303 \mathrm{~mm}
$$

Provide 19 mm dia transverse reinforcement at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in main body of coping

Transverse Reinforcement for Shear and Torsion - Torsion Block 2

Provide $16 \mathrm{~mm} \phi$ shear links wth 2 legs across the section

$$
\begin{aligned}
& \phi_{\text {link }}:=16 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{v}}:=\pi \frac{\phi_{\text {link }}^{2}}{4} \cdot 2 \quad \mathrm{~A}_{\mathrm{v}}=402 \mathrm{~mm}^{2}
\end{aligned}
$$

Determine required transverse reinforcement for torsion:

Area of one leg of transverse
torsion reinforcement

Required spacing of torsional reinforcement

$$
\mathrm{s}_{\mathrm{t} 2}:=\frac{2 \cdot \mathrm{~A}_{\mathrm{o} 2} \cdot \mathrm{~A}_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \cot (\theta)}{\mathrm{T}_{\mathrm{c} 2}} \cdot \Phi_{\mathrm{s}} \quad \mathrm{~s}_{\mathrm{t} 2}=222 \mathrm{~mm}
$$

Provide 16 mm dia transverse reinforcement at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in beam ledges

Design for Loads from Deck Jacking

AASHTO LRFD requires that the beam ledge is designed to resist deck jacking forces.
The deck jacking loads shall not be less than 1.3 times the permanent load reaction at the bearing adjacent to the point of jacking.

PC Deck Dead Load Reaction - max at the bearing

$$
\mathrm{Vdl}_{\mathrm{pc}}:=\left|\frac{\mathrm{V} 2_{\mathrm{dl}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{dl}_{2}}\right|}{\mathrm{h}_{\mathrm{c}} \cdot 2} \quad \mathrm{Vdl}_{\mathrm{pc}}=752.9 \mathrm{kN}
$$

Steel Deck Dead Load Reaction - max at the bearing

$$
\mathrm{Vdl}_{\mathrm{st}}:=\left|\frac{\mathrm{V}_{\mathrm{dl}_{3}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{dl}_{3}}\right|}{\mathrm{h}_{\mathrm{s}} \cdot 2} \quad \mathrm{Vdl}_{\mathrm{st}}=665.9 \mathrm{kN}
$$

PC Deck Superimposed Dead Load Reaction - max at the bearing

$$
\mathrm{Vsdl}_{\mathrm{pc}}:=\left|\frac{\mathrm{V}_{\mathrm{sdl}_{2}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{sdl}_{2}}\right|}{\mathrm{h1}_{\mathrm{c}} \cdot 2} \quad \mathrm{Vsdl}_{\mathrm{pc}}=144.9 \mathrm{kN}
$$

Steel Deck Superimposed Dead Load Reaction - max at the bearing

$$
\mathrm{Vsdl}_{\mathrm{st}}:=\left|\frac{\mathrm{V}_{\mathrm{sdl}_{3}}}{2}\right|+\frac{\left|\mathrm{T}_{\mathrm{sdl}_{3}}\right|}{\mathrm{h}_{\mathrm{s}^{2}} \cdot} \quad \mathrm{Vsdl}_{\mathrm{st}}=121.2 \mathrm{kN}
$$

Maximum design load reaction due to deck jacking:

$$
\begin{aligned}
& \mathrm{V}_{\text {Jack }}:=1.3 \max \left(\mathrm{Vdl}_{\mathrm{pc}}+\mathrm{Vsdl}_{\mathrm{pc}}, \mathrm{Vdl}_{\mathrm{st}}+\mathrm{Vsdl}_{\mathrm{st}}\right) \\
& \mathrm{V}_{\text {Jack }}=1167 \mathrm{kN}
\end{aligned}
$$

Assuming the worst case for positioning of the jack and ignoring width of loaded area from jack gives:

Horizontal tensile force	$\mathrm{N}_{\mathrm{uc}}:=0.2 \cdot \mathrm{~V}_{\mathrm{Jack}}$	$\mathrm{N}_{\mathrm{uc}}=233.4 \mathrm{kN}$
Shear span	$\mathrm{a}_{\mathrm{v}}:=\mathrm{h} 5$	$\mathrm{a}_{\mathrm{v}}=1200 \mathrm{~mm}$
Design Moment	$\mathrm{M}_{\mathrm{u}}:=\mathrm{V}_{\mathrm{Jack}} \cdot \mathrm{a}_{\mathrm{v}}+\mathrm{N}_{\mathrm{uc}} \cdot\left(\mathrm{h}-\mathrm{d}_{\mathrm{e}}\right)$	$\mathrm{M}_{\mathrm{u}}=1078.0 \mathrm{kN} \cdot \mathrm{m}$
Loaded width during jacking	$\mathrm{w}:=1000 \mathrm{~mm}$	$\mathrm{w}=1000 \mathrm{~mm}$
Depth of beam ledge	$\mathrm{h}:=\mathrm{v} 3$	$\mathrm{~h}=1200 \mathrm{~mm}$
Effective depth	$\mathrm{d}_{\mathrm{e}}:=\mathrm{h}-65 \mathrm{~mm}$	$\mathrm{~d}_{\mathrm{e}}=1135 \mathrm{~mm}$
Width of the interface	$\mathrm{b}_{\mathrm{v}}:=\mathrm{w}$	$\mathrm{b}_{\mathrm{v}}=1000 \mathrm{~mm}$
Area of concrete resisting shear transfer	$\mathrm{A}_{\mathrm{cv}}:=\mathrm{b}_{\mathrm{v}} \cdot \mathrm{d}_{\mathrm{e}}$	$\mathrm{A}_{\mathrm{cv}}=1.135 \mathrm{~m}^{2}$

Calculate required nominal shear strength

$$
\mathrm{V}_{\mathrm{n}}:=\frac{\mathrm{V}_{\mathrm{Jack}}}{\Phi_{\mathrm{s}}} \quad \mathrm{~V}_{\mathrm{n}}=1667.4 \mathrm{kN}
$$

Calculate shear friction reinforcement, $\mathbf{A}_{\text {vf }}$

Cohesion and friction values for monolithically cast concrete

$$
\begin{aligned}
\mathrm{c} & :=1.0 \mathrm{MPa} \\
\lambda & :=1.00 \\
\mu & :=1.4 \cdot \lambda
\end{aligned}
$$

Shear reinforcement is then given by:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{vf}}:=\left\{\begin{array}{l}
\mathrm{A}_{\mathrm{vf} 1} \leftarrow \frac{\mathrm{~V}_{\mathrm{n}}-\mathrm{c} \cdot \mathrm{~A}_{\mathrm{cv}}}{\mathrm{f}_{\mathrm{y}} \cdot \mu} \\
\mathrm{~A}_{\mathrm{vf} 2} \leftarrow 0.35 \cdot \frac{\mathrm{~b}_{\mathrm{v}}}{\mathrm{~mm}} \cdot \frac{\mathrm{MPa}}{\mathrm{f}_{\mathrm{y}}} \cdot \mathrm{~mm}^{2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 1} \text { if } \mathrm{A}_{\mathrm{vf} 1}>\mathrm{A}_{\mathrm{vf} 2} \\
\mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 2} \text { if } \mathrm{A}_{\mathrm{vf} 2}>\mathrm{A}_{\mathrm{vf1}} \\
0 \text { if } \frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{cv}}}<0.7 \mathrm{MPa}
\end{array}\right. \\
& \mathrm{A}_{\mathrm{vf}}=975 \mathrm{~mm}^{2}
\end{aligned}
$$

Design the primary tensile force reinforcement $\mathrm{A}_{\mathbf{s}}$:

Strength reduction factor for bending $\Phi=0.8$

Width of section

$$
\mathrm{b}:=1000 \mathrm{~mm}
$$

Determine area of primary reinforcement, A_{s}, to resist flexure
(ref AASHTO LFRD Article 5.7.3.2.3-see notes on flexural design for rearrangement of terms):

$$
\begin{array}{ll}
\mathrm{R}:=\frac{\mathrm{M}_{\mathrm{u}}}{\Phi \cdot \mathrm{~b}_{\mathrm{d}}{ }^{2} \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{R}=0.0027 & \mathrm{M}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{y}}} \quad \mathrm{M}=0.0654 \\
\rho:=\mathrm{M} \cdot\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}}{\mathrm{M}}}\right) & \rho=0.002739 \\
\mathrm{~A}_{\mathrm{s}}:=\rho \cdot \mathrm{b} \cdot \mathrm{~d}_{\mathrm{e}} & \mathrm{~A}_{\mathrm{S}}=3109.2 \mathrm{~mm}^{2}
\end{array}
$$

Design the tensile force reinforcement A_{n} :

$$
\mathrm{A}_{\mathrm{n}}:=\frac{\mathrm{N}_{\mathrm{uc}}}{\Phi \cdot \mathrm{f}_{\mathrm{y}}} \quad \mathrm{~A}_{\mathrm{n}}=748 \mathrm{~mm}^{2}
$$

Check that the Area of Primary Reinforcement, A_{s}, satisfies code requirements:

$$
\begin{aligned}
& A_{s}:=\left\lvert\, \begin{array}{l}
A_{s} \text { if } A_{s}>\frac{2}{3} \cdot A_{v f}+A_{n} \\
\frac{2}{3} \cdot A_{v f}+A_{n} \text { otherwise } \\
A_{s}:=\left\lvert\, \begin{array}{l}
0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \text { if } A_{s}<0.04 \cdot \frac{f_{c}}{f_{y}} \cdot b \cdot d_{e} \\
A_{s} \text { otherwise }
\end{array}\right. \\
A_{s}=3492{m m^{2}}^{A_{s}}:=\frac{A_{s}}{b} \quad A_{s}=3492 \frac{m^{2}}{m}
\end{array}\right.
\end{aligned}
$$

check area of steel required

$$
\rho_{\text {REQUIRED }}:=\frac{\mathrm{A}_{\mathrm{s}} \cdot \mathrm{~m}}{\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{e}}} \cdot 100 \quad \rho_{\text {REQUIRED }}=0.31 \quad \text { PERCENT }
$$

Determine area of closed stirrups or ties, Ah:

$$
A_{h}:=0.5 \cdot\left(\mathrm{~A}_{\mathrm{s}} \cdot \mathrm{~b}-\mathrm{A}_{\mathrm{n}}\right) \quad \mathrm{A}_{\mathrm{h}}=1372 \mathrm{~mm}^{2}
$$

This reinforcement shall be uniformly distributed within two-thirds of the effective depth of the beam ledge adjacent to As.

CONCLUSION - PROVIDE SAME REINFORCEMENT FOR MAIN BEAM LEDGE DESIGN ACROSS ENTIRE BEAM LEDGE WIDTH - EXCEPT OVER WIDTH OF COLUMN.

JACKING POINTS SHALL NOT BE CLOSER THAN 500mm FROM FACE OF COLUMN.

Design for Loads from Longitudinal Restrainers, Article 3.10.9.5

This calculation note is intended for the design of the reinforced concrete elements of the pier coping supporting the restrainers.

For the design of the restrainers themselves, inlcuding any local bursting reinforcement required, refer to a separatee calculation.

Restrainers shall be designed for a force calculated as the acceleration coefficient times the permanent load of the lighter of the two adjoining spans.
Acceleration coefficient

$$
\mathrm{A}:=0.40
$$

Permanent load of the lighter of the two spans assuming, conservatively that only 40% of the total load appears as a reaction at the pier coping:

$$
\operatorname{PERM}_{\mathrm{LOAD}}:=\left(\mathrm{V} 2_{\mathrm{pc}}+\mathrm{V} 2_{\mathrm{sdl}_{2}}\right) \frac{1}{40 \%} \quad \text { PERM }_{\mathrm{LOAD}}=2606 \mathrm{kN}
$$

Design load in restrainer

$$
\operatorname{REST}_{\text {LOAD }}:=\text { PERM }_{\text {LOAD }} \cdot \mathrm{A} \quad \text { REST }_{\text {LOAD }}=1042 \mathrm{kN}
$$

Required nominal shear strength of pier coping supporting the restrainers:

$$
\mathrm{V}_{\mathrm{nr}}:=\frac{\mathrm{REST}_{\mathrm{LOAD}}}{\Phi_{\mathrm{s}}} \quad \mathrm{~V}_{\mathrm{nr}}=1489 \mathrm{kN}
$$

Assume conservatively that this load is carried at a single point with a $150 \mathrm{~mm} \times 150 \mathrm{~mm}$ bearing plate located at mid height of the PC deck. Given that the applied load will be supported by a coping width that is at least equal to the shear span, a_{v}, of the load-design shear friction reinforcement in accordance with Article 5.13.2.5.2 and Article 5.8.4.

Shear span of the load

$$
\mathrm{a}_{\mathrm{v}}:=\mathrm{v} 1-\mathrm{v} 2-\frac{1200 \mathrm{~mm}}{2} \quad a_{\mathrm{v}}=932 \mathrm{~mm}
$$

The width of the concrete face assumed to participate in resistance to shear is as defined below:

$$
\mathrm{b}_{\mathrm{v}}:=\left\lvert\, \begin{array}{ll}
\mathrm{S} \leftarrow \min \left(2 \cdot \mathrm{~h} 1_{\mathrm{c}}, 2 \cdot \mathrm{~h} 1_{\mathrm{s}}\right) & \mathrm{b}_{\mathrm{v}}=3878 \mathrm{~mm} \\
\mathrm{~d}_{\mathrm{w}} \leftarrow 150 \mathrm{~mm}+4 \cdot \mathrm{a}_{\mathrm{v}} \\
\mathrm{~d}_{\mathrm{w}} \text { if } \mathrm{d}_{\mathrm{W}}<\mathrm{S} & \\
\mathrm{~S} \text { otherwise } &
\end{array}\right.
$$

Depth of support

$$
\mathrm{h}:=\mathrm{b}_{\mathrm{f}}-\mathrm{h} 5 \cdot 2
$$

$$
\mathrm{h}=1400 \mathrm{~mm}
$$

Effective depth

$$
\mathrm{d}_{\mathrm{e}}:=\mathrm{h}-65 \mathrm{~mm}
$$

$$
\mathrm{d}_{\mathrm{e}}=1335 \mathrm{~mm}
$$

Area of concrete resisting shear transfer

$$
\mathrm{A}_{\mathrm{cv}}:=\mathrm{b}_{\mathrm{v}} \cdot \mathrm{~d}_{\mathrm{e}} \quad \mathrm{~A}_{\mathrm{CV}}=5.177 \mathrm{~m}^{2}
$$

Calculate limiting nominal shear strength

$$
\mathrm{V}_{\text {nlimit }}:=\left\{\begin{array}{l}
0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}} \text { if } 0.2 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{CV}}<5.5 \cdot \frac{\mathrm{~A}_{\mathrm{cv}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \quad \mathrm{~V}_{\text {nlimit }}=28474.2 \mathrm{kN} \\
5.5 \cdot \frac{\mathrm{~A}_{\mathrm{cv}}}{\mathrm{~mm}^{2}} \cdot \mathrm{~N} \text { otherwise }
\end{array}\right.
$$

Check that the required nominal shear strength is less than that provided

$$
\text { PierCoping }_{\text {Capacity }}:=\left\lvert\, \begin{aligned}
& \text { "OK" if } \mathrm{V}_{\mathrm{nr}} \leq \mathrm{V}_{\text {nlimit }} \\
& \text { "INADEQUATE" otherwise }
\end{aligned} \quad\right. \text { PierCoping }{ }_{\text {Capacity }}=\text { "OK" }
$$

Calculate shear friction reinforcement, $\mathbf{A}_{\text {vf }}$

Cohesion and friction values for monolithically cast concrete

$$
\mathrm{c}:=1.0 \mathrm{MPa} \quad \lambda:=1.00 \quad \mu:=1.4 \cdot \lambda
$$

Shear reinforcement is then given by:

$$
\mathrm{A}_{\mathrm{vf}}:= \begin{cases}\mathrm{A}_{\mathrm{vf} 1} \leftarrow \frac{\mathrm{~V}_{\mathrm{nr}}-\mathrm{c} \cdot \mathrm{~A}_{\mathrm{cv}}}{\mathrm{f}_{\mathrm{y}} \cdot \mu} \\ \mathrm{~A}_{\mathrm{vf} 2} \leftarrow 0.35 \cdot \frac{\mathrm{~b}_{\mathrm{v}}}{\mathrm{~mm}} \cdot \frac{\mathrm{MPa}}{\mathrm{f}_{\mathrm{y}}} \cdot \mathrm{~mm}^{2} & \frac{\mathrm{~V}_{\mathrm{nr}}}{\mathrm{~A}_{\mathrm{cv}}}=0.288 \mathrm{MPa} \\ \mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 1} \text { if } \mathrm{A}_{\mathrm{vf} 1}>\mathrm{A}_{\mathrm{vf} 2} & \\ \mathrm{~A}_{\mathrm{vf}} \leftarrow \mathrm{~A}_{\mathrm{vf} 2} \text { if } \mathrm{A}_{\mathrm{vf} 2}>\mathrm{A}_{\mathrm{vf} 1} & \\ 0 \text { if } \frac{\mathrm{V}_{\mathrm{nr}}}{\mathrm{~A}_{\mathrm{cv}}}<0.7 \mathrm{MPa}\end{cases}
$$

$$
\mathrm{A}_{\mathrm{vf}}=0 \mathrm{~mm}^{2}
$$

Conclude that the concrete section alone has adequate capacity to carry the loads from the longitudinal restrainers without the need for addiional shear reinforcement.

[^0]: PunchingShear ${ }_{\text {CHECK }}=$ "SATISFIED"

[^1]: Katahira \& Engineers International

