MINISTRY OF WATER RESOURCES AND METEOROLOGY KINGDOM OF CAMBODIA

SPECIAL ASSISTANCE FOR PROJECT FORMATION FOR WEST TONLE SAP IRRIGATION AND DRAINAGE REHABILITATION AND IMPROVEMENT PROJECT IN THE KINGDOM OF CAMBODIA

FINAL REPORT

VOLUME-I MAIN REPORT

NOVEMBER 2009

JAPAN INTERNATIONAL COOPERATION AGENCY NIPPON KOEI CO., LTD.

SA2
CR (5)
09-005

SPECIAL ASSISTANCE FOR PROJECT FORMATION FOR WEST TONLE SAP IRRIGATION AND DRAINAGE REHABILITATION AND IMPROVEMENT PROJECT IN THE KINGDOM OF CAMBODIA

FINAL REPORT

VOLUME-I MAIN REPORT

NOVEMBER 2009

JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD.

LIST OF VOLUMES

Volume I	Location Map o	of the Project			
Main Report	Layout of Six Sub-Projects				
_	Photographs				
	SAPROF Desig	n Matrix (SDM)			
	Abbreviations a	and Khmer Words used in the Report			
	Measurement Units				
	Part I: Summ	nary			
	Part II: Study				
	Part III: Imple	mentation Program (I/P)			
	Tables and Figu	nres			
Volume II	Appendix A:	Study on Project Scope			
Supporting		A1. Agricultural Marketing and Simulation			
Report		A2. Technical Assistance on Soft Component			
	Appendix B:	Rehabilitation of Irrigation and Drainage Facilities			
		B1. Irrigation and Drainage Plan			
		B2. Drawings for Irrigation and Drainage Facilities			
		B3. Cost Estimate			
		B4. Terms of Reference for Consulting Services			
	Appendix C:	Environmental Evaluation			
	Appendix D:	Project Evaluation			

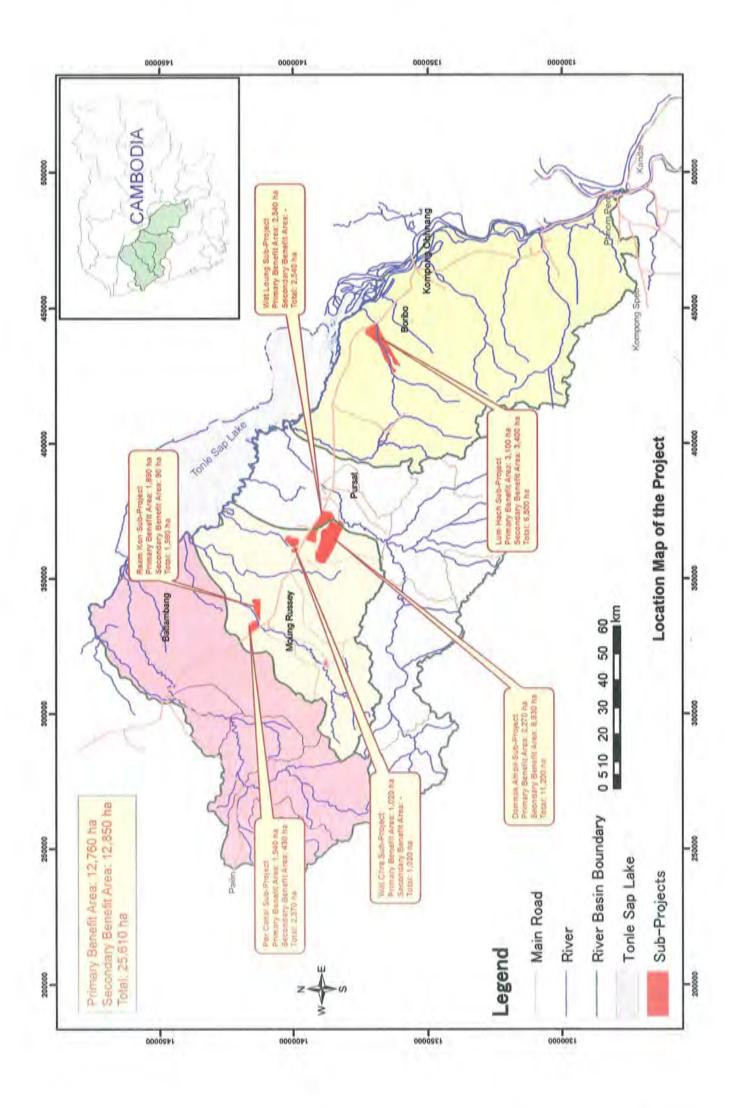
PREFACE

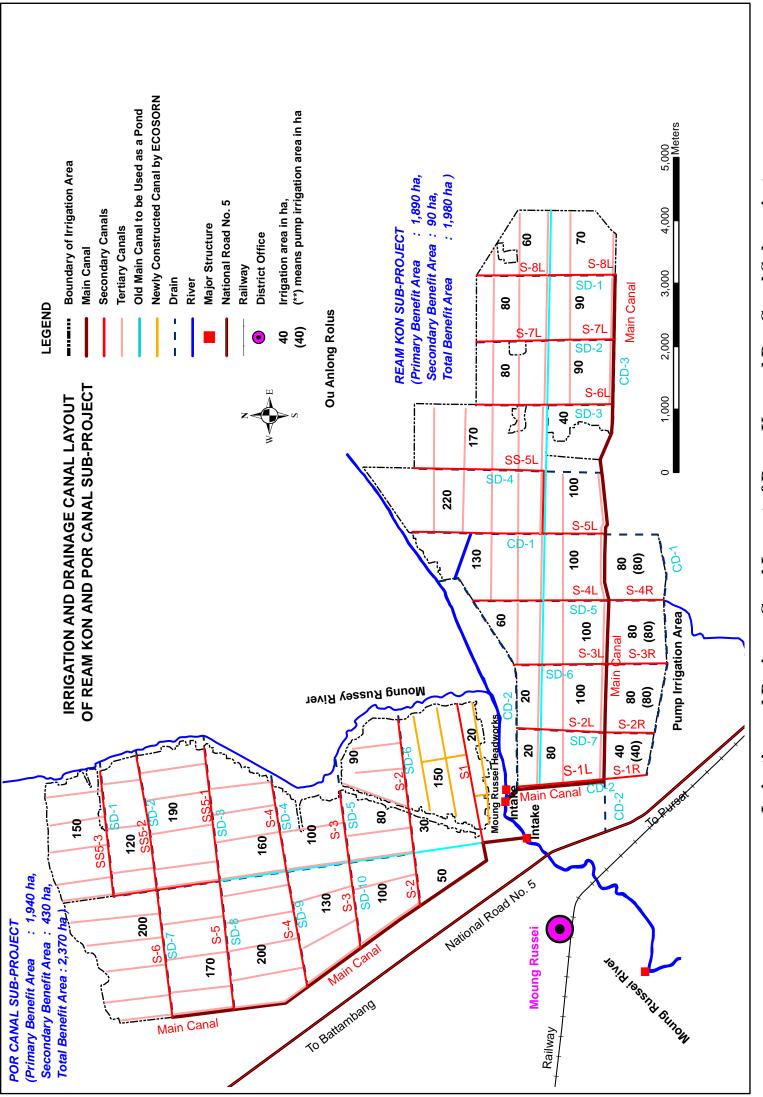
The Study on the West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project in the Kingdom of Cambodia was carried out as Special Assistance for Project Formation (SAPROF) commissioned and financed by Japan International Cooperation Agency (JICA). The SAPROF Study was conducted from July 2009 to December 2009 in cooperation with the Ministry of Water Resources and Meteorology (MOWRAM).

The objective of the SAPROF Study is to upgrade irrigation and drainage development plan prepared under the Basin-wide Basic Irrigation and Drainage Master Plan Study conducted by JICA and MOWRAM from January 2007 to Match 2009 in order to contribute to stabilization and increase of the rice production in the Western Region of the Tonle Sap Lake.

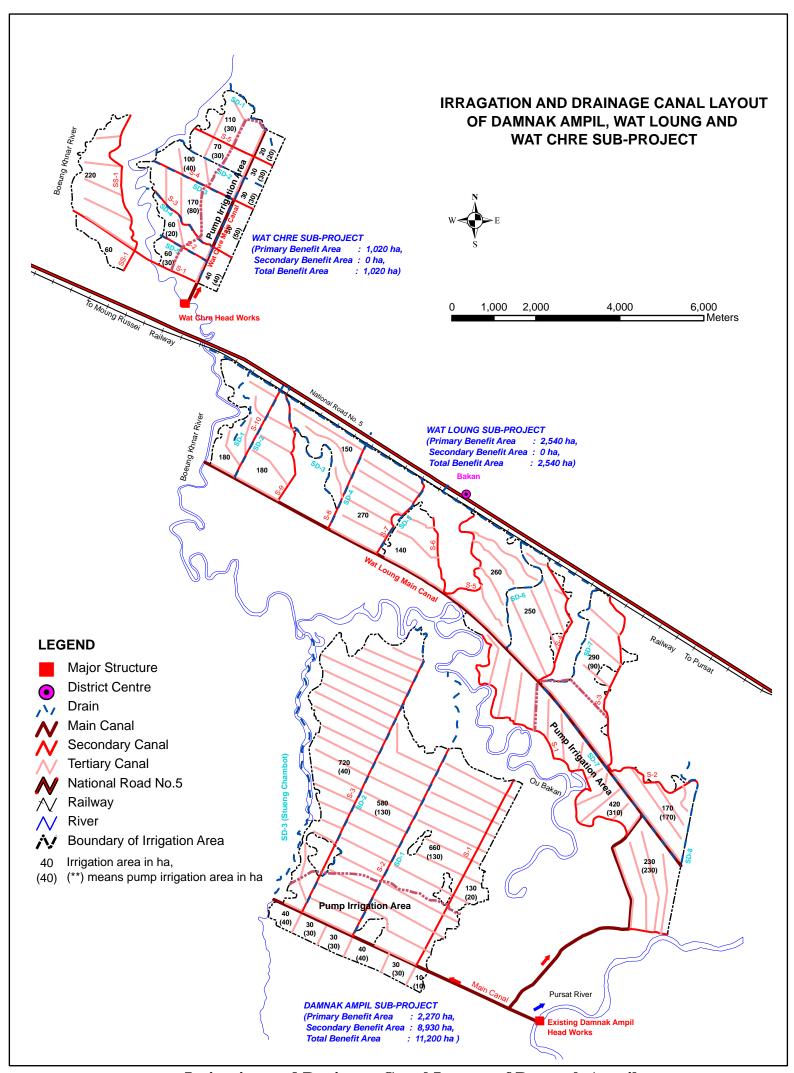
This SAPROF Report consists of two volumes: (i) Volume-I Main Report and (ii) Voume-II Supporting Report, elaborating (i) necessity and justification of the project, (ii) project scope, (iii) project implementation plan and O&M plan, (iv) cost estimate, (v) project evaluation and (vi) environmental assessment.

The SAPROF Study Team earnestly hopes that this Report will be utilized as a help of defining the scope and means to implement the Project smoothly and successfully.

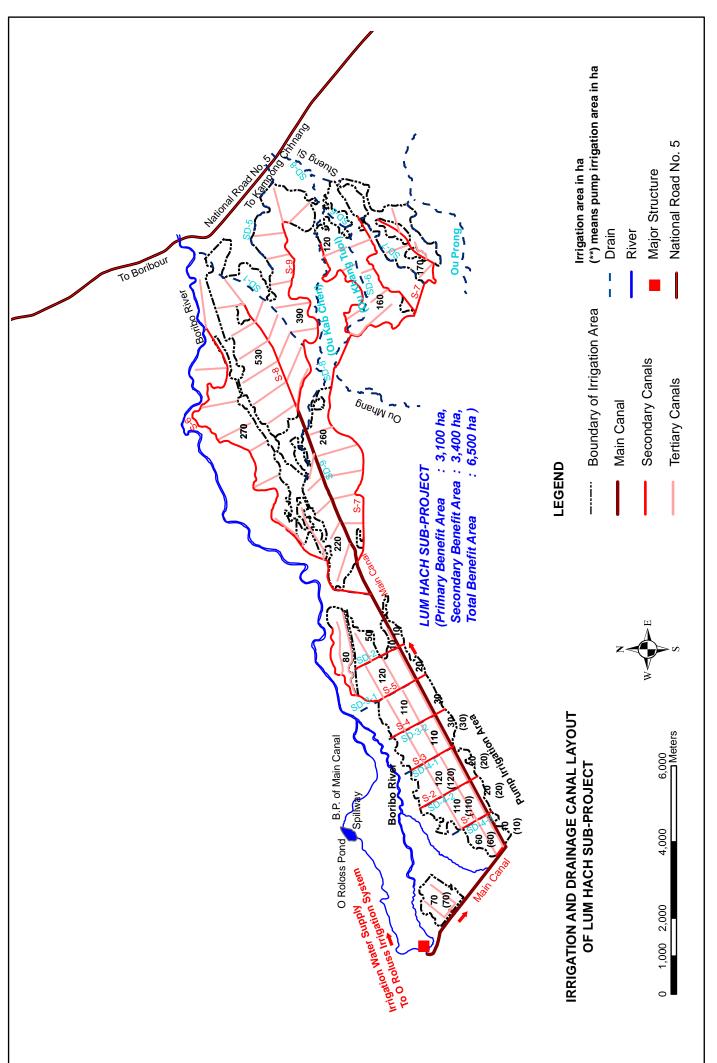

Finally, the SAPROF Study Team wish to express our sincere appreciation to the officials concerned of the Royal Government of Cambodia for their close cooperation extended to us during the period of the study.


November 2009

Very truly yours,


TOYA Yusaku,

Team Leader for the SAPROF Study Team for West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project Nippon Koei Co., Ltd.



Irrigation and Drainage Canal Layout of Ream Kon and Por Canal Sub-projects

Irrigation and Drainage Canal Layout of Damnak Ampil, Wat Loung and Wat Chre Sub-projects

Irrigation and Drainage Canal Layout of Lum Hach Sub-project

PHOTOGRAPHS WEST TONLE SAP IRRIGATION AND DRAINAGE REHABILITATION AND IMPROVEMENT PROJECT (1/3)

Existing Ream Kon Headworks (Ream Kon Sub-project)

Concrete structure is highly deteriorated and gates do not function. Construction of a new headworks is proposed under the Project. (August 10th 2009)

Rehabilitated Secondary Canal (Por Canal Sub-project)

One secondary canal was rehabilitated by ECOSORN funded by EU. Since water level is too low, portable pump is utilized to irrigate paddy field. (August 10th 2009)

Existing Damanak Ampil Headworks (Damnak Ampil Sub-project)

Existing headworks was constructed by MOWRAM in 2006. Automatic gates need to be improved since they do not function properly.

(August 11th 2009)

Present Condition of Main Canal (Ream Kon Sub-project)

Water is not available since the existing headworks do not function at present. (August 10th 2009)

Paddy Field Condition with Pump Irrigation (Por Canal Sub-project)

Paddy cultivation with pump irrigation is practiced where water is available in nearby existing canals. (August 10th 2009)

Rehabilitated Secondary Canal (Damnak Ampil Sub-project)

Secondary canal No.2 was rehabilitated by DANIDA in 2008. Improvement of this canal is, therefore, excluded from the scope of the Project.

(August 11th 2009)

PHOTOGRAPHS WEST TONLE SAP IRRIGATION AND DRAINAGE REHABILITATION AND IMPROVEMENT PROJECT (2/3)

Present Condition of Secondary Canal (Wat Chre Sub-project)

Secondary canal was entirely deteriorated. Farmers construct temporary embankment to store water and irrigate with the use of water pumps (August 11th 2009)

Present Condition of Main Canal (Wat Loung Sub-project)

Side slope of existing main canal is severely eroded. Existence of dispersible soil is one of the technical problems of the Project.

(August 11th 2009)

Proposed Site for Lum Hach Headworks (Lum Hach Sub-project)

Proposed headworks on Boribo River is to supply irrigation water to Lum Hach Sub-project (3,100ha) on the right bank and O Roluss Canal Irrigation System (3,400ha) on the left bank. (August 12th 2009)

Construction Site for Wat Chre Headworks. (Wat Chre Sub-project)

Proposed headworks site is located 1.7km upstream from the existing weir on Boeung Khnar River. (August 11th 2009)

Present Condition of Command Area. (Wat Loung Sub-project)

Rainfed paddy cultivation is dominant because irrigation system does not function. No secondary and/or tertiary canals are developed. (August 11th 2009)

Present Condition of Main Canal (Lum Hach Sub-project)

No water is delivered to the main canal due to lack of headworks. Farmers only pump up water standing in the main canal for irrigation.

(August 12th 2009)

PHOTOGRAPHS WEST TONLE SAP IRRIGATION AND DRAINAGE REHABILITATION AND IMPROVEMENT PROJECT (3/3)

Road under Construction within Command Area (Lum Hach Sub-project)

A road connecting National Road No.5 and the main canal in the command area is under construction by the Ministry of Public Works and Transport. (August 12th 2009)

Balloon Aerial Photo Shooting and Topographic Survey (Lum Hach Sub-project)

The topographic survey was carried out for the proposed site of headworks to prepare detailed plan of headworks. (August 2009)

Interview of Social and Environmental Consideration (Por Canal Sub-project)

The social and environmental impact by the Project is confirmed with farmers. (August 26th 2009)

Geo-Technical Investigation (Lum Hach Sub-project)

Geo-technical Investigation (left bank of proposed headworks site on Boribo River) was carried out to confirm foundation conditions of headworks. (under Part-I of SAPROF Study) (July 2009)

Agricultural Marketing Survey (Por Canal Sub-project)

The marketing survey was carried out to confirm present rice farming and marketing conditions. (August 10th 2009)

Meeting on Findings of Field Survey (Phnom Penh)

Discussion among key staffs of MOWRAM and PDOWRAM and SAPROF study team is made over findings of field survey. (September 10th 2009)

SAPROF DESIGN MATRIX (SDM)

Preparation
Inception
Draft Final
Tr. 1

SAPROF FRAMEWORK **Project Frame** Country: The Kingdom of Cambodia Output from the Study: Project Name: West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project 1. Justification of the Project 1) The Project is consistent with development policy National Development Plan and Target: National Poverty Reduction Strategy (NPRS) 2003-2005: 1. Eight priority actions for poverty reduction are established, out of which action 2 2) The Project conforms to development policy of 'improving rural livelihoods" is closely related with agriculture development including irrigation development. 3) The necessity of the Project is justified by National Strategy Development Plan (NSDP) 2006-2010: 1. Rectangular strategy described under NSDP (2006-2010) has four pillars: (i) Enhancement 2. Project Scope of Agriculture Sector, (ii) Further Rehabilitation and Construction of Physical 1) Project Area: six sub-projects, each of which Infrastructure, (iii) Private Sector Development and Employment Generation and (iv) Capacity Building and Human Resource Development. By following the same concept, "Rectangular Strategy" Phase II (2009-2013) was announced. One of four pillars for strategic growth rectangles, "Enhancement of Agriculture Sector" 2) Following development plan is prepared. stresses the importance of agriculture and irrigation development. The Royal Government of Cambodia (RGC) sets following quantitative targets: 2010 Indicator Paddy planted area (million ha) 2.37 2.50 Yield (ton/ha) 1 97 2.40 Irrigated area including supplemental irrigation (million ha) 0.65 Agriculture Sector Strategic Development Plan 2006-2010 1. The food security, productivity and diversification are given top priority among seven objectives set out in the Plan, to which irrigation development can significantly contribute. 3) Project cost: US\$ 49.3 Policy for Participatory Irrigation Management and Development (PIMD) 1. On the basis of decentralization and deconcentration policy, MOWRAM promotes 3. Project Implementation participatory irrigation management and development in the country through hardware and software component in irrigation development and management. Present Condition of the Project Area: 2) Implementing procedu 1. Rural areas in three provinces where six sub-projects are located are in higher poverty 4. Environmental manage 2. Irrigation and drainage facilities are highly deteriorated, therefore, farmers are largely 1) Environmental evalua dependent on rain-fed agriculture. Project Target: 1. Effective utilization of available resources in the Project area through the rehabilitation of <u>Description of the Study</u> irrigation and drainage facilities 2. Establishment of sustainable O&M system to increase agricultural productivity in the sub-project areas and to enhance living standard of beneficiaries Project Plan Proposed in the Basin-Wide Basic Irrigation and Drainage Master Plan Study(JICA): 2007 January to 2009 March: Implementing Organization: Northwestern Area Unit of the National Project Management Office (NPMO) under the Ministry of Water Resources and Meteorology (MOWRAM) Project Area: Six sub-projects located in Battambang, Pursat and Kampong Chhnang Provinces Project Cost: US\$ 97.54 million (10.53 billion Japanese yen) (US\$ 1=107.99 Japanese yen) Project Component: Hardware Component: Rehabilitation of irrigation and drainage facilities Software Component: (i) FWUC establishment and strengthening and (ii) Agriculture extension activities Project Supporting Programs: (i) Meteo-hydrological observation strengthening, (ii) Capacity development of MOWRAM staff and (iii) Capacity development of PDOWRAM 4. Project Formation Study for Other Potential Areas Environmental Category based on JICA Guideline: Category B Poverty Alleviation ⊠Yes □No Economic and Social Capital Development Yes No Organizational and Institutional Peace Building □Yes ⊠No Development ⊠Yes □No IT Relation □Yes ⊠No Capacity Building ⊠Yes □No Issues for Appraisal:

· Justification of the Project based on agriculture and irrigation development policy of

· Project cost, implementation schedule, operation and effect indicators and EIRR

<Necessity of the Project>

<Project Scope and O&M>

· O&M organization

Cambodia and quantitative data

Necessity of consulting services

• Ripple effect with technical cooperation

• Project components and those justification

	2) 2 2 2 3 3 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	c) Project Supporting Programs: (i) Meteo-hydrological Observation Strengthening, (ii) Capacity Development of
	MOWRAM staff and (iii) Capacity Development of PDOWRAM staff
(d) Project Formation Study for Other Potential Areas: eight sub-projects covering 24,050 ha
3) Pro	pject cost: US\$ 49.1 million (4.75 billion Japanese yen) (US\$ 1=96.8 Japanese yen), Project period: 6 years, Economic
ana	alysis: EIRR13.3%
3. Proj	ject Implementation and O&M Organization
1) Im	plementing organization for the Project is planned. (Project Management Unit Japan Support Fund under MOWRAM
wil	Il take responsibility on the Project implementation.)
2) Im	plementing procedure for each component is prepared.
4. Env	rironmental management
1) En	vironmental evaluation is carried out and, on this basis, environmental management plan is prepared.
Descrip	otion of the Study
1.	TOR 1: Review and confirm the necessity and viability of the Project and formulate the Project Scope
	 Review and confirmation of irrigation facilities to be rehabilitated
	♦ Review of agriculture-related data and information
	♦ Preparation of Technical Assistance Plan
	 Confirm the importance and viability of the Project
	♦ Formulation of Project Scope based on above-listed Study
2.	TOR 2: Examine the detail of the project component and the basic plan and design
	♦ Study and review of design criteria for irrigation facilities
	• Review of preliminary design prepared under Basin-Wide Basic Irrigation and Drainage Master Plan Study
	♦ Preparation of annual implementation plan and cost estimate
	Review of unit construction cost
	♦ Overall cost estimate
	♦ Preparation of budget plan
	♦ Study on Consulting Services necessary for the Project
	Study on procurement plan

consist of primary benefit area and secondary

benefit area as shown in the right table:

Project Area				
Sub-Project	Primary	Secondary	Total (ha)	
	Benefit	Benefit		
	Area (ha)	Area (ha)		
Ream Kon	1,890	90	1,980	
Por Canal	1,940	430	2,370	
Damnak Ampil	2,270	8,930	11,200	
Wat Loung	2,540	0	2,540	
Wat Chre	1,020	0	1,020	
Lum Hach	3,100	3,400	6,500	
Grand Total	12,760	12,850	25,610	

Project Risk (Tentative):

- 1. No large scale resettlement is necessary, instead land acquisition is required for the construction of main, secondary and tertiary facilities. Appropriate procedure for land acquisition is required based on the regulation of the RGC through consensus building among stakeholders in this process.
- 2. Project Management Unit (PMU) Japan Support Fund is primarily in charge of Project implementation. It is necessary to establish officient implementation mechanism by coordination with relevant organizations including local administration such as provincial government and commune councils.
- 3. O&M budget necessary for the rehabilitated facilities needs to be arranged by both Government and FWUCs based on the analysis in the SAPROF Report.
- . Implementation of the Project will be jeopardized by drastic price increase of construction works-related items in Cambodia

Operation and Effect Indicators (Tentative):

1 Operation Indicators

Indicator	Unit	Without Project	With Project
Irrigated area	ha	760	12,760
Cultivated area of paddy	ha	14,260	16,800
Cropping intensity	%	104	132
Number of FWUGs	nos.	0	52
Collection ratio of water charge	%	0	80

2. Effect Indicators

Input (Expert /MM):

Indiana.	T T 24	Without	With
Indicator	Unit	Project	Project
Paddy production	ton	22,000	54,000
Paddy yield	ton/ha	1.5	3.2
Annual income of farmer	Riel 1,000	785	2,069

Procedure of Data Collection

Local Consultant (2 numbers):

1. Statistical data, 2. Socio-economic survey 3. Report to be prepared by MOWRAM, 4. Progress Report to be prepared by technical consultant

шрс	it (Expert/Min).	
♦	Team Leader:	1.30 M/M
*	Irrigation & Drainage Facilities:	2.20 M/M
♦	Irrigation & Drainage Plan and O&M:	3.04 M/M
*	Agriculture:	1.17 M/M
*	Project Evaluation:	1.13 M/M
*	Environmental & Social Consideration:	1.00M/M
*	Cost Estimate:	0.67M/M
Tota	ıl:	10.50M/M

Feedback from Final Evaluation of Other Projects:

 Small-scale Irrigation Management Project (SSIMP-I: 1990-1995, SSIMP-II: 1995-1998, SSIMP-III: 1998-2002) (JBIC): In parallel with facilities development, establishment of O&M system is the key to materialize Project effect as planned. Therefore, proposed Project consist of both hardware and software activities.

1.50 M/M

and plan of the RGC.

quantitative data.

JICA.

- nd confirm the necessity and viability of the Project and formulate the Project Scope TOR 1: Rev
 - onfirmation of irrigation facilities to be rehabilitated Review a

a) Hardware component: (i) Rehabilitation of irrigation and drainage facilities

- iculture-related data and information Review o
- Technical Assistance Plan Preparation
- Confirm t nportance and viability of the Project
- Formulat f Project Scope based on above-listed Study
- TOR 2: Exam the detail of the project component and the basic plan and design
 - Study and ew of design criteria for irrigation facilities
 - Review of liminary design prepared under Basin-Wide Basic Irrigation and Drainage Master Plan Study

Work Volume: (i) Area: 25,610 ha consist of primary benefit area (12,760 ha) and secondary benefit area (12,850 ha),

(ii) Construction of headworks 3 nos., (ii) Rehabilitation of irrigation canals: 196 km (main 58 km, secondary 138 km),

(iii) construction of tertiary canals for 12,760 ha, (iv) construction of drainage 148 km (main 13 km, secondary 135 km)

b) Software Component: (i) FWUC establishment and strengthening and (ii) Agriculture Support Services

- annual implementation plan and cost estimate Preparatio
- Review of t construction cost
- Overall co stimate
- f budget plan Preparatio
- sulting Services necessary for the Project Study on C
- Study on procurement plan
- Confirmation on implementation organization
- Study on O&M plan
- TOR 3: The environmental and social consideration
 - Preparation of environmental checklist based on relevant guidelines
 - Social consideration
 - TOR 4: Project evaluation and study of project monitoring system
 - Preparation of operation and effect indicators (baseline, target, procedure etc.)
 - Confirmation on intangible benefit from the Project
 - Study on Economic Internal Rate of Return (EIRR) and financial analysis

Necessity of SAF:

- · The proposed Project is consistent with the assistance policy of JICA stressing the poverty reduction through agriculture development in the rural area of developing countries.
- · JICA has been implementing technical cooperation in irrigation sector of Cambodia. Coordination among the loan project and technical cooperation will significantly contribute to the food security as well as poverty reduction in Cambodia.
- In order to conclude loan agreement (L/A) by March 2010, preparation on appraisal need to be carried out based on the SAPROF Report by the beginning of December 2009.

SPECIAL ASSISTANCE FOR PROJECT FORMATION (SAPROF) FOR WEST TONLE SAP IRRIGATION AND DRAINAGE REHABILITATION AND IMPROVEMENT PROJECT

IN

THE KINGDOM OF CAMBODIA

FINAL REPORT

Location Map of the Project

Layout of Six Sub-Projects

Photographs

SAPROF Design Matrix (SDM)

Abbreviations and Khmer Words used in the Report

Measurement Units

Table of Contents

SUMMARY	S-1
I STUDY	
ER 1 INTRODUCTION	II1-1
Authority	II1-1
Background	II1-1
Objective of the SAPROF Study	II1-2
Scope of the SAPROF Study	II1-2
Area of the SAPROF Study	II1-3
Major Activities of the SAPROF Study	II1-3
1.6.1 Team Members and Counterpart Personnel	II1-3
1.6.2 Schedule	II1-3
ER 2 BACKGROUND	II2-1
National, Agricultural, and Irrigation Policies	II2-1
2.1.1 National Poverty Reduction Strategy (2003 – 2005)	II2-1
2.1.2 National Strategy Development Plan (2006 – 2010)	II2-1
2.1.3 Agricultural Sector Strategic Development Plan (2006 – 2010)	II2-2
2.1.4 Strategy for Agriculture and Water and Water, Irrigation and Land	
Management Program	II2-3
2.1.5 Action Plan on Water Resources and Meteorology Management and	
Development (2009 - 2013)	II2-5
2.1.6 Policy for Participatory Irrigation Management and Development (P	'IMD)II2-6
Food Balance and Food Security	II2-7
Summary of Completed and On-going Projects	II2-8
	ER 1 INTRODUCTION

	2.3.1 Grant Assistance and Technical Cooperation by the Government of Japan	II2-8
	2.3.2 Project by Other Donor Agencies	II2-11
	2.3.3 Project by the Government of Cambodia	II2-15
СНАРТ	ER 3 SUMMARY OF THE PROJECT PROPOSED IN THE PREVIOUS	
	STUDY	II3-1
3.1	Background	II3-1
	3.1.1 General	II3-1
	3.1.2 Master Plan and the Road Map 2020	II3-1
	3.1.3 Pre-Feasibility Study	II3-2
3.2	Project Component	II3-2
	3.2.1 Summary of the Project	II3-2
	3.2.2 Rehabilitation of Irrigation and Drainage Facilities	II3-3
	3.2.3 Soft Component	II3-4
	3.2.4 Project Supporting Programs	II3-5
	3.2.5 Other Activities under the Project	II3-6
3.3	Project Cost	II3-7
	3.3.1 Basic Conditions	II3-7
	3.3.2 Initial Investment Cost	II3-7
3.4	Result of Environmental Assessment and Environmental Management Plan	II3-8
СНАРТ	ER 4 PROJECT SCOPE	II4-1
4.1	Necessity and Justification	II4-1
	4.1.1 National and Sectoral Development Policy of Cambodia	II4-1
	4.1.2 Economic Assistance Policy of Japanese Government and JICA	II4-1
	4.1.3 Necessity and Justification of the Project	II4-2
4.2	Summary of Examination of the Project Scope	II4-2
	4.2.1 Basic Concept	II4-2
	4.2.2 Agricultural Development Plan	II4-3
	4.2.3 Hardware Component: Rehabilitation of Irrigation and Drainage Facilities .	II4-4
	4.2.4 Software Component: FWUC Establishment and Strengthening and	
	Agriculture Support Services	II4-12
	4.2.5 Project Supporting Programs	II4-13
	4.2.6 Others: Project Formulation Study for Other Potential Areas	II4-14
	4.2.7 Project Scope	II4-14
PART 1	II IMPLEMENTATION PROGRAM	
CHAPT	ER 1 PROJECT AREA	.III1-1
1.1	Project Area	.III1-1
1.2	Natural Conditions	.III1-1
	1.2.1 Moung Russei River Basin	.III1-1
	1.2.2 Pursat River Basin	.III1-2
	1.2.3 Roribo River Rasin	III1 3

1.3	Socio-Economic Conditions	III1-4
	1.3.1 Ethnicity	III1-4
	1.3.2 Poverty	III1-4
	1.3.3 Gender Issue	III1-5
1.4	Agriculture	III1-5
1.5	Irrigation and Drainage	III1-11
1.6	Institutions	III1-16
	1.6.1 Ministry of Water Resources and Meteorology	III1-17
	1.6.2 Ministry of Agriculture, Forestry and Fisheries	III1-18
СНАРТ	TER 2 THE PROJECT	III2-1
2.1	Scope and Objective of the Project	III2-1
	2.1.1 Scope of the Project	III2-1
	2.1.2 Overall Goal of the Project	III2-1
	2.1.3 Objective of the Project	III2-1
	2.1.4 Expected Output and Outcome from the Project	III2-1
2.2	Approach and Strategy of the Project	III2-2
2.3	Project Component	III2-4
	2.3.1 Summary of the Project Component	III2-4
	2.3.2 Preparatory Works	III2-7
	2.3.3 Ream Kon Sub-Project	III2-8
	2.3.4 Por Canal Sub-Project	III2-14
	2.3.5 Damnak Ampil Sub-Project	III2-17
	2.3.6 Wat Loung Sub-Project	III2-22
	2.3.7 Wat Chre Sub-Project	III2-25
	2.3.8 Lum Hach Sub-Project	III2-29
2.4	Ancillary Activities to Enhance Project Effect	III2-34
	2.4.1 Software Component	III2-35
	2.4.2 Project Supporting Programs	III2-36
	2.4.3 Others: Project Formulation Study for Other Potential Areas	III2-37
2.5	Technical Assistance	III2-37
	2.5.1 Purpose	III2-37
	2.5.2 Outline of Consulting Services	III2-38
	2.5.3 Scope of Consulting Services	III2-38
	2.5.4 Necessary Input of Consulting Services	III2-40
СНАРТ	TER 3 PROJECT IMPLEMENTATION AND O&M PLAN	III3-1
3.1	Project Implementation Plan	III3-1
	3.1.1 Implementing Organization	III3-1
	3.1.2 Staff Required for Design and Construction Works	III3-2
	3.1.3 Decision and Instruction Flow	III3-3
	3.1.4 Procurement Plan	III3-5
	3.1.5 Implementation Schedule	III3-6

3.2	O&M Plan	III3-10
	3.2.1 Relevant Regulations for O&M of Irrigation and Drainage Facilities	III3-10
	3.2.2 Staff Required for O&M Works	III3-11
	3.2.3 O&M Responsibility	III3-12
СНАРТ	ER 4 PROJECT COST ESTIMATE	III4-1
4.1	Basic Conditions for Cost Estimate	III4-1
4.2	Project Cost Estimate	III4-1
	4.2.1 Initial Investment Cost for the Project	III4-1
	4.2.2 Operation and Maintenance Cost	III4-4
СНАРТ	ER 5 PROJECT EVALUATION	III5-1
5.1	Evaluation Conditions	III5-1
5.2	Economic Evaluation	III5-2
5.3	Financial Evaluation	III5-2
5.4	Indirect Benefit and Socio-Economic Impact	III5-2
5.5	Operation and Effect Indicators	III5-3
	5.5.1 Operation Indicators	III5-3
	5.5.2 Effect Indicators	III5-3
	5.5.3 Procedures for Monitoring Operation and Effect Indicators	III5-3
СНАРТ	ER 6 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS	III6-1
6.1	List of Laws and Regulations	III6-1
6.2	JBIC Guidelines for Confirmation of Environmental and Social Consideration	ı
	(April 2002)	III6-1
	6.2.1 General	III6-1
	6.2.2 Contents of the Environmental Checklist for Irrigation Projects	III6-2
6.3	Environmental and Social Impacts Anticipated	III6-2
	6.3.1 Permits and Explanation	III6-2
	6.3.2 Mitigation Measures	III6-3
	6.3.3 Natural Environment	III6-3
	6.3.4 Social Environment	III6-4
	6.3.5 Others	III6-6
	6.3.6 Note	III6-7
6.4	Environmental Management Plan	III6-7
	6.4.1 Participatory Process of Land Acquisition for Tertiary Canals and Drai	nsIII6-7
	6.4.2 Water and Soil Monitoring	III6-8
6.5	Activities for Environmental Management After SAPROF Study	III6-9
	6.5.1 Organizational Structure for EIA under MOWRAM	III6-9
	6.5.2 Capacity Development Plan for Environmental Management	III6-9
6.6	Recommendation	III6-9
	6.6.1 Land Acquisition (Residential Area)	III6-9

6.6.2	Approach on Rural Poverty Alleviation Program Using FWUC –
	Consideration to Socially Vulnerable GroupsIII6-10
6.6.3	Construction of Fish Ladder of Downstream Headworks in Pursat RiverIII6-10
CHAPTER 7	CONCLUSIONS AND RECOMMENDATIONSIII7-1
7.1 Concl	usions III7-1
7.2 Recor	nmendationsIII7-2
	<u>List of Tables</u> Page
Part-II	<u>r age</u>
Table II 2.1.1	Irrigation and Agriculture-Related Law and Regulation (1/2-2/2) II-T-1
Table II 4.2.1	Technical Judgement by JICA SAPROF Study Team Toward Development
	Plan Proposed in the Previous Study (Ream Kon Sub-Project) (1/3-3/3) II-T-3
Table II 4.2.2	Technical Judgement by JICA SAPROF Study Team Toward Development
	Plan Proposed in the Previous Study (Por Canal Sub-Project) (1/3-3/3) II-T-6
Table II 4.2.3	Technical Judgement by JICA SAPROF Study Team Toward Development
	Plan Proposed in the Previous Study (Damnak Ampil Sub-Project)
	(1/3-3/3) II-T-9
Table II 4.2.4	Technical Judgement by JICA SAPROF Study Team Toward Development
	Plan Proposed in the Previous Study (Wat Loung Sub-Project) (1/3-3/3) II-T-12
Table II 4.2.5	Technical Judgement by JICA SAPROF Study Team Toward Development
	Plan Proposed in the Previous Study (Wat Chre Sub-Project) (1/3-3/3) II-T-15
Table II 4.2.6	Technical Judgement by JICA SAPROF Study Team Toward Development
	Plan Proposed in the Previous Study (Lum Hach Sub-Project) (1/3-3/3) II-T-18
Table II 4.2.7	Summary of Irrigation and Drainage Plan of Six Sub-Projects II-T-21
Part-III	
Table III 1.2.1	Five-day Discharge at Basak Reservoir and from Residual Area III-T-1
Table III 1.2.2	Five-day Discharge at Damnak Ampil Weir III-T-2
Table III 1.2.3	Five-day Discharge at Lum Hach Headworks III-T-3
Table III 1.6.1	Function of Departments under MOWRAM III-T-4
Table III 1.6.2	Budget and Expenditures of MOWRAM for 2005-2008 III-T-5
	List of Figures
	Page
Part-III	
Figure III 1.2.1	Catchment Area of Moung Russei Headworks, and Ream Kon and Por
	Canal Sub-Projects
Figure III 1.2.2	Catchment Area of Damnak Ampil Headworks, and Damnak Ampil, Wat
	Loung and Wat Chre Sub-Projects III-F-2
Figure III 1.2.3	Catchment Area of Boribo River Basin at the Lum Hach Headworks and
	the Lum Hach Sub-Project
Figure III 1.6.1	Organizational Structure of Ministry of Water Resources and Meteorology

	(MOWRAM)	III-F-4
Figure III 1.6.2	Organizational Structure of Ministry of Agriculture, Forestry and Fish	neries
	(MAFF)	III-F-5
Figure III 2.3.1	Irrigation Diagram of Ream Kon Sub-Project	III-F-6
Figure III 2.3.2	Drainage Diagram of Ream Kon Sub-Project	III-F-7
Figure III 2.3.3	Irrigation Diagram of Por Canal Sub-Project	III-F-8
Figure III 2.3.4	Drainage Diagram of Por Canal Sub-Project	III-F-9
Figure III 2.3.5	Irrigation Diagram of Damnak Ampil Sub-Project	III-F-10
Figure III 2.3.6	Drainage Diagram of Damnak Ampil Sub-Project	III-F-11
Figure III 2.3.7	Irrigation Diagram of Wat Loung Sub-Project	III-F-12
Figure III 2.3.8	Drainage Diagram of Wat Loung Sub-Project	III-F-13
Figure III 2.3.9	Irrigation Diagram of Wat Chre Sub-Project	III-F-14
Figure III 2.3.10	O Drainage Diagram of Wat Chre Sub-Project	III-F-15
Figure III 2.3.1	1 Irrigation Diagram of Lum Hach Sub-Project	III-F-16
Figure III 2.3.12	2 Drainage Diagram of Lum Hach Sub-Project	III-F-17
Figure III 3.1.1	Project Implementing Organization	III-F-18
Figure III 3.2.1	Project Implementation Schedule	III-F-19

Abbreviations

ACLEDA Association of Cambodian Local Economic Development Agencies

ADB Asian Development Bank
AEO Agricultural Extension Offices
AEWs Agricultural Extension Workers

APIP Agricultural Productivity Improvement Project
AQIP Agricultural Quality Improvement Project
ASEAN Association of South East Asian Nations

AusAID Australian Agency for International Development

B/C Benefit-Cost Ratio

BRPC Battambang Rice Promotion Committee

CARDI Cambodian Agricultural Research and Development Institute

CC Commune Council

CCF Construction Conversion Factor

CDRI Cambodia Development Research Institute
CDC Council for Development of Cambodia

CEC Cation Exchange Capacity

CEDAC Centre d'Etude de Development Agricole Cambodgien

CMAC Cambodia Mine Action Center

CNMC Cambodian National Mekong Committee

CS Construction Supervision

DAALI Department of Agronomy and Agricultural Land Improvement
DAFF Department of Agriculture, Forestry and Fisheries, MAFF

DAE Department of Agriculture Extension
DAFO District Agriculture and Forestry Office
DANIDA Danish International Development Agency

DAO District Agricultural Office

DD Detail Design

DHRW Department of Hydrology and River Works

DOM Department of Meteorology

ED Engineering Department, MOWRAM

EDC Electricite du Cambodia
EDP External Development Partner
EIA Environmental Impact Assessment
EIRR Economic Internal Rate of Return
EPP Extension Program Package

EU European Union

FAO Food and Agriculture Organization of the United Nations

FFS Farmer Field School FG Farmers Group FO Farmers' Organization

F/S Feasibility Study

FWUC Farmer Water User Community
FWUG Farmer Water User Group
GDP Gross Domestic Product

GIS Geographic Information System
GOC Government of Cambodia
GOJ Government of Japan

H.E His Excellency

HH Household

HYV High Yielding Variety

IBRD International Bank for Reconstruction and Development

IDD Irrigation and Drainage Department, MOWRAM

IEE Initial Environmental Examination

IEAD International Fund for Agricultural Development

IEIA Initial Environmental Impact Assessment

IFAD International Fund for Agricultural Development

IFFS Intensive Farmer Field School
ILO International Labor Organization
IMF International Monetary Fund
IMT Irrigation Management Transfer
IO International Organization
IPM Integrated Pest Management

IRC Inter-Ministerial Resettlement Committee

ISF Irrigation Service Fee

IWRM Integrated Water Resource Management
JICA Japan International Cooperation Agency

L/C Letter of Credit

MAFF Ministry of Agriculture, Forestry and Fisheries

MDG Millennium Development Goal
MEF Ministry of Economics and Finance

M & E Monitoring and Evaluation
MIS Market Information System

MLMUPC Ministry of Land Management, Urban Planning and Construction

MOE Ministry of Environment MOI Ministry of Interior

MPWT Ministry of Public Works and Transport

MOWRAM Ministry of Water Resources and Meteorology

M/P Master Plan Study

MRC Mekong River Commission
MRD Ministry of Rural Development

NCCD National Coordination Committee for Decentralization

NPRS National Poverty Reduction Strategy
NGO Non Government Organization
O&M Operation and Maintenance
PCM Project Cycle Management

PDA Provincial Department of Agriculture PDE Provincial Department of Environment

PDOWRAM Provincial Department of Water Resources and Meteorology, MOWRAM

PICD Planning and International Cooperation Department, MOWRAM

PIF Provincial Investment Fund

PIMD Participatory Irrigation Management and Development

PO Project Owner

PRDC Provincial Rural Development Committee

PRASAC II Support Program for the Agricultural Sector in Cambodia

PSDD Project to Support Democratic Development through Decentralization and

Deconcentration

RGC Royal Government of Cambodia

RRA Rapid Rural Appraisal

SAW Strategy on Agriculture and Water

SCF Standard Conversion Factor

SEILA Foundation Stone in Khmer: This word is used as national rural development

program to 1- alleviate poverty and 2- Strengthen local governance and ownership

of local government. (The Program ended in 2007)

SPFS Special Program for Food Security
SAPROF Special Assistance for Project Formation

SRI System of Rice Intensification

SWR Shadow Wage Rate

TWG Technical Working Group
TOT Training of Trainers

TSC Technical Service Center for Irrigation and Meteorology

TSBR Tonle Sap Biosphere Reserve

UN United Nations

UNDP United Nations Development Program
UNICEF United Nations Children's Fund

UXO Unexploded Ordnance

VDC Village Development Committee

VEW Village Extension Worker WFP World Food Program

WMO World Meteorological Organization

WUG Water User Group

Khmer Words Used in the Report

Khet Province
Srok District
Khum Commune
Phum Village

Krom Group or Sub-Group Krom Samiki Solidarity Group Provasdai Mutual Help

Measurement Units

Extent

 cm^2 = square-centimeters (1.0 cm×1.0 cm)

 m^2 = square-meters $(1.0 \text{ m} \times 1.0 \text{ m})$

 km^2 = square-kilometers $(1.0 \text{ km} \times 1.0 \text{ km})$

= Are(100 m² or 0.01 ha.)

= hectares (10,000 m²) ha

= acres (4,046.8 m² or 0.40468 ha.)

Volume

 cm^3 = cubic-centimeters

 $(1.0 \text{ cm} \times 1.0 \text{ cm} \times 1.0 \text{ cm})$

or 1.0 m-lit.)

 m^3 = cubic-meters

 $(1.0 \text{ m} \times 1.0 \text{ m} \times 1.0 \text{ m})$

or 1.0 k-lit.)

 $l = liter (1,000 cm^3)$ lit

MCM = million cubic meter

Length

mm = millimeters

= centimeters (cm = 10 mm) = meters (m = 100 cm)

= kilometers (km = 1,000 m) km

Weight

= grams gr

= kilograms (1,000 gr.) kg = metric ton (1,000 kg)

Power and Energy

A = Ampere

V = Volt

W = Watt

kWh = kilowatt hour HP = horse power

Others

ppm = parts per million

°C = degree centigrade

% = percent

Currency

US\$ 1.0 =¥ 96.8 = 4,114 Riel

(As instructed by JICA for Japanese ODA loan min = minutes (60 sec.)

appraisal)

US\$ = United State Dollars

Y = Japanese Yen

R, Riel = Cambodian Riel

Time

sec = seconds

= hours (60 min.) hr

JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap

Irrigation and Drainage Rehabilitation and Improvement Project

Draft Final Report

PART I SUMMARY

STUDY

I. INTRODUCTION

Authority

O1. This Final Report is prepared in accordance with the Minutes of Discussion on the JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project (hereinafter referred to as SAPROF Study) between the Japan International Cooperation Agency (hereinafter referred to as JICA) and the Ministry of Water Resources and Meteorology (hereinafter referred to as MOWRAM) on March 26th, 2009. (1.1)

Background

- O2. In the National Poverty Reduction Strategy (NPRS) and the National Strategic Development Plan (NSDP), the Royal Government of Cambodia (RGC) put higher priority on the agriculture sector in order to alleviate poverty and achieve economic growth in the country. The country achieved food self-sufficiency in 1995. Unit yield and harvested area, however, remains to have sluggish growth, which needs to be improved. The West Tonle Sap Region, the target area of the Study, is one of the important granaries of the country, and therefore, the stabilization and increase of rice production in this area is of great importance to the country. Although the area has existing paddy fields extending to 420,000 ha, the irrigation rate is only less than 10%. Consequently agriculture production is in an unstable conditions. (1.2)
- Responding to such situation, JICA together with MOWRAM carried out Basin-Wide Basic Irrigation and Drainage Master Plan Study from January 2007 to March 2009. This study aimed to prepare the irrigation and drainage development master plan and action plan towards year 2020 for four river basins, namely (i) Battambang, (ii) Moung Russey, (iii) Pursat and (iv) Boribo. In addition, six irrigation areas consisting of (i) Ream Kon, (ii) Por Canal, (iii) Damnak Ampil, (iv) Wat Loung, (v) Wat Chre and (vi) Lum Hach, were selected as priority projects, for which Pre-Feasibility Study (F/S) was carried out under the Study. Six irrigation systems were packaged into one Project, which is the West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project. (1.2)
- 04. The Study aims to upgrade the irrigation and drainage development plan prepared under the Basin-wide Basic Irrigation and Drainage Master Plan Study carried out by JICA and MOWRAM from January 2007 to March 2009 in order to contribute to the stabilization and increase of rice production in the western region of the Tonle Sap Lake. (1.3)
- O5. Based on the Minutes of Discussion on the preparatory study, the scope of the SAPROF Study described in the Terms of Reference (TOR) prepared by JICA is summarized as follows: (i) TOR 1 Review and confirm the necessity and viability of the Project and formulate the Project Scope, (ii) TOR 2 Examine the details of the project components

and the basic plan and design, (iii) TOR 3 - The environmental and social consideration and (iv) TOR 4 - Project evaluation and study of project monitoring system. (1.4)

II. BACKGROUND

National, Agricultural and Irrigation Policies

- O6. The importance of agriculture, specifically irrigation development is elaborated in relevant policies and guidelines such as the: (i) National Poverty Reduction Strategy 2003-2005 (NPRS), (ii) National Strategy Development Plan (NSDP 2006-2010) and Agricultural Sector Strategic Development Plan 2006-2010. Based on such policies, the RGC established the Technical Working Group on Agriculture and Water (TWGAW) to meet one of the specific targets of NSDP 2006-2010. To achieve the over-arching goal, the TWGAW determined to implement the following five development programs during 2006-2010: (i) Institutional capacity building and management and support program for agriculture and the water sector, (ii) Food security support program, (iii) Agriculture and agri-business (value-chain) support program, (iv) Water resources, irrigation and land management program and (v) Agricultural and water resources education and extension program. (2.1.1, 2.1.2, 2.1.3 and 2.1.4)
- 07. MOWRAM issued the Action Plan on Water Resources and Meteorology Management and Development based on the Rectangular Strategy Phase 2 (2009-2013). The plan has the purpose of elaborating actions to be taken in 2009-2013 in the irrigation sector based on the review of the lessons learnt and achievement in the past five years (2004-2008) so as to contribute to the stabilization and increase of food production in the country. The plan primarily indicates the (i) achievement in implementing water resources and meteorology in five years (2004-2008), (ii) strategy and action plan on water resources and meteorology (2009-2013), and (iii) on-going and future priority projects list. (2.1.5)
- 08. In addition, MOWRAM prepared and issued six modules for Participatory Irrigation Management and Development (PIMD) in October 2003, stating that the crucial issues for sustainability of operation and maintenance of irrigation system are: (i) to establish efficient, sustainable, reliable and environment friendly irrigation systems, (ii) to promote irrigated agriculture ensuring food security and growth of the national economy, (iii) to increase gradually the role and responsibility of organized beneficiary-farmers in every stage of the implementation program to reduce the government's responsibility in irrigation development, (iv) to enhance the capability of FWUC in managing and safeguarding the irrigation systems, (v) to promote awareness of the beneficiary-farmers in taking over the management responsibility of the government managed irrigation schemes and expedite the transfer process to FWUC, (vi) to encourage the donor agencies to increase funding in developing and managing the irrigation systems with active involvement of the beneficiary-farmers, and (vii) to bring about uniformity in the selection and implementation process of irrigation development and management among the government institutions and supporting national and international agencies involved in

irrigation extension. (2.1.6)

Food Balance and Food Security

09. Although rice production in Cambodia has been fluctuating, the country has achieved food-self-sufficiency in 1995. Based on the rice production data from 2002 to 2005, the production share of the West Tonle Sap Region¹ in the country's total rice production is 17% on average. By assuming that the current production contribution from the region to the country is to be maintained to catch up with population growth, the future production volumes of the region to be expected in years 2010, 2015 and 2020 are respectively estimated using different assumptions, as follows:

Results of Food Balance using Different Assumptions

(Unit: ton)

Assumptions/	Paddy Requirements 1/			Con	tributio	n 2/	Balance 3/		
Consumption	2010	2015	2020	2010	2015	2020	2010	2015	2020
Assumption 1 (Seed and post harvest loss: 13 %, Conversion rate to milled rice: 64 %: the figure utilized for									
the Food Balance Sheet of 2	001 afterw	ard)							
143 kg/person (MAFF)	4,302	4,821	5,406	731	820	919	71	-18	-117
155 kg/person (FAO)	4,449	4,985	5,591	756	847	950	46	-45	-148
167 kg/person (Vietnam)	4,793	5,371	6,023	815	913	1,023	-13	-111	-222
Assumption 2 (Seed and pos	st harvest l	loss: 17 %	, Conversi	on rate to	o milled	rice: 62	%: the fig	gure utili	zed for
MAFF Food Balance Sheet l	pefore 200	0)							
143 kg/person (MAFF)	4,696	5,261	5,901	798	894	1,003	4	-92	-201
155 kg/person (FAO)	4,814	5,394	6,049	818	917	1,028	-16	-115	-226
167 kg/person (Vietnam)	5,187	5,811	6,517	882	988	1,108	-80	-186	-306

^{1/:} Estimated national paddy requirements for self-sufficiency

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

As shown in the table, even in the minimum level case assumed by the MAFF Food Balance Sheet, the increase in production required for the West Tonle Sap Region is 117,000 tons/year by 2020. Therefore, an increase in rice production in the region is necessary to maintain its granary status in the country in order to sustain national food security. (2.2)

Summary of Completed and On-going Projects

10. The Government of Japan and JICA has been assisting the RGC through both hardware and software improvement approach in agriculture and irrigation sectors. Major projects are presented in the following table. (2.3)

Completed and On-going Projects related to the West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project

Fund	Project
Government of	(i) Kandal Stung Irrigation Development Project (Grant Assistance)
Japan and JICA	(ii) Technical Service Centre Project (Technical Cooperation)

¹ The West Tonle Sap Region covers: four river basins: (i) Battambang, (ii) Moung Russei, (iii) Pursat and (iv) Boribo, administratively covering three provinces: (i) Battambang, (ii) Pursat and (iii) Kampong Chhnang.

^{2/: 17%} of the national requirements; expected contribution of the West Tonle Sap river basins to national production

^{3/:} Paddy production increases required from the present level (802,000 tons) in the West Tonle Sap region Note: Population increase is based on Population Projection published by the Ministry of Planning.

Fund	Project								
	(iii) Battambang Agriculture Productivity Enhancement Project (Technical								
	Cooperation)								
	(iv) Battambang Rural Area Nurture and Development Project (Technical								
	Cooperation)								
	(v) Bassac Reservoir Rehabilitation Project (Non-project Grant Assistance)								
	(vi) Toul Kou Irrigation Project (Grant Assistance for Grass-roots Project)								
International	(i) Northwest Irrigation Sector Project (ADB)								
Organizations	(ii) Tonle Sap Lowland Stabilization Project (ADB)								
and Donor	(iii) Multi-purpose Water Resources Development in Krang Ponley River Basin								
Countries	(KOICA)								
	(iv) Master Plan of Water Resources Development in Cambodia (KOICA)								
	(v) Water Resources Management Sector Project (ADB)								
	(vi) Feasibility Study on Stung Pursat Dam No. 3 and No. 5 Development Project								
	(China)								
RGC's Budget	(i) Damnak Ampil Weir Construction Project								
	(ii) Char Rek Weir Construction Project								
	(iii) Thlea Maom Irrigation Rehabilitation Project								

Prepared by JICA SAPROF Study Team

III. SUMMARY OF THE PROJECT PROPOSED IN THE PREVIOUS STUDY

Background

11. The Basin-Wide Basic Irrigation and Drainage Master Plan (M/P) Study was carried out from January 2007 to March 2009 to formulate the irrigation development master plan and action plan toward year 2020 for four river basins: (i) Battambang, (ii) Moung Russei, (iii) Pursat and (iv) Boribo. In addition, a Pre-Feasibility Study (Pre-F/S) was executed for priority projects selected in the M/P, which is the basis of this SAPROF Study. In the M/P, 21 irrigation projects were formulated, ranked and prioritized. On the basis of the prioritization result, the Road Map of Irrigation and Drainage Development in the Four River Basins Toward Year 2020 (The Road Map 2020) was elaborated for three terms consisting of: (i) the short term (2008-2010), (ii) the medium term (2011-2015) and (iii) the long term (2016-2020) with the thematic target. The point stressed in The Road Map 2020 was "Learning Process" proposing the stepwise approach with gradual expansion in irrigation development and management. Periodic revision and update of the road map was also stressed based on the new data and lessons to be gained from project execution are utilized to improve for further implementation. (3.1.1, 3.1.2)

Project Component

12. In the M/P, six irrigation areas consisting of (i) Ream Kon, (ii) Por Canal, (iii) Damnak Ampil, (iv) Wat Loung, (v) Wat Chre and (vi) Lum Hach, were selected as priority projects, for which Pre-F/S was carried out under the Study. The proposed Project is summarized as follows: (3.2.1)

West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project Proposed in the Basin-Wide Basic Irrigation and Drainage Master Plan

	Contents
Purpose	The Project aims to increase agriculture production and thereby alleviate poverty by
	promotion of irrigation rehabilitation as stressed in National Poverty Reduction Strategy
	and National Strategic Development Plan.

	Contents
Target	(1) Effective utilization of available resources in the Project area
	(2) Contribution to national food security
	(3) Vitalization of local economy
	(4) Poverty alleviation of the country
Area	Six sub-projects located along the western coast of the Tonle Sap Lake
	(1) Moung Russei River basin: (i) Ream Kon Sub-Project and (ii) Por Canal
	Sub-Project (Battambang Province)
	(2) Pursat River basin: (i) Damnak Ampil Sub-Project, (ii) Wat Loung Sub-Project and
	(iii) Wat Chre Sub-Project (Pursat Province)
	(3) Boribo River basin: Lum Hach Sub-Project (Kampong Chhnang Province)
Component	(1) Hard Component: Rehabilitation of irrigation and drainage facilities covering
	12,760 ha
	(2) Soft Component: (i) FWUC establishment and strengthening and (ii) agriculture
	extension activities
	(3) Project Supporting Programs: (i) Meteo-hydrological Observation Strengthening
	Program, (ii) Capacity Development Support Program for MOWRAM and (iii)
	Capacity Development Support Program for PDOWRAM
	(4) Project Formulation Study for other Potential Areas
	(5) Consulting Services: (i) Detailed Design, (ii) Assistance to Tender, (iii) Construction
	Supervision, (iv) Support to Environmental Monitoring, (v) Support to O&M etc.
Period	9 years in total (Hard Component: 5 years, Soft Component: 6 years)
Cost	US\$ 98 million in total
	(1) Hard Component: US\$ 90 million,
	(2) Soft Component: US\$ 8 million
Project	Economic Internal Rate of Return (EIRR): 12.8 %
Evaluation	B/C Ratio 1.62
Executing	Ministry of Water Resources and Meteorology (MOWRAM)
Agency	

Prepared by JICA SAPROF Study Team

IV. PROJECT SCOPE

Necessity and Justification

13. Water is the key limiting factor for agriculture and food production in Cambodia. Thus, the supply, quality and efficient use of water dominates agricultural production, and irrigation infrastructure is vital for the process as stressed in Cambodia's national and sectoral development policies. In order to supplement the NPRS in paving the way to poverty reduction and economic growth of the country, the National Strategic Development Plan (NSDP 2006-2010) describes rectangular strategies. Out of the four strategies, the increase of paddy planted area from 2.37 million ha in 2005 to 2.5 million ha in 2010 is set as one of the quantitative development targets in the Rectangular 1: Enhancement of Agriculture Sector. Improvement of yield from 1.97 ton/ha in 2005 to 2.4 ton/ha in 2010 is also elaborated. Through the review of activities so far, "Rectangular Strategy" Phase II were disclosed in 2008, which continuously support agriculture sector as one of the most important mission of the country. Although the detailed provincial level policy is not available, the importance of the agriculture sector including irrigation development in Battambang, Pursat and Kampong Chhnang provinces is emphasized in the provincial annual report document. In decentralized development programs such as SEILA and PSDD, irrigated agriculture development is one of the most important

- activities to meet community needs as well as political targets. Therefore, the Project supporting the irrigation sector by integrating hardware and software components significantly contributes to the achievement of the targets set out in NSDP. (4.1.1)
- 14. In its country assistance strategy to Cambodia, the Japanese Government addresses: (i) realization of sustainable economic growth and safe society, (ii) assistance to socially vulnerable groups, (iii) global issue, and (iv) alleviation of economic gap with other ASEAN countries. Based on the policy, the Government of Japan has been assisting Cambodia in: (i) social and economic infrastructure development, (ii) health and medical care, (iii) agriculture and rural development, (iv) human resource development and so forth through various assistance schemes such as Grant Assistance and technical assistance. JICA addresses driving vision, "Inclusive and Dynamic Development" with the following four missions of (i) addressing global agenda, including climate change, water, food, energy, infectious diseases and financing, (ii) reducing poverty through equitable growth, (iii) improving governance and (iv) achieving human security. Among others, reducing poverty through equitable growth is one of the most important agenda for many developing countries including Cambodia. JICA put emphasis on agricultural development as one of the important sectors in development assistance for poverty alleviation. Since the poverty rate in the rural area of Cambodia is significantly high, the proposed Project based on hardware and software component-integrated approach adequately conforms to the policy. (4.1.2)

Summary of Examination of the Project Scope

15. The agriculture development plan in the previous study has been examined from the viewpoint of soil suitability for, and marketability of, upland crops/vegetables. As a result, the previous crop production plan has been slightly modified in consideration of the availability of irrigation water resources in the respective river sources, as follows (4.2.2)

Modified Crop Production Plan

Pre-F/S									SAPROF	
Sub-project	Physical Area	Irrigation	Early		Wet	D	ry	Irrigation	Early Wet	Wet
		Status	Rice	V'ble	Rice	Rice	V'ble	Method	Rice	Rice
	(ha)		(ha)	(ha)	(ha)	(ha)	(ha)		(ha)	(ha)
		Irrigated	1,080	0	1,180	0	0	Gravity	960	1,610
Ream Kon	1,890	irrigated	1,080	U	1,180	U	U	Pump	170	280
		Rain-fed	0	0	710	0	0	Rain-fed	0	0
Por Canal	1,940	Irrigated	1,120	190	1,220	0	0	Gravity	1,200	1,940
Por Canai	1,940	Rain-fed	0	0	720	0	0	Rain-fed	0	0
Damnak	2,270	Irrigated	0	340	2,270	0	0	Gravity	130	1,770
Ampil	2,270	irrigated	U	340	2,270	U	U	Pump	40	500
Wat Launa	2,540	Irrigated	0	380	2,540	0	0	Gravity	130	1,740
Wat Loung	2,340	irrigated	U	360	2,340	U	U	Pump	60	800
Wat Chre	1,020	Immigrated	150	150	1,020	0	0	Gravity	50	620
wat Clife	1,020	Irrigated	130	130	1,020	U	U	Pump	30	400
Lum Hach	3,100	Irrigated	1,200	210	3,100	100	410	Gravity	1,090	2,660
Luiii Hacii	3,100	irrigated	1,200	210	3,100	100	410	Pump	180	440
Total	12,760		3,550	1,270	12,760	100	410		4,040	12,760

Prepared by JICA SAPROF Study Team

- 16. The purpose of the Project is to establish equitable and timely irrigation water supply system by rehabilitating irrigation and drainage facilities to contribute to the stabilization of agricultural production of the sub-projects' command areas and consequently, to the alleviation of poverty in the target rural areas. On this basis, the components of the Project previously proposed are justified consisting of:
 - Hardware Component: Rehabilitation of Irrigation and Drainage Facilities
 - ♦ Software Component: FWUC Establishment and Strengthening and Agriculture Extension Activities
 - ♦ Project Supporting Programs, and
 - Project Formulation Study for Other Potential Areas (4.2.7)

Summary of Irrigation and Drainage Plan

		Builliary	or irrigau	ion una Di	umage r	1411		
N	Description	Ream	Por Canal	Damnak	Wat	Wat	Lum	Total
0.		Kon		Ampil	Loung	Chre	Hach	
1.	Sub-project area (ha)	1,890	1,940	2,270	2,540	1,020	3,100	12,760
	(Pump irrigation area included	280	0	500	800	400	440	2,420
	above)							
2.	Annual irrigation area (ha)	3,020	3,140	2,440	2,730	1,100	4,370	16,800
	- Early wet season paddy (ha)	1,130	1,200	170	190	80	1,270	4,040
	- Medium wet season paddy (ha)	1,890	1,940	2,270	2,540	1,020	3,100	12,760
	- Dry season paddy (ha)	0	0	0	0	0	0	0
3.	Major water source	Moung Ru	ıssei River		Pursat Rive	r	Boribo River	
	- Name of headworks	Moung Russe	ei Headworks	Damnak Headw		Wat Chre Headworks	Lum Hach Headworks	
	- Intake water level (EL. m)	15.50	15.00	17.00	17.00	13.00	36.00 - 38.00	
	- Diversion water requirement at intake (m³/sec)	2.66	2.74	7.93	3.45	1.39	6.60	
4.	Main canals (nos.)	1	1	-	1	1	1	5
	- Total length (km)	9.9	6.8	-	20.3	4.7	16.4	58.1
_	Nos. of secondary/ sub-secondary	13	9	3	10	6	11	52
5.	canals							
	- Total length (km)	18.3	19.1	12.6	31.1	14.7	42.4	138.2
6.	Number of tertiary blocks (No.)	45	42	50	54	27	69	287
	Total length of tertiary canals (km)	54	55	85	81	27	69	369.0
		- Moung	- Moung	Ou Bakan/	Boeung	- Boeung	Boribo	
		Russei,	Russei,	Boeung	Khnar	Khnar	River	
7.	Main drains	- Ou	- MD-1	Khnar	River	River,		
		Anlong		River		- Ta Paong		
		Rolus				stream		
	- Total length (km)	7.2	5.6	-	-	-	-	12.8
	- Drainage water requirement from paddy field (lit/sec/ha)	7.17	7.17	6.32	6.32	6.32	6.83	
	- Drainage water requirement from other land (lit/sec/ha)	19~25	19~25	18~25	18~25	18~25	19~25	
8.	Secondary drains (nos.)	7	10	3	8	5	9	42
	- Total length of seconday drains (km)	13.4	14.8	21.8	37.7	11.5	35.7	134.9
9.	Collector drains (nos.)	3	0	0	0	0	0	3
	- Total length of collector drain (New, km)	21.8	0.0	0	0	0	0	21.8

Prepared by JICA SAPROF Study Team

IMPLEMENTATION PROGRAM

I. PROJECT AREA

Project Area

17. The location and administrations of each of the sub-projects are presented below: (1.1)

Location and Administration of Sub-project Areas

Sub-Project	River Basin	Province	Commune	No. of Villages	Population
Ream Kon	Moung	Battambang	Kear, Chrey, Prey Svay	6	4,667
Por Canal	Russei	Dattailloang	Chrey, Kear, Ta Loas, Kor Koah	13	4,739
Damnak Ampil			Lorlok Sar, Snam Preah, Trapeang Chong, Phteah Rung, Bak Chenhchien	6	10,401
Wat Loung	Pursat	Pursat	Lorlok Sar, Trapeang Chong, Snam Preah, Khnar Totueng, Boueng Khnar	5	9,232
Wat Chre			Boueng Khnar, Me Tuek	4	3,797
Lum Hach	Boribo	Kampong Chhnang	Krang Skear, Anchanh Rung, Prasneb, Phsar	6	9,624
Total				40	42,460

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia (SEILA Database 2005)

Natural Conditions

18. Meteo-hydrological conditions are tabulated as follows: (1.2.1, 1.2.2 and 1.2.3)

Meteo-hydrological Conditions of the Project Area

River Basin	Moung Russei	Pursat	Boribo	
Sub-Project	Ream Kon and Por	Damnak Ampil, Wat	Lum Hach	
	Canal	Loung and Wat Chre		
Average Annual Rainfall (mm)	1,387	1,624	1,615	
Temperature (degrees Celsius)				
♦ Annual	28.1	28.0	28.4	
◆ Maximum	30.2	29.9	30.4	
♦ Minimum	24.0	25.4	26.4	
Five-day discharges (2001 to	3.23 m ³ /sec or 102	76.4 m ³ /sec or 2,426	$15.4 \text{ m}^3/\text{sec}$ or 487	
2005 for Moung Russei and	MCM/year at the	MCM/year at	MCM/year at proposed	
Pursat, and 1998 to 2007 for	Basak Reservoir	existing headworks	headworks on the	
Boribo)	and 1.00 m ³ /sec or		assumption that the 50 %	
	32 MCM/year at		of the water is allocated	
	residual area		to the Pursat Province	
	between the Basak		and the remaining is to	
	Reservoir and the		the Kampong Chhnang	
	National Road No.		Province at the Bomnak	
	5.		Station	

Prepared by JICA SAPROF Study Team based on MOWRAM

Peak Flood Discharge at the Moung Russei Headworks

	2 years	5 years	10 years	20 years	50 years	100 years
Opeak (m ³ /sec)	100	110	120	130	160	190

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

Peak Flood Discharge at the Bac Trakoun Station located near Damnak Apil Headworks

	2 years	5 years	10 years	20 years	50 years	100 years
Qpeak (m³/sec)	710	970	1,130	1,270	1,440	1,560

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

Peak Flood Discharge at the Proposed Lum Hach Headworks

	2 years	5 years	10 years	20 years	50 years	100 years
Qpeak (m ³ /sec)	220	270	290	320	380	430

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

Socio-Economic Conditions

19. According to the definition by "A Poverty Profile of Cambodia 2004", poverty in Cambodia is estimated based on: (i) food poverty line and (ii) non-food allowance. The former is estimated to be Riel 1,684 (US\$ 0.42) per day while the latter is Riel 440 (US\$ 0.10) per day. Therefore, the total poverty line is Riel 2,124 (US\$0.53) per day in average 2004

Provincial Level Poverty Headcount Ratio

Province	Poverty head count index (%)
Phonm Penh	4.60
Battambang	33.69
Kompong Chhnang/ Pursat	39.57
Cambodia	35.13

Extracted from the Ministry of Planning (2006), A Poverty Profile of Cambodia 2004

Phnom Penh prices. Provincial poverty headcount ratio is summarized in the above table showing that two provinces, Kampong Chhnang and Pursat indicate higher poverty ratio than the national average. On the other hand, Battambang Province is slightly better than the country's average. (1.3.2)

20. Comparison of the poverty situation between urban and rural areas is summarized below.

The table indicates that the country's poverty is rooted largely in rural areas where people primarily depend upon agricultural sector that is currently lower productivity due insufficient irrigation facilities. Although share of agriculture sector in GDP is in Poverty Headcount Ratio, Urban and Rural Areas

1 overty freadcount Ratio, Ciban and Rurai Micas								
	Head Co	ount Index	% of all Poor					
Region	(%)	(%)					
	1993/94	2004	1993/94	2004				
Poverty Line								
Phom Penh	11.39	4.6	3.1	2.3				
Other urban areas	36.62	20.54	10.3	9.4				
Rural areas	43.12	33.66	86.5	88.3				
Cambodia	39.00	27.97	100.0	100.0				
Food poverty line								
Phom Penh	6.19	2.55	3.3	2.5				
Other urban areas	19.63	12.5	10.8	11.3				
Rural areas	21.95	16.66	85.9	86.2				
Cambodia	20.00	14.18	100.0	100.0				

Extracted from Ministry of Planning (2006), A poverty profile of Cambodia

declining trend in country's economy, more than 70% of the people are living in rural areas to support food security of the country. (1.3.2)

21. In Cambodia, there are generally some gender issues pointed out such as: (i) unbalance in workloads due to more burden on women, particularly in housekeeping, (ii) income gap between men and women resulting from differences of opportunities in economic activities, (iii) difference in participation in social activities, and so forth. According to the socio-economic survey carried out in the previous study, activities of men and women are comparatively different. Women generally engage in housekeeping, farming and care of children, while men are in charge of other economic activities including manual labor for construction works. Both genders take charge of farm management. It was observed that women's participation to the workshop in the previous Study were comparatively

active, and there were no significant gender problems essentially addressed by the community members. The survey result showed that both men and women have equal access to and control of properties such as water source, land, livestock, and water source in all the sub-project areas. (1.3.3)

Agriculture

22. The present land use condition in command areas of the six sub-projects consists of an extensive distribution of paddy field. Due to prolonged malfunctioning of the existing irrigation systems in all sub-project areas, major parts of paddy fields are tilled under rain-fed condition, and some farmers are using portable pumps to get water from puddles for supplemental irrigation purposes. In general, farmers grow vegetables and other upland crops in their home yards in the residential places within villages. The current land use is summarized below. (1.4)

Present Land Use Condition of Sub-project Areas

Soil Sub-unit Sub-project	Ream Kon	Por Canal	Damnak Ampil	Wat Loung	Wat Chre	Lum Hach	Total
Supplementally	50	100	500	130	60	200	1,040
irrigated paddy field							
Rain-fed paddy field	1,970	1,970	1,930	2,590	1,030	3,120	12,610
Paddy field total	2,020	2,070	2,430	2,720	1,090	3,320	13,650
Right-of-ways	150	160	180	200	80	250	1,020
Command area total	2,170	2,230	2,610	2,920	1,170	3,570	14,670

Source: JICA Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia, 2009

A single cropping of rice under rain-fed condition for the wet season prevails in all the sub-project areas. Other crops, like watermelon, cucumber, gourd and pumpkin are grown by a few farmers either during early wet season or dry season. As shown below, therefore, the cropping intensity ranges between 101% and 120%. (1.4)

Cropping Pattern and Cropping Intensity in Sub-project Areas

Cropping I attern and Cropping Intensity in Sub project freus							
Cropping Pattern /	Ream	Por	Damnak	Wat	Wat	Lum	Total
Sub-project	Kon	Canal	Ampil	Loung	Chre	Hach	10141
Total paddy field (ha)	2,020	2,070	2,430	2,720	1,090	3,320	13,650
Early wet season	210	410	0	0	15	40	675
- Pumping irrigated rice (ha)	200	410	0	0	0	0	610
- Other crops	10	0	0	0	15	40	65
Wet season	2,020	2,070	2,430	2,720	1,090	3,320	13,650
- Supplemental irrigated rice (ha)	50	100	0	0	0	0	150
- Rain-fed rice (ha)	1,970	1,970	2,430	2,720	1,090	3,320	13,500
Dry season	0	0	60	75	15	0	150
- Supplemental irrigated rice (ha)	0	0	60	45	0	0	105
- Other crops (ha)	0	0	0	30	15	0	45
Annual cropped area (ha)	2,230	2,480	2,490	2,795	1,120	3,360	14,475
Cropping intensity (%)	110	120	102	103	103	101	106

Source: JICA Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia, 2009

Irrigation and Drainage

24. <u>Ream Kon Sub-Project</u>: Originally, the Ream Kon irrigation system was developed in 1978 during the Pol Pot regime. Although headworks had been constructed on the Moung Russei River for the irrigation of both Ream Kon and Por Canal command areas, it has already deteriorated due to frequent flooding. In addition, the canal network has also

- significantly damaged and is not functioning at present. (1.5)
- 25. <u>Por Canal Sub-Project</u>: The system was constructed in 1978 during the Pol Pot regime, the command area of which is serviced by the Ream Kon Headworks. At present, only a part of the area is irrigated by gravity because the Ream Kon Headworks has not been functioning. Since the year 2007, the main canals were rehabilitated by MAFF under the Project ECOSORN, which is financially supported by the EU. The rehabilitated canals are thus in moderate conditions. (1.5)
- Damnak Ampil Sub-Project: The system was originally constructed in 1976 during the Pol Pot regime. The headworks and the canal systems, however, are seriously damaged by floods in 1979. New headworks was constructed in 2006 and the upstream portion of the main canal (7.3 km out of 23 km) together with checks and off-take structures, were rehabilitated by MOWRAM so as to irrigate the command area of 2,270 ha in total. Since then, one secondary canal was already rehabilitated in 2008, with the assistance of DANIDA, although no structures are provided or equipped. In addition, MOWRAM is planning to extend the main canals up to the connection with Svay Don Keo River. This is aimed to provide supplemental water from the Pursat River to several irrigation systems located along the Svay Done Keo River. (1.5)
- Wat Loung Sub-Project: The sub-project is located at the right bank of the Ou Bakan and Boeng Khnar Rivers. The irrigation system was originally developed in 1977 durring the Pol Pot regime. The system, however, was damaged in 1979 by the floods and has not been functioning until now. At present, only ruins of the headworks are observed on the Pursat River, approximately 3.5 km downstream of the Damnak Ampil headworks, which have no diversion functions. Thus, there is no water coming from the Pursat River at present. (1.5)
- Wat Chre Sub-Project: The Wat Chre sub-project was constructed along the Boeung Khnar River in 1977; however, it was damaged in 1979 and 1980 due to a series of floods in the area. The headworks had already been flushed away and the canal network is seriously deteriorated at present. No water is provided to the command area from the water source. The system's command area consists of: 1,020 ha at the right bank of the Boeng Khnar River and 480 ha at the left bank of the River. (1.5)
- Lum Hach Sub-Project: The Lum Hach irrigation system was completed in 1977 to utilize the Boribo River water for irrigation purpose. The system was damaged in 1981 and 1982, therefore, only some 300 ha are provided with water using pumps. There are two main irrigation systems along the Boribo River, one is the Lum Hach system located on the right bank of the river and the other is the O Roluss system on the left bank. The main canal of the O Roluss system was rehabilitated by MOWRAM in 2007. However, since the catchment of the existing O Roluss pond is too small, covering only 12.8 km2, the proposed Lum Hach headworks is expected to provide water to both the Lum Hach and the O Roluss systems. The road between the National Road No. 5 and the main canal is under rehabilitation by the Ministry of Public Works and Transport (MPWT). The

rehabilitated road is expected to contribute to the improvement of accessibility within the command area of the sub-project. (1.5)

II. THE PROJECT

Scope and Objective of the Project

30. The target area of the Project is the six irrigation systems (hereinafter called sub-projects) located in the western region of the Tonle Sap Lake. The Project scope is summarized in the following table: (2.1.1)

	Scope of the Project							
Area								
No.	Sub Project	River Basin	Province	Scope of the Project				
1	Ream Kon	Moung	Dattandana	For the six Sub-Project Areas Hardware Component: (i) Rehabilitation of Irrigation and Drainage Facilities				
2	Por Canal	Russei	Battambang	Software Component: (i) FWUC Establishment and Strengthening				
3	Damnak Ampil			(ii) Agriculture Support Services For the Six Sub-Project Areas and Related River Basins Project Supporting Program:				
4	Wat Loung	Pursat Pursat	t Pursat	(i) Meteo-hydrological Observation Strengthening Program Project Formulation Study for Other Potential Areas				
5	Wat Chre			For the Entire Country, including Related Provinces of the Sub-Projects				
6	Lum Hach	Boribo	Kampong Chhnang	Project Supporting Program: (ii) Capacity Development of MOWRAM Staff (iii) Capacity Development of PDOWRAM Staff				

Prepared by JICA SAPROF Study Team

31. Summary of the Project design is tabulated as follows: (2.1.2, 2.1.3 and 2.1.4)

Summary of Project Design

Overall Goal

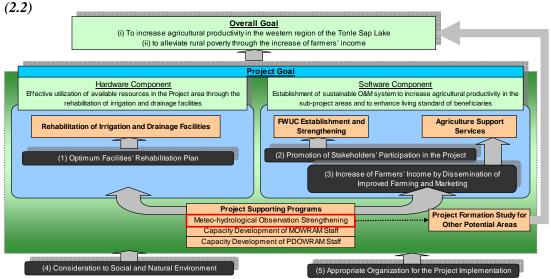
- (i) To increase agricultural productivity in the western region of the Tonle Sap Lake, and
- (ii) To alleviate rural poverty through the increase of farmers' income.

Objective

- (i) Effective utilization of available resources in the Project area through the rehabilitation of irrigation and drainage facilities.
- (ii) Establishment of sustainable O&M system to increase agricultural productivity in the sub-project areas and to enhance the living standard of beneficiaries.

Expected Output and Outcome

- (i) Materialization of equitable and efficient irrigation water distribution using rehabilitated irrigation and drainage facilities.
- (ii) Increase of irrigated areas and cropping intensity under the six sub-projects.
- (iii) Improvement of collection ratio of water charge among farmers' groups.
- (iv) Increase of agricultural productivity contributing to the alleviation of rural poverty.
- (v) Vitalization of rural economy.


Prepared by JICA SAPROF Study Team

Approach and Strategy of the Project

32. Effective utilization of three resources: (i) water, (ii) land and (iii) human is critically important to ensure the success of the irrigation and drainage development project. This

Special Assistance for Project Formation for West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project in the Kingdom of Cambodia Final Report

needs to be supported by the combination of hardware and software components in the development activities. The approach and strategy of the Project is illustrated as follows:

Prepared by JICA SAPROF Study Team

Approach and Strategy of the Project

Project Component

33. The proposed development areas and a summary of the crop production plan are as follows: (2.3.1)

Target Development Area under the Hardware Component

Sub-Project	Primary Benefit Area (ha)	Secondary Benefit Area (ha)	Total (ha)
	Areas serviced by the main,	Areas to be supplied with irrigation	
	secondary and tertiary irrigation	water from the water source through	
	facilities that are rehabilitated and	the rehabilitated main facilities	
	constructed under the project	under the project	
Ream Kon	1,890	90	1,980
Por Canal	1,940	430	2,370
Damnak Ampil	2,270	8,930	11,200
Wat Loung	2,540	0	2,540
Wat Chre	1,020	0	1,020
Lum Hach	3,100	3,400	6,500
Grand Total	12,760	12,850	25,610

Prepared by JICA SAPROF Study Team

Summary of Crop Production Plan under the Six Sub-Projects

Cook Door to ad	Touris and any Marchael	Turingtion Area (ha)	Cropping Season			
Sub-Project	Irrigation Method	Irrigation Area (ha)	Early Wet (ha)	Wet (ha)		
Ream Kon	Gravity	1,610	960	1,610		
	Pump	280	170	280		
	Rain-fed	-	0	0		
Por Canal	Gravity	1,940	1,200	1,940		
	Rain-fed	-	0	0		
Damnak	Gravity	1,770	130	1,770		
Ampil	Pump	500	40	500		
Wat Loung	Gravity	1,740	130	1,740		
	Pump	800	60	800		
Wat Chre	Gravity	620	50	620		
	Pump	400	30	400		

Cub Duaisat	Invigation Mathed	Invication Avec (he)	Cropping Season	
Sub-Project	Irrigation Method	Irrigation Area (ha)	Early Wet (ha)	Wet (ha)
Lum Hach	Gravity	2,660	1,090	2,660
	Pump	440	180	440
	Total	12,760	4,040	12,760

Prepared by JICA SAPROF Study Team

Preparatory Works

In the initial stage of the Project, topographic maps were prepared covering the command areas of the six sub-projects. An orthophoto, with the scale of 1:10,000, was already prepared during the Basin-Wide Basic Irrigation and Drainage Master Plan Study under JICA, thus, the result of the topographic survey will be overlaid on this photograph. The project office for MOWRAM staff and the Consultant is established, the location of which is within the MOWRAM headoffice space or nearby. Necessary equipment will also be procured, such as computer, photocopy machine, stationery, etc. In addition, the following vehicles will be acquired for the implementation of the Project: (i) four-wheel drive station wagon (4 nos.), (ii) four-wheel drive pick-up truck (6 nos.) and (iii) motorcycle (24 nos.). Different from the ordinary budgetary arrangement, a special account will be open for the Project after the loan agreement (L/A) is effective. MOWRAM will the prepare the annual financial expenditure plan based on the estimate of the cost necessary for the Project in detail and request this from the Ministry of Economy and Finance (MEF). (2.3.2)

Ream Kon Sub-Project

35. In line with the project concept, the proposed crop production plan is focused on the promotion of double cropping of shorter maturity rice varieties during the wet season by fully utilizing the natural flow of the water source river. Assuming that improved pre- and post-harvest technologies of irrigated rice cultivation, including the proper use of water at the on-farm level are put into practice for the three-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Ream Kon sub-project are set up as shown below. (2.3.3)

Modified Cropping Area and Predicted Crop Production in Ream Kon Sub-project Area

Cropping	Irrigation	Planting	Planted	Paddy Yield	Production
Season	Method	Method	Area (ha)	(ton/ha)	(ton)
	Gravity	Direct sowing	960	3.0	2,880
Early wet	Pumping	Direct sowing	170	3.0	510
	Sub-total		1,130		3,390
	Gravity	Transplanting	960	3.3	3,168
	Gravity	Direct sowing	650	3.3	2,145
Wet	Pumping	Transplanting	170	3.3	561
	Pumping	Direct sowing	110	3.3	363
	Sub-total		1,890		6,237
Total			3,020		9,627

Prepared by JICA SAPROF Study Team

36. Facilities to be rehabilitated or reconstructed under the Project are as follows: (2.3.3)

List of Facilities under the Project (Ream Kon Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	1,890
	(Pump irrigation area included above)	(280)
2.	Annual irrigation area (ha)	<u>3,020</u>
	- Early wet season paddy (ha)	1,130
	- Medium wet season paddy (ha)	1,890
	- Dry season paddy (ha)	0
3.	Major water source	Moung Russei River
	- Name of headworks	Moung Russei Headworks (New) shared with Por Canal Sub-Project, dimensions of which are summarized afterward
	- Intake water level (EL. m)	15.50
	- Diversion water requirement at intake (m ³ /sec)	2.66
4.	Main canals (nos.)	1
	- Total length (km)	9.9
	- Turnout (nos.)	14
5.	Nos. of secondary/ sub-secondary canals	13
	- Total length (km)	18.3
	- Turnout (nos.)	43
6.	Number of Tertiary Blocks (No.)	45
	Total length of tertiary canals (km)	54.0
7.	Main drains	- Moung Russei, - Ou Anlong Rolus
	- Total length (km)	7.2
	- Drainage water requirement from paddy field (lit/sec/ha)	7.17
	- Drainage water requirement from other land (lit/sec/ha)	19~25
8.	Secondary drains (nos.)	7
	- Total length of secondary drains (km)	13.4
9.	Collector drains (nos.)	3
	- Total length of collector drain (New, km)	21.8

Prepared by JICA SAPROF Study Team

Moung Russei Headworks and Major Facilities

Troung Russer Freday, or its und Tranjor Fuel Interest				
Items	Description			
Moung Russei Diversion Weir	♦ Floating type weir with gates			
◆ Design Flood Discharge: Q=180m³/s	♦ width x height x length (B:33.5m x H:10.7m x			
(T=100 years)	L:37.0m)			
♦ Design Flood Water Level: WL. 17.2m	♦ Flood Gate: Fixed wheel gate (B:11.5m x H:3.8m x			
♦ with Fish Ladder: B:2.0m x H:3.5m x	2 nos.)			
L:35m (Half Cone Type)	♦ Scouring Sluice Gate: Slide gate (B:2m x H:3.8m x			
	1 no.)			
Ream Kon Intake	◆ -width x height x length: B3.5m x H:3.5m x L:7m			
◆ Design Discharge: Q=2.66m ³ /s	◆ -Slide Gate: B:1.0m x H:1.2m x 2nos.			

Prepared by JICA SAPROFStudy Team

Por Canal Sub-Project

37. Following the project concept, the proposed crop production plan is to be prepared focusing on the promotion of double cropping of shorter maturity rice varieties throughout the wet season by fully utilizing the natural flow of the Moung Russei River. Assuming that improved pre- and post-harvest technologies of rice cultivation are to be put into practice among beneficiary-farmers for the three-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Por Canal sub-project are made as shown bellow. (2.3.4)

Modified Cropping Area and Predicted Crop Production in Por Canal Sub-project Area

Cropping	Irrigation	Planting	Planted	Paddy Yield	Production
Season	Method	Method	Area (ha)	(ton/ha)	(ton)
Early wet	Gravity	Direct sowing	1,200	3.0	3,600
	Su	b-total	1,200		3,600
	Gravity	Transplanting	1,200	3.3	3,960
Wet	Gravity	Direct sowing	740	3.3	2,442
	Sub-total		1,940		6,402
Total			3,140		10,002

Prepared by JICA SAPROF Study Team

38. Facilities to be rehabilitated and/or reconstructed under the Project are as follows: (2.3.4)

List of Facilities under the Project (Por Canal Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	1,940
	(Pump irrigation area included above)	0
2.	Annual irrigation area (ha)	3,140
	- Early wet season paddy (ha)	1,200
	- Medium wet season paddy (ha)	1,940
	- Dry season paddy (ha)	0
3.	Major water source	Moung Russei River
	- Name of headworks	Moung Russei Headworks (New) shared with Ream Kon Sub-Project
	- Intake water level (EL. m)	15.00
	- Diversion water requirement at intake (m³/sec)	2.74
4.	Main canals (nos.)	1
	- Total length (km)	6.8
	- Turnout (nos.)	8
5.	Nos. of secondary/ sub-secondary canals	9
	- Total length (km)	19.1
	- Turnout (nos.)	44
6.	Number of Tertiary Blocks (No.)	42
	Total length of tertiary canals (km)	55.0
7.	Main drains	- Moung Russei,
/.	Main drams	- MD-1
	- Total length (km)	5.6
	- Drainage water requirement from paddy field (lit/sec/ha)	7.17
	- Drainage water requirement from other land (lit/sec/ha)	19~25
8.	Secondary drains (nos.)	10
	- Total length of secondary drains (km)	14.8
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0.0

Prepared by JICA SAPROF Study Team

Damnak Ampil Sub-Project

39. Considering the seasonal discharge limitation of the Pursat River as the irrigation water source for the Damnak Ampil, Wat Loung and Wat Chre sub-projects, the proposed crop production plan is to focus on single cropping of rice for the wet season in 93% of the irrigation command area. Thus, the double cropping area covers only 7%. Early ripening rice varieties are to be selected for the early wet season, while medium and medium late varieties will be grown for the wet season. Under the limited water resource of the Pursat River, farming practices for irrigated rice cultivation needs to be more improved than the other three sub-project areas in Batambang and Kampong Chhnang. Providing beneficiaries with intensive training programs in terms of pre- and post-harvest

technologies for the three-year period after irrigation water can be distributed to each farm plot, the target paddy yield and production in the command area of Damnak Ampil sub-project are prepared as shown below. (2.3.4)

Modified Cropping Area and Predicted Crop Production in Damnak Ampil Sub-project Area

Cropping Season	Irrigation Planting Method Method		Planted Area (ha)	Paddy Yield (ton/ha)	Production (ton)
	Gravity	Direct sowing	130	3.0	390
Early wet	Pumping	Direct sowing	40	3.0	120
-	Sub-total		170		510
	Gravity	Transplanting	1,770	3.3	5,841
Wet	Pumping	Transplanting	500	3.3	1,650
	Sub-total		2,270		7,491
Total			2,440		8,001

Prepared by JICA SAPROF Study Team

40. The facilities to be rehabilitated or reconstructed under the Project are as follows: (2.3.4)

List of Facilities under the Project (Damnak Ampil Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	2,270
	(Pump irrigation area included above)	(500)
2.	Annual irrigation area (ha)	2,440
	- Early wet season paddy (ha)	170
	- Medium wet season paddy (ha)	2,270
	- Dry season paddy (ha)	0
3.	Major water source	Pursat River
	- Name of headworks	Damnak Ampil Headworks (Existing) Gate improvement works and fish ladder under the project is summarized
	- Intake water level (EL. m)	below. 17.00
	- Diversion water requirement at intake (m³/sec)	7.93
4.	Main canals (nos.)	1.93
	- Total length (km)	_
	- Turnout (nos.)	3
5.	Nos. of secondary/ sub-secondary canals	3
	- Total length (km)	12.6
	- Turnout (nos.)	44
6.	Number of Tertiary Blocks (No.)	50
	Total length of tertiary canals (km)	85.0
7.	Main drains	Ou Bakan/Boeung Khnar River
	- Total length (km)	-
	- Drainage water requirement from paddy field (lit/sec/ha)	6.32
	- Drainage water requirement from other land (lit/sec/ha)	18~25
8.	Secondary drains (nos.)	3
	- Total length of secondary drains (km)	21.8
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0

Prepared by JICA SAPROF Study Team

Improvement Works for Damnak Ampil Weir Flood Gate System

Improvement works for Danmak Amphi wen Flood Gate System			
Items	Contents	Remarks	
Installation of new hoist	7 sets	◆ 1-motor, 2-drum winch type with clutch for counter weight	
system		♦ Local control panels w/ cable network system, hoist deck	
(Replacement of present		♦ Generator 75 kVA	
hoist)		◆ Lightening rods with earthing network	

Special Assistance for Project Formation for West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project in the Kingdom of Cambodia Final Report

Items	Contents	Remarks
Change of bushing	7 sets	Bushing with larger diameter and oil-less bearing for long
(Replacement of present		durability since the existing bushings do not have enough
bushing)		strength for the proposed mechanical lifting

Prepared by the JICA SAPROF Study Team

Improvement Works for Damnak Ampil Weir Scouring Sluice Gate System

Items	Contents	Remarks
Installation of new hoist system	4 sets	♦ Rack type hoist with motor
(Replacement of present hoist)		◆ Local control panel

Prepared by JICA SAPROF Study Team

Dimension of Fish Ladder

Items	Contents	Remarks
Installation of	1 no.	◆ Discharge: 4.71 m3/sec (maintenance flow + D&I flow) + residual
new fish ladder		♦ Width: B=5.0m (common for above types)
		♦ Slope: I = 1/10 (commonly for above types)
		♦ Height: H=4.5m (Gate height-inlet water depth)
		♦ Inlet elevation:EL.16.50m(Water depth=0.5m)
		♦ Outlet elevation:EL.12.00m(Existing River Bed)
		♦ Length: L6=45 m (=4.5/(1/10))

Prepared by JICA SAPROF Study Team

Wat Loung Sub-Project

41. With the same concept on rice variety selection, the practice of double cropping system during the wet season because of limited discharge available in the Pursat River, and for fair opportunity of irrigation water use adopted for the Damnak Ampil sub-project, the modified cropping pattern of Wat Loung Sub-project is prepared. Similar attention has to be paid on how to improve farming practices on irrigated rice cultivation in the Wat Loung sub-project area. With the implementation of agricultural supporting activities for the three-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Wat Loung sub-project are drawn up as shown below. (2.3.5)

Modified Cropping Area and Predicted Crop Production in Wat Loung Sub-project Area

Cropping Season	Irrigation Method	Planting Method	Planted Area (ha)	Paddy Yield (ton/ha)	Production (ton)
	Gravity	Direct sowing	130	3.0	390
Early wet	Pumping	Direct sowing	60	3.0	180
	Sub-total		190		570
Wet	Gravity	Transplanting	1,740	3.3	5,742
	Pumping	Transplanting	800	3.3	2,640
	Su	b-total	2,540		8,382
Total		2,730		8,952	

Prepared by JICA SAPROF Study Team

42. Facilities to be rehabilitated or reconstructed under the Project are as follows: (2.3.5)

List of Facilities under the Project (Wat Loung Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	2,540
	(Pump irrigation area included above)	(800)
2.	Annual irrigation area (ha)	<u>2,730</u>
	- Early wet season paddy (ha) 190	
	- Medium wet season paddy (ha) 2,540	
	- Dry season paddy (ha)	0
3.	3. Major water source Pursat River	
	- Name of headworks	Damnak Ampil Headworks (Existing)

No.	Description	Quantity	
	- Intake water level (EL. m)	17.00	
	- Diversion water requirement at intake (m³/sec)	3.45	
4.	Main canals (nos.)	1	
	- Total length (km)	20.3	
	- Turnout (nos.)	12	
5.	Nos. of secondary/ sub-secondary canals	10	
	- Total length (km)	31.1	
	- Turnout (nos.)	52	
6.	Number of Tertiary Blocks (No.) 54		
	Total length of tertiary canals (km)	81.0	
7.	7. Main drains Boeung Khna		
	- Total length (km)	-	
	- Drainage water requirement from paddy field (lit/sec/ha)	6.32	
	- Drainage water requirement from other land (lit/sec/ha)	18~25	
8.	Secondary drains (nos.)	8	
	- Total length of secondary drains (km)	37.7	
9.	Collector drains (nos.)		
	- Total length of collector drain (New, km)	0	

Prepared by JICA SAPROF Study Team

Wat Chre Sub-Project

43. The modified cropping pattern for Wat Chre sub-project is made based on the same concept on rice variety selection, practice of double cropping system during the wet season because of limited discharge available in the Pursat River, and for fair opportunity of irrigation water use adopted for the Damnak Ampil sub-project. Transplanting method is to be fully practiced for the wet season cropping, while direct sowing method is put into practice for the early wet season cropping. With the implementation of agricultural supporting activities to improve pre- and post-harvest practices for irrigated rice cultivation for the three-year period after irrigation water can be distributed to each farm plot, the target paddy yield and production in the command area of Wat Chre sub-project are made as shown below. (2.3.6)

Modified Cropping Area and Predicted Crop Production in Wat Chre Sub-project Area

Cropping Season	Irrigation Method	Planting Method	Planted Area (ha)	Paddy Yield (ton/ha)	Production (ton)
	Gravity	Direct sowing	50	3.0	150
Early wet	Pumping	Direct sowing	30	3.0	90
	Sub-total		80		240
Wet	Gravity	Transplanting	620	3.3	2,046
	Pumping	Transplanting	400	3.3	1,320
	Su	b-total	1,020		3,366
Total		1,100		3,606	

Prepared by JICA SAPROF Study Team

44. Facilities to be rehabilitated or reconstructed under the Project are as follows: (2.3.6)

	List of Facilities under the Project (Wat Chre Sub-Project)			
No.	Description	Quantity		
1.	Sub-project area (ha)	1,020		
	(Pump irrigation area included above)	400		
2.	Annual irrigation area (ha)	<u>1,100</u>		
	- Early wet season paddy (ha)	80		
	- Medium wet season paddy (ha)	1,020		

No.	Description	Quantity
	- Dry season paddy (ha)	0
3.	Major water source	Pursat River
	- Name of headworks	Wat Chre Headworks
	- Ivalile of fleadworks	(Reconstruction)
	- Intake water level (EL. m)	13.00
	- Diversion water requirement at intake (m ³ /sec)	1.39
4.	Main canals (nos.)	1
	- Total length (km)	4.7
	- Turnout (nos.)	9
5.	Nos. of secondary/ sub-secondary canals	6
	- Total length (km)	14.7
	- Turnout (nos.)	22
6.	Number of Tertiary Blocks (No.)	27
	Total length of tertiary canals (km)	27.0
7.	Main drains	- Boeung Khnar R.,
/.	Mail drains	- Ta Paong stream
	- Total length (km)	-
	- Drainage water requirement from paddy field (lit/sec/ha)	6.32
	- Drainage water requirement from other land (lit/sec/ha)	18~25
8.	Secondary drains (nos.)	5
	- Total length of secondary drains (km)	11.5
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0

Prepared by JICA SAPROF Study Team

Headworks and Major Facilities

Items	Description
Wat Chre Diversion Weir	♦ Floating type weir with gates
◆ Design Flood Discharge: Q=65m ³ /s	♦ Width x height x length: B:20m x H:10.0m x
(T=100 years)	L:35m
◆ Design Flood Water Level: WL. 13.6m	◆ Flood Gate: Fixed wheel gate (B:12.5m x
♦ with Fish Ladder: B:2.0m x H:3.1m x	H:3.4mx 1 no.)
L:31m	◆ Scouring Sluice Gate: Slide gate (B:2m x H:3.4m
	x 1 nos.)
Wat Chre Intake	♦ Width x height x length: B:1.0m x H:2.4m x L:6m
◆ Design Discharge: Q=1.39m³/s	◆ Slide Gate: B:1.0m x H:1.0m x 1 no.

Prepared by JICA SAPROF Study Team

Lum Hach Sub-Project

45. In the Lum Hach sub-project area, irrigated rice cultivation can be carried out in around 40% of the command area for the early wet season and the whole area for the wet season. Aiming to enable all beneficiaries to fairly avail of double cropping opportunities, a five-year crop rotation system is to be introduced, comprising of the three-year single cropping of the wet season rice and two-year double cropping of the early wet season rice and the wet season rice. Early ripening rice varieties will be used for the early wet season cropping, while medium and medium late varieties are to be grown for the wet season cropping. Transplanting method is to be practiced for each cropping season. Assuming that beneficiary-farmers will put improved pre- and post-harvest technologies of rice cultivation into practice for the three-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Lum Hach sub-project are made as tabulated below. (2.3.7)

Modified Cropping Area and Predicted Crop Production in Lum Hach Sub-project Area

Cropping	Irrigation	Planting	Planted	Paddy Yield	Production
Season	Method	Method	Area (ha)	(ton/ha)	(ton)
	Gravity	Transplanting	1,090	3.0	3,270
Early wet	Pumping	Transplanting	180	3.0	540
	Sub-total		1,270		3,810
Wet	Gravity	Transplanting	2,660	3.3	8,778
	Pumping	Transplanting	440	3.3	1,452
	Su	b-total	3,100		10,230
Total		4,370		14,040	

Prepared by JICA SAPROF Study Team

46. Facilities to be rehabilitated or reconstructed under the Project are as follows: (2.3.7)

List of Facilities under the Project (Lum Hach Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	3,100
	(Pump irrigation area included above)	440
2.	Annual irrigation area (ha)	4,370
	- Early wet season paddy (ha)	1,270
	- Medium wet season paddy (ha)	3,100
	- Dry season paddy (ha)	0
3.	Major water source	Boribo River
	- Name of headworks	Lum Hach Headwork (new
	- Name of neadworks	construction)
	- Intake water level (EL. m)	36.00 - 38.00
	- Diversion water requirement at intake (m ³ /sec)	6.60
4.	Main canals (nos.)	1
	- Total length (km)	16.4
	- Turnout (nos.)	26
5.	Nos. of secondary/ sub-secondary canals	11
	- Total length (km) 42.4	
	- Turnout (nos.)	55
6.	Number of Tertiary Blocks (No.)	69
	Total length of tertiary canals (km)	69.0
7.	Main drains	Boribo River
	- Total length (km)	-
	- Drainage water requirement from paddy field (lit/sec/ha)	6.83
	- Drainage water requirement from other land (lit/sec/ha)	19~25
8.	Secondary drains (nos.)	9
	- Total length of secondary drains (km)	35.7
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0

Prepared by JICA SAPROF Study Team

Headworks and Major Facilities			
Items	Description		
Lum Huch Diversion Weir	♦ Floating type weir with gates		
♦ Design Flood Discharge: Q=430m ³ /s	♦ width x height x length: B:60.5m x H:10.8m x		
(T=100 years)	L:31m		
♦ Design Flood Water Level: WL. 38.0m	♦ Flood Gate: Fixed wheel gate (B:15 m x H:4.0m x 3		
♦ Fish Ladder: B:2.0m x H:5.2m x L:52m	nos.)		
	◆ Scouring Sluice Gate: Slide gate (B:2m xH:4m x 2		
	nos.)		
Lum Hach Intake	♦ width x height x length: B:7.1m x H:3.8m x L:9.5m		
♦ Design Discharge: Q=6.60m³/s	♦ Slide Gate: B:1.5m xH:1.5m x 3nos.		
O Roluss Intake	♦ width x height x length: B:5.7m x H:4.8m x L:15m		
♦ Design Discharge: Q=5.70m ³ /s	♦ Slide Gate: B:2.0m x H:1.5mx 2nos.		
Lum Hach Approach Canal	♦ width x height x length: B:3m x H:2.0m x L:750 m		
♦ Design Discharge: Q=6.60m ³ /s			

Prepared by JICA SAPROF Study Team

Ancillary Activities to Enhance Project Effect

47. The outline of software component under the Project is as follows: (2.4.1)

FWUC Establishment and Strengthening

-	F WUC Establishment and Strengthening	
Item	Description	
Objective	To materialize sustainable organizational set-up for irrigation water management and	
	facilities' O&M	
Strategy	Establishment of FWUC based on new layout of each sub-project	
	♦ Enhancement of FWUC's water management capability	
	♦ Strengthening of FWUCs capability in O&M of irrigation and drainage facilities	
	Strengthening of organizational management capacity	
	Establishment of water fee collection system	
Activity	◆ Support to establishment of FWUC	
	♦ Implementation of training programs in coordination with relevant organizations	
Work Quantity	♦ Number of FWUCs, FWUGs, Sub-FWUGs and WUGs to be established:	
	♦ Six FWUCs. 52 FWUGs, 287 sub-FWUGs and 2,552 WUGs	
	Six times of walk-through survey to determine the tertiary alignment	
	◆ Three times of awareness program on FWUC's functions and responsibilities	
	♦ Three times of training programs on organizational management, water	
	management and facilities' O&M	
	♦ Three times of training of trainers to train Sub-FWUGs' and WUGs' members	
	♦ Three times of follow-up workshops on sustainable irrigation system usage	
	♦ Six sets of manuals on irrigation water management and O&M activities	
	♦ Six sets of manuals on training of Sub-FWUGs' and WUGs' members	

Prepared by JICA SAPROF Study Team

Agriculture Support Activities

Agriculture Support Activities		
Item	Description	
Objective	To increase and stabilize rice farming in the sub-project areas	
Strategy	Capacity development of both agricultural staff and farmers	
	◆ Training of trainers	
	♦ Commune-based agricultural extension	
	♦ Improvement of pre-harvest and post-harvest technologies	
	♦ Introduction of quality seed	
Activity	Government Agricultural Staff Strengthening Program	
	◆ Training of Trainers Program for Capacity Development of Group Leaders acting	
	as Agricultural Extension Agent	
	♦ Commune-based Agricultural Extension Agent Development Program	
	Soil Fertility Diagnosis Program	
	Pre-harvest Technology Group Training	
	Post-harvest Technology Group Training Program on Farmers Field School Basis	
	♦ Quality Rice Seed Production and Distribution Program	
	♦ High Value Added Rice Production Promotion Program	
Work Quantity	◆ Three times of government agricultural staff strengthening program	
	Six times of training of trainers program	
	Six times of training programs for each program identified by needs analysis	
	◆ Commune-based agricultural extension manual	
	Materials for training programs	

Prepared by JICA SAPROF Study Team

48. The outline of project supporting programs under the Project are as follows: (2.4.2)

Meteo-hydrological Observation Strengthening

Item	Description					
Objective	To collect basic agro meteo-hydrological data, and To increase technical capability of MOWRAM and PDOWRAM in meteo-hydrological observation, data processing and analysis					
Strategy	♦ Enhancement of technical capability of relevant staff through on-the-job training					
Activity	 Preparation of manual for meteo-hydrological observation Training on meteo-hydrological data collection, processing and analysis Installation of equipment for meteo-hydrological observation in the selected 					

Special Assistance for Project Formation for West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project in the Kingdom of Cambodia Final Report

Item	Description					
	points in the river basins (additional 12 nos. of equipment: 20 % increase in					
	number from present conditions)					
Work Quantity	♦ Four sets of manual on meteo-hydrological observation					
	♦ Four times of workshop on introduction of manuals					
	♦ On-the-job training					
	♦ Follow-up workshop on sustainable water resources development					
	♦ Installation of equipment for meteo-hydrological observation at 12 points (20%					
	increase in number from present conditions)					

Prepared by JICA SAPROF Study Team

Capacity Development of MOWRAM Staff

Item	Description			
Objective	◆ To increase technical capability of MOWRAM staff in construction supervision			
Strategy	• Preparation of practical manual for construction supervision based on hardware			
	component			
	 Dissemination workshops and training programs 			
Activity	Preparation of construction supervision manuals			
	Dissemination and training workshop			
	♦ Periodical revision of manuals			
	Upgrade of the skills of MOWRAM staff for technical support to PDOWRAM			
	staff in construction supervision			
Work Quantity	♦ Construction supervision manual			
	♦ Construction supervision manual for field use			
	• Eight times of dissemination and training workshops (two for MOWRAM, six			
	for PDOWRAM)			

Prepared by JICA SAPROF Study Team

Capacity Development of PDOWRAM Staff

cupacity Development of 120 William Smit				
Item	Description			
Objective	• To increase technical capability of PDOWRAM staff in construction supervision			
Strategy	• Preparation of practical manual for field use for construction supervision based			
	on hardware component			
	Dissemination workshops and training programs			
Activity	Preparation of construction supervision manuals			
	Dissemination and training workshop			
	♦ Periodical revision of manuals			
	• Upgrade of the skills of PDOWRAM staff in construction supervision supported			
	by MOWRAM			
Work Quantity	♦ As mentioned above			

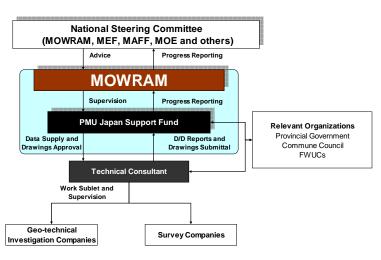
Prepared by JICA SAPROF Study Team

49. The outline of the project formulation study for other potential areas is as follows: (2.4.2)

Project Formulation Study for Other Potential Areas

Item	Description					
Objective	To prepare irrigation development plan for other potential areas					
Strategy	• Preparation of development plan for potential project using lessons learned as well					
	as data to be obtained from the implementation of the West Tonle Sap Irrigation and					
	Drainage Rehabilitation and Improvement Project					
Activity	♦ Screening of potential projects					
	 Selection of priority projects to be developed 					
	 Assessment of available water resources through meteo-hydrological analysis 					
	Inventory survey of facilities					
	Preparation of agriculture development plan					
	Preparation of irrigation and drainage plan					
	♦ Cost estimates					
	♦ Preparation of implementation schedule					
Work	• Preparation of feasibility level development plan for second priority sub-projects					
Quantity	(eight sub-projects) in the Basin-Wide Basic Irrigation and Drainage Master Plan					
	Study totaling 24,050 ha.					

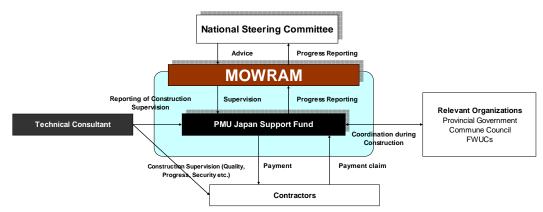
Prepared by JICA SAPROF Study Team


Technical Assistance

The purpose of technical assistance (T/A) is to advise and support the Project Management Unit (PMU) Japan Support Fund, an overall project management organization, in detailed design, construction supervision, software component and project supporting programs so as to accomplish the project objective and target. The technical consultant consists of a team of international and local consultants with different expertise to be attached to PMU Japan Support Fund. Approximate man-months necessary for the project consists of: 148 M/Ms for international consultants and 451 M/Ms for local consultants. (2.5.)

III. PROJECT IMPLEMENTATION AND O&M

Project Implementation Plan


- The PMU Japan Support Fund will take responsibility for all project implementation and management activities by Japan's Official Development Assistance (ODA). Under PMU Japan Support Fund, five units are established to be in charge of each project activity through coordination with relevant technical departments at the national level. As for agriculture support activities, staffs will be dispatched from MAFF under the control of PMU Japan Support Fund to take charge of this component. At the provincial level, a Project Implementation Unit (PIU) will be established in each PDOWRAM to supervise activities of the project. In addition, particularly at the field level, agriculture support and FWUC strengthening activities will be jointly carried out by PDOWRAM, the Commune Councils (CCs.), and other relevant organizations. MOWRAM needs to assign professional engineers to the PMU Japan Support Fund to be supported by relevant technical departments at the central level. In addition, engineers need to be allocated to PIU at the provincial level from MOWRAM (3.1.1, 3.1.2)
- 52. On the basis of above-mentioned conditions. the implementing system during D/D and C/S the Project is illustrated in the figures. (3.1.3)

Prepared by JICA SAPROF Study Team

Project Implementing System During Detailed Design

Special Assistance for Project Formation for West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project in the Kingdom of Cambodia Final Report

Prepared by JICA SAPROF Study Team

Project Implementing System During Construction

Under the technical cooperation, JICA has been assisting the Technical Service Centre (TSC) of Irrigation and Meteorology to enhance capability of the staff of both MOWRAM and PDOWRAM. Subsequently, the Improvement of Agricultural River Basin Management and Development Project (TSC-3) has commenced from September 2009, with its base in TSC and pilot areas in three provinces, namely Battambang, Pursat and Kampong Chhnang. Part of the work under the project is expected to be assisted by TSC-3, particularly activities with cross-cutting and broader objectives such as two capacity development programs. These are not the activities necessarily concentrated on the six sub-project areas but are related with the overall institutional strengthening which is one of the important missions of the TSC. (3.1.3)

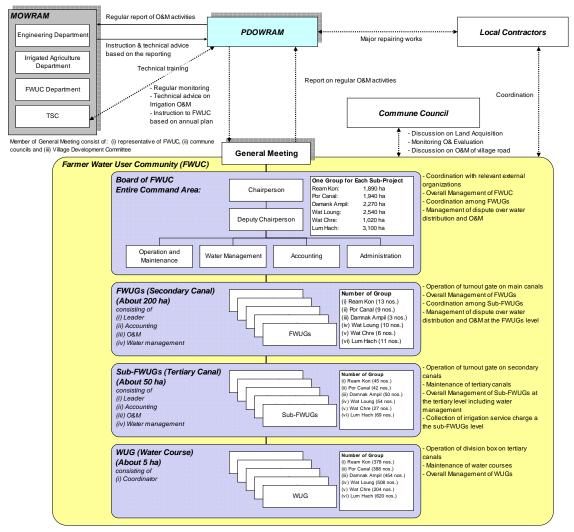
54. The procurement plan for each component of the Project is tabulated as follows: (3.1.4)

Method of Implementation for Each Component

Component	Activities	Method
Hardware Component:	Detailed Design	Implemented by the technical consultant selected though short-list method
Rehabilitation of Irrigation and Drainage Facilities	Rehabilitation and Reconstruction Works ◆ Irrigation Facilities ◆ Drainage Facilities ◆ Inspection Road	International Competitive Bidding (ICB) for Main and Secondary Systems Local Competitive Bidding (LCB) for Tertiary Systems, Works are supervised by the technical consultant
Software Component	FWUC Establishment and Strengthening Agriculture Support Services	Implemented by MOWRAM/ PDOWRAM/ PDA and the technical consultant
Project Supporting Programs	Meteo-hydrological Observation Strengthening Capacity Development of MOWRAM Capacity Development of PDOWRAM	Implemented by MOWRAM/PDOWRAM and the technical consultant TSC in collaboration with the technical consultant
Project Formulation Study	Feasibility study level planning for other potential areas	Implemented within the consulting services through coordination with construction supervision

Prepared by JICA SAPROF Study Team

The Project will be implemented for six years from 2010 to 2016. Two software components, the FWUC establishment and strengthening (3.5 years) and Agriculture Support Services (3 years), will be carried out for each sub-project in parallel with the construction works. Three project supporting programs: (i) Meteo-hydrological observation strengthening, (ii) Capacity development of MOWRAM staff and (iii) Capacity development of PDOWRAM staff, are to be implemented for three years, also concurrently with the hardware component. The project formulation study for other potential areas will be carried out in 2013 to prepare a feasibility study-level development plan for second priority projects in the Basin-wide Basic Irrigation and Drainage Master Plan Study by JICA based on lessons to be learnt from the project implementation. (3.1.5)


O&M Plan

In accordance with regulations and guidelines related to O&M of irrigation and drainage facilities in Cambodia, the following issues need to be considered for the formulation of the O&M plan; (i) FWUCs need to be established at each irrigation system. (ii) Facilities are transferred to FWUCs depending upon the capability of the group based on the policy. Although the level of facilities are not clearly described in any document, the main and secondary facilities will be maintained by the government while tertiary facilities and below will generally be by FWUCs. (iii) The transfer of facilities will be made based on the consensus building and preparation of agreement document between MOWRAM and FWUC. (iv) Transfer of facilities from the government to FWUCs will be made gradually.

O&M Responsibility Proposed for Irrigation and Drainage Facilities

Out it itesponsionity 110poseu for irrigation and Dramage 1 actives				
Level	Headworks	Main Canal	Secondary	Tertiary
Activities			canals	canals
Preparation of annual O&M plan	MOWRAM /	MOWRAM /	PDOWRAM	FWUC
	PDOWRAM	PDOWRAM		
Preparation of cropping schedule	-	-	FWUC / FWUG	FUWG
Operation of facilities	MOWRAM /	MOWRAM /	PDOWRAM	FWUC
	PDOWRAM	PDOWRAM		
Maintenance work	MOWRAM /	MOWRAM /	FWUC	FWUC
	PDOWRAM	PDOWRAM		

Prepared by JICA SAPROF Study Team

Prepared by JICA SAPROF Study Team

Proposed Organizational Set-up for O&M of Irrigation and Drainage Facilities

Irrigation service fee (ISF) will cover all the O&M costs to be borne by FWUCs. ISF is tentatively set to be U\$ 4.0/ha/cropping season for gravity irrigation and U\$1.0/ha/cropping season for pump irrigation to cover necessary annual O&M cost to be borne by FWUCs as estimated above. During the project, the rate of ISF needs to be determined through consensus among members of FWUCs. (3.2)

IV. PROJECT COST ESTIMATE

Project Cost Estimate

57. The initial investment cost for the Project is estimated at about US\$ 49.1 million consisting of JPY 2.8 billion for the foreign currency (FC) portion and Riels. 83.8 billion for the local currency (LC) portion as shown in the following table. (4.2.1)

Initial Investment Cost for the Project

	initial investment cost for the Project						
No.	Item	Total	FC	LC			
140.		(US\$ 1,000)	(JPY million)	(Riels. million)			
1.	Construction Cost	31,693	1,921	48,722			
2.	Procurement Cost	464	35	428			
3.	Consulting Services Cost	5,485	304	9,621			
4.	Soft Component Activities	2,227	119	4,074			
5.	Land Acquisition Cost	665	0	2,736			
6.	Project Administration Cost	1,107	0	4,554			
7.	Tax & Duty	1,684	0	6,928			
8.	Price Escalation	3,546	267	3,243			
9.	Physical Contingencies	2,202	133	3,441			
10.	Interest during Construction	18	1	25			
	<u>Total</u>	49,091	2,780	83,772			
Cost of	Cost of Primary Benefit Area (12,760ha) US\$ 3,850/ha						
Cost of	Cost of Primary and Secondary Benefit Area (25,610ha) US\$ 1,920/ha						

Prepared by the JICA SAPROF Study Team

Annual operation and maintenance cost includes: (i) salaries and wages for staff personnel of FWUC consisting of board members of FWUC and Sub-FWUGs and (ii) direct cost for minimum office expenses and repair works. The annual operation and maintenance cost for the sub-projects is estimated at approximately US\$10 per ha consisting of US\$ 7 per ha by the government for main and secondary facilities, and US\$ 3 per ha by FWUCs for tertiary facilities. Major repair cost, including replacement, will be executed every 10 years and the cost is assumed to be 5% of the construction costs, referring to similar types of the projects in Cambodia. The major repair cost for every 10 years is estimated at about US\$ 1.8 million consisting of JPY 111 million for the FC portion and Riels 2.6 billion for the LC portion. (4.2.2)

V. PROJECT EVALUATION

Economic Evaluation

59. The results of economic evaluation and sensitivity analysis are as follows: (5.2)

Results of Economic Analysis

NIDY	B/C Ratio at	EIRR &	Sensitivity		Cost	
NPV	12% discount	Analysis (%)		Normal	10% up	20% up
(Riel million)	ratio		Normal	13.3	12.0	10.9
00.526	526 1.10		10% down	11.4	10.2	9.2
99,536	1.10		20% down	9.4	8.3	7.3

Prepared by JICA SAPROF Study Team

As seen above, it can be said that the proposed project is economically feasible under the conditions set up as described. (5.2)

Financial Evaluation

60. Financial evaluation of the proposed Project is undertaken in terms of financial viability

from the individual farmer's perspective, focusing on the beneficiary farmers' capacity to pay. Such payment is intended to partly shoulder the annual O&M cost from their increments of net farm income from irrigated rice cultivation. The average annual farmer's net income in the project area is estimated to increase by Riel 1,284,000/ha from Riel 785,000/ha at present to Riel 2,069,000/ha in the future. As the required annual O&M cost is estimated at US\$ 10/ha or Riels 41,000/ha, an affordable portion of this cost can be covered with the increment of the net farm income. (5.3)

Indirect Benefit and Socio-Economic Impact

61. In addition to the benefits derived from incremental increases in agricultural production, the Project will generate additional employment of around 82,000 person-days annually for the farming activities. It will be covered by the available family labor force of farm households. In addition, with increases in farmers' incomes, the farmers' ability to buy will rise in local markets. Particularly, businesses related to the agricultural service sector

will be activated by improvement of farming conditions. This will impact positively on the general rural economy, stimulating increases in activity in other markets and indirectly increasing business opportunities for the local non-farming community. (5.4)

	Indicator	Unit	Without Project	With Project
1	Irrigated area	ha	760	12,760
2	Cultivated area of paddy	ha	14,260	16,800
3	Cropping intensity	%	105	132
4	Number of FWUGs	nos.	0	52
5	Collection ratio of water	%	0	80
	charge			

Prepared by JICA SAPROF Study Team

Effect Indicators (Tentative)

	Indicator	Unit	Without	With
			Project	Project
1	Paddy production	ton	22,000	54,000
2	Paddy yield	ton/ha	1.5	3.2
3	Annual income of farmer	Riel '000	785	2,069
3	Annual income of farmer	Riel '000	785	2,0

62. Operation and effect indicators for the Project

Prepared by JICA SAPROF Study Team

are proposed in the right table. (5.5.1, 5.5.2)

VI. ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

JBIC Guidelines for Confirmation of Environmental and Social Consideration (April 2002)

63. Potential negative environmental impact anticipated on the basis of the JBIC checklist is summarized in the table as follows. Although it is not significant, four categories of the checklists are applicable as negative impacts by the Project. (6.3)

Potential Negative Environmental Impact Anticipated

Potentia	al Impact	Phase			
Category	Item	Design Construction		Operation	
1. Permits and	_	_	_	_	
Explanation					
2. Mitigation	♦ Water Quality	_	_	◆ Increase of	
Measures	♦ Soil			agricultural input in	
	Contamination			the irrigation area	

	Potentia	al Impact	Phase				
	Category	Item	Design	Construction	Operation		
3.	Natural Environment	◆ Ecosystem	_	 Disturbance of fish migration by the headworks 	◆ Decrease in volume of flow in the downstream river		
4	Social Environment	◆ Living and livelihood	 Land acquisition by the construction of canals and drains 	_	◆ Due to unequal water distribution		
5	Others	◆ Impacts during Construction	_	 ◆ Degradation of sanitation condition and security by the inflow of workers ◆ Noise, vibrations, turbid water, dust, exhaust gases, and wastes caused by the construction works 	_		
6	Note	_	_	_	_		

Prepared by JICA SAPROF Study Team

- On the basis of the negative impacts, seven mitigation measures are proposed for the Project: (i) Water pollution and soil contamination management, (ii) Construction of fish ladder, (iii) River maintenance flow control, (iv) Participatory land acquisition, (v) Improvement of irrigation water management and (vi) Environmental consideration in the preparation of the technical specifications for construction works. The adverse impacts identified above are not significant problems. (6.3.2)
- As for the consideration of socially vulnerable groups, it is proposed that the FWUC should have multiple functions to support community people. FWUC needs to be established and strengthened to carry out appropriate water management in the project. The organization's purpose is to effectively and sustainably manage and use the irrigation water. Moreover, the use of water should be equal for all the farmers without exception: women, old people, and those without land titles, in the sub-project areas. As the next phase of the organization, it is proposed to construct the system aiming to solve problems of rural economy, e.g. construction of the access nets to markets through the FWUC organization. If the system functions well, various people can use through the organization and have access to the market easily. Such activity may contribute to dissipate the problem of rural poverty. (6.6)

VII. CONCLUSIONS AND RECOMMENDATIONS

By combining hardware and software activities in the project, the area, 25,610 ha area, consisting of: primary benefit area (12,760 ha) and secondary benefit area (12,850 ha) will be benefited through (i) effective utilization of available resources through the rehabilitation of irrigation and drainage facilities and (ii) establishment of sustainable O&M system to increase agricultural productivity and to enhance living standards of farmers. The evaluation shows that the project is economically feasible and contributes to the enhancement of the "capacity to pay" of farmers. In addition, no significant adverse

- environmental impact will be expected, if proposed mitigation measures are simultaneously carried out. In conclusion, the SAPROF Study Team recommends that the Project be carried out in the manner proposed in this SAPROF Study. (*Chapter 7*)
- The following issues need to be considered as risks for the smooth implementation of the project: (i) appropriate land acquisition procedure based on the regulation of the RGC through consensus building, which is most important in this process, (ii) establishment of coordinating mechanism among relevant organizations including local administration, (iii) arrangement of O&M budget necessary for the rehabilitated facilities by both government and FWUCs based on the analysis in the SAPROF Report and (iv) drastic price increase of construction works-related items. (*Chapter 7*)
- After the SAPROF Study, the following preparatory works and arrangement are recommended to be carried out by MOWRAM: (i) Discussion among relevant organizations consisting of MOWRAM, PDOWRAM of Battambang, Pursat and Kampong Chhnang, MEF, MAFF and MOE to commence the Project at the earliest possible stage, (ii) Arrangement for the establishment of the Steering Committee for the Project at the national level, (iii) Explanation of project contents to the members of the steering committee, (iv) Arrangement of provincial PIU and discussion with relevant local organizations and (v) arrangement necessary for land acquisition. (*Chapter 7*)

JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap

Irrigation and Drainage Rehabilitation and Improvement Project

Draft Final Report

PART II STUDY

PART-II STUDY

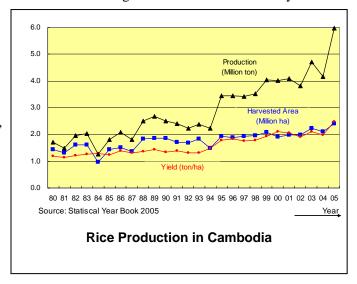
CHAPTER 1 INTRODUCTION

1.1 Authority

This Final Report is prepared in accordance with the Minutes of Discussion on the JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project (hereinafter referred to as "SAPROF Study") between the Japan International Cooperation Agency (hereinafter referred to as "JICA") and the Ministry of Water Resources and Meteorology (hereinafter referred to as "MOWRAM") on March 26th, 2009.

1.2 Background

In the National Poverty Reduction Strategy (NPRS) the National Strategic Development Plan (NSDP), the Royal Government of Cambodia (RGC) put higher priority on agriculture sector in order to alleviate poverty and to achieve economic growth in the country. Quantifiable development target shown in NSDP is tabulated on the right.


Development Target in NSDP

Indicators	As of 2005	2010	
		(Target)	
Paddy Planted Area (1,000 ha)	2,374	2,500	
Yield (ton/ha)	1.97	2.4	
Irrigation Area including	588,687	650,000	
Supplemental Irrigation (ha)			

Source: National Strategic Development Plan

Statistics on rice production of Cambodia is illustrated in the figure as follows. The country achieved

food self-sufficiency in 1995. Unit yield and harvested area, however, remains sluggish growth, which needs to be improved. West Tonle Sap Region, the target area of the Study, is one of the important granary of the country, therefore, stabilization and increase of rice production in this area is of great importance to the country. Although this area have existing paddy field extending to 420,000 ha, irrigation rate is only less than 10 % so that agriculture production is in unstable conditions.

Corresponding to such situation, JICA together with MOWRAM carried out Basin-Wide Basic Irrigation and Drainage Master Plan Study from January 2007 to March 2009 to prepare irrigation and drainage development master plan and action plan toward year 2020 for four river basins: (i) Battambang, (ii) Moung Russei, (iii) Pursat and (iv) Boribo. In addition, six irrigation areas consisting of (i) Ream Kon, (ii) Por Canal, (iii) Damnak Ampil, (iv) Wat Loung, (v) Wat Chre and (vi) Lum Hach, were selected as priority projects, for which Pre-F/S was carried out under the Study. Six irrigation

systems were packaged into one Project: West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project.

1.3 Objective of the SAPROF Study

The Study aims to upgrade irrigation and drainage development plan prepared under the Basin-wide Basic Irrigation and Drainage Master Plan Study carried out among JICA and MOWRAM from January 2007 to March 2009 in order to contribute to stabilization and increase of the rice production in the Western Region of the Tonle Sap Lake.

1.4 Scope of the SAPROF Study

The scope of the SAPROF Study described in the Terms of Reference (TOR) prepared by JICA based on the Minutes of Discussion on the Preparatory Study is summarized as follows:

- (1) TOR 1: Review and confirm the necessity and viability of the Project and formulate the Project Scope
 - Review and confirmation of irrigation facilities to be rehabilitated
 - Review of agriculture-related data and information
 - Preparation of Technical Assistance Plan
 - ♦ Confirmation of the importance and viability of the Project
 - Formulation of Project Scope based on above-listed Study
- (2) TOR 2: Examine the detail of the project component and the basic plan and design
 - ♦ Study and review of design criteria for irrigation facilities
 - Review of preliminary design prepared under Basin-Wide Basic Irrigation and Drainage Master Plan Study
 - Study on Consulting Services necessary for the Project
 - ♦ Study on procurement plan
 - Preparation of annual implementation plan
 - ♦ Review of unit construction cost
 - ♦ Overall cost estimate
 - ♦ Preparation of budget plan
 - ♦ Confirmation on implementation organization
 - ♦ Study on O&M plan
- (3) TOR 3: The environmental and social consideration
 - Preparation of environmental checklist based on relevant guidelines
 - ♦ Social consideration
- (4) TOR 4: Project evaluation and study of project monitoring system
 - Preparation of operation and effect indicators (baseline, target, procedure etc.)
 - ♦ Confirmation on intangible benefit from the Project
 - ♦ Study on Economic Internal Rate of Return (EIRR) and financial analysis

1.5 Area of the SAPROF Study

Target area of the SAPROF Study is the six sub-projects: (i) Ream Kon, (ii) Por Canal, (iii) Damnak Ampil, (iv) Wat Loung, (v) Wat Chre and (vi) Lum Hach extending to 12,760 ha as proposed in the previous Study.

1.6 Major Activities of the SAPROF Study

1.6.1 Team Members and Counterpart Personnel

Members of SAPROF Study Team and counterpart personnel assigned from MOWRAM are as follows:

SAPROF Team Members and Counterpart Personnel

OAT NOT Team Members and Counterpart Tersonner						
SAPROF Team Member	Position	Counterpart Personnel				
1. TOYA Yusaku	Team Leader	Dr. Teng Tara				
2. MIZUMA Shoji	Irrigation & Drainage Facilities	Mr. Sarun Sambath				
·		Mr. Dom Ream Sey				
3. OTSUKA Shigeya	Irrigation & Drainage Plan and O&M	Mr. Khet Piseth				
4. MATSUMOTO Yutaka	Agriculture	Mr. Meas Savoeum				
5. KAWAI Takanori	Project Evaluation	Mr. Chea Vannarith				
6. MASAKI Junko	Environmental & Social Consideration	Mr. Chea Sophal				
7. TAMURA Keiji	Cost Estimate	-				
, maretarnell	(Assigned for home office work in Japan)					

Prepared by JICA SAPROF Study Team

1.6.2 Schedule

The schedule of the SAPROF Study is as follows:

Schedule of the SAPROF Study

		concade of the criticity of the	
	Step	Period	Major Output
1.	Preparatory Works in Japan	July, 2009	Inception Report
2.	The First Field Work	August to September, 2009	Findings based on the field survey
3.	The First Home Office Work	September to October, 2009	Draft Final Report
4.	The Second Field Work	October to November, 2009	Submittal and explanation of
			Draft Final Report
5.	The Second Home Office Work	November, 2009	Final Report

Prepared by JICA SAPROF Study Team

CHAPTER 2 BACKGROUND

2.1 National, Agricultural and Irrigation Policies

2.1.1 National Poverty Reduction Strategy (2003 – 2005)

The National Poverty Reduction Strategy 2003-2005 (NPRS) was elaborated by the RGC in December 2002, aiming at reducing poverty and inequality, and improving the quality of life of the rapidly increasing poor in the country. The NPRS was formulated in the participatory process through frequent national workshops among relevant organizations. The NPRS proposes the eight priority actions for poverty reduction consisting of:

- i) maintaining macroeconomic stability,
- ii) improving rural livelihoods,
- iii) expanding job opportunities,
- iv) improving capabilities,
- v) strengthening institutions and improving governance,
- vi) reducing vulnerability and strengthening social inclusions,
- vii) promoting gender equity, and
- viii) priority focus on population.

The RGC has launched the revenue mobilization to achieve the targeted increase in revenue ratio from 9 % of GDP in 1998 to 14% by 2005 in order to achieve smooth implementation of these priority actions. The RGC established the poverty monitoring and analysis institutional framework early in 2002. The selected indicators for monitoring and evaluating the NPRS are: (i) resources from the RGC sources and donors, (ii) delivery capacity of institutions, (iii) timeframe of the NPRS, (iv) measurable and monitorable characteristics, (v) poverty-sensitivity of the indicators, (vi) baseline information, and (vii) capacity of the line agencies in collecting, maintaining and analyzing relevant information.

The NPRS was launched in March 2003. The Annual Progress Report prepared in August 2004 stated that the activities executed by the RGC were:

- i) preparation of costed and prioritized programs in the annual budget,
- ii) strengthening of budget management,
- iii) governance improvement and corruption reduction,
- iv) building of national capacity for poverty monitoring and evaluation of key programs and policies, and
- v) focus on strategies of elaborating and implementing pro-poor rural and infrastructure development.

In the Report, the growth of agricultural sector is still given a high priority as an effective measure to alleviate the poverty in Cambodia.

2.1.2 National Strategy Development Plan (2006-2010)

The National Strategy Development Plan 2006-2010 was approved by the Council of Minister on 27 January 2006 and officially launched by Prime Minister of the RGC on 15 August 2006. It describes the *Rectangular Strategy for growth, employment, equity and efficiency* (RS), which provides the framework for Cambodia's socio-economic development. The Rectangular Strategy has four pillars for its implementation and four strategic growth rectangles. Each strategic growth rectangle has four sides:

i) Rectangle 1: Enhancement of Agriculture Sector,

ii) Rectangle 2: Further Rehabilitation and Construction of Physical Infrastructure,

iii) Rectangle 3: Private Sector Development and Employment Generation, and

iv) Rectangle 4: Capacity Building and Human Resource Development.

Each Rectangle covers the following strategic themes:

Strategic Themes in Rectangular Strategy under NSDP

Rectangle	Strategic Themes				
Rectangle 1:	(1) Improved productivity and diversification of agriculture				
	(2) Land reform and clearing of mines				
	(3) Fisheries reform				
	(4) Forestry reform				
Rectangle 2:	(1) Further restoration and construction transport infrastructure				
	(2) Management of water resources and irrigation				
	(3) Development of energy and power grids				
	(4) Development of information and communication technology				
Rectangle 3:	(1) Strengthened private sector and attraction of investments				
	(2) Promotion of SMEs				
	(3) Creation of jobs and ensuring improved working conditions				
	(4) Establishment of social safety nets for civil servants, employees and workers				
Rectangle 4:	(1) Enhanced quality of education				
	(2) Improvement of health services				
	(3) Fostering gender equity				
	(4) Implementation of population policy				

Source: Address by Samdech HUN SEN Prime Minister of the Royal Government of Cambodia on Rectangular Strategy for Growth, Employment, Equity and Efficiency

Prioritizing on alleviating poverty and enhancing economic growth, the NSDP 2006-2010 places particular emphasis on *Enhancement of the agricultural sector* i.e. Rectangle 1. It states that "the priority goals in this sector are enhancement of food security, productivity and diversification, and market access for agricultural products. It outlines priority strategies for 2006-2010, the first of which is to "speedily formulate and implement a comprehensive Agriculture and Water Resources Strategy".

Rectangle 2 i.e. Rehabilitation and construction of physical infrastructure includes "management of water resources and irrigation" as one of its four components. The priorities in this component are closely related to agricultural use of water, and therefore to the NSDP's goals for the agricultural sector. By following the same concept, the RGC announced the Rectangular Strategy Phase-II as the "Socio-Economic Policy Agenda" of the "Political Platform of the Royal Government of the fourth legislature of the National Assembly" in 2008.¹

2.1.3 Agricultural Sector Strategic Development Plan (2006-2010)

MAFF elaborated the Agricultural Sector Development Plan 2006-2010 based on main national development policy such as Rectangular Strategy and National Poverty Reduction 2003-2005.

In the Agricultural Sector Development Plan 2006-2010, the main sectoral goal is defined as "to ensure food security, increase incomes, create employment and improve nutrition status for all people by improving the productivity and diversification and commercialization of agriculture with the

.

¹ Address by Samdech Akka Moha Sena Padei Techo Hun Sen, Prime Minister of the Kingdom of Cambodia on "Rectangular Strategy" for Growth, Employment, Equity and Efficiency Phase II at the First Cabinet Meeting of the Fourth Legislature of the National Assembly, Phnom Penh, 26 September 2008

environmentally sound protection and food safety." In order to achieve the sectoral goal above mentioned, MAFF set seven specific objectives:

- i) Food security, productivity, diversification,
- ii) Improve and strengthen agricultural research and extension systems,
- iii) Market access for agricultural products,
- iv) Institutional and legislative development framework,
- v) Land reform (land tenure and land market development and Pro-poor land access),
- vi) Fisheries reform, and
- vii) Forestry reform (promotion of conservation and management of sustainable forests, ensure better management of natural protected areas

The total cost was estimated at about US\$153 million to implement and achieve all national priority goals.

The food security, productivity and diversification are given top priority among seven objectives based on the national development policy. Twenty-two action programs are proposed to maintain the food security, productivity and diversification. Out of them major actions related to the Project are as follows:

Improve water management and available water supply for crop and livestock production through expanding irrigation and agricultural water supply, prioritizing food-insecure communities by:

- i) Promote higher returns from irrigation and rain-fed agriculture, through improving farming practices, diversification of crops types and support to distribution and marketing
- ii) Improve 100,000 ha irrigation systems in potential production areas of irrigated and rainfed areas, and promoting the participatory water management,
- iii) Establish preparedness for risk reduction and disaster management dimensions in their activities to improve agricultural and livestock production (risk reduction and management of drought and flood impacts on crops, risk management of livestock diseases outbreaks)

2.1.4 Strategy for Agriculture and Water and Water, Irrigation and Land Management Program

(1) Strategy for Agriculture and Water

Strategy for Agriculture and Water (SAW) was prepared within the framework of the NSDP 2006-2010, and defines the long term vision and over-arching goal for agriculture and water resources management during 2006-2010:

i) Long term vision

To ensure enough, safe and accessible food and water for all people, reduce poverty, and contribute to economic growth, while ensuring the sustainability of natural resources.

ii) Over-arching goal

To contribute poverty reduction, food and economic growth through enhancing agricultural productivity and diversification, and improving water resources development and management.

(2) Water, Irrigation and Land Management Program under the Technical Working Group on Agriculture and Water

The RGC established the Technical Working Group on Agriculture and Water (TWGAW) to meet one of the specific targets of NSDP 2006-2010. To achieve the over-arching goal, the TWGAW determined to implement the following five development programs during 2006-2010.

- i) Institutional capacity building and management and support program for agriculture and water sector
- ii) Food security support program
- iii) Agriculture and agri-business (value-chain) support program
- iv) Water, irrigation and land management program
- v) Agricultural and water resources, education and extension program

Every development program has been conceptualized by MOWRAM and MAFF under support of External Development Partners (EDPs) concerned. The development program iv) Water Resources, Irrigation and Land Management Program is given the development goal by SAW as follows:

Sustainable and pro-poor management of water resources, water management facilities, water-related hazards, and land resources that is integrated, efficient, are carried out in a river basin context.

From October 2006 the program design team for the Water Resources, Irrigation and Land Management Program was formed by international and national experts funded by JICA as a pilot phase, and prepared a draft program design document. In the draft program design document 9 indicative components were proposed as follows:

- i) Integrated, river basin-based Water and Land Utilization Planning
- ii) Agro-ecosystems-analysis-based irrigation system development (based on i))
- iii) Improvement of climatologic information
- iv) Study of water potential for agriculture
- v) Irrigation system rehabilitation and development (based on i))
- vi) Participatory irrigation management and development including water use efficiency
- vii) Participatory on-farm water and agricultural management training and extension
- viii) Land allocation and tenure program
- ix) Flood and drought preparedness program (based on i))

The major components related to the SAPROF Study are: (i) Integrated, river basin-based Water and Land Utilization Planning, (ii) Improvement of climatologic information, (iii) Study of water potential for agriculture, (iv) Irrigation System Rehabilitation and Development, (v) Participatory Irrigation Management and Development, (vi) Participatory On-farm Water and Agricultural Management Training and Extension.

Based on the lessons learnt during the pilot phase, TWGAW continues the activity to elaborate "indicative actions" and estimates of the resources required, to ensure that it provides a sound and comprehensive basis for resources allocation by ministry officials in the RGC and EDPs. Through the exercise, draft final report published in January 2009 shows sector review and proposal of programs including fund requirement.²

II 2 - 4

² MAFF and MOWRAM (2009), Strategy for Agriculture and Water 2006-2010 Program 4: Water, Irrigation and Land Management, Sector Review and Proposal of Program prepared by the Program Design Team, reviewed by the Task Management Support Group

2.1.5 Action Plan on Water Resources and Meteorology Management and Development (2009-2013)

MOWRAM issued the Action Plan on Water Resources and Meteorology Management and Development based on the Rectangular Strategy Phase 2 (2009-2013). The plan has the purpose of elaborating actions to be taken in 2009-2013 in irrigation sector based on the review of the lessons learnt and achievement in the past 5 years (2004-2008) so as to contribute to the stabilization and increase of food production in the country. The Plan primarily indicates: (i) the achievement in implementing water resources and meteorology in 5 years (2004-2008), (ii) the strategy and the action plan on water resources and meteorology (2009-2013) and (iii) on-going and future priority projects list.

The achievement in the past 5 years is summarized from the view point of: (i) legal framework, (ii) rehabilitation of irrigation infrastructure, (iii) drought intervention, flood mitigation and management, (iv) hydrological and meteorological basic information preparation and (v) human resources development.

Based on the achievement, strategic plan elaborated by MOWRAM for 2009-2013 is to:

effectively manage and develop water resources with fairness, and sustainability to ensure the eco-system to reduce the dangers caused by natural disasters: flood, drought on daily living and public property

In order to implement the Action Plan on water resources and meteorology development and management (2009-2013) proposed, budget to be required from the RGC and foreign donors estimated in the Action Plan are US\$735 million consisting of: (i) government budget US\$99 million and (ii) foreign aid and development partners US\$636 million. Annual budget to be required is as shown in the following table.

Budget to be required for Water Resources and Meteorology Development and Management (2009-2013)

Year	Government Budget (US\$1,000)	Foreign Aids and De (US\$2	Total (US\$1,000)	
		Committed		
2009	13,902	31,200	0	45,102
2010	23,942	38,700	86,885	149,527
2011	22,625	50,300	98,863	171,788
2012	17,980	46,500	114,496	178,976
2013	20,971	39,500	129,730	190,201

The Report shows ten components of proposed programs:

The Re	port snows ten com	ponents of proposed programs:
(i)	Component 1:	Improvement of Water Data Management
(ii)	Component 2:	Development of Integrated Water Management
(iii)	Component 3:	Development of National Land Resource Assessment
(iv)	Component 4:	Improvement of the Productivity of Lowland Rice Soils
(v)	Component 5:	Improvement of the Productivity of Upland Soils for Sustainable Management and Utilization
(vi)	Component 6:	Strengthening of Smallholder Land Tenure Security and Productivity
(vii)	Component 7:	Strengthening of the Management of State Land Resources
(viii)	Component 8:	Provision of Information for Monitoring the Implementation and Impact of Land Use and Land
		Tenure Policies
(ix)	Component:9:	Continuation of the Development of Irrigation and Water Management Infrastructures with a
		more Participatory Design and in a more Integrated Way
(x)	Component 10:	Improvement of the Maintenance of the Water Management Infrastructures through a Transfer

to or a Shared Management with the FWUC

Year	Government Budget (US\$1,000)	Foreign Aids and Development Partners (US\$1,000)		Total (US\$1,000)
		Committed	Not Committed	
Total	99,420	206,200	429,974	735,594

Source: MOWRAM (2009), Action Plan on Water Resources and Meteorology Management and Development to contribute to the implementation of the Royal Government of Cambodia, Rectangular Strategy Phase 2 (2009-2013)

2.1.6 Policy for Participatory Irrigation Management and Development (PIMD)

The RGC has been trying to make sure of what the government has to do, what beneficiary can do regarding irrigation system and water management in the country as a part of integrated water resources management. In this line, MOWRAM prepared and issued six Modules for Participatory Irrigation Management and Development (PIMD) in October 2003 as follows:

- i) Module 1: Introduction to Participatory Irrigation Management and Development (PIMD)
- ii) Module 2: Participatory Irrigation Management and Development; Policy, Legal and Institutional Framework
- iii) Module 3: Planning and Implementing Participatory Irrigation Management and Development at the National Level
- iv) Module 4: Implementation of Participatory Irrigation Management and Development at Provincial and Irrigation System Levels
- v) Module 5: Establishing and Developing the Farmer Water Users Community
- vi) Module 6: Monitoring and Evaluation System for PIMD

The modules states that the crucial issues for sustainability of operation and maintenance of irrigation system are: (i) to establish efficient, sustainable, reliable and environment friendly irrigation systems, (ii) to promote irrigated agriculture ensuring food security and growth of national economy, (iii) to increase gradually the role and responsibility of organized beneficial farmers in every stage of implementation program to reduce the government's responsibility in irrigation development, (iv) to enhance the capability of FWUC in managing and safeguarding the irrigation systems, (v) to promote awareness of the beneficial farmers in taking over the management responsibility of the government managed irrigation schemes and expedite the transfer process to FWUC, (vi) to encourage the donor agencies for increased funding in developing and managing the irrigation systems with active involvement of beneficial farmers, and (vii) to bring about uniformity in selection and implementation process of irrigation development and management among the government institutions and supporting national and international agencies involved in irrigation extension.

Major policy, guidelines and manuals related with water management, irrigation and agriculture are listed as follows and described in Table II2.1.1.³

Water Resources

♦ National Water Resources Policy for the Kingdom of Cambodia

Water Management

- ♦ Circular No.1 on the Implementation Policy for Sustainable Irrigation Systems
- ◆ Policy for Sustainability of Operation and Maintenance Irrigation Systems

³ Sub-decrees related with water right, including: (i) water licensing and (ii) FWUC, are under drafting by MOWRAM.

- Steps in the Formation of a Farmer Water Users Community
- Training Manual for Participatory Irrigation management and Development (PIMD)
- Sub-Decree on Farmer Water User Community

Agricultural Cooperative

- ♦ Royal Decree on the Establishment and Functioning of Agricultural Cooperative, Union of Agricultural Cooperative and Pre-Agricultural Cooperative
- ♦ Model Statute of Agricultural Cooperative

2.2 Food Balance and Food Security

Although rice production of Cambodia has been showing fluctuation, the country has achieved food-self-sufficiency in 1995. The production share of the West Tonle Sap Region⁴ in the country's rice production is 17 % on average according to the rice production data from 2002 to 2005. By assuming that the current production contributions from the region to the country are to be maintained to catch up with population growth, the production volumes required in this the region in years of 2010, 2015 and 2020 are respectively estimated using different assumptions as follows:

Results of Food Balance using Different Assumptions

(Unit: ton)

								(0	mt. ton)
Assumptions/	Paddy Requirements 1/		Contribution 2/			Balance 3/			
Consumption	2010	2015	2020	2010	2015	2020	2010	2015	2020
Assumption 1 (Seed and post harvest lo	ss: 13 %,	Conversion	n rate to	milled ric	e: 64 %	: the fig	ure utiliz	ed for th	e Food
Balance Sheet of 2001 afterward)									
143 kg/person (MAFF)	4,302	4,821	5,406	731	820	919	71	-18	-117
155 kg/person (FAO)	4,449	4,985	5,591	756	847	950	46	-45	-148
167 kg/person (Vietnam)	4,793	5,371	6,023	815	913	1,023	-13	-111	-222
Assumption 2 (Seed and post harvest los	Assumption 2 (Seed and post harvest loss: 17 %, Conversion rate to milled rice: 62 %: the figure utilized for MAFF Food								
Balance Sheet before 2000)									
143 kg/person (MAFF)	4,696	5,261	5,901	798	894	1,003	4	-92	-201
155 kg/person (FAO)	4,814	5,394	6,049	818	917	1,028	-16	-115	-226
167 kg/person (Vietnam)	5,187	5,811	6,517	882	988	1,108	-80	-186	-306

^{1/:} Estimated national paddy requirements for self-sufficiency

Note: Population increase is based on Population Projection published by the Ministry of Planning.

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

The assumptions applied for the analysis are: (i) 143 kg/person by MAFF Food Balance Sheet, (ii) 155 kg/person by FAO and (iii) 167 kg/person, the figure of Vietnam as a reference. As shown in the table, even in the case of minimum level assumed by the MAFF Food Balance Sheet, the production increase required for the West Tonle Sap Region is 117,000 tons/year by 2020. Therefore, an increase in rice production in the West Tonle Sap Region is necessary as maintaining granary of the country in order to maintain country's food security.

^{2/: 17%} of the national requirements; expected contribution of the West Tonle Sap river basins to national production

^{3/:} Paddy production increases required from the present level (802,000 tons) in the West Tonle Sap region

_

⁴ The West Tonle Sap Region covers: four river basins: (i) Battambang, (ii) Moung Russei, (iii) Pursat and (iv) Boribo administratively covering three provinces: (i) Battambang, (ii) Pursat and (iii) Kampong Chhnang.

2.3 Summary of Completed and On-going Projects

2.3.1 Grant Assistance and Technical Cooperation by the Government of Japan

(1) Kandal Stung Irrigation Development Project

Target area: Kandal Stung District of Kandal Province

Although population density of the suburbs of Phnom Penh is one of the highest in the country, the area have are lower fertile land with low river discharge. Infrastructure development is not sufficiently carried out and the socio-economic condition remains underdeveloped. Within such situation, the Kandal Stung area in the Kandal Stung District of Kandal Province extending along the right bank of

the Prek Thnot River is inherent in comparatively fertile land, therefore, it is expected to play a role as a food supply station to the capital city, Phnom Penh.

The Master Plan Study on the Integrated Agricultural and Rural Development Project in the Suburbs of Phnom Penh was carried out from 1994 to 1995, out of which Kandal Stung area was put higher priority for irrigation development with the assistance of JICA. On this basis, Basic Design Study on the Project for the Rehabilitation of the Kandal Stung Irrigation System was carried out from 2002 to 2004. The major facilities constructed and/or rehabilitated under Japan's Grant Assistance are as follows:

Main Canal Rehabilitated (July 11th, 2007) (Kandal Stung Irrigation Development Project)

Construction of new headworks : 1 no.
 Rehabilitation of regulators and 7th January Dam : 2 nos.
 Demolish regulator : 1 no.
 Construction of new intake : 1 no.
 Rehabilitation of main canal and related structures : 5.3 km

♦ Rehabilitation of O&M road : 9.3 km

The command area under the Kandal Stung Headworks has been utilized as a pilot area for the Technical Service Centre Project under the technical cooperation by JICA.

(2) Technical Service Centre Project Phase-2

Target area:	Technical Service Centre of MOWRAM at Phnom Penh
	Three Model Sites at (i) Kandal Stung, (ii) Takeo and (iii) Pursat

The purpose of the Project is: (i) to enhance technical capability of MOWRAM and PDOWRAM and (ii) to improve farmers' capability in survey, planning, design, construction and O&M of irrigation and drainage facilities particularly for the tertiary level at the three pilot sites. Major activities of the Project are primarily to support to the following subjects: (i) preparation of guidelines and manuals in irrigation plan and design, (ii) training farmers through facilitating construction of tertiary canals and O&M of facilities at the pilot sites and (iii) contribution to the increase of agricultural productivity at the pilot areas.

According to the assessment jointly by the JICA evaluation study team and the MOWRAM, the results are summarized from the view point of project's relevance, effectiveness, efficiency, impact and

sustainability as follows:

Result of the Evaluation of TSC-2

No.	Indicator	Result
1	Relevance	◆ The Project is consistent with the policies of Cambodian Government such as the Rectangular Strategy and the National Strategic Development Plan (2006-2010) stressing the need of irrigation development to enhance agricultural productivity.
		◆ Consistency with the ODA policies of Japanese Government was confirmed as Japanese ODA policy put priority on sustainable economic growth and social security for the support to Cambodia, and agriculture and rural development as well as improvement of agriculture productivity are considered as vital cooperation strategy in the assistance program.
2.	Effectiveness	 Both achievement of the curriculum target and satisfaction are judged to be high. Improvement of technical capability of MOWRAM, PDOWRAM staffs as well as training management of TSC have been achieved through the Project.
3.	Efficiency	◆ Appropriateness of input from both Japanese and Cambodian side are judged sufficient in timing, duration and quantity.
4.	Impact	♦ Not only the enhancement of capability of MOWRAM and PDOWRAM staffs, positive impacts have been observed such as increase of cropping intensity at the pilot sites.
5.	Sustainability	Sustainability aspect is judged to be fair in general.
		♦ Allocation of budget toward TSC after the Project would be smaller so that organizational sustainability of TSC system would be jeopardized.
		• Regular technical update and upgrade needs to be carried out through further assistance.
		• Technical capability needs to be expanded from tertiary level facilities to river basin and main facilities.

Prepared by JICA SAPROF Study Team based on the Evaluation Report of JICA (2008)

The TSC-2 was completed in July 2009. On the basis of promising output, TSC-3 has commenced from September 2009 focusing on: (i) strengthening of training program and (ii) formulation of training courses on agricultural river basin management including the operation of six pilot sites in Battambang, Pursat and Kampong Chhnang Provinces.

(3) Battambang Rural Area Nurture and Development Project

Target area:	Four districts in Battambang Province
--------------	---------------------------------------

JICA implemented the Battambang Agricultural Productivity Enhancement Project (BAPEP) to establish rice farming technology as well as strengthening of farmers groups through collaboration with PDA.

By effectively utilizing the experiences and lessons learnt from BAPEP, the Battambang Rural Area Nurture and Development (BRAND) Project selected areas of four communes in four districts in Battambang Province so as to aggrandize agricultural support services by Battambang PDA and DAFO extension officers. General information of the BRAND is as follows:

Item	Description			
Counterpart	♦ Provincial Department of Agriculture (PDA) Battambang			
Organization	♦ General Directorate of Agriculture (GDA), MAFF			
	♦ Department of Agriculture Extension (DAE)			
Period	November 2006 to Match 2010 (3.5 years)			
Purpose	Enhancement of agricultural extension delivery in 4 target communes in Battambbang Province			
Beneficiaries	40,000 people in 23 villages			
Major target crops	Rice, vegetables and oranges			

Source: BRAND (2009)

The major activities under the Project are as follows:

- Confirmation of agriculture development potential and farmers' need
- Preparation of manual and guidelines for extension activities
- ♦ Dissemination of technologies of rice farming including: (i) salt water selection, (ii) hot water seed disinfection, (iii) appropriate seed rate and fertilization, though 36 demonstration farms and extension
- Provision and dissemination of qualified seed
- ♦ Support diversification of rural activities including livestock and fishery
- Support farmers' marketing activities by enhancing value-chain of agricultural products
- ♦ Support of Commune Councils to coordinate between commune investment plan and agriculture support services

Not only disseminating farming technology through the operation of the pilot farms, the BRAND has been contributing to the coordination among agricultural support services by MAFF and commune investment plan for maximizing ripple effect. In addition, under the technical support of the BRAND, the Battambang Rice Promotion Committee (BRPC) was established and strengthened with the aim of the improvement of milled rice quality and the promotion of marketing by public and private sectors.⁵

Major achievements of the BRAND are: (i) establishment of effective and applicable technologies in farming, (ii) establishment of dissemination mechanism of such technologies in collaboration with communes, villages, PDA and MAFF, (iii) capacity development of PDA staff, and (iv) establishment of collaboration mechanism on promoting rice sector by PDA and Public and Private Sectors.

(4) Bassac Reservoir Rehabilitation Project (Non-project Grant Assistance)

Target area: Moung Russei River Basin in the Battambang Province

Bassac reservoir was constructed in upstream of Moung Russey River in Moung Russey District in 1975-1979. The construction work of the reservoir and irrigation facilities were not completed, and abandoned up today. The Government of Japan decided to assist the rehabilitation work of the project by Non-project Grant Assistance based on the request from MOWRAM and PDOWRAM Battambang Province. The project scope contains as follows: (i) dyke rehabilitation; slope protection by stone pitching, laterite surfacing on top, (ii) spillway rehabilitation; reconstruction, (iii) intake structure for Stung Sa Canal; construct a new structure, (iv) canal rehabilitation; excavation and (v) access road; 10 km laterite pavement.

Spillway Completed in 2009
(August 10th, 2009)
(Bassac Reservoir Rehabilitation Project)

⁵ BRPC has been established in August 2008 under the declaration of the Battambang Provincial Government. Main purpose of the committee is to promote aromatic variety rice through introducing quality grading and certification system. The committee is chaired by Vice Governor of the Battambang Province. There are four sub-committees:

⁽i) Quality Standard Sub-Committee to manage quality grading system,

⁽ii) Certification Sub-Committee to manage certification system,

⁽iii) Logo and Sample Sub-Committee for logo and package of products, and

⁽iv) Monitoring Sub-Committee to manage monitoring system

The rehabilitation works was completed in June 2009. The reservoir is reported to have 32 million m³ of effective storage⁶, and possible to irrigate 20,000 ha.

(5) Toul Kou Irrigation Project (Grant Assistance for Grass-root Project)

Target are	ea: k	Kien Villages, Kos Chum Commune, Sompovmeas District, Pursat Province
------------	-------	---

The project was originally constructed in 1976, and left severely deteriorated. In 2004, the dyke and intake structure were rehabilitated under Grant Assistance for Grass-roots project. The irrigation system, however, needs canals and related structures to deliver irrigation water to fields.

The Government of Japan decided to assist irrigation development as a Gross-roots Project. The project scope contains as follows: (i) construction of dyke of 1,274m, (ii) construction of canal of 3,109m, (iii) construction of related structures 18 nos. and (iv) laterite surface spreading in 2,505m.

The total cost is estimated at US\$79,810. After the rehabilitation work, the wet season and dry season irrigation area are expected to increase remarkably.

2.3.2 Project by Other Donor Agencies

(1) Northwest Irrigation Sector Project (ADB)

Target area:	Four Provinces: (i) Pursat province, (ii) Battambang province, (iii) Banteay Meanchey province and (iv) Siem Reap province			
Period	From 2004 to 2010 (7 years)			
Cost	US\$30.9 million for 39 nos. of eligible subprojects extending to 46,490 ha			

The objective of the Project is to achieve better use of water resources and promotion of irrigated agriculture through: (i) a comprehensive policy and strategic framework to be applied in the development of water resources, (ii) a better understanding knowledge and application of the integrated water resources management approach in a river basin context, (iii) improve water resources management through rehabilitated/upgraded small to medium-scale irrigation schemes and other water control infrastructure, (iv) a strengthened capacity of communities and institutions in planning, implementing, managing and maintaining such infrastructure, and (v) improved agricultural support services to the beneficially water users.

Out of 39, 17 sub-projects are located in the provinces of the West Tonle Sap region, therefore, water allocation to those sub-projects need to be considered to determine available water resources to six sub-projects under the West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project.

(2) Tonle Sap Lowland Stabilization Project

Target area:	Six Provinces: (i) Pursat province, (ii) Battambang province, (iii) Banteay Meanchey province, (iv) Siem Reap province, (v) Kampong Chhnang and (vi) Kampong Thom		
Period	7 years (originally proposed from 2008 to 2014)		
Cost	US\$32 million, out of which US\$27 million is grant		

The objective of the Project is to improve livelihoods of households inhabiting the lowland project area so that they will be less inclined to unsustainably extract the natural resources of the Core and Buffer Zones of the Tonle Sap Biosphere Reserve (TSBR), thereby reducing the pressure on the

Project Proposal for Bassac Reservoir Rehabilitation Project in Battambang Province, MOWRAM, October 2005

natural resources vital to the integrity of the TSBR.

The objective of the project is to prepare a design of a bankable project for possible ADB financing taking into account: (i) sustainable livelihood activities, (ii) environmental considerations, (iii) consultations of the stakeholders concerned and (iv) packaging of suitable investments in subprojects. The project (Study) selected 31 communes in six Provinces in the Tonle Sap basin. The project proposed the following components:

- Support to rural infrastructure such as irrigation facility, rural roads, bridges, culverts,
- ♦ Increasing options in rural communities such as on-farm income generating options, improving off-farm income generation options, improving access to micro-credit,
- ♦ Skills and awareness raised such as training and capacity development, enhance skills of farmer beneficiaries for income generation, agriculture and off-farm vocations, awareness of gender equality and environmental issue in rural community, and
- Environmental and social safeguards

The project cost is at US\$32 million including US\$27 million grant.

Selected Communes of Tonle Sap Lowland Stabilization Project (Related to the West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project only)

Province	District	Commune	River basin
Pursat	Bakan	Boeng Khnar	Pursat
	Bakan	Rumlech	Pursat
	Bakan	Khnar Toteng	Pursat
	Kandieng	Srae Sdok	Pursat
	Kandieng	Anlong Vil	Pursat
	Krakor	Tnaot Chum	Boribo
	Krakor	Kbal Trach	Boribo
Kampong Chhnang	Boribo	Khor Rang	Boribo
	Boribo	Melum	Boribo
	Boribo	Kampong Preah Koki	Boribo
	Kampong Tralach	Saeb	Boribo

^{*1} Selected target communes of TSLSP (30 November 2006)

Source: Draft Final Report TA No. 4756-CAM Tonle Sap Lowland Stabilization Project

(3) Multi-purpose Water Resources Development in Krang Ponley River Basin (KOICA)

Target area:	Southern part of Boribo River Basin administratively covering two provinces: Kampong Speu province and (ii) Kampong Chhnang province	
Period	2004 to 2011 for 8 years	
Cost	US\$33.5 million (Proposed construction cost for 16,982 ha) and US\$3.74 million to be borne from RGC's Budget	

The project site is in Krang Ponley River sub-basin located in the southern part of Boribo River Basin. The project aims at to secure stability of irrigation water supply and provide rural water supply and electricity so that agricultural productivity is stabilized and increased. The main water sources of the project are Krang Ponley River and Prek Thnot River.

- ◆ Irrigation area: 16,982 ha (16,982 ha in wet season + 3220 ha in dry season)
- Cropping pattern: 16,982 ha in wet season paddy, 833 ha in dry season paddy, 2,387 ha upland crops in wet and dry seasons.

The project was planned to be implemented in approximately four years including detailed design,

^{*2} Selected core communes of TSLSP (22 January 2007

bidding, construction supervision. The project cost was estimated at US\$33.5 million including contingency (10%). The cost for improvement of secondary and tertiary irrigation canals, however, was not included in the above cost since the separate project is planned to be implemented by the RGC amounting to US\$3,742,000. The feasibility study (F/S) revealed that the project was economically feasible at 8.6% of EIRR. The construction works commenced from the middle of 2009.

(4) Master Plan of Water Resources Development in Cambodia (KOICA)

Target area:	Entire country		
Period	April 2006 to November 2008 (Study period)		
Cost	US\$ 1,701 million (Proposed investment plan from 2009 to 2018) US\$189 million for multipurpose dam in the Sangkae River selected as priority projects		

The purpose of the Study was to establish medium and long term master plan and an action plan for water resources development in Cambodia including investment plan to respective river basin in order to efficiently utilize and manage water resources. The Study also covered feasibility study on the priority projects of water resources development selected in the master plan. On the basis of preliminary consumption projection for various sectors and resource assessment, investment plan was formulated for 42 river basins as a guideline. In addition, following recommendations were made: (i) Comprehensive water management scheme, (ii) Measures to the urbanization problems, (iii) Securing stability of water use, (iv) Safe water supply, (v) Ground water utilization, (vi) Comprehensive plan on the river environment and (vii) Investigation and R&D of water resources. In the master plan, the development of Battambang Multipurpose dam in the Sangkae River was selected as priority project for F/S.

Main Features of Dam Proposed under the Study

	Item	Features
1.	Water Source	
	River	Sangkae River
	Catchment area	$1,860 \text{ km}^2$
	Annual mean runoff	$1,224 \times 10^6 \mathrm{m}^3$
2.	Dam and Reservoir	
Location		Upstream of Sangkae River
	Height	49.5 m
	Length	3,970 m
	Total Storage	$897.2 \times 10^6 \mathrm{m}^3$
3. Function		
	Water supply	$854.5 \times 10^6 \mathrm{m}^3/\mathrm{year}$
	Flood control	$39.2 \times 10^6 \mathrm{m}^3$
	Power generation	61.5 GWh

Source: KOICA and K-Water (2008), Master Plan of Water Resources Development in Cambodia

Although the propose dam is not directly related with six sub-projects under the SAPROF Study, potential areas for dam development would be similarly expected in the Moung Russei, Pursat and Boribo River Basins in the future.

(5) Water Resources Management Sector Project (ADB)

Target area:	Four river basins: (i) Stung Sreng, (ii) Stung Staung, (iii) Stung Chikreng and Stung Sen administratively located in three provinces: (i) Siem Reap province, (ii) Kampong Thom province and (iii) Banteay Meanchey province	
Period	From the end of 2009 for 4.5 years (Proposed Plan)	
Cost	US\$44.9 million (Proposed cost for 27 sub-projects extending 21,880 ha)	

The overall objective of the Project is to reduce poverty and to ensure food security in mainly along the western coast of Tonle Sap Lake. The activities under the Project consist of following components.

- i) **Development of irrigation infrastructure**: rehabilitation of small to medium scale irrigation schemes approximately covering 20,000 ha of rice filed areas,
- ii) *Irrigated agriculture and livelihood support*: encouragement of high value non-rice crops, livestock husbandry and fish culture,
- iii) *Establishment and development of FWUC*: support to establish and/or develop an FWUC in each sub-project area by capacity building programs, and
- iv) Capacity building for efficient project management: capacity building of relevant institutions to expedite project implementation consisting of MOWRAM, PDOWRAM and PDAFF

As of the August 2009, negotiations between MOWRAM and donor agencies have been concluded and the Project will soon commence. As evident in proposed component of the Project, integral approach by combining facilities' rehabilitation and institutional development is essential in vitalizing irrigation sector.

(6) Feasibility Study on Stung Pursat Dam No. 3 and No. 5 Development Project

Target area:	The Upstream of Pursat River Basin in the Pursat Province	
Period	34 months (Proposed construction period)	
Cost	US\$74 million (Proposed cost)	

With the assistance of China, feasibility study on dam development was completed in July 2009. The proposed dam site is located in the upstream of the Pursat River Basin. Two dams with the purpose of irrigation are proposed in the Study, main features of which are as follows:

Salient features of Proposed Project

Description	Unit	No.3 Dam	No.5 Dam
Irrigation Area	ha	2,800	3,400
Catchment Area	Km ²	93.8	652
Dimension of Dam			
Dam Type	Туре	Concrete Gravity Dam	Concrete Gravity Dam
Normal Storage Capacity	m ³	24.5 million	25.5 million
Flood Water Level	El (m)	83.9	56.9
Height	m	41	35
Crest Length	m	480	370

Source: GDFC (2009), Feasibility Study on Stung Pursat Dam No. 3 & No. 5 Development Project

Proposed construction period is 34 months and the total investment cost estimated is US\$ 74 million. EIRR expected from the Project is estimated to be 10.5 %.

2.3.3 Project by the Government of Cambodia

(1) Damnak Ampil Weir Construction Project

Target area: Pursat River in the Pursat Province

Damnak Ampil weir and intake were constructed on the Pursat River in 2006 to replace an unfunctioning old weir which was constructed during Pol Pot regime. Overall objectives of the project is to support and contribute to the regional agricultural production needs by increasing crop production and to alleviated poverty in the rural area and to reduce economic gap between rural and urban area through enhancement of irrigated agricultural development. The beneficiary area is planed to be 27,467ha, 39,299 population in 12 communes in 3 districts. The Project cost was estimated at US\$3.9 million approximately.

The project work comprised of the following component and completed in January 2006.

♦ Reconstruction of diversion weir across the river

Total length: 130m

Slide gate: $W \times H \times$ no. of set=1.9m×3.50m×4sets

Nerpic type automatic gate: $W \times H \times$ no. of set=10.25m×4.06m×7sets

Concrete pile foundation (W× D× L× nos. =0.30m×0.30m×6.0m×120nos.)

High water level=EL. 17.00m

Low water level=EL. 13.50m

♦ Construction of regulator (2 structures, its function is to take water from Pursat River to main canal; so it should be called as "Intake")

Slide gate: $W \times H \times$ no. of

set=1.95m×2.5m×3sets per one regulator

Water level: EL. 17.00m Bottom level: EL. 15.00m

Rehabilitation of main canal

Total length of rehabilitation=7,316m

Bottom width=7.0m

Total depth=3.0m (a 1.0m wide berm is provided at 2.0m height from bottom)

Type of canal=trapezoidal cross section earth canal (inside slope=1:1.5),

Top width of embankment=4.0m for right and left side each

Width of laterite pavement=3.0m for right and left side each

♦ Construction of box culverts (10 structures)

Box culvert: W× H=1.50m×1.50m

Slide gate: W× H× no. of set=1.95m×3.50m×1set per one box culvert

• Construction of operation and maintenance office 1 structure

Floor 40m2

Damnak Ampil Main Canal Completed in 2006 (February 2nd, 2008) (Damnak Ampil Weir Construction Project)

(2) Char Rek Weir Construction Project

Target area: Pursat River in the Pursat Province

Construction of the Char Rek weir on the Pursat River was completed in 2008 by MOWRAM force account using RGC budget. The weir is located about 50km downstream from the Damnak Ampil headworks. Irrigation areas under the Char Rek is assumed to be about 7,000 ha, and mostly located inside of transition zone of the Tonle Sap Lake.

Cha Rec Headworks Completed in 2008 (August 11th, 2009) (Char Rek Weir Construction Project)

(3) Thlea Maom Irrigation Rehabilitation Project (Government of Cambodia and JICA)

Target area: Tributaries of the Boribo River in the Pursat Province

Thlea Maom Irrigation Rehabilitation Project is located in Boeung Kantuot Commune, Krakor District, Pursat Provinve in the Thlea Maom River basin, one of the tributaries of the Boribo River. The irrigation system was originally constructed in 1978, but deteriorated severely.

The PDOWRAM has strong intention to rehabilitate the system to irrigate about 1,700 ha. The design of rehabilitation work has been carried out in Technical Service Center Phase-II under JICA technical cooperation as a model pilot project for on-the-job training. The project scope consists of: (i) repairing barrage, (ii) rehabilitation of main canal 6.6km, (iii) rehabilitation of secondary canal 15.6km, (iv) rehabilitation of tertiary canal with the distance of 40km and (v) construction of canal related structures.

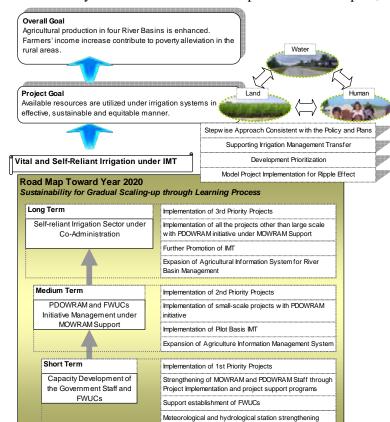
The project will be implemented in 3 phases, and the total cost is estimated at about US\$ 1.1 million. The construction work will be executed by force account by MOWRAM/PDOWRAM. The budget will be expected to be financed by RGC.

CHAPTER 3 SUMMARY OF THE PROJECT PROPOSED IN THE PREVIOUS STUDY

3.1 Background

3.1.1 General

Prior to the SAPROF study, JICA together with MOWRAM carried out Basin-Wide Basic Irrigation and Drainage Master Plan Study from January 2007 to March 2009 to formulate irrigation and drainage development master plan and action plan toward year 2020 for four river basins: (i) Battambang, (ii) Moung Russei, (iii) Pursat and (iv) Boribo. In addition, Pre-feasibility Study (Pre-F/S) was carried out for priority projects selected in the Master Plan, which are the basis of SAPROF Study of West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project.


3.1.2 Master Plan and the Road Map 2020

In the previous Study, irrigation and drainage development master plan for four river basins were prepared through: (i) field survey in socio-economic conditions, agriculture, irrigation and drainage, environment and institutional aspect, (ii) development potential assessment, (iii) problem analysis, (iv) public consultation by way of socio-economic survey and the series of workshops. In the master plan,

21 numbers of irrigation projects were formulated in the four river basins.

Proposed 21 irrigation projects were ranked and prioritized using comprehensive sets of criteria: (i) resource factor, (ii) economic factor, (iii) social factor, (iv) environmental factor, (v) ease of implementation and (vi) maturity factor.

On the basis of prioritization result, the Road map of Irrigation and Drainage Development in the Four River Basins Toward Year 2020 (The Road Map 2020) elaborated for three terms consisting of: (i) the short term (2008-2010), (ii) the medium term (2011-2015) and (iii) the long term (2016-2020) with the thematic target, summary of which are as illustrated on the right figure. The

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

Illustrative Summary of the Road Map 2020

point stressed in the Road Map 2020 was "Learning Process" proposing the stepwise approach with gradual expansion in irrigation development and management. Periodic revision and update was also

stressed based on the new data, lessons to be gained from project implementation for further implementation.

3.1.3 Pre-Feasibility Study

In the Master Plan, six sub-projects consisting of (i) Ream Kon, (ii) Por Canal, (iii) Damnak Ampil, (iv) Wat Loung, (v) Wat Chre and (vi) Lum Hach, were selected as priority projects, for which Pre-F/S was carried out.

The selected sub-projects were studied from the view point of agriculture, irrigation supporting services etc. to prepare improvement plans. Initial environmental examination (IEE) level study was also carried out to consider both social and natural environmental aspects in the project formulation. Six sub-projects were packaged into one Project: West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project, descriptions of which are in the next section.

3.2 Project Component

3.2.1 Summary of the Project

On the basis of Pre-F/S for selected priority areas, the Project plan were proposed as summarized in the following table.

West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project Proposed in the Basin-Wide Basic Irrigation and Drainage Master Plan

	Contents			
Dumoss	The Project aims to increase agriculture production and to thereby alleviate poverty by promotion of			
Purpose	irrigation rehabilitation as stressed in National Poverty Reduction Strategy and Third National			
	Strategic Development Plan.			
Target	(1) Effective utilization of available resources in the Project area			
ranget	(2) Contribution to national food security			
	•			
	(3) Vitalization of local economy			
	(4) Poverty alleviation of the country			
Area	Six sub-projects located along the western coast of the Tonle Sap Lake			
	(1) Moung Russei River Basin: (i) Ream Kon Sub-Project and (ii) Por Canal Sub-Project (Battambang Province)			
	(2) Pursat River Basin: (i) Damnak Ampil Sub-Project, (ii) Wat Loung Sub-Project and (iii) Wat Chre Sub-Project (Pursat Province)			
	(3) Boribo River Basin: Lum Hach Sub-Project (Kampong Chhnang Province)			
Component	(1) Hard Component: Rehabilitation of Irrigation and Drainage Facilities covering 12,760 ha			
	(2) Soft Component: (i) FWUC Establishment and Strengthening and (ii) Agriculture Extension Activities			
	(3) Project Supporting Programs: (i) Meteo-hydrological Observation Strengthening Program, (ii) Capacity Development Support Program for MOWRAM and (iii) Capacity Development Support Program for PDOWRAM			
	(4) Project Formulation Study for Other Potential Areas			
	(5) Consulting Services: (i) Detail Design, (ii) Assistance to Tender, (iii) Construction Supervision, (iv) Support to Environmental Monitoring, (v) Support to O&M etc.			
Period	9 years in total (Hard Component: 5 years, Soft Component: 6 years)			
Cost	US\$ 98 million in total			
	(1) Hard Component: US\$ 90 million,			
	(2) Soft Component: US\$ 8 million			
	1 \ / 1			

		Contents		
Project Evaluation	Economic Internal Rate of Return (EIRR):	12.8 %		
	B/C Ratio	1.62		
Executing Agency	Ministry of Water Resources and Meteorology (MOWRAM)			

Since harmonization of hardware (rehabilitation and development of facilities) and software (capacity building and institutional support) has been recognized as one of the most important keys for the success in irrigation projects, both hardware and software component were integrally proposed for the Project's activities in the previous Study.

3.2.2 Rehabilitation of Irrigation and Drainage Facilities

Rehabilitation plan of irrigation and drainage facilities for six sub-projects were prepared on the basis of following concepts:

- i) clear demarcation of the command area and water distribution using rehabilitated facilities.
- ii) suitable development scale based on the available resources,
- iii) priority given to existing paddy field, and existing irrigation and drainage facilities,
- iv) construction of additional facilities as appropriate,
- appropriate drainage and flood protection measures considering allowable flooding depth and inundation period; floods from outside and habitual inundated area due to the Tonle Sap Lake and
- vi) cost –effectiveness in the plan.

The rehabilitation and development plan of irrigation and drainage facilities for six sub-projects are tabulated as follows:

Summary of Irrigation and Drainage Plan Prepared in the Previous Study

		Name of sub-project						Total
No.	Description	Ream Kon	Por Canal	Damnak	Wat	Wat Chre	Lum	
				Ampil	Loung		Hach	
1.	Sub-project area (ha)	1,890	1,940	2,270	2,540	1,020	3,100	12,760
	(Pump irrigation area included above)	(280)	0	(500)	(800)	(400)	(410)	(2,390)
2.	Annual irrigation area (ha)	<u>2,413</u>	<u>2,494</u>	<u>2,364</u>	<u>2,645</u>	<u>1,062</u>	<u>4,700</u>	<u>15,678</u>
	◆ Early wet season paddy (ha)	1,180	1,220	94	105	42	1,300	3,941
	◆ Medium wet season paddy (ha)	1,180	1,220	2,270	2,540	1,020	3,100	11,330
	◆ Dry season paddy (ha)	53	54	0	0	0	300	407
3.	Major water source	Moung Ru	ussei River		Pursat River		Boribo River	-
	◆ Headworks	Moung Russei (Reconstru -ction)		Damnak Ampil (Existing)		Wat Chre (Reconstru- ction)	Lum Hach (Reconstru -ction)	-
	◆ Intake water level (EL. m)	15.50	15.00	17.00	17.00	13.00	38.00 - 36.00	-
	◆ Diversion water requirement at intake (m³/sec)	2.66	2.74	7.93	3.45	1.39	6.60	-
4.	Main canals (nos.)	2	2	1	1	1	1	8
	◆ Total length (km)	18.4	12.7	7.5	20.3	4.7	16.4	80
5.	Nos. of secondary	16	12	3	10	6	11	58

		Name of sub-project						
No.	Description	Ream Kon	Por Canal	Damnak Ampil	Wat Loung	Wat Chre	Lum Hach	
	canals							
	♦ Total length (km)	12.9	15.8	17.6	31.1	14.7	42.4	135
6.	Number of Tertiary Blocks (No.)	47	42	50	54	27	67	287
	Total length of tertiary canals (km)	57	55	85	81	27	67	372
7.	Main drains	- Moung Russei, - Ou Anlong Rolus	- Moung Russei, - MD-1	Ou Bakan/ Boeung Khnar River	Boeung Khnar R.	- Boeung Khnar R., - Ta Paong stream	Boribo River	-
	◆ Total length (km)	7.2	9.3	-	-	-	-	17
	Drainage water requirement from paddy field (lit/sec/ha)	7.17	7.17	6.32	6.32	6.32	6.83	-
	◆ Drainage water requirement from other land (lit/sec/ha)	0.025~ 0.019	0.025~ 0.019	0.025~ 0.018	0.025~ 0.018	0.025~ 0.018	0.025~ 0.019	-
8.	Secondary drains (nos.)	9	10	4	8	7	11	49
	◆ Total length of secondary drains (km)	25.1	14.8	28.2	37.7	12.6	53.9	172
9.	Collector drains (nos.)	3	2	0	0	0	0	5
	◆ Total length of collector drain (New, km)	19.4	10.0	0	0	0	0	29

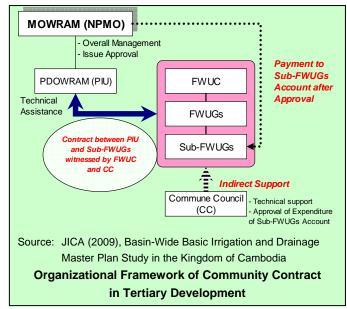
Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

The irrigation and drainage facilities' rehabilitation plan covered from: (i) headworks improvement and reconstruction, (ii) main and secondary canals and drains to (iii) on-farm development including tertiary canals and their appurtenant structures.

3.2.3 Soft Component

Soft component proposed in the previous Study consists of two major activities: (i) FWUC establishment and strengthening and (ii) agricultural extension activities, both of which are planned to be executed at each sub-project area.

(1) FWUC Establishment and Strengthening


In order to materialize Project effect as planned, FWUC establishment and strengthening activities were proposed so that the proper water management and O&M of rehabilitated facilities are to be accomplished. General steps proposed are as follows:

- i) set-up the structure and responsibilities,
- ii) organizational formation consisting of FWUC, FWUCs and WUGs,
- iii) capacity development through training for water management and O&M as well as participatory tertiary development through community contract and
- iv) support of gradual transfer of facilities to FWUCs.

In particular, proposed procedure on participatory tertiary development is depicted in the following figure:

- i) establishment of FWUC at each sub-project,
- ii) preparation of tertiary development plan and selection of sub-FWUGs,
- iii) joint-walk-through, design and cost estimate,
- iv) contract between PIU and sub-FWUGs,
- v) construction of tertiary canals by FWUGs, and
- vi) inspection of the work completion.

Although the process will require coordination among relevant organizations including commune councils, through this

approach involving broader points from planning, O&M, organizational management to accounting management, capability of FWUCs are expected to be enhanced.

(2) Agricultural Extension Activities

The target on agricultural extension activities proposed in the previous Study are mainly focused on productivity improvement and production increase of rice. The strategies proposed are listed as follows:

- i) introduction of irrigated farming and increase of annual cropping intensity,
- ii) introduction of improved farming practices on the basis of current planting method utilized by farmers in sub-project areas supported by the strengthening of agricultural extension services.
- iii) introduction of upland crops and/or vegetables production under irrigated condition in the early wet and dry season utilizing available water resources, and
- iv) strengthening of agricultural extension services.

By employing strategies above, activities for agricultural extension proposed in the previous Study are: (i) field extension programs, (ii) farmer/farmer group training programs, (iii) mass guidance and/or workshop and (iv) extension staff empowerment. Support fund for extension staff and provision of transportation means were also proposed as part of extension activities.

3.2.4 Project Supporting Programs

The project supporting programs proposed in the previous Study cover cross-cutting issues for enhancement of the basis, especially institutional aspect, to accelerate project implementation. Necessity, objective and major activities for the three programs proposed are summarized in the following table:

Proposed Project Support Programs

No.	Program Name	Necessity	Objective	Activities
1	Meteo-hydrological	Meteo-hydrological data is an	The program aims to enhance	Preparation of training
	Observation	essential data for irrigation	the technical ability of	program
	strengthening	development as well as for	MOWRAM and PDOWRAM	TOT in TSC
	Program	future integrated river basin	staffs in meteo-hydrological	 Equipment supply
		management. However it is not	observation, data processing	 Workshop
,		sufficiently collected at present.	and analysis	Data publication
2	Capacity	At present, the MOWRAM	The target of the program is to	Promotion of irrigation
	Development	manual only focuses on	enhance technical ability of	development in
	Program for	planning and hydraulic design	MOWRAM staff in planning,	technically-appropriate
	MOWRAM	and, therefore, it needs to be	design, construction	manner
		developed further together with	management and O&M at the	• Promotion of co-
		capacity development of staffs	national level.	administration system
		so as to enable them to carry		in irrigation
		out proposed sub-projects		
		under M/P.		
3	Capacity	The program will be necessary	It is to strengthen technical	Province-initiative
	Development	in order to accelerate PIMD	capability of PDOWRAM	irrigation development
	Program for	policy with the support of	staff in O&M of irrigation	and management
	PDOWRAM	MOWRAM under	facilities and river basin	• Facilitation of FWUCs
		Government's decentralized	control at the provincial level.	Strengthening through
		implementation mechanisms.		Community-Contract
				Approach in Tertiary
				Development

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

3.2.5 Other Activities under the Project

(1) Project Formulation Study

In the Master Plan, 21 numbers of irrigation development projects were proposed, six of which have been selected as priority project as mentioned above. Project formulation study to prepare feasibility study level development plan was proposed to be implemented during **West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project**. Lessons to be learnt from the implementation of "Phase-I" of the Project will be utilized to effectively prepare the plan of "Phase-II" of the Project.

(2) Consulting Services

Main implementing organization for the Project is the National Project Management Office (NPMO) according to the regulation by MOWRAM. In order to smoothly implement the Project, technical consultant was proposed to be employed to support NPMO. The scope of the consulting services for the Project proposed were primarily:

- i) Overall assistance for the Project management,
- ii) Pre-construction arrangement such as studies, design, design review and modification of sub-projects,
- iii) Supervision of construction works by the contracts,
- iv) Arrangement and guidance of execution of O&M system improvement,
- v) Arrangement and guidance of agricultural extension activities,
- vi) Review of existing environmental study and support to environmental monitoring, and
- vii) Socio-economic baseline surveys of the sub-projects.

3.3 Project Cost

3.3.1 Basic Conditions

The basic conditions applied for the cost estimate in the previous Study are listed as follows:

- Estimate refers to the prices as of September 2008
- ◆ Exchange rate: US\$ 1 = 4,107 Riel = Japanese Yen 107.99
- ♦ Unit prices of labor, construction materials, engineering works etc.: collected from MOWRAM and market
- ♦ Construction is undertaken on the contract basis, and VAT is excluded from construction cost.
- ◆ Price escalation: 5.0 % annum based on the average annual change ratio of consumer price in Cambodia from year 2003 to 2008
- ◆ Construction consists of (i) foreign currency portion (FC) and (ii) local currency portion (LC), ratio of which is based on similar types of the projects in Cambodia

3.3.2 Initial Investment Cost

The initial investment cost for the Project is as summarized in the following table. The initial investment cost was estimated to be US\$97.95 million in total.

Initial Investment Costs for the Project

No.	Item	Amount	Remarks				
190.	Item	(US\$ 1,000)					
1.	Construction Cost	48,764	See Sub-Section 9.2.2 for detail				
2.	Project Supporting Programs Cost	2,438	5 % of Item 1				
3.	Physical Contingencies	5,120	10 % of Items (1+2)				
4.	Sub-Total	56,322	Items (1+2+3)				
5.	Consulting Services Cost	14,332					
6.	Tax & Duty	7,065	10 % of Item (4+5)				
7.	Land Acquisition Cost	841	For 391.9 ha for main, secondary and drains				
8.	Project Administration Cost	5,632	10 % of Item 4				
9.	Price Escalation	13,762	5 %/annum of Item 4				

10. Grand Total	97,954	Items 4+5+6+7+8+9
-----------------	--------	-------------------

Source: JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

3.4 Result of Environmental Assessment and Environmental Management Plan

IEE level environmental assessment was carried out in the previous Study from the view point of social environment, natural environment and pollution. Based on the assessment, although it would not

be so significant, adverse environmental impact pointed out were as shown in the right table. In addition, following mitigation measures were proposed corresponding to the impacts anticipated:

Preparation

- Participatory land acquisition planning for main and secondary facilities,
- ii) Participatory land acquisition planning for tertiary facilities,

Construction

- i) Education program for construction labour,
- ii) Construction of fish ladder,
- iii) Environmental consideration in technical specification for construction works,

Adverse Environmental Impact Pointed Out in the Previous Study

Aspect	Point
Social	◆ Land acquisition for the construction
Environment	of irrigation facilities
	◆ Local conflict over interest
	♦ Water use during construction
	 Risk against infectious diseases
Natural	◆ Disturbance of fish sprawling
Environment	♦ Flora, fauna and biodiversity
Pollution	♦ Air pollution
	♦ Water pollution
	◆ Soil contamination
	♦ Waste from construction works
	◆ Noise and vibration by the operation
	of construction machinery
	◆ Accident by the operation of
	construction machinery

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

Operation and maintenance

Two mitigation measures under FWUC establishment and strengthening activities consisting of:

- i) System O&M and water management and improvement
- ii) Appropriate application of agricultural input

The result of initial environmental impact assessment shows that no significant impacts are predicted because all the sub-project areas will not include large scale expansion and/or new development. Therefore, it was concluded in the previous Study that no full scale environmental impact assessment (EIA) is considered necessary if mitigation measures listed above are concurrently carried out.

CHAPTER 4 PROJECT SCOPE

4.1 Necessity and Justification

4.1.1 National and Sectoral Development Policy of Cambodia

It is beyond question that water is the key limiting factor for agriculture and food production in Cambodia. Thus, the supply, quality and efficient use of water dominates agricultural production, and irrigation infrastructure is critical in that process as stressed in the national and sectoral development policy of Cambodia. As described in Chapter 2, in order to supplement the NPRS to pave the way to the poverty reduction and economic growth of the country, the National Strategic Development Plan (NSDP 2006-2010) describes rectangular strategies. Out of four strategies, in the Rectangular 1: Enhancement of Agriculture Sector, increase of paddy planted area from 2.37 million ha in 2005 to 2.5 million ha in 2010 is set as one of the quantitative development targets. Improvement of yield from 1.97 ton/ha in 2005 to 2.4 ton/ha is also elaborated. Through the review of activities so far, "Rectangular Strategy" Phase II were disclosed in 2008, which continuously support agriculture sector as one of the most important mission of the country.

Although detailed provincial level policy is not available, importance of agriculture sector including irrigation development in Battambang, Pursat and Kampong Chhnang provinces is emphasized in the provincial annual report and the relevant documents. In the decentralization development programs such as SEILA and PSDD, irrigated agriculture development is one of the most important activities to meet political target as well as community needs. Therefore, the Project supporting irrigation sector by integrating hardware and software component significantly contribute to the achievement of the target set in NSDP.

4.1.2 Economic Assistance Policy of Japanese Government and JICA

International organizations and donor countries have been supporting developing countries with the aim of achieving the Millennium Development Goal (MDGs) formulated in 1990s. According to the MDGs, the Government of Cambodia also established the National Poverty Reduction Strategy (2003-2005) (NPRS) focusing on eight thematic priority actions for poverty reduction, which all the donor societies are pursuing.

In line with this framework, as the country assistance policy to Cambodia, Japanese Government particularly addresses: (i) realization of sustainable economic growth and safe society, (ii) assistance to socially vulnerable groups, (iii) global issue, (iv) alleviation of economic gap with other ASEAN countries. Based on the policy, the Government has been assisting Cambodia in: (i) social and economic infrastructure development, (ii) health and medical care, (iii) agriculture and rural development, (iv) human resource development and so forth through various assistance schemes such as grant assistance and technical assistance.

JICA addresses driving vision, "Inclusive and Dynamic Development" with the four missions: (i) addressing global agenda, including climate change, water, food, energy, infectious diseases and financing, (ii) reducing poverty through equitable growth, (iii) improving governance and (iv)

¹ PSDD stands for Project to Support Democratic Development through Decentralization and Deconcentration supported by UNDP commenced from 2007 after SEILA program. The project is based on decentralized implementing mechanism through Provinces and Communes initiative.

achieving human security. Among others, is one of the most important agenda for many developing countries including Cambodia, in particular, JICA put emphasis on agricultural development as one of the important sectors in development assistance for poverty alleviation. Since the poverty rate in the rural area of Cambodia is significantly high, the proposed Project based on hardware and software component-integrated approach consisting of: (i) rehabilitation of irrigation and drainage facilities for the enhancement of agriculture productivity supported by, (ii) FWUC establishment and strengthening for sustainable O&M adequately conform to the policy.

4.1.3 Necessity and Justification of the Project

Rice is a staple food in Cambodia, therefore, attaining and maintaining self-sufficiency of rice is a priority theme. Three provinces, as an important granary, where six sub-projects are located have been contributing to 17 % of overall national production of rice at present, and it is of great importance to increase productivity of rice in this region so to catch up population increase of the country. ²

The existing irrigation and drainage facilities in the six sub-projects are generally deteriorated and construction of secondary and tertiary level facilities are not in progress. It is of critical need to rehabilitate and/or develop irrigation facilities to enhance agricultural productivity in these areas.

All the six sub-projects have potential to be model irrigation systems in each river basin in the future. In the Moung Russei River Basin, construction of the Bassac Reservoir has been completed in 2009 and the Government is making great effort in developing irrigation systems located in the downstream of the reservoir for effective utilization of water resources. In this situation, the Ream Kon and the Por Canal sub-projects are recognized as having large potentials for agricultural production within the basin. Along the Pursat River, there are only two headworks already constructed, out of which Damnak Ampil Headworks constructed in 2006 is expected to contribute to the increase of agriculture production in and around the basin. Including three proposed sub-projects: (i) Damnak Ampil, (ii) Wat Loung and (iii) Wat Chre, there are six irrigation systems commanded by the Damnak Ampil Headworks. Development and sustainable O&M of these three sub-projects can be a prototype for effective utilization of water resources of the Pursat River. Along the Boribo River where Lum Hach sub-project is located, irrigation development comparatively lag behind. Therefore, small-scale development is predominant and agriculture productivity remains relatively lower. As one of the largest irrigation systems, the development of the Lum Hach sub-project will be of importance for the Boribo River Basin development.

By reviewing above-mentioned situation that the sub-projects are embracing, the Project will contribute to the enhancement of agriculture production in the sub-projects as well as each River Basin leading to food security as well as poverty alleviation of the country.

4.2 Summary of Examination of the Project Scope

4.2.1 Basic Concept

As summarized in the Chapter 3, the development plan proposed in the previous Study consists of both hardware and software components supported by project supporting programs, project formulation study and consulting services. Success of irrigation development primarily depends upon the

² Figures obtained from MAFF, Food Balance Sheet, the average between 2002 to 2005

availability of three essential resources: water, land and human resources so that comprehensive approach is required. In order to materialize project target as planned using rehabilitated irrigation and drainage facilities, agricultural support services is essential to improve farming technology. And to ensure sustainability of the Project effect, farmers' groups needs to be established so as to improve irrigation system performance in terms of water distribution and reduced life cycle cost by appropriately operating and maintaining irrigation and drainage facilities. Nevertheless, it remains clear that no part of an irrigation and drainage infrastructure can be expected to perform its intended functions for more than a very few reasons without effective organizational set-up.

Based on the discussion above, it is of necessity to harmonize: (i) rehabilitation of irrigation and drainage facilities and (ii) support programs to maximize and sustain effect of the Project as proposed in the previous Study.

The purpose of the Project is to establish equitable and timely irrigation water supply system by rehabilitating irrigation and drainage facilities to contribute to the stabilization of agricultural production of the sub-projects' command areas and to the alleviation of poverty in the target rural areas. On this basis, the components of the Project previously proposed are justified consisting of:

i) Hardware component: Rehabilitation of irrigation and drainage facilities,

ii) Software component: FWUC establishment and strengthening, and

agriculture extension activities,

iii) Project supporting programs: Meteo-hydrological observation strengthening program,

capacity development support program for MOWRAM and capacity development support program for

PDOWRAM

iv) Project formulation study for other potential areas, and

v) Consulting services

Through site investigation, analysis and discussion with relevant organizations, the technical judgements by the SAPROF Study Team toward each component are summarized in the following sections.

4.2.2 Agricultural Development Plan

The agricultural development plan made in the JICA M/P and Pre-F/S has been examined from the viewpoint of soil suitability for growing field crops/vegetables as well as availability of local markets for forwarding them. Furthermore, the availability of discharge of the respective rivers for the dry season has been reconfirmed. Considering these examination results, the former agricultural development plan has been modified with a particular attention to the necessity of stabilizing irrigation water supply to the wet season rice cultivation.

The modified crop production plan is shown below.

Modified Crop Production Plan

			S	SAPROF						
Sub-project	Physical Area	Irrigation	Ea	rly	Wet	D	ry	Irrigation	Early Wet	Wet
	(ha)	Status	Rice (ha)	V'ble (ha)	Rice (ha)	Rice (ha)	V'ble (ha)	Method	Rice (ha)	Rice (ha)
Ream Kon	1,890	Irrigated	1,080	0	1,180	0	0	Gravity Pump	960 170	1,610 280
		Rain-fed	0	0	710	0	0	Rain-fed	0	0
Por Canal	1,940	Irrigated	1,120	190	1,220	0	0	Gravity	1,200	1,940
Foi Callai	1,940	Rain-fed	0	0	720	0	0	Rain-fed	0	0
Damnak Ampil	2,270	Irrigated	0	340	2,270	0	0	Gravity Pump	130	1,770 500
Wat Loung	2,540	Irrigated	0	380	2,540	0	0	Gravity	130	1,740
	,	Ü						Pump	60	800
Wat Chre	1,020	Irrigated	150	150	1,020	0	0	Gravity Pump	50 30	620 400
Lum Hach	3,100	Irrigated	1,200	210	3,100	100	410	Gravity	1,090	2,660
Luiii Hacii	3,100	IIIIgateu	1,200	210	3,100	100	410	Pump	180	440
Total	12,760		3,550	1,270	12,760	100	410		4,040	12,760

4.2.3 Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

Scope of the rehabilitation of irrigation and drainage facilities are determined based on the following concept.

- Suitable development scale is determined based on the meteo-hydrological analysis carried out in the previous studies and the development progress of other irrigation systems in the river basin.
- ii) Facilities already rehabilitated by other development schemes after the previous Study will be excluded from the Project.
- iii) Priority is given to the facilities with higher rehabilitation effect. Facilities with lower and/or unclear rehabilitation efficiency are excluded from the Project.
- iv) Cost-effectiveness and feasible investment scale for the development is considered.
- v) Facilities with easier operation and maintenance are recommended to upgrade sustainability of the Project.

Technical judgment and evaluation of the plans proposed in the previous Study for each sub-project is delineated in Table II 4.2.1 to Table II 4.2.6 and summarized as follows:

Ream Kon Sub-Project

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Ream Kon Sub-Project)

Works	Plan Proposed in the Previous	Technical Judgment
1. Sub-project area	Study	
1) Total Command Area	1,890 ha consisting of: (i) Gravity Irrigation 1,610 ha and (ii) Pump Irrigation 280 ha	 (i) Construction of the Bassac Reservoir has been completed by MOWRAM in 2009 as assumed in the previous Study. And no significant changes were observed for water use in the Basin. Total command area, therefore, can be as same as the previous Study. (ii) 280 ha located on southern edge of the command area is high in elevation, which is impossible to be irrigated by gravity as planned in the previous Study. To minimize and optimize project cost, the original plan is feasible in the condition that the area will be irrigated
		using portable pumps by farmers.

	Works	Plan Proposed in the Previous		Technical Judgment
		Study		
2. F	Rehabilitation of	Irrigation Facilities		
2.1	Headworks		1	
1)	Headworks	1 no. Replacement of headworks		Concrete structures of the headworks with gates are highly deteriorated, therefore, it is judged necessary to construct new headworks to be located approximately 60m upstream from the existing one. Existing headworks will not be demolished during the construction of the new headworks, since it will serve as a temporary access road for the works.
2)	Intake Structure	1 no. Reconstruction	(i) (ii)	Concrete structure of the existing intake located 1 km upstream of the headworks is already deteriorated and no gate is installed. Due to higher elevation, the area located along the beginning section of the existing main canal cannot be irrigated by gravity. To minimize conflict over water use, the existing intake will be cancelled, and a new intake will be to be constructed near proposed the headworks site.
2.2	Main and Secon	ndary Canals		
1)	Rehabilitation of Main Canals	18.4 km 2 nos. consisting of main canal-1 and main canal-2	(i) (ii)	In general, the canal section needs to be rehabilitated and expanded together with the provision of turnouts and other related structures to distribute water effectively. Two main canals were proposed in the previous study. By reviewing topographic survey, it is found out that the Main Canal-2 is possible to command all the area. Therefore, only the Main Canal-2, is proposed as a main canal in new layout of the sub-project.
2)	Rehabilitation of Secondary Canal	12.9 km 16 nos.	(i)	Irrigation water does not reach to secondary canals, as most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.
2.3	Tertiary Canals	3		
1)	Construction of Tertiary Canals	57.0 km 47 tertiary blocks	(i)	Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water field level, and each of the tertiary canals will command approximately 50 ha according to the guideline of MOWRAM.
3. I	Drainage			J
3.1	Main Drains an	d Collector Drains		
1)	Rehabilitation of Main Drain	Moung Russei and Ou Anlong Rolus River to be utilized for main drain	(i)	Existing streams are planned to be utilized for main drains. This is judged effective for minimizing construction cost.
2)	Construction of Collector Drain	19.4 km 3 nos.	(i) (ii)	All the collector drains proposed in the previous Study need to be constructed and/or rehabilitated to protect command areas from water of northern and southern areas. CD-2 proposed for temporary diversion channel for the construction of headworks, is planned to be equipped with emergency gates and drainage gates at the upstream and the downstream so to release excess water to the downstream and also to protect back water from the downstream. However, its effectiveness is judged unclear, and therefore, it is cancelled to minimize the Project cost.
3.2	Secondary Drai	n		
1)	Construction	25.1 km	(i)	No secondary drains have been developed in the command area.

Works	Plan Proposed in the Previous	Technical Judgment
	Study	
of Secondary Drain		Since the development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drains under the Project. (ii) Drains proposed in the downstream of the command area, SD-1, SD-2, SD-3, SD-4 and SD-5 are not necessary for two reasons: (a) they run in the outside of command area so that land acquisition would be difficult and (b) the area is below El. 11.00, which will be affected by the water from Tonle Sap Lake.

Por Canal Sub-Project

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Por Canal Sub-Project)

	Previous Study (Por Canal Sub-Project)			
	Works	Plan Proposed in the Previous	Technical Judgment	
		Study		
1. 8	Sub-project area	·		
1)	Total Command Area	1,940 ha by Gravity Irrigation	 (i) Construction of the Bassac Reservoir have been completed by MOWRAM in 2009 as planned in the previous Study. And no significant changes were observed for water use in the Basin. Total command area, therefore, can be as same as the previous Study. (ii) Secondary canal S1-1 has been rehabilitated with the support of ECOSORN covering 288 ha. Due to low water level of the canal, however, water cannot be delivered to the field by gravity. The canal needs rectification works. Therefore, the Project will maintain total command area as planned, including ECOSORN's rehabilitated area. 	
2. I	Rehabilitation of	Irrigation Facilities		
2.1	Headworks			
1)	Headworks	-	-	
2)	Intake Structure	1 no. Reconstruction	(i) Concrete structure of the existing intake is already deteriorated and no gate is installed.(ii) Based on the situation mentioned above, the intake structure needs to be replaced by new one with gates.	
2.2	Main and Secor	ndary Canals	and the second second	
1)	Rehabilitation of Main Canals	12.7 km 2 nos.	 (i) To ensure flow capacity, canal section needs to be rehabilitated and expanded together with turnouts and other related structures. (ii) Two main canals were proposed in the previous Study. Since the Main canal 1-2 is running higher part of the command area, however, only the Main Canal 1-2 is proposed as a main canal in the new layout of the sub-project to minimize construction cost. 	
2)	Rehabilitation of Secondary Canal	15.8 km 12 nos.	 (i) Irrigation water does not reach to the secondary canals, because most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures. (ii) Check structures need to be provided to raise water level for gravity irrigation. 	
2.3	Tertiary Canals			
1)	Construction of Tertiary Canals	55.0 km 42 tertiary blocks	(i) Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.	

	Works	Plan Proposed in the Previous Study	Technical Judgment
3. I	Orainage		
3.1	Main Drains an	d Collector Drains	
1)	Rehabilitation of Main Drain	Moung Russei River and MD-1	(i) Existing streams are planned to be utilized for main drains. This is judged effective for minimizing construction costs.
2)	Construction of Collector Drain	10.0 km 2 nos.	(i) Two collector drains in the previous Study were planned to run along the main canal-2 in parallel with the National Road No.5. They were originally proposed to catch excess water from the eastern side of the National Road so to protect main canal. However, its effectiveness is considered questionable, and it would be technically reasonable to cancel CD-1 and CD-2 to minimize construction costs.
3.2	Secondary Drai	n	
1)	Construction of Secondary Drain	14.8 km 10 nos.	(i) No secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drains under the Project.

Damnak Ampil Sub-Project

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Damnak Ampil Sub-Project)

	Previous Study (Damnak Ampii Sub-Project)			
	Works	Plan Proposed in the Previous Study		Technical Judgment
1. 8	Sub-project area	,	•	
1)	Total Command Area	2,270 ha consisting of gravisity irrigation (1,770 ha) and pump irrigation (500 ha)	(i) (ii)	Command areas of the Damnak Ampil Headworks are determined by considering other irrigation systems under the Pursat River Basin since there are no significant changes in the conditions in water distribution after the previous Study, therefore, target area of the Project is judged suitable to adopt same command area as proposed in the previous Study. Among three secondary canals proposed in the previous Study, S-2 was already rehabilitated in 2008, but no tertiary canals were provided. Therefore, the Project area will remain unchanged, including S-2 command area.
				including S-2 command area.
2. I	Rehabilitation of	Irrigation Facilities		
2.1	Headworks			
1)	Headworks	-	-	
2)	Intake Structure	-	1	
2.2	Main and Secon	ndary Canals		
1)	Rehabilitation of Main Canals	-	(i)	MOWRAM is planning to extend main canal to connect with the Svay Don Keo River to distribute water to irrigation systems under the Svay Don Keo River.
2)	Rehabilitation of Secondary Canal	17.6 km 3 nos.	(i) (ii)	At present, irrigation water does not reach to the secondary canals as most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures. Out of three secondary canals proposed to be rehabilitated in the previous Study, S-2 has been already rehabilitated. Therefore,

	Works	Plan Proposed in the Previous Study		Technical Judgment	
				rehabilitation of secondary canal, S-2, will be excluded from the Project component.	
2.3	Tertiary Canals	3			
1)	Construction of Tertiary Canals	85.0 km 50 tertiary blocks	(i)	Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.	
3. I	Drainage				
3.1	Main Drains an	d Collector Drains			
1)	Rehabilitation of Main Drain	Ou Bakan and Boeung Khnar River	(i)	Existing streams are planned to be utilized for main drains, this is judged effective for minimizing construction costs.	
2)	Construction of Collector Drain	-	ı		
3.2	3.2 Secondary Drain				
1)	Construction of Secondary Drain	28.2 km 4 nos.	(i)	No secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drains under the Project.	

Wat Loung Sub-Project

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Wat Loung Sub-Project)

	Previous Study (wat Loung Sub-Project)			
	Works	Plan Proposed in		Technical Judgment
		the Previous		
		Study		
1. S	ub-project area			
1)	Total	2,540 ha consisting	(i)	Water for the sub-project is delivered from the Pursat River through
	Command	of 1,740 ha by		headrace to be constructed under the Project. As explained in the
	Area	gravity and 500 ha		Damnak Ampil sub-project, no significant difference in water
		pump		availability from the previous Study and, therefore, command area of
				the Wat Loung sub-project is 2,540 ha as same as previous proposal.
2. F	Rehabilitation of	Irrigation Facilities		
2.1	Headworks			
1)	Headworks	-	-	
2)	Intake	-	-	
	Structure			
2.2	Main and Secon	ndary Canals		
1)	Rehabilitation	20.3 km	(i)	Currently, the main canal is significantly deteriorated and no water
	of Main			flows except flood water from the Pursat River in the rainy season. In
	Canals			order to ensure smooth water delivery, the canal section needs to be
				rehabilitated together with provision of turnouts and other related
				structures.
			(ii)	No major revisions are required on the proposal in the previous
				Study.
2)	Rehabilitation	31.1 km	(i)	Only secondary canal S-8 is existing, but the canal sections are
	of Secondary			seriously deteriorated and collapsed. Priority needs to be given to

	Works	Plan Proposed in the Previous Study	Technical Judgment
	Canal	10 nos.	rehabilitation of the canal and related structures.
2.3	Tertiary Canals	3	
1)	Construction of Tertiary Canals	81.0 km 54 tertiary blocks	(i) Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.
3. I	Orainage		
3.1	Main Drains an	d Collector Drains	
1)	Rehabilitation of Main Drain	Boeung Khnar River	(i) Existing streams are planned to be utilized for main drains. This is judged effective for minimizing construction costs.(ii) Capacity of the Boeung Khnar River is sufficient to drain water from the command area and, therefore, no river dredging work is required under the Project.
3.2	Construction of Collector Drain Secondary Drai	-	-
1)	Construction of Secondary Drain	37.7 km 8 nos.	(i) No secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drains under the Project.

Wat Chre Sub-Project

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Wat Chre Sub-Project)

	Previous Study (Wat Chre Sub-Project)			
	Works	Plan Proposed in the Previous Study	Technical Judgment	
1. S	Sub-project area			
1)	Total Command Area	1,020 ha consisting of: (i) Gravity Irrigation 620 ha and (ii) Pump Irrigation 400 ha	 (i) Water is delivered from the Pursat River through a main canal of the Wat Loung sub-project to be rehabilitated under the Project. Because of no significant difference in water utilization in the River from the previous Study, the command area of the Wat Chre sub-project is determined to be 1,020 ha as same as the previous proposal. (ii) 400 ha out of the command area is high in elevation, which are impossible to be irrigated by gravity as planned in the previous Study. In order to minimize and optimize project costs, this area will be irrigated using portable pumps by farmers. 	
2. F	Rehabilitation of	Irrigation Facilities		
2.1	Headworks			
1)	Headworks	1 no. Reconstruction of headworks	 (i) No structure exists at present. In order to divert water from the Boueng Khnar River to the Wat Loung main canal, it is necessary to construct headworks on the Boueng Khnar River. (ii) It is recommended to construct temporary diversion channel on the 	
2)	Intake Structure	1 no. Reconstruction	left bank for the construction works. (i) No structure exists at present. Together with the headworks, a new intake structure needs to be constructed. Location is proposed to be	

	Works	Plan Proposed in the Previous Study		Technical Judgment
				within 100 m from the headworks to ease gate operation.
2.2	Main and Secon	ndary Canals		
1)	Rehabilitation of Main Canals	4.7 km 1 no.	(i)	Most of the main canal is highly deteriorated. At present, since no water is provided to the canal from the source River, all the canal sections need to be rehabilitated and reconstructed in order to ensure flow capacity.
			(ii)	The main canal was proposed to be utilized for temporary diversion for the construction of headworks with the capacity of 3.0 m3/sec. To minimize the Project cost, it is not recommendable to construct with large capacity for temporary diversion. A temporary diversion will be constructed on the left bank during the construction.
2)	Rehabilitation of Secondary Canal	14.7 km 6 nos.	(i)	Irrigation water does not reach to the secondary canals, as most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.
2.3	Tertiary Canals	3		
1)	Construction of Tertiary Canals	27.0 km 27 tertiary blocks	(i)	Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.
3. I	Drainage			
3.1	Main Drains an	d Collector Drains		
1)	Rehabilitation of Main Drain	Boeung Khnar River and Ta Paong Stream	(i)	Existing streams are planned to be utilized for main drains. This is judged effective for minimizing construction costs.
2)	Construction of Collector Drain	-	-	
3.2	Secondary Drai	n		
1)	Construction of Secondary Drain	14.8 km (7 nos.)	(i)	No secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drains under the Project.

Lum Hach Sub-Project

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Lum Hach Sub-Project)

Works	Plan Proposed in the Previous Study	Technical Judgment
1. Sub-project area		
1) Total Command Area	3,100 ha consisting of: (i) Gravity Irrigation 2,690 ha and (ii) Pump Irrigation 410 ha	(i) The Boribo River diverges into two at the Bomnak water level station, namely one is the Boribo River to the Kampong Chhnang province and the other is the Thlea Maan River to the Pursat province. In the previous Study, 50 % of the river runoff is assumed to flow into the Boribo River by diversion at the Bomnak water level station. Since there is no large scale development at the Bomnak, the assumption utilized in the previous Study can be applied for the SAPROF Study.

	Works	Plan Proposed in the Previous Study		Technical Judgment
2. F	Rehabilitation of 1	Irrigation Facilities		
	Headworks	inguion i uemines		
1)	Headworks	1 no. Reconstruction of headworks		No structure is existing at present. In order to divert water from the Boribo River to the command area of the Lum Hach sub-project, the highest priority is given to the construction of headworks under the Project. The main canal were planned to be utilized for temporary diversion during the construction of the headworks in the previous study. However, it is found appropriate to use the old Boribo stream as diversion through O-Roluss pond to minimize the construction costs.
2)	Intake Structure	1 no. Reconstruction	(i)	No structure is existing at present. Together with the headworks, a new intake structure needs to be constructed. Location is proposed to be within 100 m from the headworks to ease gate operation. The water is also diverted to the O-Roluss Irrigation System (3,400 ha) at the proposed headworks. Intake and spillway has been already provided at the O Roluss Pond. In addition, an intake structure is proposed to be constructed at the headworks site as proposed in the previous Study.
2.2	Main and Secon	ndary Canals		
1)	Rehabilitation of Main Canals	16.4 km (1 no.)		Overall, canal sections are highly deteriorated, requiring the rehabilitation. In general, the upstream portion has large capacity enough for the design discharge while the downstream portion needs expansion. In order to reduce construction cost, the old Boribo water course is proposed to be utilized for the temporary diversion for the headworks construction.
2)	Rehabilitation of Secondary Canal	42.4 km 11 nos.	(i)	Irrigation water does not reach to the secondary canals, as most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.
2.3	Tertiary Canals	3		
1)	Construction of Tertiary Canals	67.0 km 67 tertiary blocks	(i)	Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.
3. I	Drainage			
3.1	Main Drains an	d Collector Drains		
1)	Rehabilitation of Main Drain	Boribo River	(i)	Existing streams are planned to be utilized for main drains. This is judged effective for minimizing construction cost.
2)	Construction of Collector Drain	-	-	
3.2	Secondary Drai	n		
1)	Construction of Secondary Drain	53.9 km (11 nos.)	(i)	No secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drains under the Project. A drainage gate was proposed at the confluence of Boribo River and
			(11)	SD-3, but, its effectiveness is unclear. According to the interview at the field, no serious flooding during the rainy season was reported and, therefore, it is excluded from the Project component.

Works	Plan Proposed in the Previous Study	Technical Judgment
		(iii) The road development is carried out by the Ministry of Public Works and Transport in the command area, running from the entrance at the National Road No. 5 to the Main Canal with 18 km. Side drains of the road have been already constructed together. Therefore, all or part of following drains are excluded from the project components: SD-2, SD-3, SD-4, SD-6 and SD-10.

4.2.4 Software Component: FWUC Establishment and Strengthening and Agriculture Support Services

On the basis of the importance of integration of hardware and software component in the irrigation and drainage development, software component under the Project need to contribute to: (i) the realization of sustainable irrigation and drainage O&M and (ii) the enhancement of agricultural production by using rehabilitated facilities. Therefore, two components: (i) FWUC Establishment and Strengthening and (ii) Agriculture Extension Activities are included in the Project.

(1) FWUC Establishment and Strengthening

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (FWUC Establishment and Strengthening)

Previous Study (FWOC Establishment and Strengthening)							
Plan Proposed in the	Technical Judgment						
Capacity development through training program and community-contract approach in tertiary development	 (i) Training programs proposed in the previous Study was generally based on policy framework of PIMD and IMT, programs of which includes from awareness to practical field skills. Therefore, the necessity and the plans are generally justified. (ii) As part of FWUC strengthening activities, tertiary development through community-contract was proposed in the previous study. It would be one of the effective methodologies, but, it also have difficulties in actual implementation as summarized as follows: ◆ Coordination of relevant agencies is required including commune councils, village development committees and so forth. Substantial organizational activities are not observed in all the sub-project areas, therefore, such coordination with group initiative would take time and cannot be accommodated within the timeframe of the Project. ◆ According to the regulation of MOWRAM, tertiary canals are the properties of farmers which are to be constructed by themselves. Therefore, no payment is generally made for their construction. If the Project applies community-contract approach, it would create the sense of unfairness among different irrigation schemes. (iii) Therefore, it is recommended that the tertiary canals be constructed as one of the hardware components of the Project. Since tertiary level facilities are the properties of farmers, no compensation for lands will be made in accordance with the regulation. In order to alleviate social impact, tertiary alignment needs to be 						
	determined from both technical judgment and walk-through surveys among engineers and farmers.						

Prepared by JICA SAPROF Study Team

(2) Agriculture Support Services

The agricultural extension activities are generally justified as Project component. The activities focus on increasing paddy production under irrigated condition.

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Agriculture Support Services)

Plan Proposed in the Previous Study	Technical Judgment
 (i) Field Extension Programs (i) Farmer/Farmer Group Training Programs (ii) Mass Guidance/ Workshop (iv) Suggest Food for Villery Assignators Extension 8 	(i) Reconsidering soil characteristics, water resource availability and marketable situation of field crops/vegetables, priority is given over irrigated rice cultivation. In this relation, the former crop production
(iv) Support Fund for Village Agriculture Extension & Field Staff(v) Staff empowerment	plan is slightly modified as describe above. (ii) The soft component, therefore, will be proposed focusing
(vi) Provision of Transportation Means	on increase and stabilization of the wet season paddy productivity in the sub-project areas.

Prepared by JICA SAPROF Study Team

4.2.5 Project Supporting Programs

(1) Meteo-hydrological Observation Strengthening Program

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Meteo-hydrological Observation Strengthening Program)

Plan Proposed in the Previous Study	Technical Judgment
- Capacity development of MOWRAM and PDOWRAM staff through training, and	(i) Existing observation system is insufficient in number and functions to cover all the river basin of the Project area.
- Installation of additional equipment for meteo-hydrological observation	(ii) As suggested by the Technical Working Group (TWG) on Program 4, Agriculture and Water, the density of stations operational is very low 1 for 2,181 km² and the three River Basins where six sub-projects are located are not left out from this trend. In the Report, it is recommended that station needs to be established for every 600 km².
	(iii) Basic irrigation information is greatly important to utilize water resources in sustainable manner, to develop river basin with the concept of integrated water resource management (IWRM) as stressed in MOWRAM strategy and to forecast flood and drought.

Prepared by JICA SAPROF Study Team

(2) Capacity Development of MOWRAM Staff

Similarly, capacity development of PDOWRAM staff required is as follows to support province-initiative irrigation development and management and to promote PIMD at the provincial level:

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Capacity Development of MOWRAM Staffs)

Plan Proposed in the Previous Study	Technical Judgment
 Preparation of detailed design manual Dissemination workshop Periodical revision and update based on field application 	 (i) According to PIMD and IMT policy based on decentralization, capacity development of PDOWRAM staffs is of critical importance. Development of well-considered technical tools with those dissemination will be necessary. Therefore, the program is judged necessary. (ii) The previous proposal focused on capacity development with the aim of promotion of community-contract approach in tertiary development. As elaborated in FWUC establishment and strengthening, however, community-contract approach will not be recommended as the Project component. Therefore, the aim of this program would rather focus on capacity development of staff for construction supervision based on hardware component of the Project. Activities include: (i) preparation of construction supervision manual and (ii) dissemination workshop etc.

Prepared by JICA SAPROF Study Team

(3) Capacity Development of PDOWRAM Staffs

Similarly, capacity development of PDOWRAM staffs to be required is as follows to support province-initiative irrigation development and management and to promote PIMD at the provincial level:

Technical Judgment of SAPROF Study Team Toward Development Plan of the Project Proposed in the Previous Study (Capacity Development of PDOWRAM Staffs)

Plan Proposed in the Previous Study	Technical Judgment
Province-Initiative Irrigation and Development and Management ◆ O&M manual preparation for field-use ◆ Dissemination and training workshop ◆ Periodical revision of manuals Facilitation of FWUCs Strengthening through Community-Contract Approach in Tertiary	 (i) According to PIMD and IMT policy based on decentralization, capacity development of PDOWRAM staffs is of critical importance. Development of well-considered technical tools with those dissemination will be necessary. Therefore, the program is judged to be included in the scope of the Project. (ii) The previous proposal focused on capacity development with the aim of promotion of community-contract approach in tertiary development. As elaborated in FWUC establishment and
Development ◆ Training programs such as (i) facilitation, (ii) training management, (iii) awareness of participatory community development approach, (iv) transfer of O&M responsibility to FWUC etc.	strengthening, however, community-contract approach will not be recommended as Project component. Therefore, the aim of this program would rather focus on capacity development of staff for construction supervision based on hardware component of the Project. Activities include: (i) preparation of construction supervision manual and (ii) dissemination workshop etc.

Prepared by JICA SAPROF Study Team

4.2.6 Others: Project Formulation Study for Other Potential Areas

Since food security is the mandate of the Government, irrigation and drainage development at the potential areas is of critical importance, which can be effectively carried out using experiences obtained from the development activities. The project formulation study for other potential areas is to formulate future irrigation and drainage development projects in other potential areas using lessons to be learnt from the Project implementation. It is judged reasonable to be included as one of the Project component.

4.2.7 Project Scope

On the basis of technical evaluation on the plan prepared in the previous study, the Project scope proposed is summarized as follows.

♦ Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

♦ Software Component: FWUC Establishment and Strengthening and Agriculture

Extension Activities

Project Supporting Programs, and

Project Formulation study for Other Potential Areas

(1) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

Summary of Irrigation and Drainage Plan

No.	Description	Ream	Ream Por Damnak			Wat Chre	Lum Hach	Total
		Kon	Canal	Ampil	Wat Loung			
1.	Sub-project area (ha)	1,890	1,940	2,270	2,540	1,020	3,100	12,760
	(Pump irrigation area included	280	0	500	800	400	440	2,420
	above)							, .
2.	Annual irrigation area (ha)	3,020	3,140	2,440	2,730	1,100	4,370	16,800
	- Early wet season paddy (ha)	1,130	1,200	170	190	80	1,270	4,040
	- Medium wet season paddy (ha)	1,890	1,940	2,270	2,540	1,020	3,100	12,760
	- Dry season paddy (ha)	0	0	0	0	0	0	0
3.	Major water source	Moung Russ	sei River		Pursat Rive	er	Boribo River	
	- Name of headworks	Moung Russ	sei	Damnak A	mpil	Wat Chre	Lum Hach	
		Headworks		Headworks	3	Headworks	Headworks	
	- Intake water level (EL. m)	15.50	15.00	17.00	17.00	13.00	36.00 -	
							38.00	
	- Diversion water requirement at	2.66	2.74	7.93	3.45	1.39	6.60	
	intake (m³/sec)							
4.	Main canals (nos.)	1	1	1	1	1	1	5
	- Total length (km)	9.9	6.8	-	20.3	4.7	16.4	58.1
5.	Nos. of secondary/ sub-secondary	11	9	2	10	6	11	52
	canals							
	- Total length (km)	18.3	19.1	12.6	31.1	14.7	42.4	138.2
6.	Number of Tertiary Blocks (No.)	45	42	50	54	27	69	287
	Total length of tertiary canals (km)	54	55	85	81	27	69	371.0
7.	Main drains	- Moung	-	Ou	Boeung	- Boeung	Boribo	
		Russei,	Moung	Bakan/	Khnar	Khnar	River	
		- Ou	Russei,	Boeung	River	River,		
		Anlong	- MD-1	Khnar		- Ta Paong		
		Rolus		River		stream		
	- Total length (km)	7.2	5.6	-	-	-	-	12.8
	- Drainage water requirement from	7.17	7.17	6.32	6.32	6.32	6.83	
	paddy field (lit/sec/ha)	10.25	10.05	10.25	10.05	10.05	10.25	
	- Drainage water requirement from	19~25	19~25	18~25	18~25	18~25	19~25	
0	other land (lit/sec/ha)	7	10	2	0		0	42
8.	Secondary drains (nos.)	7	10	3	8	5	9 35.7	42 134.9
	- Total length of seconday drains (km)	13.4	14.8	21.8	37.7	11.5	33.7	134.9
9.	Collector drains (nos.)	3	0	0	0	0	0	3
9.		21.8	0.0	0	0	0	0	21.8
	- Total length of collector drain (New, km)	21.8	0.0	U	U	U	U	21.8
D	red by IICA SAPROF Study Team	I		I		l		

Prepared by JICA SAPROF Study Team

(2) Software Component: FWUC Establishment and Strengthening and Agriculture Extension Activities

Scope of FWUC Establishment and Strengthening

Soft Component	Purpose		Content
FWUC Establishment and Strengthening	To materialize sustainable organizational set-up for irrigation water management and facilities' O&M	•	Establishment of FWUC based on new layout of each sub-project Enhancement of FWUC's water management capability Strengthening of FWUCs capability in O&M of irrigation and drainage facilities Strengthening of organizational management capacity Establishment of water fee collection system

Soft Component	Purpose	Content
		Implementation of training programs with the coordination of relevant organizations

Scope of Agriculture Support Services

Soft Component	Purpose		Content
Agriculture	To increase and stabilize the	•	Government agricultural staff empowerment program
Support Services	wet season paddy productivity in the sub-project areas	•	Training of trainers program for capacity development of group leaders acting as agricultural extension agent
		•	Commune-base agricultural extension agent development program
		•	Soil fertility diagnosis program
		•	Pre-harvest technology group training program on farmers field school basis
		•	Post-harvest technology group training program on farmers field school basis
		•	Quality rice seed production and distribution program
		•	High value added rice production promotion program

Prepared by JICA SAPROF Study Team

(3) Project Supporting Programs

Scope of Meteo-hydrological Observation Strengthening Program

Project Supporting Program	Purpose	Content
Meteo-hydrological Observation Strengthening	To collect basic agro meteo-hydrological data, and To increase technical capability of MOWRAM	◆ Instillation of equipment of meteo- hydrological observation in the selected points in the river basins
Program	and PDOWRAM in meteo-hydrological observation, data processing and analysis	Training of meteo-hydrological data collection, processing and analysis

Prepared by JICA SAPROF Study Team

Scope of Capacity Development of MOWRAM Staffs

Project Supporting Program	Purpose	Content	
Capacity Development of MOWRAM Staffs	To increase technical capability of MOWRAM staffs in Construction Supervision	1	

Prepared by JICA SAPROF Study Team

Scope of Capacity Development of PDOWRAM Staffs

Project Supporting Program	Purpose	Content
Capacity Development of PDOWRAM Staffs	To increase technical capability of PDOWRAM staffs in construction supervision at the provincial level	 Preparation of construction supervision manuals for field-use Dissemination and training workshop Periodical revision of manuals

Prepared by JICA SAPROF Study Team

(4) Project Formulation study for Other Potential Areas

Scope of Project Formulation Study for Other Potential Areas

Project Supporting Program	Purpose	Content
Scope of Project Formulation Study for Other Potential Areas	To prepare irrigation development plan for other potential areas	 Screening of potential project Selection of priority project to be developed Assessment of available water resources through meteohydrological analysis Inventory survey of facilities Preparation of agriculture development plan Preparation of irrigation and drainage plan Cost estimate Preparation of implementation schedule

Prepared by JICA SAPROF Study Team

JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap

Irrigation and Drainage Rehabilitation and Improvement Project

Draft Final Report

PART II STUDY TABLE

 Table II 2.1.1
 Irrigation and Agriculture-Related Law and Regulation (1/2)

Title	Issued in	Provisions
Water Resources Police	су	
National Water	2004	◆ It is a basic policy for using water resources in Cambodia. It is aim to ensure the
Resources Policy		effective, sustainable, wise and equitable use of water resources.
for the Kingdom of		◆ The policy refers to all over the aspect for water use and consists of 4 chapters, i)
Cambodia		Introduction, ii) Vision for water in Cambodia, iii) Fundamental principles, iv) The
		national water resources policy, v) Implementation of the national water resources
		policy, vi) Conclusion.
Water management		
Circular No.1 on the	1999	◆ MOWRAM defines the role of FWUC in the policy for Sustainability of Operation
Implementation		and Maintenance Irrigation Systems. Circular No.1 defines organizational flame of
Policy for		FWUC and is attached The Statute of The FWUC. The statute defines the objectives,
Sustainable		criteria, organization, finance management, rules and punishment of FWUC, and
Irrigation Systems		enhances the establishment of FWUC.
Policy for	2000	◆ It defines the ways of operation and maintenance of irrigation system. In this policy,
Sustainability of		the management responsibility and water allocation transfer to FWUC. The
Operation and		functions and roles of FWUC, the system of irrigation service fee (ISF) and
Maintenance		supporting system for maintenance activity of FWUC, Monitoring and Evaluation
Irrigation Systems		system are mentioned.
		◆ It consists of 5 chapters, i) Introduction, ii) Operation and Maintenance Irrigation
		System, iii) Environment, iv) Human Resource Development, v) Miscellaneous.
Steps in the	2000	◆ FWUC has the responsibility for operation and maintenance of irrigation system.
Formation of a		MOWRAM enhance to establish FWUC and shows steps in the formation of FWUC
Farmer Water Users		in this document. FWUC finally will be registered by MOWRAM.
Community		
Training Manual for	2003	◆ The manual was prepared with the aim of promoting Participatory Irrigation
Participatory		Management and Development (PIMD) based on decentralization and Irrigation
Irrigation		Management Transfer policy of the Government. The manual consists of 7 modules
Management and		as follows:
Development		◆ Module 1: General concept of PIMD and lesson and learnt of PIMD around the
(PIMD)		world.
		◆ Module 2: Policy, legal and institutional framework of PIMD.
		◆ Module 3: Planning and implementing PIMD at the national level.
		◆ Module 4: Implementation of PIMD at provincial and irrigation system level.
		◆ Module 5: Functions of FWUC support team in order to establish FWUC and
		develop their capacity.
		◆ Module 6: Monitoring and evaluation system to support implementation and further
		development of PIMD.

Table II 2.1.1 Irrigation and Agriculture-Related Law and Regulation (2/2)

Title	Issued in	Provisions
		◆ Module 7: Technical guide for irrigation water management targeted FWUC leaders
		and members.
Sub-Decree on	Draft	◆ The objective of this Sub-decree is to effectively and sustainable manage and use the
Farmer Water User		irrigation systems. This sub-decree consists of 12 chapters and is to define the basic
Community		principles and process, function and supporting system etc.
		◆ The sub-decree also fosters farmers participation in the operation and maintenance
		of irrigation system through FWUC based on PIMD and TIS.
Agricultural Cooperat	ive	
Royal Decree on the	2001	◆ The three communities are established in order to improve living standard of farmer.
Establishment and		The sphere of these covers the agricultural sector as a whole, including the supply of
Functioning of		material and all kinds of services at the disposal of farming production.
Agricultural		◆ This decree defines the establishment and functioning of three communities which
Cooperative, Union		covers the agricultural sector as a whole, including the supply of material and all
of Agricultural		kinds of services at the disposal of farming production.
Cooperative and		◆ Under this decree, the agricultural cooperative is to define a private legal entity with
Pre-Agricultural		full legal competence, self-financing and self-control.
Cooperative		◆ It has the multi functions related to the agriculture sector. All persons who have their
		business in agriculture or services can join the agricultural cooperative.
Model Statute of	2003	◆ In order to promote the establishment of Agricultural Cooperative, Model Statute
Agricultural		was prepared by MAFF. It consists of 12 chapters referred to (i) administration, (ii)
Cooperatives		finance management, (iii) organization structure, (iv) management procedure and (v)
		dissolution procedure.

Prepared by JICA SAPROF Study Team based on each policy papers and guidelines

Table II 4.2.1 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Ream Kon Sub-Project)

Proposed Plan Prepared in the Previous Study	epared in the	Previous Study		Prior in the propagation of the	Judgment and Any
Works	Quantity Unit	it Content		Findings of SALNOF Study based on Field Survey	Kevisions from the Frevious Study
1. Sub-Project Area					
1) Total Command Area	1,890 ha	Gravity Irrigation Area: 1,610 ha Pump Irrigation Area: 280 ha	(i) Constronce of one of in 200 planne Basin.	Construction of the Bassac Reservoir located about 30 km upstream of the Ream Kon sub-project, one of the main water source of Moung Russei River Basin, have been completed by MOWRAM in 2009 through the Grant Aid for Grassroots Human Security of Japan Embassy of Cambodia as planned in the previous Study. And no significant change were observed for water use in the Basin. Total command area, therefore, can be as same as the previous Study.	Command area is proposed as same as the previous Study.
			(ii) According command a previous S economica in the cond	According to the review of topographic survey result, 280 ha located on southern edge of the command area is high in elevation which is impossible to be irrigated by gravity as planned in the previous Study. Raising water level in the main canal only to irrigate this higher area is not economically feasible. In order to minimize and optimize project cost, the original plan is feasible in the condition that the area will be irrigated using portable pumps by farmers.	
2. Rehabilitation of Irrigation Facilities	rigation Facil	ties			
2.1 Headworks					
1) Headworks	l no.	Replacement of headworks and its appurtenant structures	(i) Concr	Concrete structure of the headworks are highly deteriorated, therefore, it is judged to be necessary to construct new headworks to be located approximately 60m upstream from existing one.	It is necessary to be replaced by new one as proposed in the previous Study.
			(ii) Scouring s Therefore,	Scouring sluice gates and flood gates have been already removed and/or severely deteriorated. Therefore, they need to be replaced by new one.	
		discharge: Q=180 m ³ /s (T=100	(iii) Existing hotemporary	Existing headworks will not be demolished during the construction of new headworks for the temporary access road for the works.	
		gn flood flood level	(iv) It is ap	It is appropriate that existing creek, CD-2 will be utilized for temporary diversion for the construction works.	
			(v) Plan ai geotec	Plan and design of the headworks need to be upgraded from the previous Study based on geotechnical investigation and topographic survey.	
2) Intake Structure	I no.	Reconstruction of intake structure	(i) Concre	Concrete structure of the existing intake is already deteriorated and no gate is installed.	As proposed in the previous Study, it is necessary to be
	erternor magnification of building	- Design discharge: Q=2.66 m ³ /s	(ii) Since l	Since headworks has no function to regulate water level, water cannot be introduced to the command area through the intake.	replaced by new one with the gate.

Table II 4.2.1 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Ream Kon Sub-Project)

Proposed Pla	Proposed Plan Prepared in the Previous Study	Previous Study	Eindings of SA DDOF Study hosed on Bield Symmon	Judgment and Any
Works	Quantity Unit	it Content	Through of Data NOT Drugt based on their Burky	Study
		- Intake water (evel: El. 15.50 m	(iii) Due to higher elevation, beginning section of existing main canal with the length of 925 m cannot irrigate paddy field along the canal by gravity. In actuality, this part has not been irrigated since the irrigation system was established. In order to minimize conflict over water use, existing intake located approximately 1 km upstream of existing headworks will be cancelled while new intake need to be constructed near proposed headworks site.	
2.2 Main and	Main and Secondary Canals			
1) Rehabilitation of Main Canals	lion 18.4 km	ng 1 1-2	(i) In order to ensure flow capacity, canal section needs to be rehabilitated and expanded together with the provision of turnout and other related structures to distribute water effectively.	Only one route of main canal is proposed as mentioned left.
		Q=0.08 - 2.66 ((m ³ /s	(ii) Two main canals were proposed in the previous Study consisting of main canal-1 irrigating lower part and main canal-2 commanding higher part. By reviewing topographic survey, it is found out that the Main canal-2 is possible to command both higher and lower part. Therefore, only main canal-2 alignment is proposed for main canal in new layout of the sub-project to minimize construction cost.	
2) Rehabilitation of Secondary Canal	tion 12.9 km ary	16 nos.	(i) At present, irrigation water does not reach to the secondary canals, therefore, most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.	Necessity of the secondary canals are justified. However, the plan needs to be
			(ii) As main canal rehabilitation plan is required to be revised, secondary canals plan also have to be concurrently revised.	revised corresponding to the revision of main canal plan.
2.3 Tertiary Canals	Janals			
Construction of Tertiary Canals	on 57.0 km	47 tertiary blocks ((i) Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at the field level, each of which will command approximately 50 has according to the guideline of MOWRAM.	Construction of tertiary canals are included in the Project as mentioned left.
			(ii) Since no compensation for land acquisition is made for the construction of tertiary canals according to the regulation of the Government, consensus building among farmers are of importance when the Project is implemented.	
			(iii) Community-contract approach was proposed in the previous Study as an effective tools for capacity development of FWUC. However, it requires complicated organizational arrangement. Therefore, tertiary development will be covered by civil works.	

Table II 4.2.1 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Ream Kon Sub-Project)

Proposed Plan Prepared in the Previous Study	epared in the	Previous Study	Findings of SAPBOF Study based on Field Survey		Judgment and Any Descriptions from the Descriptions
Works	Quantity Unit	it Content	r maings of the root bandy based on rich bared		Study
3. Drainage					
3.1 Main Drains and Collector Drains	nd Collector I	Orains			
Rehabilitation of Main Drain	7.2 km	Moung Russei and Ou Anlong Rolus	(i) Existing streams are planned to be utilized for main drains that are judged effective for minimizing The plan is as proposed in the construction cost.	tive for minimizing	The plan is as proposed in the previous Study.
		River to be utilized for main drain	(ii) All the main drains proposed in the previous Study needs to be constructed and/or rehabilitated to protect command area from water of northern and southern areas.	1	Drainage gate for CD-2 proposed in the previous Study is cancelled.
2) Construction of Collector Drain	19.4 km	3 nos. of collector (i) drains consisting of CD-1, CD-2	(i) Capacity of both Moung Russei and Ou Anlong Rolus River is sufficient to drain water from command area, therefore, no river dredging work is required under the Project.	n water from	
			(ii) Among others, CD-2 proposed for temporary diversion channel for the construction of headworks, are planned to be equipped with emergency gate and drainage gate at the upstream and the downstream so to release excess water to the downstream and also to protect back water from the downstream. However, its effectiveness is necessarily unclear, therefore, it is cancelled to minimize Project cost.	tion of headworks, am and the ck water from the ncelled to	
3.2 Secondary Drain	.E				
1) Construction of Secondary Drain	25.1 km	9 nos. and drainage gate at the confluence of CD-2 and Moung Russei River	(i) At present, no secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drainage under the Project.		(i) Secondary drains are recommended to be constructed, however, downstream halves of SD-1 to SD-5 will be cancelled as mentioned left.
			(ii) However, drainage proposed in the downstream of the command area, SD-1, SD-2, SD-3, SD-4 and SD-5 are not recommendable due to following two reasons: (a) they run in the outside of command area so that land acquisition would be difficult and (b) the area is under El. 11.00 to be affected by the water from Tonle Sap Lake, therefore, drainages do not perform their functions.	. e	(ii) Drainage gate will be cancelled.
			(iii) By changing main canal layout as explained above, secondary drain layout also need to be changed. In particular, the number of drainage culvert can be reduced so that the construction cost for the secondary canals are economized.	need to be	
Prenared by IICA SAPROF Study Team	POF Study Tex				

Table II 4.2.2 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Por Canal Sub-Project)

Proposed Plan Prepared in the Previous Study	repared in	the P	revious Study	bilian i i i i i i i i i i i i i i i i i i	Judgment and Any
Works	Quantity	Unit	t Content	Fillumgs of SAFROF Study based on Field Survey	Revisions from the Previous Study
1. Sub-Project Area					
1) Total Command Area	1,940	ha	Gravity Irrigation Area: 1,940 ha	(i) Construction of the Bassac Reservoir located about 30 km upstream of the Ream Kon sub-project, one of the main water source of Moung Russei River Basin, have been completed by MOWRAM in 2009 through Grant Aid for Grassroots Human Security of Japan Embassy of Cambodia as planned in the previous Study. And no significant change were observed for water use in the Basin. Total command area, therefore, can be as same as the previous Study.	Command area is proposed as same as the previous Study
				(ii) In the command area, secondary canal SI-1 has been already rehabilitated with the financial support of ECOSORN by EU covering 288 ha. Since current water level is lower, irrigation water cannot be delivered to the field in this rehabilitated area by gravity, which needs rectification works. Therefore, the Project will continuously maintain total command area cover as planned including ECOSORN rehabilitatedarea to materialize gravity irrigation in the entire command area.	
2. Rehabilitation of Irrigation Facilities	1 Facilities				
2.1 Headworks					
1) Headworks	1	no.	-1	 (i) Headworks to divert the Moung Russei River water to the Por Canal sub-project will be covered by the Ream Kon sub-project as planned in the previous Study. 	
2) Intake Structure		no.	Reconstruction of intake structure - Design discharge: Q=2.74 m3/s	(ii) Concrete structure of the intake is existing, however, it has been seriously deteriorated and no gate has been installed.	As proposed in the previous Study, it is necessary to be replaced by new one with the gate
			- Intake water level: El. 15.00 m	(iii) Based on the situation mentioned above, the intake structure with the gate needs to be replaced by new one.	
2.2 Main and Secondary Canals	Canals				
Rehabilitation of Main Canals	12.7	km	2 nos. consisting of main canal 1-1 and main canal 1-2	(i) In order to ensure flow capacity, canal section needs to be rehabilitated and expanded together with turnout and other related structures.	Only one route of main canal, 1-2, is proposed as mentioned left

Table II 4.2.2 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Por Canal Sub-Project)

Proposed Plan I	Proposed Plan Prepared in the Previous Study	Previous Study	Findings of SADDOF Study bosed on Field Summer	Judgment and Any
Works	Quantity Unit	t Content	r manings of 571 NOT 51444 on reducing the contract of the con	Previous Study
		- Capacity: Q=0.21 - 2.74 m ³ /s	(ii) Two main canals were proposed in the previous Study consisting of main canal 1-1 irrigating western part and main canal 1-2 for eastern part. Since the Main canal 1-2 is running higher part of the command area, only main canal 1-2 alignment is proposed as main canal in new layout of the sub-project to minimize construction cost.	
2) Rehabilitation of Secondary Canal	15.8 km	12 nos.	the canals are seriously deteriorated and collapsed or even no canals. Priority needs to be condary canals are be given to the rehabilitation and construction of those canals equipped with turnout justified, however, the plan needs to be revision of main can development plan. In addition, rectification works for ECOSORN rehabilitated canals value.	Necessity of the secondary canals are justified, however, the plan needs to be revised corresponding to the revision of main canal development plan. In addition, rectification works for ECOSORN-rehabilitated canals will be covered by the Project.
			(ii) In general proposed alignment of secondary canals in the previous Study is acceptable. As main canal rehabilitation plan is required to be revised mentioned above, secondary canals plan also have to be concurrently revised.	
			(iii) S1-1 has been rehabilitated by ECOSORN in 2009, however, no check structures were constructed and paddy field cannot be irrigated by gravity. The project will end in 2010 and no further investment will be made for the Por Canal sub-project. In order to utilized this rehabilitated canals effectively, check structures are proposed to be constructed under the Project to effectively utilize this rehabilitated canals.	
2.3 Tertiary Canals				
Construction of Tertiary Canals	55.0 km	42 tertiary blocks	(i) As same as the Ream Kon sub-project, currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at the field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.	Construction of tertiary canals are included in the hardware component under the Project as mentioned left.

Table II 4.2.2 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Por Canal Sub-Project)

Proposed Plan Prepared in the Previous Study	ared in the	e Prev	rious Study	Findings of SADDOF Study, based on Field Summer	Judgment and Any
Works Qu	Quantity U	Unit	Content	rindings of State Not Study Based on Fred Survey	Previous Study
				(ii) Since no compensation for land acquisition is made for the construction of tertiary canals according to the regulation of the Government, consensus building among farmers are of importance when the Project is implemented.	
				(iii) Community-contract approach was proposed in the previous Study as an effective tools for capacity development of FWUC. However, it requires complicated organizational arrangement. Therefore, tertiary development will be covered by civil works.	
3. Drainage			Assistantiasia		
3.1 Main Drains and Collector Drains	r Drains	-	- Andrew Control of the Control of t		and the second s
1) Rehabilitation of Main Drain	9.3 km		Moung Russei River and (MD-1	(i) In addition to MD-1 to be running on the northern edge of the command area, existing The plan is as proposed in streams, the Moung Russei River, is planned to be utilized for main drains that are judged effective for minimizing construction cost.	The plan is as proposed in the previous Study.
				(ii) Capacity of both Moung Russei and Ou Anlong Rolus River is sufficient to drain water from command area, therefore, no river dredging work is required under the Project.	
2) Construction of Collector Drain	10.0 kn	km 2 2 CO CO CO CO CO CO CO	2 nos. of collector drains (consisting of CD-1 and CD-2	(i) Two collector drains in the previous Study were planned to run along the main canal-2 in parallel with the National Road No.5. They were originally proposed to catch excess water from the eastern side of the National Road so to protect main canal, however, its effectiveness is questionable. It would be technically reasonable to cancel CD-1 and CD-2 so as to minimize construction cost.	CD-1 and CD-2 proposed in the previous Study are cancelled.
3.2 Secondary Drain					
1) Construction of Secondary Drain	14.8 km		10 nos.	(i) At present, no secondary drains have been developed in the command area. Since development plan of the Project is based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drainage under the Project to distribute irrigation water effectively.	Secondary drains are recommended to be constructed under the Project.
				(ii) Irrigation canal layout needs to be revised as mentioned above, arrangement of secondary level drains also will be revised.	
Prepared by IICA SAPROF Study Team	Feam			The state of the s	- Promonent and the second and the s

Prepared by JICA SAPROF Study Team

Table II 4.2.3 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Damnak Ampil Sub-Project)

Proposed Plan Prepared in the Previous Study	epared in the P	revious Study		Judgment and Any
Works	Quantity Unit	t Content	Findings of SAFKOF Study based on Field Survey	Revisions from the Previous Study
1. Sub-Project Area				
1) Total Command Area	2,270 ha	Gravity Irrigation Area: 1,770 ha Pump Irrigation Area: 500 ha	other irrigation systems under the Pursat River Basin including the Chr Rek system, proposed as same as the headworks of which was completed in 2008 by MOWRAM. There are no significant change in the condition in water distribution in the River basin since the previous Study was completed in March 2009, therefore, target area of the Project is judged suitable to adopt same command area as proposed in the previous Study.	Command area is proposed as same as the previous Study
			(ii) According to the review of topographic survey result and the aerial photograph, 500 ha out of entire command area is higher that are impossible to be irrigated by gravity as planned in the previous Study. Raising water level in the main canal only to irrigate this higher area is not economically feasible. In order to minimize and optimize project cost, such areas will be irrigated using portable pumps by farmers.	
	Acceptable to the second secon		(iii) Among three secondary canals proposed in the previous Study, S-2 has been already rehabilitated with the assistance of DANIDA in 2008, under which tertiary canals are not constructed. Therefore, the Project area will include S-2 command area.	
2. Rehabilitation of Irrigation Facilities	Facilities			
2.1 Headworks		The state of the s		The state of the s
	П по.	(i) Improvement of automatic gate installed on the Damnak Ampil Headworks (ii) Construction of fish ladder	(i) Automatic gate installed on the Damnak Ampil Headworks by MOWRAM in 2006 currently does not function well. In order to improve function of the gate, in the previous Study, full electrification was proposed. With the aim of minimization nee of the Project cost, it is of necessity to propose simple and reasonable improvement plan.	Simple and reasonable gate improvement plan need to be proposed.
			(ii) Fish ladder was proposed in the previous Study to conserve fish resources in the Pursat River. Therefore, plan and design is made in the SAPROF Study based on topographic survey.	
			(iii) Scouring part at the downstream of the headworks is planned to be rehabilitated by MOWRAM, of which the Project will not cover.	

Table II 4.2.3 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Damnak Ampil Sub-Project)

Judgment and Any Davisions from the	Previous Study	1				Necessity of the secondary canals are justified. Based on the current progress,	secondary canal rehabilitation will include two canals: S-1 and S-3.		Construction of tertiary canals are included in the Project as mentioned left.		
Findings of SA PROF Study, based on Field Survey	Saving man I no page (none TOALING to Shinning)	(i) Intake was constructed in 2006 and still in good condition. No rehabilitation is required.		(i) Since the main canal was rehabilitated by MOWRAM and still in better conditions, the Project does not include any construction and/or rehabilitation works for the main canal as having been planned in the previous Study	Note: MOWRAM is planning to extend main canals to connect with Svay Don Keo River to irrigate irrigation systems under the Svay Don Keo River.	(i) At present, irrigation water does not reach to the secondary canals, therefore, most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.	(ii) Out of three secondary canals proposed to be rehabilitated in the previous Study, S-2 have been already rehabilitated with the assistance of DANIDA in 2008. Therefore, rehabilitation of secondary canal, S-2, will be excluded from the Project component.		(i) Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at the field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.	(ii) As mentioned above, S-2 have been rehabilitated by DANIDA, under which no tertiary canals are constructed. Tertiary canals with those related structures under the command area of S-2 will be proposed to be constructed under the Project.	(iii) Since no compensation for land acquisition is made for the construction of tertiary canals according to the regulation of the Government, consensus building among farmers are of importance when the Project is implemented.
evious Study	Content	- Intake water level: El. 17.00 m	A TANKA MANANANANANANANANANANANANANANANANANANA			3 nos.			50 tertiary blocks		
the Pr	Unit	no.		km		km			km		
Prepared in	Quantity	1	/ Canals			17.6 km			85.0 km		
Proposed Plan Prepared in the Previous Study	Works	2) Intake Structure	Main and Secondary Canals	Rehabilitation of Main Canals		2) Rehabilitation of Secondary Canal		Tertiary Canals	Construction of Tertiary Canals		
		2)	2.2			2)		2.3			

Table II 4.2.3 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Damnak Ampil Sub-Project)

Proposed Plan Prepared in the Previous Study	repared in	the Pr	evious Study	Findings of SAPROF Study based on Field Survey	Judgment and Any Ravisions from the
Works	Quantity	Unit	Content		Previous Study
				(iv) Community-contract approach was proposed in the previous Study as an effective tools for capacity development of FWUC. However, it requires complicated organizational arrangement. Therefore, tertiary development will be covered by civil works.	
3. Drainage	-				TO THE STATE OF TH
3.1 Main Drains and Collector Drains	ector Drain	S			Addition to the contract of th
Rehabilitation of Main Drain	1	km	Ou Bakan and Boeung Khnar River	(i) Existing streams consisting of Ou Bakan and Boeung Khnar are planned to be utilized for main drains that are judged effective for minimizing construction cost.	The plan is as proposed in the previous Study.
				(ii) Capacity of both Moung Russei and Ou Anlong Rolus River is sufficient to drain water from command area, therefore, no river dredging work is required under the Project.	
2) Construction of Collector Drain		km T			1
3.2 Secondary Drain					AND THE REAL PROPERTY OF THE P
1) Construction of Secondary Drain	28.2 km		4 nos.	(i) At present, no secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary constructed as proposed level drainage under the Project. (ii) The proposed alignment of drainage in the previous Study is technically feasible.	Secondary drains are recommended to be constructed as proposed in the previous Study.

Prepared by JICA SAPROF Study Team

Table II 4.2.4 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Wat Loung Sub-Project)

Proposed Plan Prepared in the Previous Study	repared in the P	revious Study	Dindings of CABDOT Cands. Lond on Diala Commission	Judgment and Any
Works	Quantity Unit	it Content	Findings of SALNOF Study based on Field Survey	Previous Study
1. Sub-Project Area				
1) Total Command Area	2,540 ha	Gravity Irrigation Area: 1,740 ha Pump Irrigation Area: 500 ha	(i) Water for the Wat Loung sub-project is delivered from the Pursat River through headrace to be constructed under the Project. As explained in the Damnak Ampil sub-project, no significant difference in water availability from the previous Study, therefore, command area of the Wat Loung sub-project is 2,540 ha as same as previous proposal.	Command area is proposed as same as the previous Study
			sub-project area, 500 ha out of the command area is higher that are impossible to be irrigated by gravity as planned in the previous Study. Raising water level in the main canal only to irrigate this higher area is not economically feasible. In order to minimize and optimize project cost, this area will be irrigated using portable pumps by farmers.	
2. Rehabilitation of Irrigation Facilities	n Facilities			
2.1 Headworks				
1) Headworks	no.	1	(i) Although headworks were previously planned in 1970s to 1980s, it is not recommended to construct new one instead irrigation water is diverted from existing Damnak Ampil Headworks on the Pursat River to optimize the Project cost as planned in the previous Study.	ı
2) Intake Structure	no.	- Intake water level: El. 17.00 m at Damnak Ampil Headworks		ı
2.2 Main and Secondary Canals	Canals			
Rehabilitation of Main Canals	20.3 km	1 no. - Capacity: Q=1.39 - 3.33 m ³ /s	(i) Currently, main canal is significantly deteriorated and no water flows unless flooding from the Pursat River in the rainy season. In order to rensure smooth water delivery, canal section needs to be rehabilitated together with turnout and other related structures.	As mentioned left, no major revision is necessary.

Table II 4.2.4 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Wat Loung Sub-Project)

Proposed Plan Prepared in the Previous Study	Prepared in th	le Pre	vious Study	- 1	Findings of SAPROF Study based on Field Survey	Judgment and Any Dovisions from the
Works	Quantity	Unit	Content			Previous Study
				(ii)	Since the alignment of main canal is existing, no major revision is required from the proposal in the previous Study.	
2) Rehabilitation of Secondary Canal	31.1	km	10 nos.	<u> </u>	At present, irrigation water does not reach to the secondary canals, therefore, most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.	Necessity of the secondary canals are confirmed. It is essential to rehabilitate secondary canals under the Project.
				(ii)	At present, only secondary canal S-8 is existing although the canal sections are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.	
2.3 Tertiary Canals						
Construction of Tertiary Canals	81.0 km	km	54 tertiary blocks	<u> </u>	Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at the field level, each of which will command approximately 50 ha according to the guideline of MOWRAM	Construction of tertiary canals are included in the hardware component under the Project as
				(ii)	Since no compensation for land acquisition is made for the construction of tertiary canals according to the regulation of the Government, consensus building among farmers are of importance when the Project is implemented.	mentioned left.
				(iii)	Community-contract approach was proposed in the previous Study as an effective tools for capacity development of FWUC. However, it requires complicated organizational arrangement. Therefore, tertiary development will be covered by civil works.	
3. Drainage						
3.1 Main Drains and Collector Drains	ollector Drains	,,				
1) Rehabilitation of Main Drain	t	km	Boeung Khnar River	(i)	Existing streams are planned to be utilized for main drains that are judged effective for minimizing construction cost.	The plan is as proposed in the previous Study.
Annual control of the			***************************************			

Table II 4.2.4 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Wat Loung Sub-Project)

Proposed Plan Prepared in the Previous Study	repared in the	Prev	ious Study	Eindings of SADDOF Study Lond on Dield Summer	Judgment and Any
Works	Quantity Unit	Jnit	Content	Thrumgs of SALNOT Study based on Frein Survey	Previous Study
		1		(ii) Capacity of Boeung Khnar River is sufficient to drain water from the command area of Wat Loung, therefore, no river dredging works are	
				required under the Project.	
2) Construction of	1-3	km -			
Collector Drain					
3.2 Secondary Drain					
1) Construction of	37.7 km		8 nos.	(i) At present, no secondary drains have been developed in the	Secondary drains are
Secondary Drain				command area. Since development plan is prepared based on	recommended to be
				independent setting of irrigation and drainage canals at the secondary constructed under the	constructed under the
				level, it is judged necessary to construct secondary level drainage	Project.
				under the Project.	
	-				

Prepared by JICA SAPROF Study Team

Table II 4.2.5 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Wat Chre Sub-Project)

Judgment and Any	Revisions from the Previous Study		Command area is proposed as same as the previous Study				It is necessary to reconstruct new one as	proposed in the previous Study			
Eindigen of CA DROW Challe have Willed Camer.	Findings of SAFROF Study based on Field Suffey	・ 「一、「「「「」」、「「「」」、「「」」、「「」」、「」、「」、「」、「」、「」、「	Water is delivered from the Pursat River through the main canal of Wat Loung sub-project to be rehabilitated under the Project. As explained in the Damnak Ampil sub-project, no significant difference in water utilization in the River Basin from the previous Study, therefore, command area of the Wat Chre sub-project is determined to be 1,020 ha as same as previous proposal.	(ii) According to the preliminary review of aerial photograph, 400 ha out of the command area is higher that are impossible to be irrigated by gravity as planned in the previous Study. Raising water level in the main canal only to irrigate this higher area is not economically feasible. In order to minimize and optimize project cost, this area will be irrigated using portable pumps by farmers.			(i) No structure is existing at present. In order to divert water from Boueng Khnar River to be delivered through Wat Loung main canal, it is justifiable to construct headworks on the Boueng Khnar River.	1	(ii) The proposed location is generally same as the site proposed in the previous Study where the River flow is stable and no land acquisition is required for the construction.	(iii) Temporary diversion during the construction period was proposed utilizing main canal to be constructed with large section, which will require comparatively large earth work volume. It is recommended to construct temporary diversion channel on the left bank of the River for the construction of the headworks.	(iv) Plan and design of the headworks need to be upgraded from the previous Study based on geotechnical investigation and topographic survey.
revious Study	Content		Gravity Irrigation Area: (i) 620 ha Pump Irrigation Area: 400 ha				Reconstruction of headworks and its	appurtenant structures	- Design flood discharge: Q=65 m³/sec (T=100 years)	- Design flood water level: 13.6 m	
n the P	, Unit				ities		no.				
repared ii	Quantity Unit		1,020 ha		tion Facil		-				
Proposed Plan Prepared in the Previous Study	Works	1. Sub-Project Area	Total Command Area		2. Rehabilitation of Irrigation Facilities	Headworks	1) Headworks				
		1. Su			2. Re	2.1					

Table II 4.2.5 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Wat Chre Sub-Project)

	Proposed Plan Prepared in the Previous Study	repared in the l	Previous Study		Ti. Ji C L L Ti	Judgment and Any
	Works	Quantity Unit	Content		FINANCE STRUCK STRUCK SUICKEY	Revisions from the Previous Study
2	2) Intake Structure	1 no.	Reconstruction of intake structure - Design discharge: Q=1.39 m³/s - Intake water level: El. 13.00 m	()	No structure is existing at present. Together with the headworks, new intake structure needs to be constructed. As proposed in the Location is proposed to be within 100 m from the headworks to ease gate operation. necessary to constructed. As proposed in the previous Study, it is necessary to constructed.	As proposed in the previous Study, it is necessary to construct new one.
2.2	Main and Secondary Canals	ary Canals				
) Rehabilitation of Main Canals	4.7 km	1 no. - Capacity: Q=0.31 - 1.39 m3/s	Θ	Most of the main canal is highly deteriorated. At present, since no water is provided to the canal from the source River, all the section needs to be rehabilitated and reconstructed in order to ensure flow capacity.	Design discharge of the main canal is set to be 1.39 m ³ . Temporary diversion will be
				(ii)	It was proposed that the main canal be utilized for temporary diversion for the construction of headworks with the capacity of 3.0 m3/sec in the previous Study. In order to minimize the Project cost, it is not recommendable bank that is separate to construct large capacity of main canal for temporary diversion. Instead, temporary diversion will be constructed on the left bank of the River during the construction while main canal capacity need only 1.39 m3/sec, peak design discharge to reduce earth work volume.	constructed on the left bank that is separate from the main canal.
				(III)	At the end of the confluence of the main canal and Boueng Khnar River, it was proposed to install gate so as to keep water in the main canal by utilizing main canal as storage. However, the water is ensured by the construction of irrigation facilities and the necessity of this gate is not justifiable. This proposed gate is, therefore, cancelled.	
	Secondary Canal	14.7 km	6 nos.	€	At present, irrigation water does not reach to the secondary canals, therefore, most of the canals are seriously deteriorated and collapsed. Priority needs to be given to the rehabilitation of those canals and related structures.	Necessity of the secondary canals are justified and the proposed plan in the previous Study is acceptable as mentioned on the left.
				(E)	Proposed plan in the previous Study is technically feasible.	

Table II 4.2.5 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Wat Chre Sub-Project)

Proposed Plan Prepared in the Previous Study	Prepared ir	n the	Previous Study		Pit-lite of Conference Conference of the Property of the Prope	Judgment and Any
Works	Quantity	/ Unit	it Content		Findings of SAFROF Study based on freid Survey	Previous Study
2.3 Tertiary Canals					・ 「	
Construction of Tertiary Canals	27.0	27.0 km	27 tertiary blocks	8	Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute water at the field level, each of which will command approximately 50 ha according to the guideline of MOWRAM.	Construction of tertiary canals are included in the Project as mentioned left.
				(E)	Since no compensation for land acquisition is made for the construction of tertiary canals according to the regulation of the Government, consensus building among farmers are of importance when the Project is implemented.	
///////////////////////////////////////			1 -7	(ii)	Community-contract approach was proposed in the previous Study as an effective tools for capacity development of FWUC. However, it requires complicated organizational arrangement. Therefore, tertiary development will be covered by civil works.	
3. Drainage		7.				
3.1 Main Drains and Collector Drains	Collector I	Orain	2	1		
	. 1	<u>P</u>	- Boeung Khnar River - Ta Paong Stream	Θ	Existing streams are planned to be utilized for main drains that are judged effective for minimizing construction cost.	The plan is as proposed in the previous Study.
				(E)	Capacity of both Boeung Khnar River and Ta Paong Stream is sufficient to drain water from command area, therefore, no river dredging work is required under the Project.	T
2) Construction of	1	km				1
3.2 Secondary Drain		-				
Construction of Secondary Drain	14.8	km	7 nos.	Θ	At present, no secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drainage under the Project.	Secondary drains are recommended to be constructed under the Project.

Table II 4.2.6 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Lum Hach Sub-Project)

Proposed Plan Prepared in the Previous Study	repared in t	he Pr	revious Study	Findings of SAPROF Study based on Field Survey	Judgment and Any Davisions from the
Works	Quantity	Unit	Content	Throngs of 274 NO. 2000 based on their surject	Previous Study
1. Sub-Project Area					
1) Total Command Area	3,100	ha	Gravity Irrigation Area: 2,690 ha Pump Irrigation Area: 410 ha	(i) Boribo River, the main source of the Lum Hach sub-project, diverge into two at the Bomnak water level station, one is the Boribo River to the Kampong Chhnang province and the other is the Thlea Maan River to the Pursat province. In the previous Study, 50 % of the river runoff is assumed to flow into the Boribo River by diversion at the Bomnak water level station. Since there is no large scale development at the Bomnak, the assumption utilized in the previous Study can be continuously applied for the SAPROF Study. Therefore, target area of the subproject is as same as the previous Study. According to the review of the topographic survey result, 410 ha located on the southern edge of the command area is higher that are impossible to be irrigated by gravity as planned in the previous Study. Raising water level in the main canal only to irrigate this higher area is not economically feasible. In order to minimize and optimize the Project cost, this area will be irrigated using portable pumps by farmers.	Command area is proposed as same as the previous Study
2. Rehabilitation of Irrigation Facilities	Facilities				
2.1 Headworks					
-		по.		(i) No structure is existing at present. In order to divert water from the Boribo River to the command area of the Lum Hach sub-project, the highest priority is given to the construction of headworks under the Project.	New headworks construction is proposed as planned in the previous Study.
			Q=430 m3/sec (T=100 years) - Design flood water level: 38.0 m	(ii) Main canal were planned to be utilized for temporary diversion during the construction of the headworks, however, it would be appropriate to use old Boribo stream as diversion through O-Roluss pond to minimize the construction cost.	
				(iii) Plan and design of the headworks need to be upgraded from the previous Study based on geotechnical investigation and topographic survey.	
2) Intake Structure	2	no.	Reconstruction of intake structure for: (i) Lum Hach sub-project and (ii) O- Roluss Irrigation System	(i) No structure is existing at present. Together with the headworks, new intake structure needs to be constructed. Location is proposed to be within 100 m from the headworks to ease operation of water management.	As proposed in the previous Study, it is necessary to be constructed.

Table II 4.2.6 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Lum Hach Sub-Project)

ě.	Proposed Plan Prepared in the Previous Study	epared in the I	Previous Study	Findings of SAPROE Study based on Field Survey	Judgment and Any
Wo	Works	Quantity Unit	it Content	THERM SHIPES	Revisions from the Previous Study
			- Design discharge: Q=6.60 m³/s (Lum Hach) and Q=5.70 m³/s (O-Roluss) - Intake water level: El. 38.00 - 36.00 m	(ii) The water is also diverted to O-Roluss Irrigation System (3,400 ha) constructed by MOWRAM in 2007 from the proposed Lum Hach headworks. Intake and spillway has already been provided at the O Roluss Pond located approximately 3.6 km downstream on old Boribo water course. In addition to those structures, intake structure is proposed to be constructed at the headworks site as planned in the previous Study.	
2.2 Main a	Main and Secondary Canals	anals			
1) Rehabilitatio Main Canals	Rehabilitation of Main Canals	16.4 km	1 no. - Capacity: Q=0.83 - 6.60 m3/s	(i) Overall, canal sections are highly deteriorated so that the rehabilitation is required. In general, the upstream portion has large enough for the design discharge while the downstream portion needs expansion.	Proposed main canal is appropriate, however, capacity of most upstream part can be reduced by
				(ii) In the previous Study, approach canal proposed in the most upper stream were proposed to be utilized for temporary diversion for the headworks construction. In order to reduce construction cost, old Boribo water course is proposed to be utilized for the temporary diversion so that the earth work for approach canal can be reduced.	changing the methodology of construction for the headworks.
2) Rehabi Second	2) Rehabilitation of Secondary Canal	42.4 km	11 nos.	(i) At present, irrigation water does flow only when it heavily rains, therefore, almost no water does reach to secondary levels and no secondary canals have been constructed. Therefore, priority needs to be given to the construction of those canals and related structures.	Necessity of the secondary canals are justified and plans proposed in the previous Study is feasible as
				(ii) By reviewing topographic survey and aerial photographs, alignment proposed in the previous Study is technically feasible in general.	mentioned left.
2.3 Tertiar	Tertiary Canals				
Construction of Tertiary Canals	Construction of Tertiary Canals	67.0 km	67 tertiary blocks	(i) Currently, no tertiary canals have been developed in the command area. Tertiary canals are surely required to distribute at the water field level, each of which will command approximately 50 ha according to the guideline of MOWRAM	Construction of tertiary canals are included in the hardware component under the Project as mentioned left.

Table II 4.2.6 Technical Judgment by JICA SAPROF Study Team Toward Development Plan Proposed in the Previous Study (Lum Hach Sub-Project)

	Proposed Plan Prepared in the Previous Study	pared in th	he Pre	vious Study		Judgment and Any
	Works	Quantity U	Unit	Content	Findings of SAPROF Study based on Field Survey	Revisions from the Previous Study
					(ii) Since no compensation for land acquisition is made for the construction of tertiary canals according to the regulation of the Government, consensus building among farmers are of importance when the Project is implemented.	
				, -	(iii) Community-contract approach was proposed to construct tertiary level facilities in the previous Study as an effective tools for capacity development of FWUC. However, it requires complicated organizational arrangement. Therefore, tertiary development will be covered by civil works.	
3. Drainage	inage					The pressure agreement agr
3.1	Main Drains and Collector Drains	tor Drains				
1	1) Rehabilitation of Main Drain	<u> </u>	km	Boribo River is utilized as main drain.	(i) Boribo River is planned to be utilized for main drains that are judged effective for minimizing construction cost.	The plan is as proposed in the previous Study.
					(ii) No dredging works are required for Boribo River to be utilized as main drain.	
2)	2) Construction of Collector Drain	<u>'⊼</u>	km -		(i) No collector drains are required as judged in the previous Study.	1
3.2	Secondary Drain					
	Secondary Drain	53.9 k	km S	11 nos. and the drainage gate at the confluence of SD-3 and Boribo River	 (i) At present, no secondary drains have been developed in the command area. Since development plan is prepared based on independent setting of irrigation and drainage canals at the secondary level, it is judged necessary to construct secondary level drainage under the Project. (ii) Drainage gate was proposed at the confluence of Boribo River and SD-3, however, its effectiveness is unclear. According to the interview at the field, no serious flooding during the rainy season was reported. Therefore, it is excluded from the Project component. (iii) The road development is being carried out by the Ministry of Public Works and Transport in the command area, connecting from the entrance at the National Road No. 5 to the Main Canal, approximately 18 km. Side drains have been already constructed together (with the width of 2m to more than 7m), therefore, all or part of following drains does not have to be constructed: SD-2, SD-3, SD-4, SD-6 and SD-10. 	Secondary drains are recommended to be constructed, some of which proposed in the previous Study, however, will be excluded from the Project
	Proposed by HCA CADDOE Grady Toom	Toom				

Prepared by JICA SAPROF Study Team

Table II 4.2.7 Summary of Irrigation and Drainage Plan of Six Sub-projects

						0	Name of sub-project	p-project		7				Total	18.
Ş	Description	Ream Kon	ı Kon	Por (Por Canal	Damnak Ampil	c Ampil	Wat Loung	oung	Wat Chre	Chre	Lum Hach	Hach		
		Pre F/S	SAPROF	Pre F/S	SAPROF	Pre F/S	SAPROF	Pre F/S	SAPROF	Pre F/S	SAPROF	Pre F/S	SAPROF	Pre F/S	SAPROF
-	Ō	1,890	1,890	1,940	1,940	2,270	2,270	2,540	2,540	1,020	1,020	3,100	3,100	12,760	12,760
	(Pump irrigation area included above)	(280)	(280)	0	0	(200)	(200)	(800)	(800)	(400)	(400)	(410)	(440)	(2,390)	(2,420)
73	Annual irrigation area (ha)	2,413	3,020	2,494	3,140	2,364	2,440	2,645	2,730	1,062	1,100	4.700	4,370	15,678	16,800
	- Early wet season paddy (ha)	1,180	1,130	1,220	1,200	64	170	105	190	42	80	1,300	1,270	3,941	4,040
	- Medium wet season paddy (ha)	1,180	1,890	1,220	1,940	2,270	2,270	2,540	2,540	1,020	1,020	3,100	3,100	11,330	12,760
	- Dry season paddy (ha)	53	0	54	0	0	0	0	0	0	0	300	0	407	0
က်	Major water source		Moung Ru	Moung Russei River				Pursat River	liver			Boribo	Boribo River	1	
	- Name of headworks	2	√oung Russei (Moung Russei (Reconstruction)	(1		Damnak Ampil (Existing)	(Existing)		Wat Chre (Reconstruc.)	(econstruc.)	Lum Hach (Reconstruc.)	Reconstruc.)		,
	- Intake water level (EL. m)	15.50	15.50	15.00	15.00	17.00	17.00	17.00	17.00	13.00	13.00	36.00 - 38.00 36.00 - 38.00	36.00 - 38.00		
	- Diversion water requirement at intake (m³/sec)	2.66	2.66	2.74	2.74	7.93	7.93	3.45	3.45	1.39	1.39	6.60	6.60	1	ı
4.	Main canals (nos.)	2	1	2	1	~		-	-	-	-	-	-	8	2
	- Total length (km)	18.4	6.6	12.7	6.8	2.7	,	20.3	20.3	4.7	4.7	16.4	16.4	80.0	58.1
55	Nos. of secondary/ sub- secondary canals	16	13	12	6	3	3	10	10	9	9	11	11	58	52
	- Total length (km)	12.9	18.3	15.8	19.1	17.6	12.6	31.1	31.1	14.7	14.7	42.4	42.4	134.5	138.2
6	Number of Tertiary Blocks (No.)	47	45	42	42	90	20	54	54	27	27	29	69	287	287
	Total length of tertiary canals (km)	57.0	54.0	55.0	55.0	85.0	85.0	81.0	81.0	27.0	27.0	67.0	0.69	372.0	371.0
7.	Main drains	- Moung Russei, - Ou Anlong Rolus	- Moung Russei, - Ou Anlong Rolus	- Moung Russei, - MD-1	- Moung Russei, - MD-1	Ou Bakan/Boeung Khnar River	Ou Bakan/Boeung Khnar River	Boeung Khnar R.	Boeung Khnar R.	- Boeung Khnar R., - Ta Paong stream	- Boeung Khnar R., - Ta Paong stream	Boribo River	Boribo River		
	- Total length (km)	7.2	7.2	6.3	5.6		ı	ı	1		ı		ı	16.5	12.8
	 Drainage water requirement from paddy field (lit/sec/ha) 	7.17	7.17	7.17	7.17	6.32	6.32	6.32	6.32	6.32	6.32	6.83	6.83		
	- Drainage water requirement from other land (lit/sec/ha)	19~25	19~25	19~25	19~25	18~25	18~25	18~25	18~25	18~25	18~25	19~25	19~25		
ထ်	Secondary drains (nos.)	6	7	10	10	4	3	8	8	7	5	11	6	49	42
	- Total length of secondary drains (km)	25.1	13.4	14.8	14.8	28.2	21.8	37.7	37.7	14.8	11.5	53.9	35.7	174.5	134.9
တ်	Collector drains (nos.)	3	8	2	0	0	0	0	0	0	0	0	0	5	3
	- Total length of collector drain (New, km)	19.4	21.8	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	21.8
D G	Prepared by IICA SAPROF Study Team	Team													

Prepared by JICA SAPROF Study Team

JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap

Irrigation and Drainage Rehabilitation and Improvement Project

Draft Final Report

PART III IMPLEMENTATION PROGRAM

PART-III IMPLEMENTATION PROGRAM

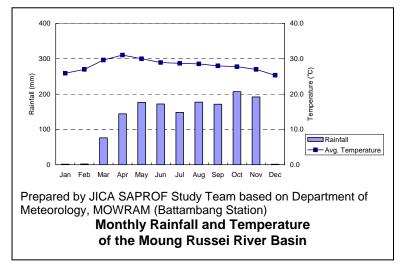
CHAPTER 1 PROJECT AREA

1.1 Project Area

The six Sub-projects are respectively located in Pursat, Moung Russei and Boribo River Basins. All the sub-project areas are in the western Tonle Sap Lake along the National Road No.5. The locations and the administrations of the sub-projects are shown in the following table:

Location and Administration of Sub-project Areas

No.	Sub Project	River Basin	Province	Commune	No. of Villages	Population
1	Ream Kon	Moung	Battam-	Kear, Chrey, Prey Svay	6	4,667
2	Por Canal	Russei	bang	Chrey, Kear, Ta Loas, Kor Koah	13	4,739
3	Damnak Ampil			Lorlok Sar, Snam Preah, Trapeang Chong, Phteah Rung, Bak Chenhchien	6	10,401
4	Wat Loung	Pursat	Pursat	Lorlok Sar, Trapeang Chong, Snam Preah, Khnar Totueng, Boueng Khnar	5	9,232
5	Wat Chre			Boueng Khnar, Me Tuek	4	3,797
6	Lum Hach	Boribo	Kampong Chhnang	Krang Skear, Anchanh Rung, Prasneb, Phsar	6	9,624
	Total				40	42,460


Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia (SEILA Database 2005)

1.2 Natural Conditions

1.2.1 Moung Russei River Basin

The Mourg Russei river basin where the Ream Kon and the Por Canal sub-projects are situated is depicted in Figure III 1.2.1. The Bassac Reservoir located approximately 30 km upstream of the Ream Kon and the Por Canal sub-projects was constructed in 2009 with the Grant Assissance for Grassroots

Human Security of the government of Japan at Cambodia, as one of the main source structures in the Moung Russei River. The catchment area for the two subprojects is 785 km² in total consisting of: (i) Bassac Reservoir area (598 km²) and (ii) the residual area between the Bassac Reservoir and the National Road No.5 (187 km²). In the residual area, the Prek Chik irrigation system is located.

(1) Agro-meteorological Conditions

Rainfall and temperature of the Moung Russei River Basin is illustrated above. Average annual rainfall is 1,387 mm. More than 90 % of the rainfall is concentrated from March to November. Annual mean temperature is 28.1 degrees Celsius in which highest month is April (30.2 degrees Celsius) and the lowest month is December (24.0 degrees Celsius).

(2) Hydrological Conditions

Five-day Discharge

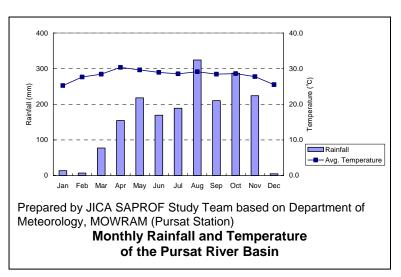
Annual average discharge from 2001 to 2005 for five-day discharges for five years is 3.23 m³/sec or 102 MCM/year at the Basak Reservoir and 1.00 m³/sec or 32 MCM/year at residual area between the Basak Reservoir and the National Road No. 5, details of which are shown in Table III 1.2.1.

Flood Discharge

Probable flood discharge at the Moung Russei station is estimated as summarized in the following Table.

Peak Flood Discharge at the Moung Russei Headworks

	2 years	5 years	10 years	20 years	50 years	100 years
Qpeak (m³/sec)	100	110	120	130	160	190


Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

1.2.2 Pursat River Basin

Pursat river basin where three sub-projects in the Pursat Province, the Damnak Ampil and the Wat Loung and the Wat Chre sub-projects are located is shown in Figure III 1.2.2. Catchment area of the Pursat River at existing headworks is 4,480 km³.

(1) Agro-meteorological Conditions

Rainfall and temperature of the Pursat River Basin is shown in the right graph. Average annual rainfall is 1,624 mm. As similar to the Moung Russei River Basin, more than 90 % of the rainfall is concentrated from March to November. Annual mean temperature is 28.0 degrees Celsius in which highest month is April (29.9 degrees Celsius) and the lowest month is January (25.4 degrees Celsius).

(2) Hydrological Conditions

Five-day Discharge

Annual average discharge from 2001 to 2005 for five-day discharges for five years is 76.4 m³/sec or 2,426 MCM/year at existing headworks, details of which are shown in Table III 1.2.2.

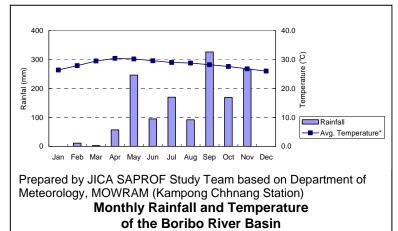
Flood Discharge

Probable flood discharge at the Bac Trakoun station, nearest station from the Damnak Ampil

Headworks is estimated as summarized in the following Table.

Peak Flood Discharge at the Bac Trakoun Station located near the Damnak Ampil Headworks

	2 years	5 years	10 years	20 years	50 years	100 years
Qpeak (m³/sec)	710	970	1,130	1,270	1,440	1,560


Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

1.2.3 Boribo River Basin

Boribo river basin where the Lum Hach sub-project is located is shown in Figure III 1.2.3. Catchment area of the Boribo River at proposed headworks site is 735 km³, out of which 384 km³ is that of the Bomnak River Basin. Location of proposed headworks is approximately 15 km downstream of the Bomnak water level station where a reservoir was previously constructed in the Pol Pot regime.

(1) Agro-meteorological Conditions

Rainfall and temperature of the Boribo River Basin is shown in the right graph. Average annual rainfall is 1,615 mm. As similarly shown in the Moung Russei and the Pursat River Basins, more than 90 % of the rainfall is concentrated from March to November. However, the rainfall from June to August shows distinctively smaller. Annual mean temperature is 28.4 degrees Celsius

in which highest month is April (30.4 degrees Celsius) and the lowest month is December (26.4 degrees Celsius).

(2) Hydrological Conditions

Five-day Discharge

Water of the Boribo River is divided into two directions at the Bomnak water level station: (i) to the Thlea Maam irrigation system in the Pursat Province and (ii) to the Kampong Chhnang Province side including Lum Hach sub-project as depicted in the right figure. Annual average discharge from 1998 to 2007 for five-day discharges for five years on the assumption that the 50 % of the water is allocated to the Pursat Province and the remaining is to the Kampong Chhnang Province is 15.4 m³/sec or 487 MCM/year at proposed headworks, details of which are shown in Table III 1.2.3.

Flood Discharge

Probable flood discharge at the proposed headworks

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Location of Bomnak Diversion

site is estimated as summarized in the following Table.

Peak Flood Discharge at the Proposed Headworks

	2 years	5 years	10 years	20 years	50 years	100 years
Qpeak (m³/sec)	220	270	290	320	380	430

Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

1.3 Socio-Economic Conditions

1.3.1 Ethnicity

The community, in common with the religion in general, is Khmer and Buddhist, with no presence of ethnic minorities or immigrants of other nationalities in all the sub-project areas.

1.3.2 Poverty

As elaborated in the National Poverty Reduction Strategy (NPRS) 2003-2005, eradication of poverty and inequality is of critical importance in Government's policy. According to the definition by "A

Poverty Profile of Cambodia 2004", poverty in Cambodia is estimated based on: (i) food poverty line and (ii) non-food allowance. Former is estimated to be Riel 1,684 (US\$ 0.42) per day while latter is Riel 440 (US\$ 0.10) per day, therefore, the total poverty line is Riel 2,124 (US\$0.53) per day in average 2004 Phnom Penh prices.

Provincial poverty headcount ratio is summarized in the right table showing that two provinces, Kampong

Provincial level poverty headcount ratio

Province	Poverty head count index (%)
Phonm Penh	4.60
Battambang	33.69
Kompong Chhnang/ Pursat	39.57
Cambodia	35.13

Extracted from Ministry of Planning (2006), A poverty profile of Cambodia 2004

Chhnang and Pursat indicate higher poverty ratio than the national average. On the other hand, Battambang province shows slightly better than the country's average.

Comparison of poverty situation between urban and rural areas are summarize on the right table. The figure indicates that the country's **Poverty headcount ratio, urban and rural areas**

figure indicates that the country's poverty is rooted largely in rural areas where people primarily depend upon agricultural sector that is currently lower productivity due to insufficient irrigation facilities. Although a share of agriculture sector in GDP is in declining trend in country's economy, more than 70 % of the people are living in rural areas to support food security of the country.

There are no authorized statistical figures for commune and village level in the sub-project areas. Socio-

Head Count Index % of all Poor Region (%) (%) 1993/94 1993/94 2004 2004 Poverty Line Phom Penh 11.39 4.6 3.1 2.3 Other urban areas 20.54 36.62 10.3 9.4 Rural areas 43.12 86.5 33.66 88.3 Cambodia 39.00 27.97 100.0 100.0 Food poverty line 6.19 3.3 2.5 Phom Penh 2.55 Other urban areas 19.63 12.5 11.3 10.8 Rural areas 21.95 16.66 85.9 86.2 Cambodia 20.00 14.18 100.0 100.0

Extracted from Ministry of Planning (2006), A poverty profile of Cambodia 2004

economic survey carried out in the previous Study, however, shows that "Poor" and "Destitute"

occupies more than provincial average. This would be due to low income from agriculture caused by insufficient irrigation facilities, poor marketing conditions, insufficient support and so forth.

Summary of Poverty Ranking carried out in the Previous Study

Sub-Project	Percentage of People in Poor Status (Categorized into "Destitute" and "Poor"	Income source	Asset (Land: ha)
Ream Kon	61 %	Labor and/or Land Owner	0 - 1.0
Por Canal	62 %	Farmers	0 - 1.5
Damnak Ampil	55 %		0 - 1.0
Wat Loung	71 %		0 - 1.0
Wat Chre	71 %		0 - 0.5
Lum Hach	59%		0 - 1.5

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

1.3.3 Gender Issue

In Cambodia, there are generally some gender issues pointed out such as: (i) unbalance in work load due to women's overload particularly in housekeeping, (ii) income gap between men and women resulted from differences of opportunity in economic activities, (iii) difference in participating social activities and so forth. According to the socio-economic survey carried out in the previous Study, activities of men and women are comparatively differentiated. Women generally engage in: (i) housekeeping, (ii) farming, (iii) care of children while men are in charge of other economic activities including manual labor for construction works. Both of them take charge of farm management. It was observed that women's participation to the workshop in the previous studies were comparatively active. And no significant gender problems were essentially addressed by the community members. Survey result showed that both men and women have equal accessibility and control to properties such as water source, land, livestock, and water source in all the sub-project areas.

1.4 Agriculture

(1) Soils and Land Suitability

Soils in the respective sub-project areas were classified in the JICA M/P and Pre-F/S Study based on the reconnaissance level soil survey and then the FAO/UNESCO classification system as shown below.

Soil Classification of Sub-project Areas

Soil Sub-unit	Ream Kon	Por Canal	Dm. Ampil	Wat Loung	Wat Chre	Lum Hach
Sub-project		Dist	ribution of Soi	l Sub-unit (%)		
Gleyic Luvisol	100	100				
Gleyic Acrisol/ Plinthic			100	100	100	
Acrisol			100	100	100	
Gleyic Acrisol						56
Plinthic Acrisol						38
Dystric Fluvisol						6

Source: JICA Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia, 2009

As for land suitability classification, the area where Gleyic Luvisol and Dystric Fluvisol are distributed is moderately suitable for rice cultivation and marginally suitable for field crop cultivation. Other soil sub-units are marginally suitable for growth of the both rice and field crops. Therefore, the whole of Ream Kon and Por Canal Sub-project areas and a part of Lum Hach Sub-project are moderately suitable for growing rice, while Damnak Ampil, Wat Loung, Wat Chre and majority of

Lum Hach Sub-project areas are marginally suitable for rice cultivation.

(2) Present Land Use

The present land use condition in command areas of six sub-projects is featured by extensive distribution of paddy field. Due to prolonged malfunction of the existing irrigation systems in all sub-project areas, major parts of paddy field is used under rain-fed condition, and limited number of farmers are using portable pumps for getting water from puddles for supplemental irrigation purposes. In general, farmers grow vegetables and other field crops in their home yards in residential place within villages. The current land use is summarized below.

Present Land Use Condition of Sub-project Areas

Land Use Category / Sub-project	Ream Kon	Por Canal	Damnak Ampil	Wat Loung	Wat Chre	Lum Hach	Total
Supplementally irrigated paddy field	50	100	500	130	60	200	1,040
Rain-fed paddy field	1,970	1,970	1,930	2,590	1,030	3,120	12,610
Paddy field total	2,020	2,070	2,430	2,720	1,090	3,320	13,650
Right-of-ways	150	160	180	200	80	250	1,020
Command area total	2,170	2,230	2,610	2,920	1,170	3,570	14,670

Source: JICA Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia, 2009

(3) Agro-demography and Land Holding

Agro-demographic and land holding features of major communes where the respective sub-projects are located were estimated in the JICA M/P and Pre-F/S Study by referring to the Commune Survey on Crops & Livestock, 2003, MAFF and SEILA Commune Data Base, 2005. The summary is as shown below, and among others the average holding size of paddy field ranges from 1.2 ha in Damnak Ampil Sub-project area to 2.4 ha in Por Canal Sub-project area.

Agro-demographic and Land Holding Features in Major Communes related to Sub-project Areas

			_	_			
Agro-demography & Land Holdi	ng Size /	Ream	Por	Damnak	Wat	Wat	Lum
Sub-project		Kon	Canal	Ampil	Loung	Chre	Hach
Number of major Communes		3	3	2	3	3	2
Share of farm households	Range	67-98%	67-95%	88-90%	88-94%	89-95%	95-100%
in total households	Average	82%	77%	89%	90%	93%	98%
Share of non-farm households	Range	2-33%	5-33%	10-12%	6-12%	5-11%	0-5%
in total households	Average	18%	23%	11%	10%	7%	3%
Share of farm households raising	Range	76-99%	68-97%	100%	100%	91-100%	100%
wet season rice in farm household	Average	91%	81%	100%	100%	97%	100%
A C	Range	4.9-5.4	5.0-5.4	5.1-5.5	5.1-5.5	5.2-5.7	4.4-4.5
Average family size	Average	5.1	5.2	5.3	5.2	5.4	4.5
Share of landless households	Range	2-33%	5-33%	10-12%	6-12%	5-11%	0-5%
in total households	Average	18%	23%	11%	10%	7%	3%
Share of households with land	Range	4-38%	2-34%	0-15%	0-15%	0-5%	0%
holding size of less than 0.1 ha	Average	27%	16%	8%	6%	2%	0%
Share of households with land	Range	33-80%	33-90%	12-18%	12-20%	8-29%	0-3%
holding size of more than 3.0 ha	Average	55%	61%	15%	16%	18%	2%
Average holding size of paddy field (ha	a)	2.2	2.1	1.2	1.4	1.6	1.4

Source: JICA Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia, 2009

(4) Crop Production

A single cropping of rice under rain-fed condition for the wet season prevails in the whole sub-project areas. Other crops like watermelon, cucumber, gourd and pumpkin are grown by a few farmers in their home yards either early wet season or dry season, which are consumed in their homes. As shown below, therefore, the cropping intensity on paddy field averages 104% and ranges between 100% and 120%.

Cropping Pattern and Cropping Intensity in Sub-project Areas

Cropping Pattern / Sub-project	Ream Kon	Por Canal	Damnak Ampil	Wat Loung	Wat Chre	Lum Hach	Total
Total paddy field (ha)	2,020	2,070	2,430	2,720	1,090	3,320	13,650
Early wet season	200	410	0	0	0	0	610
- Pumping irrigated rice (ha)	200	410	0	0	0	0	610
Wet season	2,020	2,070	2,430	2,720	1,090	3,320	13,650
- Supplemental irrigated rice (ha)	50	100	0	0	0	0	150
- Rain-fed rice (ha)	1,970	1,970	2,430	2,720	1,090	3,320	13,500
Annual cropped area (ha)	2,220	2,480	2,430	2,720	1,090	3,320	14,260
Cropping intensity (%)	110	120	100	100	100	100	104

Source: JICA Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia, 2009

(5) Farming Practices and Farm Mechanization

Major varieties of rice grown in the respective sub-project areas are as follows:

- For the early wet season IR 66, Sen Pidao, and Rumpe, all of which are early ripening varieties:
- For the wet season, Sen Pidao as early ripening variety, Phka Khney, Phka Rumdoul, Phka Runchang, Phka Mulis, Phka Sla Phka Samley, Somali, Rian Chey, Sen Chey, and Srov Sor as medium ripening varieties as well as CAR 4, CAR 6, CAR 7, Komping Puoy, Neang Mine, Neang Khon, Neang Pong, Neang Sor, and Kang Threung as late ripening varieties; and
- For the dry season, IR 66, and Sen Pidao as early ripening varieties.

Land preparation and planting methods practiced in the wet season are as follow:

- In Ream Kon Sub-project area, hand tractors are used by 65% of farmers and draft animals by 35% for land preparation, while direct sowing with seeding rate of 120~150 kg/ha is applied by 60% of farmers and transplanting by 40%;
- In Por Canal Sub-project area, hand tractors are used by 62% of farmers and draft animals by 38% for land preparation, while direct sowing and transplanting is applied by 50% each;
- In Damnak Ampil Sub-project area, hand tractors are used by 20% of farmers and draft animals by 80% for land preparation, while transplanting is applied by 92% of farmers and direct sowing by 8%;
- In Wat Loung Sub-project area, hand tractors are used by 20% of farmers and draft animals by 80% for land preparation, while transplanting is applied by 92% of farmers and direct sowing by 8%;
- In Wat Chre Sub-project area, hand tractors are used by 40% of farmers and draft animals

- by 60% for land preparation, while transplanting is applied by 90% of farmers and direct sowing by 10%; and
- In Lum Hach Sub-project area, hand tractors are used by 30% of farmers and draft animals by 70% for land preparation, while transplanting is applied by 95% of farmers and direct sowing by 5%.

(6) Paddy Yield and Production

In the JICA M/P and Pre-F/S Study, paddy yield and production in the respective sub-project areas were estimated on the basis of data of PDA/DOA, SEILA Data Base, JICA Socio-economic Survey and Inventory Survey, and interviews. The results have been updated by referring to the latest statistic data. Paddy yield in each sub-project for 2008 is estimated as shown below.

Paddy Yield in Sub-project Areas

Paddy Yield (ton/ha) / Sub-project	Ream Kon	Por Canal	Damnak Ampil	Wat Loung	Wat Chre	Lum Hach
Early wet season						
- Pumping irrigated paddy	2.8	2.8	-	-	-	-
Wet season						
- Supplemental irrigated paddy	2.1	2.1	-	-	-	-
- Rain-fed paddy	1.5	1.6	1.6	1.6	1.6	1.2

Prepared by JICA SAPROF Team

Paddy production in each sub-project area is estimated on the basis of the above cropping pattern and paddy yield as shown below. Paddy production in the project area under the normal climate condition during the dry season is around 22,000 tons.

Paddy Production in Sub-project Areas

Paddy Production (ton) / Sub-project	Ream Kon	Por Canal	Damnak Ampil	Wat Loung	Wat Chre	Lum Hach
Early wet season						
- Pumping irrigated paddy	560	1,148	-	-	-	-
Wet season						
- Supplemental irrigated paddy	105	210	-	_	_	_
- Rain-fed paddy	2,955	3,152	3,888	4,352	1,744	3,968
Total	3,620	4,510	3,888	4,352	1,744	3,968

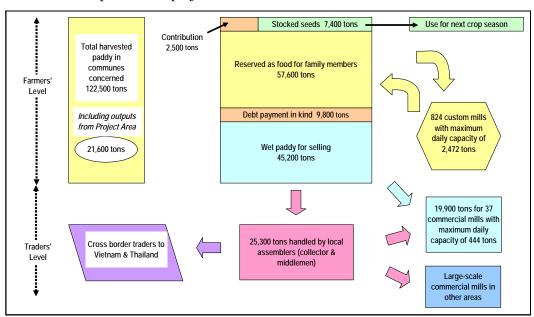
Prepared by JICA SAPROF Team

(7) Post-harvest Facilities

Farmers cut rice stalks with sickles and then thresh paddy by hiring an engine thresher. In Lum Hach Sub-project area, however, they manually thresh paddy by using a pedal thresher. Generally, most farmers dry harvested paddy only which is kept for their family foods as well as self-stocked seeds for the next crop season. Those who need cash at the harvesting time usually sell their paddy to either collectors/middlemen or rice mills without any drying works immediately after they finish threshing of paddy.

At present, there exist 37 commercial mills and 824 cottage industry-type custom mills in and around the project area as shown below. The average milling capacity is estimated at 0.2~0.3 ton/hr for a custom mill and 1.1 ton/hr for a commercial mill. As the former has an estimated maximum processing capacity of 3 ton/day and the latter is 12 ton/day, a total of 115,000-ton paddy can be said to be

processed annually.


Large and Small Rice Mills operated in Communes around Sub-project Areas

Province	District	Sub-project	Commune	Commercial Mill	Custom Mill
Battambang	Moung Russei	Ream Kon &	Kear	6	4
		Por Canal	Chrey	4	0
			Prey Svay	5	0
			Ta Loas	2	2
			Kor Koah	1	1
Pursat	Bakan	Wat Loung &	Trapeang Chong	4	112
		Damnak Ampil	Smam Preah	3	135
			Khnar Totueng	2	27
		Wat Chre	Boeng Khnar	5	58
			Me Tuek	1	100
			Ou Ta Paong	4	89
Kampong	Boribo	Lum Hach	Anhchanh Rung	0	93
Chhnang			Pech Changvar	0	34
			Popel	0	53
			Phsar	0	54
	Tuek Phos		Krang Skear	0	62

Prepared by JICA SAPROF Team

(8) Marketing

Aiming at clarification of the actual situation concerning farmers' utilization of paddy after harvesting works, an additional face-to-face interview survey to 303 respondent farmers was carried out in each sub-project area at this time. Based on the outputs of this survey coupled with various information obtained through hearings from officials concerned and rice mill owners, the following flow chart is made, indicating the current utilization of harvested paddy by around 33,500 farmers in 17 communes concerned with the respective sub-projects.

Prepared by JICA SAPROF Team

Current Utilization of Harvested Paddy in Communes Concerned

Focal points on market channels are as follows:

- Farmers usually depend on 824 custom mills to polish rice for their daily use. At present, these custom mills can meet farmers' requirements by only 24-day full operation of their milling equipment. From the said survey, farmers' needs to reserve additional paddy for home consumption purpose are predicted at 20,100 tons. It can be considered, therefore, that farmers will not be confronted with shortage of daily milling services;
- Available processing capacity of 37 commercial mills in the 17 communes concerned is sufficient to handle the current share of forwarded paddy from farmers. The main reason is that these commercial mills have less operation funds to buy more quantity of paddy from farmers, not insufficient processing capacity which can process the existing share by 45-day full operation; and
- In order to strengthen the rural economy through the vitalization of rice mill industry in and around the project area, therefore, it is indispensable for encouraging the existing commercial mills by means of offering low-interest credit services to cover their increasing operational fund requirements.

(9) Agricultural Supporting Services

Current agricultural support activities operated in the respective sub-project areas are as follows:

- Economic & Social Relaunch of Northwest Provinces (ECOSORN) has supplied quality rice seeds in communes related to Ream Kon Sub-project and implemented quality rice seed supply and irrigation canal & road rehabilitation works in Por Canal Sub-project area; and
- National Coordination Committee for Decentralization (NCCD) provides road construction and animal vaccination services in communes related to all sub-project areas.

Farm input supplies in three provinces are mostly carried out by dealers and large scale rice millers.

Major formal rural credit operators in three districts include ACLEDA Bank, PRASAC MFI, Hartha Kaksekar Ltd., Credit MFI and Cambodia Entrepreneur Building Ltd. The terms and conditions for farm credit are as follows:

- ACLEDA offers 6-month credit of less then 500,000 Riels and 12-month credit of more than 500,000 Riels both with interest rate of 3.0% per month having such conditions as provision of collateral and approval of commune council; and
- PRASAC MFI offers 4~12-month credits with interest rate of 3.0% per month having such conditions as provision of collateral and approval of commune council.

The formation of agricultural cooperatives has been promoting by MAFF/PDA in the country. Up to date, four cooperatives with 170 members in total were established in Moung Russei District of Battambang Province and two cooperatives with 861 members in Bakan Distric were established. However, the status of each cooperative is still developing resulting in that no cooperative carry out procurement, shipment and selling activities.

1.5 Irrigation and Drainage

(1) Ream Kon Sub-Project

The Ream Kon irrigation system originally was developed in 1978 during the Pol Pot regime. The headworks constructed on the Moung Russei River for the irrigation of both Ream Kon and Por Canal command areas was already deteriorated due to frequent flood. In addition, canal networks were also significantly damaged and no functioning at present. Current conditions of the facilities are summarized as follows:

Conditions of Irrigation and Drainage Facilities at Ream Kon Sub-Project

No.	Item	Quantity	Conditions
1.	Irrigation area		
	◆ Potential	4,700 ha	The figure is based on JICA inventory (2006) ¹ including flood
			plain of Tonle Sap Lake.
	◆ Existing	190 ha	Only located in the upstream of command area by using pumps
2.	Headworks		
	Type	Weir with	No gates are functioned. In addition, concrete structure is highly
		gates	deteriorated
	Width	19.2 m	
	Height	5.5 m	
3.	Intake	1 no.	No gates are existing. In addition, concrete is highly deteriorated.
4.	Irrigation and Drainage System		
	(1) Canal		
	♦ Main	12.0 km	The existing canals are highly deteriorated. And the water level is
			too low to carry water gravity irrigation.
	◆ Secondary	26.0 km	Only part of the secondary canals have been developed, however,
			no water flow for a long period of time due to deterioration of
	◆ Tertiary	No	main facilities. No tertiary canals have been constructed.
	◆ Tertiary (2) Drain	INO	No tertiary canais have been constructed.
	♦ Main	No	No drainage system was developed in the command area.
	◆ Secondary	No	140 drainage system was developed in the command area.
	◆ Tertiary	No	
	• Collector	No	
5.	Canal-related Structures		
	♦ Road crossing culvert	1 no.	Concrete structure is severely deteriorated and needed to be
	(secondary)		replaced.
	♦ Check (main)	1 no.	Concrete structure is severely deteriorated and needed to be
			replaced.
	♦ Bridge (secondary)	1 no.	Concrete structure is severely deteriorated and needed to be
			replaced.
6.	Inspection road	26.0 km	It is in bad conditions so that the accessibility within the
			command area is poor.
7.	Others		
	Dyke	2.4 km	The dyke was originally constructed to surround upstream areas
			to store water in the wet season, however, it is no function at
	II. HGLGARDONG I.E. I	1 1101	present.

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

¹ Inventory survey of irrigation and drainage systems carried out by JICA Cambodia Office in 2006

(2) Por Canal Sub-Project

The Por Canal system was constructed in 1978 during the Pol Pot regime, the area of which are commanded by the Ream Kon Headworks. Because the Ream Kon Headworks is not functioning at present, only part of the area is irrigated by gravity. In 2007, the main canals were rehabilitated by MAFF under the Project ECOSORN² financially supported by EU. The conditions of irrigation and drainage facilities under the Por Canal system are summarized as follows:

Conditions of Irrigation and Drainage Facilities at Por Canal Sub-Project

No.	Item	Quantity	Conditions
1.	Irrigation area		
	◆ Potential	2,500 ha	The figure is based on JICA inventory (2006) including flood plain of Tonle Sap Lake.
	◆ Existing	400 ha	Only located in the upstream of command area by using pumps
2.	Headworks		
	Туре	Weir with gates	The headworks is shared with Ream Kon sub-project. No gates are functioning. In addition, concrete structure is highly deteriorated.
	Width	19.2 m	
	Height	5.5 m	
3.	Intake	1 no.	No gates exist. Further, concrete structure is highly deteriorated and to be replaced.
4.	Irrigation and Drainage System		
	(1) Canal		
	♦ Main	9.5 km	The main canals consist of: (i) main canal-1 (4.8 km) and (ii) main canal-2 (4.7 km) These canals were recently rehabilitated by ECOSORN in 2007 and 2008 respectively. Therefore, they are now in moderate conditions.
	◆ Secondary	11.0 km	Only part of the secondary canals have been developed including ECOSORN-rehabilitated canal (2.2 km). No water flows for a long period due to deterioration of major facilities.
	◆ Tertiary	No	No tertiary canals have been constructed.
	(2) Drain	110	110 tertainy canada nave been constructed.
	♦ Main	No	No drainage system was developed in the command area.
	Secondary	No	The dramage system was developed in the command area.
	♦ Tertiary	No	
	◆ Collector	No	
5.	Canal-related Structures		
	◆ Diversion (main)		One diversion structure was constructed by ECOSORN. It is in good condition.
	◆ Road crossing culvert	7 no.	The bottoms are too high. Concrete structure is severely
	(secondary)		deteriorated and needed to be replaced.
	♦ Check (main)	1 no.	No gate is equipped. Concrete structure is severely deteriorated and needed to be replaced.
	♦ Bridge (main)	1 no.	Concrete structure is in fair condition.
6.	Inspection road	2.2 km	Road along the ECOSORN-rehabilitated canal is in better conditions while others are none or bad conditions.
7.	Others		
	Dyke	No	-

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

² Economic and Social Relaunch of Northwest Provinces in Cambodia

(3) Damnak Ampil Sub-Project

The system was originally constructed in 1976 in the Pol Pot regime. The headworks and canal systems were seriously damaged by floods in 1979. New headworks was constructed in 2006 and the upstream portion of the main canal (7.3 km out of 23 km) together with checks and off-take structures was rehabilitated by MOWRAM so as to irrigate the command area of 2,270 ha in total.

One secondary canal was already rehabilitated with the assistance of DANIDA in 2008, but no structures were equipped. MOWRAM is planning to extend main canals down to the crossing point with the Svay Don Keo River to supply several irrigation systems located along the Svay Done Keo River with the Pursat River water. Conditions of irrigation and drainage facilities under the Damnak Ampil sub-project are summarized in the following table.

Conditions of Irrigation and Drainage Facilities at Damnak Ampil Sub-Project

No.	Item	Quantity	Conditions
1.	Irrigation area	Carrier 1	
	◆ Potential	12,440 ha	The figure is based on JICA inventory (2006).
	♦ Existing	400 ha	Only located in the upstream of command area by using pumps
2.	Headworks		7 7 7
	Туре	Weir with gates	The headworks was constructed in 2006 by MOWRAM with automatic gates, however, gates are not functioning smoothly and need to be improved. In addition, no fish ladder is provided which hinder fish migration.
	Width	144 m	
	Height	5.5 m	
3.	Intake	1 no.	It is rehabilitated in 2006 by MOWRAM. Design intake water level is 17.00 m
4.	Irrigation and Drainage System		
	(1) Canal		
	♦ Main	30.0 km	Upstream portion of the canal (7.3 km) was rehabilitated by MOWRAM. Design flow capacity is 8.0 m ³ /sec.
	◆ Secondary	150.0 km	Secondary canal No. 2 (5.0 km) was rehabilitated with the assistance of DANIDA.
	◆ Tertiary	No	No tertiary canals have been constructed.
	(2) Drain		
	♦ Main	No	No drainage system was developed in the command area.
	♦ Secondary	No	
	◆ Tertiary	No	
	◆ Collector	No	
5.	Canal-related Structures		
	♦ Off-take (main)	9 nos.	They were rehabilitated by MOWRAM and in good conditions.
	♦ Check (main)	1 no.	It was rehabilitated by MOWRAM and in good conditions.
	♦ Spillway (main)	1 no.	It was rehabilitated by MOWRAM and in good conditions.
	♦ Bridge (main)	3 nos.	Concrete structure is in fair condition.
6.	Inspection road	7.3 km	Road along the main canal is rehabilitated by MOWRAM and in
			better conditions while others are none or bad conditions.
7.	Others		
	Dyke	No	-

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

Automatic gate equipped at the headworks

♦ The automatic gates are provided on the headworks. The gats fall down smoothly when the water level is more than El. 16.85 m, however, they hardly rise up even if the water level get to be

designated lowest level, El. 13.70m. Therefore, designed water level at Damnak Ampil subproject, El. 17.00 m, is not ensured.

(4) Wat Loung Sub-Project

The sub-project is located at the right bank of the Ou Bakan and Boeng Khnar River. The irrigation system was originally developed in 1977 in the Pol Pot regime. The system was damaged in 1979 by a flood and no functioning until now. At present, only ruins of headworks are observed on the Pursat River, approximately 3.5 km downstream of the Damnak Ampil headworks. Therefore, no water is introduced from the Pursat River at present. Conditions of irrigation and drainage facilities are summarized in the following table.

Conditions of Irrigation and Drainage Facilities at Wat Loung Sub-Project

No.	Item	Quantity	Conditions
1.	Irrigation area		
	♦ Potential	7,400 ha	Based on JICA inventory (2006).
	♦ Existing	120 ha	Located in the upstream of command area (by using pumps).
2.	Headworks		
	Туре	Not clear	The headworks was constructed in 1977, however, it was already flushed away.
	Width	120 m	
	Height	5.0 m	
3.	Intake	1 no.	No intake structure remains at present.
4.	Irrigation and Drainage System		
	(1) Canal		
	♦ Main	17.0 km	Earthen type of canal, running from the Pursat River to northwestward and finally joining with Boeung Khnar River. However, its section is seriously damaged.
	♦ Secondary	3.0 km	Only one secondary canal is existing, however, its condition is poor.
	◆ Tertiary	No	No tertiary canals were constructed.
	(2) Drain		
	♦ Main	No	No drainage system was developed in the command area.
	◆ Secondary	No	,
	◆ Tertiary	No	
	◆ Collector	No	
5.	Canal-related Structures		
	◆ Check (main and secondary)	2 nos.	They are in poor conditions and need to be replaced.
	◆ Bridge (main and secondary)	2 nos.	They are in fair conditions.
6.	Inspection road	-	No roads were developed, therefore, accessibility condition
	_		within the command area is poor.
7.	Others		
	Dyke	No	-

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

(5) Wat Chre Sub-Project

The Wat Chre sub-project was constructed along the Boeung Khnar River in 1977, however, it was damaged in 1979 and 1980 due to series of floods. The headworks was already flushed away and the canal network is seriously deteriorated at present. No water is provided to the command area from the water source. The system consists of: (i) the right bank of the Boeng Khnar River (1,020 ha) and (ii) the left bank of the River (480 ha). Conditions of irrigation and drainage facilities of the Wat Chre sub-

project are summarized in the following table.

Conditions of Irrigation and Drainage Facilities at Wat Chre Sub-Project

No.	Item	Quantity	Conditions
1.	Irrigation area		
	♦ Potential	1,500 ha	Based on JICA inventory (2006).
	♦ Existing	1,020 ha	Located at the right bank of the Boeung Khnar River.
2.	Headworks		
	Type	Not clear	The headworks was constructed in 1977, however, it has been
			already flushed away.
	Width	60 m	
	Height	2.7 m	
3.	Intake	1 no.	No intake structure remains at present since it was already flshed
			away.
4.	Irrigation and Drainage System		
	(1) Canal		
	♦ Main	3.5 km	Earthen type of canal, which is seriously deteriorated.
	♦ Secondary	8.7 km	Earthen type of canal, which is seriously deteriorated.
	♦ Tertiary	No	No tertiary canals were constructed.
	(2) Drain		
	♦ Main	No	No drainage system was developed in the command area.
	♦ Secondary	No	
	◆ Tertiary	No	
	♦ Collector	No	
5.	Canal-related Structures		
	♦ Off-takes (main)	2 nos.	They are in poor conditions and need to be replaced.
	♦ Spillway (main)	1 no.	It is in poor conditions and needs to be replaced.
	♦ Bridge (main)	1 no.	It is in poor conditions and needs to be replaced.
6.	Inspection road	-	No roads were developed, therefore, accessibility condition
			within the command area is poor.
7.	Others		
	Dyke	No	-

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

(6) Lum Hach Sub-Project

The Lum Hach irrigation system was completed in 1977 to utilize the Boribo River water for irrigation purpose. The system was damaged in 1981 and 1982, therefore, only some 300 ha are provided with water using pumps. There are two main irrigation systems along the Boribo River: (i) Lum Hach system located on the right bank of the River and (ii) O Roluss system on the left bank of the River. Main canal of the O Roluss system was rehabilitated by MOWRAM in 2007. However, since the catchment of existing O Roluss pond is too small being only 12.8 km², the proposed Lum Hach headworks is expected to provide water to both the Lum Hach and the O Roluss systems.

The road between the National Road No. 5 and the main canal is under rehabilitation by the Ministry of Public Works and Transport (MPWT) which is expected to contribute to the improvement of accessibility within the command area of the sub-project. Conditions of irrigation and drainage facilities are summarized in the following table.

Conditions of Irrigation and Drainage Facilities at Lum Hach Sub-Project

No.	Item	Quantity	Conditions
1.	Irrigation area		
	◆ Potential	3,100 ha	Based on JICA inventory (2006).
	◆ Existing	300 ha	Only limited areas are irrigated using pumps.
2.	Headworks		
	Туре	Not clear	The headworks was constructed in 1977, however, it was already flushed away.
	Width	-	Dimension of the original structures are not clear.
	Height	-	
3.	Intake	-	Dimension of the original structures are not clear.
4.	Irrigation and Drainage System		
	(1) Canal		
	♦ Main	3.6 km	Earthen type of canal, which is seriously deteriorated.
	◆ Secondary	9.1 km	Earthen type of canal, which is seriously deteriorated.
	◆ Tertiary	No	No tertiary canals were constructed.
	(2) Drain		
	♦ Main	No	No drainage system was developed in the command area.
	◆ Secondary	12. 0 km	It is along the main road connecting between the National Road
			No. 5 and the main canal.
	◆ Tertiary	No	
	◆ Collector	No	
5.	Canal-related Structures		
	◆ Off-takes (secondary)	1 no.	It is in poor conditions and needs to be replaced.
	♦ Check (cross regulator at main)	1 no.	It is in poor conditions and needs to be replaced.
	◆ Spillway (main)	1 no.	It is in poor conditions and needs to be replaced.
	◆ Bridge (secondary)	2 nos.	They are in fair conditions.
	◆ Culvert (secondary)	6 nos.	They are in fair conditions.
6.	Inspection road	12.7 km	Road connecting from the National Road No. 5 and the main
			canal was rehabilitated by MOPWT, however, no roads are
			provided along the secondary canals.
7.	Others		
	Dyke	No	-

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

(7) Operation and Maintenance, and Farmer Water User Community

Since the irrigation facilities are deteriorated at most of the systems, water is not stably supplied to the command areas under the sub-projects. Instead, farmers are primarily dependent on rainfall and flood water particularly in the dry season.

At present no O&M activities have been executed by PDOWRAM since all the areas need full-scale irrigation system rehabilitation. At the Damnak Ampil sub-project, FWUC was established, however, no registered FWUCs and/or FWUGs are observed in other five sub-projects.

1.6 Institutions

There are two organizations relevant to the Project implementation and O&M: (i) Ministry of Water Resources and Meteorology (MOWRAM) and (ii) Ministry of Agriculture, Forestry and Fisheries (MAFF).

1.6.1 Ministry of Water Resources and Meteorology

(1) Organizational Structure

MOWRAM was originally established in 1999 under the Sub-decree 58 with the mission of developing and managing water resources of the country. The organizational structure of MOWRAM as of August 2009 is illustrated in Figure III 1.6.1. Function of departments under MOWRAM is summarized in Table III 1.6.1. MOWRAM consists of seven technical departments, three administrative departments and technical service center for irrigation and meteorology (TSC). There are five categories in staff qualification: (i) engineer, (ii) technician, (iii) vocational, (iv) qualified and (v) non-qualified and the total number of staff is approximately 700 at the central level and 740 at the provincial level.

Categories of Staff Qualification of MOWRAM

Category	Engineer	Technician	Vocational	Qualified	Non-qualified	Total
Central	271	184	28	12	210	705
Province	80	138	78	26	422	744

Source: JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study in the Kingdom of Cambodia

Among others, more than 50 % of the staff is assigned to the Irrigated Agriculture Department and the Engineering Department.

(2) National Project Management Office

The National Project Management Office (NPMO) was established in 2006 to coordinate, manage and implement all the water resources development and management projects in the country.³ Under the NPMO, there are five units, and their task demarcations are summarized as follows:

Task Demarcation among Units under the NPMO

Unit	Task			
Southeast Project Management	♦ In charge of loan and grant assistance projects supported by donor agencies			
Unit (SEPMU)	♦ Area: Kampot, Kandal, Krong Kep, Kampong Cham, Kra Tie, Mondulkiri, Phnom Penh Capital, Prey Veng, Rattanakiri, Stueng Treng, Svay Rieng and Takeo			
Northwest Project Management Unit (NWPMU)	♦ Loan and grant assistance projects by donor agencies such as the Northwest Irrigation Sector Project (ADB)			
	◆ Area: Bantey Meanchey, Battambang, Koh Kong, Kampong Chhnang, Kampong Som city, Kampong Speu, Kampong. Thom, Pailin, Preah Vihear, Pursat, Siem Reap, Udor Meanchey			
Project Management Unit for the Government Budget	♦ In charge of Government fund projects for the entire country			
Project Management Unit for the World Bank	♦ In charge of Projects supported by the World Bank			
Project Management Unit for Japan Support Fund	♦ In charge of Projects financially supported by the Japanese Government (established in October 2008) ⁴			

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

_

³ MOWRAM (2006), Terms of Reference for Project Management Office (PMO) of MOWRAM

⁴ MOWRAM (2008), Decision on the Establishment of Working Team for Implementing the Irrigation System Rehabilitation Project under Utilization of Japan's Budget in Ministry of Water Resources and Meteorology issued on October 23rd, 2008

(3) Budget of MOWRAM

The Annual budgets of MOWRAM are tabulated in Table III 1.6.2 and summarized as follows:

Annual Budget of MOWRAM (Approved Budget) (Unit: million Riel)

Year	2005	2006	2007	2008
Budget	11,336	12,517	13,210	16,881
	(US\$ 2.89 million)	(US\$3.19 million)	(US\$3.37 million)	(US\$4.24 million)

Source: MOWRAM

(4) Provincial Department of Water Resources and Meteorology (PDOWRAM)

There is the Provincial Department Office of Water Resources and Meteorology (PDOWRAM) in each province under the supervision of MOWRAM. PDOWRAM consist of: technical offices such as (i) water resources management and conservation, (ii) irrigated agriculture, (iii) water supply & sanitation and (vi) hydrology and administrative office. In addition, each PDOWRAM subordinates district offices (183 district offices in total). Number of staff of PDOWRAM related with the Project is tabulated as follows:

Number of staff in PDOWRAM Offices (Unit: person)

Battambang	Pursat	Kampong Chhnang
88	29	35

Source: MOWRAM

(5) Budget of PDOWRAM

The annual budgets of the PDOWRAM of Battambang, Pursat and Kampong Chhnang are tabulated as follows:

Annual Budget of PDOWRAM Offices (Unit: million Riel)

Year	Battambang	Pursat	Kampong Chhnang			
2005	317	131	138			
	(US\$81 thousand)	(US\$ 33 thousand)	(US\$ 35 thousand)			
2006	487	297	219			
	(US\$124 thousand)	(US\$76 thousand)	(US\$ 55 thousand)			
2007	725	308	230			
	(US\$184 thousand)	(US\$79 thousand)	(US\$59 thousand)			

Source: MOWRAM

1.6.2 Ministry of Agriculture, Forestry and Fisheries

(1) Central

The organizational structure of the Ministry of Agriculture, Forestry and Fisheries (MAFF) is illustrated in Figure III 1.6.2. MAFF is in charge of providing technical and administrative services in agriculture sector contributing to ensuring food security, increased agricultural output and add value on a sustainable and cost effective basis to agricultural, fishery and forestry based sectors in the country. According to the mission statement, functions of MAFF are listed as follows:

- Organize and operate the development policies in agriculture sector which aimed at the improvement of the living standards of the population;
- Participate in the establishment of pricing policies and search out the markets for agricultural products;
- Direct and establish the agriculture sector development plans;
- ♦ Coordinate, monitoring and evaluate the implementation of policies and activities for development of agriculture;
- Monitor and manage natural resources of agriculture sector and facilitate activities of exploitation on these resources to meet domestic demands with respect to the stability of ecology system;
- Enact legislation and regulations on the management, maintain and protect the natural resources of agriculture sector and monitor on implementation;

- Evaluate and develop human resources for participation in the development of agriculture with promoting the technical skills and knowledge and make an effective use of these human resources;
- Necessarily support and advise to the farmers on technologies to improve production and increase productivity;
- Set up principles and monitor on implementation to enhance and improve the process of concerned professional organizations, associations involved in agriculture sector;
- Conduct research, study and extension on agricultural technology, science and economics for all sub-sectors;
- ♦ Advise on agricultural land development, soil quality improvement and appropriate utilization of land, seeds, breeds, fertilizer, chemicals to the conditions of geographic manner and regional climate and this leads to ensure the increasing high yield and maintain the balancing of natural environment;
- ♦ Coordinate and cooperate with internal and external organizations, non-governmental organizations for the development of agriculture sector;
- Participate in enhancing and acceleration of investment, export of food and agricultural products;
- Participate and implement the activities related to Mekong Basin in accordance with the rule and functions of the Ministry;
- Participate in the establishment of pricing policies and search out the markets for agricultural products;
- ♦ Collect revenue to the national budget or collaborate with the Ministry of Economy and Finance for revenue collection; and
- ♦ Implement other activities to be given by the Royal Government

Source: MAFF

Among the departments under MAFF, the Department of Agriculture Extension is in charge of supervising agricultural support services particularly in the dissemination of farming technology at the field level through extension workers.

(2) Provincial Department of Agriculture

At the provincial level, provincial Department of Agriculture (PDA) is organized under the supervision of MAFF.⁵ PDA generally has several technical offices such as: (i) agricultural extension, (ii) veterinary & animal production, (iii) agricultural machinery, (iv) agricultural legislation, (v) agroindustry and (vi) agronomy & land improvement and administrative offices with some District Agriculture Offices (DAO). The total numbers of staff under each PDA including District Offices are approximately 100 to 300. The number of staff in PDA of Battambang, Pursat and Kampong Chhnang Province is as follows:

Number of Staff in PDA

	Battambang	Pursat	Kampong Chhnang
Skilled	280	52	54
Non-skilled	84	65	69
Total	364	117	123

Source: MAFF

Extension workers are allocated at the district level in the DAO directly supervised by deputy director of PDA in charge. At present, agricultural support services are carried out through DAO, major activity of which is demonstration of improved rice farming practice. In addition, agricultural extension is implemented with collaboration of NGOs such as World Vision, CEDAC and New Human.

⁵ The organizational structures of PDA at Battambang, Pursat and Kampong Chhnang are shown in Appendix-A1.

CHAPTER 2 THE PROJECT

2.1 Scope and Objective of the Project

2.1.1 Scope of the Project

The target area of the Project covers six irrigation systems (hereinafter called sub-projects) located in the western region of the Tonle Sap Lake. The Project scope is summarized in the following table:

Scope of the Project

Area					
No.	Sub Project	River Basin	Province	Scope of the Project	
1	1 Ream Kon		Battambang	Toward: Six Sub-Project Areas	
1	Ream Ron	Moung		Hardware Component:	
		Russei		(i) Rehabilitation of Irrigation and Drainage Facilities	
2	Por Canal			Software Component:	
				(i) FWUC Establishment and Strengthening	
3	Damnak Ampil	Pursat	Pursat	(ii) Agriculture Support Services	
	r r			Toward: Six Sub-Project Areas and River Basins-related	
4 W	Wat Loung			Project Supporting Program:	
				(i) Meteo-hydrological Observation Strengthening Program	
				Project Formulation Study for Other Potential Areas	
5	Wat Chre			Toward: Entire Countries including Six Sub-Project related Provinces	
				Project Supporting Program:	
6	Lum Hach	Boribo	Kampong	(ii) Capacity Development of MOWRAM Staffs	
0			Chhnang	(iii) Capacity Development of PDOWRAM Staffs	

Prepared by JICA SAPROF Study Team

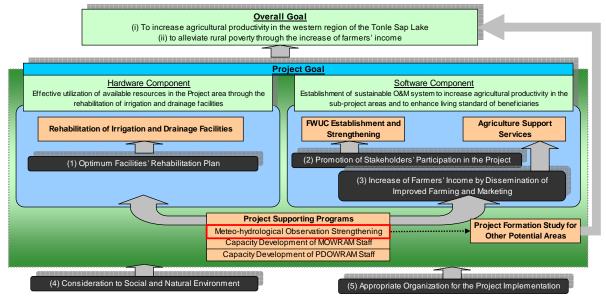
2.1.2 Overall Goal of the Project

Overall goal of the Project is: (i) to increase agricultural productivity in the western region of the Tonle Sap Lake and (ii) to alleviate rural poverty through the increase of farmers' income.

2.1.3 Objective of the Project

In order to accomplish above-mentioned overall goals, the objectives of the Project are established as follows:

- ♦ Effective utilization of available resources in the Project area through the rehabilitation of irrigation and drainage facilities
- Establishment of sustainable O&M system to increase agricultural productivity in the sub-project areas and to enhance living standard of beneficiaries


2.1.4 Expected Output and Outcome from the Project

Expected output and outcome from the Project are listed as follows:

- ♦ Materialization of equitable and efficient irrigation water distribution using rehabilitated irrigation and drainage facilities
- Increase of irrigated areas and cropping intensity under the six sub-projects
- Establishment of collection system of water charge among farmers' group
- Increase of agricultural productivity contributing to the alleviation of rural poverty
- Vitalization of rural economy

2.2 Approach and Strategy of the Project

Effective utilization of three essential resources: (i) water, (ii) land and (iii) human is critically important to succeed in irrigation and drainage development project, which needs to be supported by the combination of hardware and software component in the development activities. The approach and strategy of the Project is illustrated as follows:

Prepared by JICA SAPROF Study Team

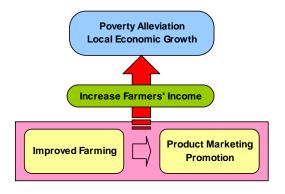
Approach and Strategy of the Project

(1) Optimum Facilities' Rehabilitation Plan

In order to effectively utilize water and land resources inherent, it is of great importance to stably allocate irrigation water and increase agriculture production by the rehabilitation of irrigation and drainage facilities. The following points are considered in the preparation of irrigation facilities' rehabilitation plan.

- Available water resources: Optimum irrigation area and scale is determined based on water resource availability for each sub-project including the progress of similar projects located in the same river basins.
- Measures to flood protection: Since the target sub-projects are located in flat western Tonle Sap areas, flood damage cannot be overlooked in and surrounding areas. The drainage and flood protection plan is made: (i) to drain excess water in the command area taking allowable depth and inundation into consideration, (ii) to protect command areas from floods by the construction of collector drains and (iii) to exclude areas affected by habitual inundation by the Tonle Sap Lake.
- Rehabilitation and construction of additional facilities: The existing irrigation and drainage facilities are not sufficient in number and/or seriously deteriorated to hamper irrigation water use in the command area under the sub-projects. Rehabilitation and additional construction plan for facilities will be prepared so as to improve water distribution.
- ♦ Construction of tertiary facilities: For the smooth water distribution, tertiary facilities development is essential. In the Design Manual for Small and Medium Scale Irrigation System

Planning prepared by MOWRAM (2004), a command area under a tertiary canal is 50 ha, therefore, the development plan generally follow this criteria. Appropriate tertiary development plan is prepared by considering the criteria of MOWRAM and the results of similar projects.


♦ Consideration to dispersive soil: In the preparation of the construction plan for the proposed facilities, attention is also given to dispersive soil widely observed in Cambodia, having unstable characteristics for embankment works. Suitable borrow materials will be utilized for the construction works.

(2) Promotion of Stakeholders' Participation in the Project

On the basis of the Policy on Participatory Irrigation Management and Development (PIMD), since 2000 MOWRAM has been promoting co-administration in irrigation system among the Government and FWUCs. In 2000, "Circular No. 1 on the Implementation Policy for Sustainable Irrigation Systems" and "Policy for Sustainability of Operation and Maintenance Irrigation Systems" were promulgated, and importance of FWUC is put greater emphasis in irrigation development and management. Additionally, series of Modules on PIMD were developed to support this policy framework at the field level. In the Project, FWUC establishment and strengthening will be implemented at each sub-project, the plan of which is based on the policy and lessons learnt in similar projects so as to prepare the plan for participation mechanism of FWUC for the enhancement of sustainability of the Project.

(3) Increase of farmers' income by dissemination of improved farming and marketing

Cambodia has achieved food self-sufficiency in 1995. However, due to higher population increase rate, 1.7 % annually, it is remarkably important to continue agriculture development to ensure food supply in the country. Low agricultural productivity was pointed out as one of the great constraints in the sub-project areas. Agricultural support services are, therefore, carried out at each sub-project area to maximize effect of rehabilitated facilities.

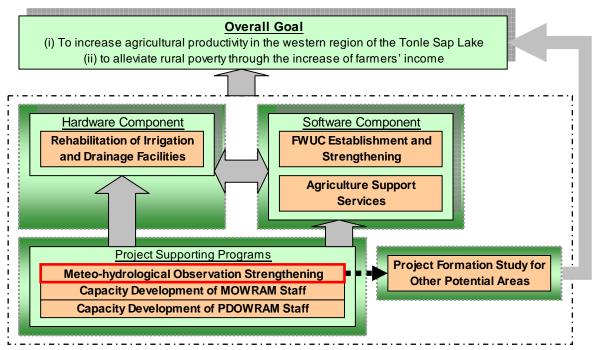
(4) Consideration to social and natural environment

The Project consists of: (i) hardware component, i.e. rehabilitation of irrigation and drainage facilities and (ii) software component, i.e. FWUC capacity development and agriculture support. All the six sub-projects will not need new large scale land consolidation, therefore, the Project will not give significant negative environmental impact in and around the command areas.

The Sub-Decree on Environmental Impact Assessment Process explains that irrigation development with more than 5,000 ha is required to carry out EIA or IEIA for approval from the Ministry of Environment (MOE) prior to the implementation. Six sub-projects are respectively less than 5,000 ha, therefore, IEIA and/or EIA is not required from regulatory view point. Social and natural environmental aspect related with each sub-project is carefully reviewed to prepare eco-friendly development plan.

(5) Appropriate Organization for the Project Implementation

Project Management Unit Japan Support Fund (PMU Japan Support Fund) was established in 2008 within MOWRAM, taking responsibility on all the project implementation and management by Japanese ODA Grant and Loan. The proposed Project is planned to be managed by PMU Japan Support Fund through coordination with relevant technical departments at the national level. At the provincial level, Project Implementation Unit (PIU) will be established in each PDOWRAM to supervise activities of the Project. In addition at the field level, particularly agriculture support and FWUC strengthening activities will be jointly carried out by PDOWRAM, Commune Councils (CCs.) and others. Overall management is made by MOWRAM headoffice with the coordination of relevant organizations so as to smoothly and effectively carry out the Project.


2.3 Project Component

2.3.1 Summary of the Project Component

The Project consists of: (i) hardware component, (ii) software component, (iii) project supporting programs, and (iv) project formulation study for other potential areas, each of which includes following activities:

- (1) Hardware Component
- Rehabilitation and reconstruction of irrigation facilities
- Rehabilitation and reconstruction of drainage facilities
- Rehabilitation and reconstruction of inspection roads
- (2) Software Component
- FWUC Establishment and Strengthening
- ♦ Agriculture Support Activities
- (3) Project Supporting Activities
- Meteo-hydrological Observation Strengthening
- ◆ Capacity Development Program for MOWRAM Staffs
- ♦ Capacity Development Program for PDOWRAM Staffs
- (4) Project Formulation Study for Other Potential Areas

Linkages and outlines of those activities are summarized as follows:

Prepared by JICA SAPROF Study Team

Linkage of Components under the Project

Outline of the Activities under the Project

No.	Component	Activities	Purpose		Stakeholders
1.	Hardware Component	Rehabilitation and reconstruction of irrigation facilities	 ♦ Recover the functirrigation facilities ♦ Effective distributirrigation water 		Contractors, Community people (FWUC), Consultant, MOWRAM and PDOWRAM
		Rehabilitation and reconstruction of drainage facilities	 ◆ Improvement of conditions within command area ◆ Protection of contarea from external representations. 	n the	Contractors, Community people (FWUC), Consultant, MOWRAM and PDOWRAM
		Rehabilitation and reconstruction of inspection roads	♦ Improvement accessibility with command area	of in the	Contractors, Community people (FWUC), Consultant, MOWRAM and PDOWRAM
		Target development area un	der the hardware compone	nt is sum	narized in the table below.
2.	Software Component	FWUC Establishment and Strengthening	appropriate and sus	t-up of tainable rrigation	Community people (FWUC), Consultant, MOWRAM and PDOWRAM
		Agricultural Support Services	♦ Dissemination of in farming technology command area of projects	in the	Community people (FWUC), Commune Councils, Consultant, MOWRAM and PDOWRAM
3.	Project Supporting Programs	Meteo-hydrological Observation Strengthening	♦ Collection of basic hydrological da prepare irrigation s as well as development plan river basins	ta to schedule further	Consultant, MOWRAM and PDOWRAM
		Capacity Development	♦ Improvement of t	echnical	Consultant, MOWRAM,

No.	Component	Activities	Purpose	Stakeholders
		for MOWRAM Staffs	capability of MOWRAM Staffs in construction supervision of irrigation and drainage facilities	PDOWRAM and TSC
		Capacity Development for MOWRAM Staffs	◆ Improvement of technical capability of PDOWRAM Staffs in construction supervision of irrigation and drainage facilities	Consultant, MOWRAM, PDOWRAM, and TSC
4.	Project Formulation Study	Preparation of feasibility study level development plan for other potential areas	◆ Increase of agricultural productivity in the western region of the Tonle Sap Lake and alleviation of rural poverty through the increase of farmers' income by continuing the Road Map 2020 prepared in the Basin-wide Basic Irrigation and Drainage Master Plan Study	Consultant, MOWRAM and PDOWRAM

The target area for the Project consists of primary benefit area and secondary benefit area, the total of which under the hardware component is tabulated as follows:

Target Development Area under the Hardware Component

No.	Sub-Project	Primary Benefit Area (ha)	Secondary Benefit Area (ha) ¹	Total (ha)
		The area that the main, secondary and tertiary irrigation facilities are rehabilitated or constructed under the Project	The area to be supplied with irrigation water from the water source through the rehabilitated main facilities under the Project	
1	Ream Kon Sub-Project	1,890	90	1,980
2	Por Canal Sub-Project	1,940	430	2,370
3	Damnak Ampil Sub- Project	2,270	8,930	11,200
4	Wat Loung Sub-Project	2,540	0	2,540
5	Wat Chre Sub-Project	1,020	0	1,020
6	Lum Hach Sub-Project	3,100	3,400	6,500
	Grand Total	12,760	12,850	25,610

Prepared by JICA SAPROF Study Team

The Project primarily aims to increase and stabilize rice production in the wet season. Crop production plan under the six sub-projects are summarized in the following table.

¹ Out of secondary benefit areas, following development plans are under implementation by MOWRAM based on expanding policy of irrigation development.

 ⁽i) Damnak Ampil Sub-Project: Extension of Damnak Ampil main canal to Svay Don Keo River
 (ii) Lum Hach Sub-Project: Development of O Roluss system (main canal already completed)

Summary of Crop Production Plan under the Six Sub-Projects

Cub project	Irrigation	Irrigation	Croppin	ng Season
Sub-project	Method	Area (ha)	Early Wet (ha)	Wet (ha)
Ream Kon	Gravity	1,610	960	1,610
	Pump	280	170	280
	Rain-fed	-	0	0
Por Canal	Gravity	1,940	1,200	1,940
	Rain-fed	-	0	0
Damnak	Gravity	1,770	130	1,770
Ampil	Pump	500	40	500
Wat Loung	Gravity	1,740	130	1,740
	Pump	800	60	800
Wat Chre	Gravity	620	50	620
	Pump	400	30	400
Lum Hach	Gravity	2,660	1,090	2,660
	Pump	440	180	440
Total		12,760	4,040	12,760

2.3.2 Preparatory Works

(1) Preparation of Topographic Maps

In the initial stage of the Project, topographic maps were prepared covering command areas of the six sub-projects. Orthophoto with the scale of 1:10,000 was already prepared during the Basin-wide Basic Irrigation and Drainage Master Plan Study under JICA, and results of topographic surveys will be overlaid on this photograph. The works will be sublet to survey companies in Cambodia. The works necessary for the preparation of topographic maps are listed as follows:

- Preparation of work schedule, general and technical specification and contract document for topographic maps
- ♦ Supervision of ground control survey
- ♦ Data processing
- ♦ Preparation of working report
- (2) Establishment of Project Office, and Procurement of Vehicles and Office Equipment

The Project office for MOWRAM staffs and the Consultant is established, location of which is within the space of MOWRAM headoffice or nearby. Equipment necessary for the Project will be also procured such as computer, photocopy machine, stationery etc.

In addition, the following vehicles will be procured for the implementation of the Project.

♦ 4 Wheel-Drive Station Wagon: 4 nos.

♦ 4 Wheel-Drive Pick-up Truck: 6 nos.

♦ Motor Cycle: 24 nos.

During the Project implementation, vehicles for MOWRAM will be managed by the Project Management Unit (PMU) Japan Support Fund while vehicles for the Consultant will be maintained by the Consultant. All the vehicles will be transferred to MOWRAM and PDOWRAM.

(3) Budgetary Arrangement by MOWRAM

Different from ordinary budgetary arrangement, after the Loan Agreement (L/A) is effective, special account will be open for the Project. Then, MOWRAM will prepare annual financial expenditure plan based on the estimate of the cost necessary for the Project in detail and request it to Ministry of Economy and Finance (MEF).²

2.3.3 Ream Kon Sub-Project

(1) Sub-Project Command Area

The command area is determined based on the availability of water resources in the Moung Russei River Basin and the allocation of water to other irrigation systems. According to the water balance study including the Bassac Reservoir newly constructed under the grant aid by the Government of Japan, the development areas in the Basin amounts to 9,200 ha, out of which 3,900 ha can be developed in the Ream Kon and the Por Canal Sub-Projects. The area with the elevation of less than 11.00 m is affected by floods from the Tonle Sap Lake in the wet season, therefore, the command area of the Ream Kon Sub-Project is delineated to be 1,890 ha based on the topographic conditions.

In addition, water will be provided to the right bank of new main canal, the most upstream from existing intake extending approximately 90 ha as a secondary benefit area.

(2) Irrigation and Drainage Plan

Basic Concept

Irrigation Method

• Irrigation area consists of: (i) gravity irrigation area (1,610 ha) and (ii) pump irrigation area (280 ha). Ground height of southern edge area extending 280 ha is higher than water level in the canal. Raising water level in the main canal only to irrigate this higher area is not economically feasible. Therefore, pump irrigation will be applied for this area. In the pump irrigation area, farmers need to rent pumps from communes or other sources.

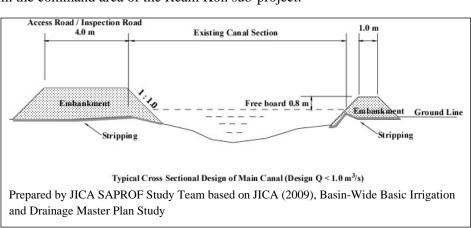
Headworks

- ♦ New headworks (the Moung Russei headworks) will be constructed so that mal functioned existing headworks will be replaced due to the following reasons: (i) existing structures including concrete and gates are highly deteriorated, (ii) since the gate sill elevation is too high and spacing of the gates and piers are comparatively narrow, the release of flooding is jeopardized. The location of proposed headworks is approximately 60 m upstream of existing one. On the other hand, existing headworks will be utilized for the bridge for community people just only by removing the pier.
- Weir type is determined as floating type because the foundation ground is not suitable for the spread foundation according to the result of geotechnical investigation.
- ♦ The existing intake structure is situated about 1 km upstream of the headworks. In order to ease gate operation, a new intake structure will be relocated near the headworks.

² As shown in Part-III of Chapter, the cost to be covered by the RGC for the Project is: (i) land acquisition, (ii) project administration and (iii) tax & duty amounting to US\$3.5 million.

• Fixed wheel type gate is selected for flood gate and slide gate is selected for high reliability as well easy operation.

Irrigation and Drainage Canal Network


- ♦ At present, there are two main canals, out of which the existing canal running on the southern edge of the command area will be utilized for new main canal to cover whole command area.
- ◆ Tertiary canals are constructed, each with a command area of generally 50 ha or less based on MOWRAM guideline.³
- Main and secondary level drains will be constructed to establish independent setting on irrigation and drainage. In addition, natural stream will be utilized for main drain to minimize project cost.
- ♦ Drainage connecting between secondary drains with natural streams with the elevation of less than 11.00 m are not constructed since the areas of less than 11.00 m are affected by the floods from the Tonle Sap Lake in the wet season.
- ◆ Collector drains will be constructed so that drainage water of external areas will be drained directly to natural rivers.
- ◆ Typical rehabilitation and improvement works for an existing canal section is illustrated as follows.

Inspection Road

♦ Along the main canals, inspection roads with the width of 4.0 m will be provided to improve transportation within the command area of the Ream Kon sub-project.

<u>Unit Irrigation Water</u> Requirement

The irrigation water requirement is estimated based on the proposed cropping pattern. The basic conditions applied are as follows:

- Meteorological data; average of mean monthly data at Battambang and Pursat stations
- Percolation rate 3.5 mm/day based on the observed data
- Rainfall data; Daily rainfall data at Moung Russei, Svay Don Keo, and Talo stations
- ◆ Effective rainfall; (i) less than 5mm/day: ineffective rainfall, (ii) 5mm to 80mm/day: Rx80%, (iii) more than 80mm: 80x80%=64mm
- Ratio of transplanting and direct sowing area; 50% and 50%, respectively

³ MOWRAM (2004), Design Manual for Small and Medium Scale Irrigation System Planning

- ♦ Irrigation efficiency in the tertiary unit= 85 %
- Irrigation efficiency in the secondary and main canals= 88 %, respectively
- Overall efficiency= $85 \times 88 \times 88 \% = 66 \%$

The 5-day water requirement is calculated based on the proposed cropping pattern. The peak diversion water requirement is estimated at 1.41 lit/sec/ha for early wet season paddy in April based on the overall irrigation efficiency of 66%.

Drainage Requirement

From paddy field

The unit drainage requirement, q (lit/sec/ha), from paddy field for the Ream Kon Sub-project is calculated at 7.17 lit/sec/ha, based on the annual maximum rainfall in 3 consecutive days at one in 5 years return period.

$$q = 0.186 \times 10,000 \div (3 \times 86400) \times 1000 = 7.17$$

where, 0.186 is a probable 3 consecutive days rainfall at Moung Russei station

Drainage water requirement from other type of land

The sub-project area consists of paddy fields and other types of lands located adjacent to the paddy field assumed to be 15% of the paddy fields, which do not have storage function. Therefore, runoff characteristics are different from that of paddy field. The unit drainage water requirement for those lands is calculated by the rational formula based on the annual maximum daily rainfall at one in 5 years return period (122 mm/day). The unit drainage water requirement for the other types of lands with the area of less than 100 ha and more than 100 ha are as follows:

Qpeak = 0.25m3/sec/ha from the area less than 100 ha

Opeak = 0.19m3/sec/ha from the area more than 100 ha

Irrigation and Drainage Diagram

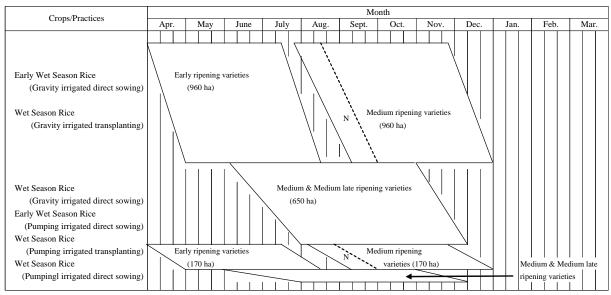
Based on the proposed layout and unit requirement, irrigation and drainage diagram of the Ream Kon Sub-Project are respectively shown in Figure III 2.3.1 and Figure III 2.3.2.

Design Conditions of Moung Russei Headworks

Design conditions of Moung Russei Headworks are summarized as follows:

Summary of Design Condition for Moung Russei Headworks

Design Parameter	Condition	Remarks
Design Flood Discharge Q _F :	180 m ³ /sec	Close to T=100 year return period
Design Flood Water Level WL _F 1:	WL. 17.2m	At Weir site
Design Flood Water Level WL _F 2:	WL. 17.82m	At National Road No.5 (180 m ³ /s)
Design River Bank Elevation	EL. 18.00m	Between/ Weir site and National Road No.5
Design Irrigation Water Level WL1:	WL. 15.50m	Top of Gate. Allowable overflow h=0.20m
Design River bed Elevation (Upstream):	EL. 11.70m	
Design River bed Elevation (Downstream):	EL. 11.70m	
Design Gate Sill Elevation:	EL. 11.70m	
Intake discharge to Ream Kon Sub-project:	2.66 m ³ /sec	Peak discharge


Design Parameter	Condition	Remarks
Intake discharge to Por Canal Sub-project:	$2.74 \text{ m}^3/\text{sec}$	Peak discharge
Discharge of fish ladder:	$\geq 0.79 \text{ m}^3/\text{sec}$	River maintenance flow ⁴ for 785km ²

Source: JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study

(3) Crop Production Plan

Although there is a considerably large potential to grow rice under irrigated condition for the dry season in the Ream Kon Sub-project area, it is a prerequisite for the exploitation of such potential to develop water resources in the upstream of the Moung Russei River by constructing a regulating reservoir. In line with the project concept, however, the proposed crop production plan is to be drawn up focusing on promotion of double cropping of shorter maturity rice varieties during the wet season by fully utilizing natural flow of the water source river.

Under either gravity or pumping irrigated condition, rice is to be grown in every tertiary block on the 3-year rotation system basis. As illustrated below, double cropping of rice with early ripening varieties for the early wet season and medium ripening varieties for the wet season will be continuously done for two years followed by one year single cropping of rice with medium or medium late ripening varieties for the wet season.

Prepared by JICA SAPROF Study Team

Modified Cropping Pattern Proposed for Ream Kon Sub-project

In the double cropping area, transplanting method will be practiced for the wet season, while direct sowing method will be carried out for the early wet season. In the single cropping area, the both methods are to be practiced.

⁴ There is no regulation on river maintenance flow in Cambodia, therefore, 0.1 m³/sec/100 km² is applied for river maintenance flow based on Japanese guideline (Dam *BINRAN* or *HATSUDEN* Guideline). River maintenance flow for three source rivers utilized for the Project are as follows:

River Maintenance Flow

basin	Catchment Area (km²)	River Maintenance Flow (m³/sec)
Moung Russei river	785	0.79
Pursat river	4,480	4.48
Boribo river	735	0.74

Prepared by JICA SAPROF Study Team

Supposing that improved pre- and post-harvest technologies of irrigated rice cultivation including proper use of irrigation water at the on-farm level are put into practice for the 3-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Ream Kon Sub-project are set up as shown below.

Modified Cropping Area and Predicted Crop Production in Ream Kon Sub-project Area

Cropping Season	Irrigation Method	Planting Method	Planted Area (ha)	Paddy Yield (ton/ha)	Production (ton)
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Gravity	Direct sowing	960	3.0	2,880
Early wet	Pumping	Direct sowing	170	3.0	510
	Su	b-total	1,130		3,390
	Gravity	Transplanting	960	3.3	3,168
	Gravity	Direct sowing	650	3.3	2,145
Wet	Pumping	Transplanting	170	3.3	561
	Pumping	Direct sowing	110	3.3	363
	Sub-total		1,890		6,237
Total			3,020		9,627

Prepared by JICA SAPROF Study Team

As discussed in Section 1.4 (8) of Part III, nearly 60% of the current forwarded paddy is handled by local assemblers. They act as agents to resell mostly collected paddy to cross border traders who bring out paddy to the neighboring countries. On the other hand, local commercial rice mills are forced to operate their systems at very low rate due to insufficient funds to purchase paddy forwarded from farmers, even though they have enough processing capacity to meet farmers' demand. In order to materialize the effect of paddy production increase for generating rural economy, it is eagerly hoped to offer a low-interest rural credit menu to local commercial mill owners aiming to enable them to secure their operation funds enough to collect paddy forwarded from farmers as much as possible.

(4) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

List of Irrigation and Drainage Facilities to be Rehabilitated or Reconstructed

On the basis of the basic concept on irrigation and drainage development, facilities to be rehabilitated and/or reconstructed under the Project are tabulated as follows:

List of Facilities under the Project (Ream Kon Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	1,890
	(Pump irrigation area included above)	(280)
2.	Annual irrigation area (ha)	<u>3,020</u>
	- Early wet season paddy (ha)	1,130
	- Medium wet season paddy (ha)	1,890
	- Dry season paddy (ha)	0
3.	Major water source	Moung Russei River
		Moung Russei Headworks (New) shared with Por Canal Sub-Project,
	- Name of headworks	dimensions of which are summarized afterward
	- Intake water level (EL. m)	15.50
	- Diversion water requirement at intake (m³/sec)	2.66
4.	Main canals (nos.)	1
	- Total length (km)	9.9
	- Turnout (nos.)	14
5.	Nos. of secondary/ sub-secondary canals	11
	- Total length (km)	18.3

No.	Description	Quantity
	- Turnout (nos.)	43
6.	Number of Tertiary Blocks (No.)	45
	Total length of tertiary canals (km)	54.0
7.	Main drains	- Moung Russei,
7.	Main drains	- Ou Anlong Rolus
	- Total length (km)	7.2
	- Drainage water requirement from paddy field (lit/sec/ha)	7.17
	- Drainage water requirement from other land (lit/sec/ha)	19~25
8.	Secondary drains (nos.)	7
	- Total length of secondary drains (km)	13.4
9.	Collector drains (nos.)	3
	- Total length of collector drain (New, km)	21.8

Moung Russei Headworks and Major Facilities

Items	Description			
Moung Russei Diversion Weir	◆ Floating type weir with gates			
◆ Design Flood Discharge: Q=180m³/s (T=100	♦ width x height x length (B:33.5m x H:10.7m x L:37.0m)			
years)	♦ Flood Gate: Fixed wheel gate (B:11.5m x H:3.8m x 2			
◆ Design Flood Water Level: WL. 17.2m	nos.)			
♦ with Fish Ladder: B:2.0m x H:3.5m x L:35m	◆ Scouring Sluice Gate: Slide gate (B:2m x H:3.8m x 1			
(Half Cone Type)	no.)			
Ream Kon Intake	◆ -width x height x length: B3.5m x H:3.5m x L:7m			
◆ Design Discharge: Q=2.66m ³ /s	◆ -Slide Gate: B:1.0m x H:1.2m x 2nos.			

Prepared by JICA SAPROF Study Team

The typical dimension of the Moung Russei River based on design flood discharge of 180 m³/sec is shown as follows:

Typical Dimension of River Section of the Moung Russei Diversion Weir

V 1						
River Section type	Design Discharge (m³/sec)	River bed width (m)	Bed slope	Inner side slope	Water depth (m)	Free board (m)
Earth, Trapezoidal cross section	180	16.0	1/900	1:2.0	5.4	0.6

Prepared by JICA SAPROF Study Team

Expected Output

Irrigation Facilities

♦ Stable and equitable water distribution will be materialized so that agricultural production is stabilized for primary benefit area (1,890 ha) and secondary benefit area (90 ha).

Drainage Facilities

• Drainage condition will be improved so that the agricultural productivity is enhanced.

Inspection Road

Accessibility within the command area will be improved. It will ease introduction and promotion of agricultural input as well as marketing activities contributing to the increase of agricultural production and marketing. ♦ O&M activities will be easier so that continuous and appropriate O&M works will be carried out by both Government and FWUC.

2.3.4 Por Canal Sub-Project

(1) Sub-Project Command Area

As described in the section of the Ream Kon Sub-Project, the total irrigated development area of the Ream Kon and the Por Canal amounts to 3,900 ha based on water availability within the River Basin. By reviewing the topographic conditions of the Por Canal area, the target area is determined to be 1,940 ha.

In addition, as a secondary benefit area, irrigation water will be provided to: (i) the area between proposed new main canal and the National Road No. 5 (200 ha) and (ii) ECOSORN-rehabilitated area located in the downstream of the Moung Russei River (236 ha), amounting to 436 ha.

(2) Irrigation and Drainage Plan

Basic Concept

Irrigation Method

♦ All the command area (1,940 ha) will be irrigated by gravity.

Headworks

New headworks, the Moung Russei headworks will be constructed and both the Ream Kon Sub-Project and the Por Canal Sub-Project will be supplied with irrigation water from this headworks. In addition, existing deteriorated intake structure will be replaced by new one.

Irrigation and Drainage Canal Network

- ♦ At present, there are two main canals, of which a canal running on the western edge of the command area along the National Road No.5 will be utilized for a new main canal to cover the whole command area according to the topographic conditions.
- ◆ Tertiary canals are constructed with the command area of generally 50 ha based on MOWRAM guideline.
- Main and secondary drainage canals will be constructed to establish independent setting on irrigation and drainage. In addition, natural streams will be utilized as main drains.
- ♦ Secondary canal, S-1, located at the most upstream, and its tertiary level facilities commanding 288 ha have been rehabilitated by ECOSORN financially supported by EU. However, canal water levels are considered too low to irrigate by gravity. Check structures will be provided under the Project to regulate the canal water levels.

Inspection Road

♦ Along the main canal, an inspection road with the width of 4.0 m is provided to improve transportation within the command area as introduced in the section of the Ream Kon Sub-Project.

Unit Irrigation Water Requirement

The basic conditions applied to calculate unit irrigation water requirement is as described in the

section of Ream Kon Sub-Project. The 5-day water requirement is calculated in accordance with proposed cropping pattern. The peak diversion water requirement is estimated at 1.41 lit/sec/ha for early wet season paddy in April based on the overall irrigation efficiency of 66%.

Drainage Water Requirement

As explained in the section of the Ream Kon Sub-Project, drainage water requirement is as follows:

From paddy field

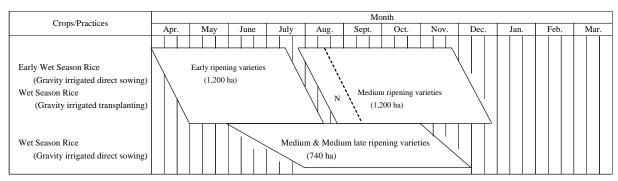
$$q = 0.186 \times 10,000 \div (3 \times 86400) \times 1000 = 7.17$$

where, 0.186 is a probable 3 consecutive days rainfall at Moung Russei station

Drainage water requirement from other type of land

Qpeak = 0.25m3/sec/ha from the area less than 100 ha

Qpeak = 0.19m3/sec/ha from the area more than 100 ha


Irrigation and Drainage Diagram

Based on the proposed layout and unit requirement, irrigation and drainage diagram of the Por Canal Sub-Project are shown in Figure III 2.3.3 and Figure III 2.3.4 respectively.

(3) Crop Production Plan

Following the project concept, the proposed crop production plan is to be prepared focusing on the promotion of double cropping of shorter maturity rice varieties throughout the wet season by fully utilizing natural flow of the Moung Russei River.

As double cropping of rice can be done under gravity irrigation system in about two-third of the irrigation command area, the 3-year rotation system is to be practice in the whole area of Por Canal Sub-project. For securing irrigation water supply to paddy plots where the double cropping of rice is done, early ripening varieties are to be grown for the early wet season followed by growing of medium ripening varieties. In the single cropping area, medium and medium late ripening varieties are to be selected. The modified cropping pattern is shown below.

Prepared by JICA SAPROF Study Team

Modified Cropping Pattern Proposed for Por Canal Sub-project

Direct sowing method will be applied to the double cropping area for the early wet season and the single cropping area for the wet season. Transplanting method is to be practiced in the double cropping area for the wet season.

Assuming that improved pre- and post-harvest technologies of rice cultivation are to be put into

practices among beneficial farmers for the 3-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Por Canal Sub-project are made as shown below.

Modified Cropping Area and Predicted Crop Production in Por Canal Sub-project Area

Cropping	Irrigation Planting		Planted	Paddy Yield	Production
Season	Method	Method	Area (ha)	(ton/ha)	(ton)
Early wet	Gravity	Direct sowing	1,200	3.0	3,600
	Su	b-total	1,200		3,600
	Gravity	Transplanting	1,200	3.3	3,960
Wet	Gravity	Direct sowing	740	3.3	2,442
	Su	b-total	1,940		6,402
	Total		3,140		10,002

Prepared by JICA SAPROF Study Team

Although farmers will utilize some part of increased paddy production for reserving more stocked seeds and food for their family members, the future market situation will be the same as in the Ream Kon Sub-project area.

(4) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

List of Irrigation and Drainage Facilities to be Rehabilitated or Reconstructed

Based on the irrigation and drainage development concept mentioned above, facilities to be rehabilitated and/or reconstructed under the Project are tabulated as follows:

List of Facilities under the Project (Por Canal Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	1,940
	(Pump irrigation area included above)	0
2.	Annual irrigation area (ha)	<u>3,140</u>
	- Early wet season paddy (ha)	1,200
	- Medium wet season paddy (ha)	1,940
	- Dry season paddy (ha)	0
3.	Major water source	Moung Russei River
	- Name of headworks	Moung Russei Headworks (New) shared with Ream Kon Sub-Project
	- Intake water level (EL. m)	15.00
	- Diversion water requirement at intake (m³/sec)	2.74
4.	Main canals (nos.)	1
	- Total length (km)	6.8
	- Turnout (nos.)	8
5.	Nos. of secondary/ sub-secondary canals	9
	- Total length (km)	19.1
	- Turnout (nos.)	44
6.	Number of Tertiary Blocks (No.)	42
	Total length of tertiary canals (km)	55.0
7.	Main drains	- Moung Russei, - MD-1
	- Total length (km)	5.6
	- Drainage water requirement from paddy field (lit/sec/ha)	7.17
	- Drainage water requirement from other land (lit/sec/ha)	19~25
8.	Secondary drains (nos.)	10
	- Total length of secondary drains (km)	14.8
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0.0

Prepared by JICA SAPROF Study Team

Expected Output

Irrigation Facilities

♦ Stable and equitable water distribution will be materialized so that agricultural production is stabilized at: primary benefit area (1,940 ha) and secondary benefit area (436 ha).

Drainage Facilities

• Drainage condition will be improved so that the agricultural productivity is enhanced.

Inspection Road

- Accessibility within the command area will be improved. It will ease introduction and promotion of agricultural input as well as marketing activities contributing to the increase of agricultural production and marketing.
- ♦ O&M activities will be easier so that continuous and appropriate O&M works will be carried out by both Government and FWUC.

2.3.5 Damnak Ampil Sub-Project

(1) Sub-Project Command Area

The result of water balance study of the Pursat River Basin shows that a total area of approximately 38,000 ha is able to be irrigated at 80% dependability. In the Damnak Ampil sub-project, existing upstream portion covering 2,270 ha will be the target of the Project due to the following technical evaluation.

- ♦ There are three secondary canals, of which the secondary canal No.2 has been rehabilitated with the assistance of DANIDA, but not functioning. Vitalization of the upstream portion of the Damnak Ampil irrigation system needs to be considered in the first step.
- ♦ A FWUC was established but not registered at PDOWRAM yet. Substantial activities are not observed until now.
- Farmers under the sub-project area do not have sufficient experiences and knowledge in irrigation management.

As a secondary benefit area, irrigation water will be provided to: (i) Damnak Ampil Extension Area (5,730 ha), (ii) Bakan & Krouchi Seuchi irrigation system (1,000 ha), (iii) Svay Daun Keo irrigation system (2,200 ha), amounting to 8,930 ha.

(2) Irrigation and Drainage Plan

Basic Concept

Irrigation Method

• Irrigation area consists of: (i) gravity irrigation area (1,770 ha) and (ii) pump irrigation area (500 ha). Ground height of some plots under the command area extending 500 ha is higher than water level in the canal. Raising water level in the main canal only to irrigate this higher area is not economically feasible, therefore, pump irrigation will be applied for this area. In the pump irrigation area, farmers need to rent pumps from communes or other sources.

Headworks

- ◆ The existing automatic gates do not function smoothly and need to be improved. In such situation, therefore, improvement works are required to ensure diversion of the Pursat River water smoothly. Possible countermeasures would be as follows: (i) Counterweights will be increased to raise the design water level for fall down from EL. 16.85 m to EL. 17.20 m. (ii) Manual or power hoist system will be provided to operate gates. Based on the comparative study, power hoisting system will be applied for the improvement works. Gate improvement works to be carried out under the Project will consist of: (i) installation of new hoisting system for assisting flood gate lifting, (ii) improvement of bushing of flood gate, and (iii) installation of new hoisting system for assisting scouring sluice gate lifting.
- ♦ At present, no fish ladder is provided at the existing Damnak Ampil Headworks. In order to maintain fish resources in the Pursat river by supporting fish sprawling, a new fish ladder will be installed on the right bank of the weir.

Irrigation and Drainage Canal Network

- The existing main canal with appurtenant structures consisting of checks and off-takes have been rehabilitated by MOWRAM in 2006. They are in better conditions, therefore, no rehabilitation is required under the Project.
- Out of three existing secondary canals, the secondary canal No.2, has been rehabilitated by the assistance of DANIDA although no new structures were provided. The Project covers rehabilitation of other two canals and construction of related structures for all three secondary canals.
- ♦ Tertiary canals are constructed with each command area of generally 50 ha or less to distribute water smoothly at the tertiary level based on MOWRAM guideline.
- ♦ Main and secondary level drains will be constructed to establish independent setting on irrigation and drainage. In addition, natural stream will be utilized for main drains to minimize project costs.

Unit Irrigation Water Requirement

The irrigation water requirement is estimated based on the proposed cropping pattern described above. The basic conditions applied are as follows:

- ♦ Meteorological data; average of mean monthly data at Pursat station
- Percolation rate 2.5 mm/day based on the field observation data
- Rainfall data; Daily rainfall data at Boeung Khnar, Pursat, Boeung Kantout stations
- ♦ Effective rainfall; (i) less than 5mm/day: ineffective rainfall, (ii) 5mm to 80mm/day: Rx80%, (iii) more than 80mm: 80x80%=64mm
- The transplanting method is practiced in the Sub-project area
- ♦ Irrigation efficiency in the tertiary unit= 85 %
- Irrigation efficiency in the secondary canal and main canal= 88 %, respectively
- Overall efficiency= $85 \times 88 \times 88 \% = 65.8 \% = 66 \%$

The 5-day water requirement is calculated in accordance with the proposed cropping pattern. The peak diversion water requirement in the Sub-project as a whole is figured out at 1.36 lit/sec/ha by wet season paddy in August taking into account the overall irrigation efficiency of 66%.

Drainage Water Requirement

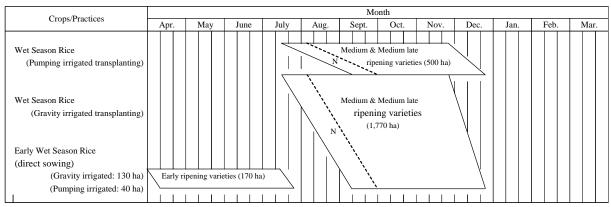
From paddy field

The unit drainage water requirement from paddy field is calculated at 6.32 lit/sec/ha, based on the annual maximum rainfall in 3 consecutive days at one in 5 years return period.

Drainage water requirement from other type of land

The sub-project area consists of paddy field and other types of land located adjacent to the paddy field, and are assumed to be 15% of the paddy field, those of which do not have storage function as paddy field. Therefore, runoff characteristics are different from that of paddy field. The unit drainage water requirement for those lands is calculated by the rational formula based on the annual maximum one day rainfall at one in 5 years return period (110 mm/day). The unit drainage water requirement for the other types of land with the area of less than 100 ha and more than 100 ha are as follows:

Qpeak = 0.25m3/sec/ha from the area less than 100 ha


Qpeak = 0.18m3/sec/ha from the area more than 100 ha

Irrigation and Drainage Diagram

Based on the proposed layout and unit requirement, irrigation and drainage diagram of the Damnak Ampil Sub-Project are respectively shown in Figure III 2.3.5 and Figure III 2.3.6.

(3) Crop Production Plan

Duly considering the seasonal limitation of discharge of the Pursat River as the irrigation water source for the Damnak Ampil, Wat Loung and Wat Chre Sub-projects, the proposed crop production plan is to focus on single cropping of rice for the wet season in 93% of the irrigation command area. Thus, double cropping area covers only 7%. Early ripening varieties are to be selected for the early wet season, while medium and medium late varieties will be grown for the wet season, as shown below. To secure fair irrigation water use for the early wet season among beneficiaries, a long-term crop rotation system is to be introduced, by which farmers will be able to grow the early wet season rice every 14 years.

Prepared by JICA SAPROF Study Team

Modified Cropping Pattern Proposed for Damnak Ampil Sub-project

Direct sowing method will be practiced only in the double cropping area for the early wet season, while transplanting method is to be applied to the whole area for the wet season.

Under the limited water resource of the Pursat River, farming practices of irrigated rice cultivation needs to be more improved than other three sub-project areas in Batambang and Kampong Chhnang. Providing beneficiaries with intensive training programs in terms of pre- and post-harvest technologies for the 3-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Damnak Ampil Sub-project are made as shown below.

Modified Cropping Area and Predicted Crop Production in Damnak Ampil Sub-project Area

Cropping Season	Irrigation Method	Planting Method	Planted Area (ha)	Paddy Yield (ton/ha)	Production (ton)
	Gravity	Direct sowing	130	3.0	390
Early wet	Pumping	Direct sowing	40	3.0	120
	Su	b-total	170		510
	Gravity	Transplanting	1,770	3.3	5,841
Wet	Pumping	Transplanting	500	3.3	1,650
	Sub-project		2,270		7,491
Total			2,440		8,001

Prepared by JICA SAPROF Study Team

In the Damnak Ampil, Wat Loung and Wat Chre Sub-project areas, it is estimated that farmers will forward 44% of their harvested paddy to local markets. The existing 19 commercial mills available in Bakan District are facilitated with the sufficient capacity to process the whole forwarded paddy of 16,500 tons. Due to the limited operation funds of these mill owners, however, local assemblers will shoulder more than half of this quantity. As a result, a considerable portion of value added will be spilled out to other areas and abroad and less contribution to rural economy is usual. Such situation can be improved if rural credit services with easy accessibility are offered to the owners for enhancing their operation funds.

(4) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

List of Irrigation and Drainage Facilities to be Rehabilitated or Reconstructed

On the basis of the basic concept on irrigation and drainage development, facilities to be rehabilitated and/or reconstructed under the Damnak Ampil Sub-Project are tabulated as follows:

List of Facilities under the Project (Damnak Ampil Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	2,270
	(Pump irrigation area included above)	(500)
2.	Annual irrigation area (ha)	<u>2,440</u>
	- Early wet season paddy (ha)	170
	- Medium wet season paddy (ha)	2,270
	- Dry season paddy (ha)	0
3.	Major water source	Pursat River
	- Name of headworks	Damnak Ampil Headworks (Existing) Gate Improvement works and fish ladder under the Project is summarized below.
	- Intake water level (EL. m)	17.00
	- Diversion water requirement at intake (m³/sec)	7.93
4.	Main canals (nos.)	1
	- Total length (km)	-

No.	Description	Quantity
	- Turnout (nos.)	3
5.	Nos. of secondary/ sub-secondary canals	3
	- Total length (km)	12.6
	- Turnout (nos.)	44
6.	Number of Tertiary Blocks (No.)	50
	Total length of tertiary canals (km)	85.0
7.	Main drains	Ou Bakan/Boeung Khnar River
	- Total length (km)	-
	- Drainage water requirement from paddy field (lit/sec/ha)	6.32
	- Drainage water requirement from other land (lit/sec/ha)	18~25
8.	Secondary drains (nos.)	3
	- Total length of secondary drains (km)	21.8
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0

Gate Improvement Works

Improvement Works for Damnak Ampil Weir Flood Gate System

-	α , ,	D 1
Items	Contents	Remarks
Installation of new hoist system	7 sets	◆ 1 motor-2 drum winch type with clutch for counter weight
(Replacement of present hoist)		◆ Local control panels w/ cable network system, Hoist deck
		♦ Generator 75 kVA
		◆ Lightening rods with earthing network
Exchange of bushing	7 sets	Bushing with larger diameter and oil-less bearing for long
(Replacement of present bushing)		durability because the existing bushes do not have enough strength
		for mechanical lifting proposed

Prepared by JICA SAPROF Study Team

Improvement Works for Damnak Ampil Weir Scouring Sluice Gate System

Items	Contents	Remarks	
Installation of new hoist system	4 sets	Rack type hoist with motor	
(Replacement of present hoist)		♦ Local control panel	

Prepared by JICA SAPROF Study Team

Fish Ladder

Dimension of Fish Ladder

Items	Contents		Remarks
Installation of new fish ladder	1 no.	•	Discharge: 4.71 m3/sec (maintenance flow + D&I flow) + residual
		•	Width: B=5.0m (common for above types)
		•	Slope: I = 1/10 (commonly for above types)
		♦ Height: H=4.5m (Gate height-inlet water depth)	
		◆ Inlet elevation:EL.16.50m(Water depth=0.5m)	
		◆ Outlet elevation:EL.12.00m(Existing River Bed)	
		•	Length: L6=45 m (=4.5/(1/10))

Prepared by JICA SAPROF Study Team

Expected Output

Irrigation Facilities

• Gate improvement for the Damnak Ampil Headworks will ensure intake water level so that the river water will be diverted to irrigation systems commanded by the Headworks.

♦ Stable and equitable water distribution will be materialized by the rehabilitation of secondary and tertiary level facilities so that agricultural production is stabilized at primary benefit area (2,270 ha) and secondary benefit area (8,930 ha).

Drainage Facilities

Drainage condition will be improved so that the agricultural productivity is enhanced.

Inspection Road

- Accessibility within the command area will be improved. It will ease introduction and promotion of agricultural input as well as marketing activities contributing to the increase of agricultural production and marketing.
- ◆ O&M activities will be easier so that continuous and appropriate O&M works will be carried out by both Government and FWUC.

2.3.6 Wat Loung Sub-Project

(1) Sub-Project Command Area

As described in the section of the Damnak Ampil Sub-Project, the command areas of the sub-projects under the Pursat River Basin are determined based on the water balance study of the Basin. The command area of the Wat Loung Sub-Project is 2,540 ha by considering topographic conditions and water allocation to other irrigation systems.

(2) Irrigation and Drainage Plan

Basic Concept

Irrigation Method

♦ Irrigation area consists of: (i) gravity irrigation area (1,740 ha) and (ii) pump irrigation area (800 ha) since the ground height of upstream area along the main canal is higher than the canal water level. Raising water level in the main canal only to irrigate this higher area is not economically feasible, therefore, pump irrigation will be applied for this area. In the pump irrigation area, farmers need to rent pumps from communes or other sources.

Irrigation and Drainage Canal Network

- Water will be diverted from the Pursat River by the Damnak Ampil Headworks through a headrace connecting with the Wat Loung main canal.
- ♦ The existing Wat Loung main canal is seriously deteriorated. Therefore, its rehabilitation works will be included in the Project.
- ◆ Tertiary canals are constructed with the command area of generally 50 ha based on MOWRAM guideline.
- ♦ Main and secondary level drains will be constructed to establish independent setting on irrigation and drainage. In addition, natural streams will be utilized for main drains to minimize project costs.

Inspection Road

♦ Along the main canal, an inspection road with the width of 4.0 m is provided to improve transportation within the command area.

Unit Irrigation Water Requirement

The irrigation water requirement is estimated based on the proposed cropping pattern. The 5-day water requirement is calculated in accordance with the proposed cropping pattern. The peak diversion water requirement in the Sub-project as a whole is figured out at 1.36 lit/sec/ha by wet season paddy in August taking into account the overall irrigation efficiency of 66% as same as the Damnak Ampil Sub-Project.

Drainage Water Requirement

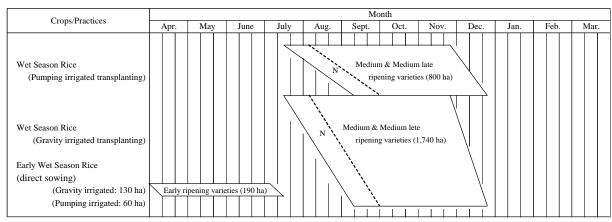
From paddy field

The unit drainage water requirement from paddy field is calculated at 6.32 lit/sec/ha, based on the annual maximum rainfall in 3 consecutive days at one in 5 years return period as same as Damnak Ampil Sub-Project.

Drainage water requirement from other type of land

As explained in the section of Damnak Ampil Sub-Project, drainage water requirement from other type of lands is as follows:

Qpeak = 0.25m3/sec/ha from the area less than 100 ha


Qpeak = 0.18m3/sec/ha from the area more than 100 ha

Irrigation and Drainage Diagram

Based on the proposed layout and unit requirement, irrigation and drainage diagram of the Wat Loung Sub-Project are respectively shown in Figure III 2.3.7 and Figure III 2.3.8.

(3) Crop Production Plan

With the same concept on rice variety selection, practice of double cropping system during the wet season because of limited discharge available in the Pursat River and fair opportunity of irrigation water use adapted to the Damnak Ampil Sub-project, the modified cropping pattern of Wat Loung Sub-project is made as illustrated below.

Revised Cropping Pattern Proposed for Wat Loung Sub-project

Direct sowing and transplanting methods are to be practiced for early wet season cropping and wet season cropping, respectively.

Similar attention has to be paid to how to improve farming practices on irrigated rice cultivation in the Wat Loung Sub-project area. With implementation of agricultural supporting activities for the 3-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Wat Loung Sub-project are drawn up as shown below.

Modified Cropping Area and Predicted Crop Production in Wat Loung Sub-project Area

Cropping Season	Irrigation Method	Planting Method	Planted Area (ha)	Paddy Yield (ton/ha)	Production (ton)
	Gravity	Direct sowing	130	3.0	390
Early wet	Pumping	Direct sowing	60	3.0	180
	Sub	-project	190		570
	Gravity	Transplanting	1,740	3.3	5,742
Wet	Pumping	Transplanting	800	3.3	2,640
	Sub-project		2,540		8,382
Total			2,730		8,952

Prepared by JICA SAPROF Study Team

The future market situation of forwarded paddy from farmers in the Wat Loung Sub-project area is considered as same in the Damnak Ampil Sub-project area.

(4) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

List of Irrigation and Drainage Facilities to be Rehabilitated or Reconstructed

On the basis of the basic concept on irrigation and drainage development, facilities to be rehabilitated and/or reconstructed under the Wat Loung Sub-Project are tabulated as follows:

List of Facilities under the Project (Wat Loung Sub-Project)

		<u> </u>
No.	Description	Quantity
1.	Sub-project area (ha)	2,540
	(Pump irrigation area included above)	(800)
2.	Annual irrigation area (ha)	<u>2,730</u>
	- Early wet season paddy (ha)	190
	- Medium wet season paddy (ha)	2,540
	- Dry season paddy (ha)	0
3.	Major water source	Pursat River

No.	Description	Quantity
	- Name of headworks	Damnak Ampil Headwork (Existing)
	- Intake water level (EL. m)	17.00
	- Diversion water requirement at intake (m³/sec)	3.45
4.	Main canals (nos.)	1
	- Total length (km)	20.3
	- Turnout (nos.)	12
5.	Nos. of secondary/ sub-secondary canals	10
	- Total length (km)	31.1
	- Turnout (nos.)	52
6.	Number of Tertiary Blocks (No.)	54
	Total length of tertiary canals (km)	81.0
7.	Main drains	Boeung Khnar River
	- Total length (km)	-
	- Drainage water requirement from paddy field (lit/sec/ha)	6.32
	- Drainage water requirement from other land (lit/sec/ha)	18~25
8.	Secondary drains (nos.)	8
	- Total length of secondary drains (km)	37.7
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0

Expected Output

Irrigation Facilities

- Stable and equitable water distribution will be materialized so that agricultural production for the target area of 2,540 ha is stabilized.
- Water will be smoothly allocated to the Wat Chre sub-project located in the downstream of Wat Loung sub-project by the rehabilitation of the main canal.

Drainage Facilities

• Drainage conditions will be improved so that the agricultural productivity is enhanced.

Inspection Road

- Accessibility within the command area will be improved. It will ease introduction and promotion of agricultural input as well as marketing activities contributing to the increase of agricultural production and marketing.
- O&M activities will be easier so that continuous and appropriate O&M works will be carried out by both Government and FWUC.

2.3.7 Wat Chre Sub-Project

(1) Sub-Project Command Area

As described in the section of the Damnak Ampil Sub-Project, command areas of the sub-projects under the Pursat River Basin are determined based on the water balance study of the Basin. The command area of the Wat Loung Sub-Project is 1,020 ha by considering topographic conditions and water allocation to other irrigation systems.

(2) Irrigation and Drainage Plan

Basic Concept

Irrigation Method

• Irrigation area consists of: (i) gravity irrigation area (620 ha) and (ii) pump irrigation area (400 ha). Since the ground height of upstream area along the main canal is higher than water level in the canal, combination of gravity irrigation and pump irrigation is proposed as a basic concept of the plan. In the pump irrigation area, farmers need to rent pumps from communes or other sources.

Headworks

- ♦ Water will be diverted from the Pursat River by the Damnak Ampil Headworks through the Wat Loung main canal to the Boeung Khnar River. A new headworks will be constructed on the Boeung Knar to introduce delivered water to the command area of the Wat Chre Sub-Project.
- Weir type is determined as floating type because the foundation ground is not suitable for the spread foundation according to the result of geotechnical investigation.
- Fixed wheel type gate is selected for flood gate and slide gate is selected for high reliability as well easy operation.

Irrigation and Drainage Canal Network

- ♦ The proposed main canal consists of the two portions: (i) newly constructed portion (700 m), located the most upstream and (ii) rehabilitation portion using existing canal.
- ◆ Tertiary canals are constructed with the command area of generally 50 ha based on MOWRAM guideline.
- Secondary level drains will be constructed to establish independent setting on irrigation and drainage. In addition, secondary drains connect with the Boueng Khnar River.

Inspection Road

♦ Along the main canal, on inspection road with the width of 4.0 m is provided to improve transportation within the command area.

Unit Irrigation Water Requirement

As estimated for the Damnak Ampil Sub-Project, the irrigation water requirement is based on the proposed cropping pattern. The 5-day water requirement is calculated in accordance with the proposed cropping pattern. The peak diversion water requirement in the Sub-project as a whole is figured out at 1.36 lit/sec/ha by wet season paddy in August taking into account the overall irrigation efficiency of 66%.

Drainage Water Requirement

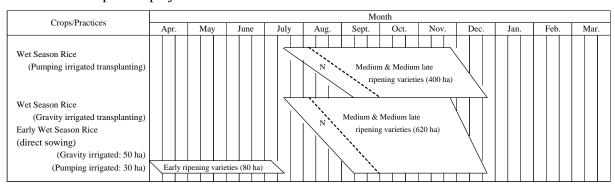
The unit drainage water requirement from paddy field is calculated at 6.32 lit/sec/ha, based on the annual maximum rainfall in 3 consecutive days at one in 5 years return period as same as the Damnak Ampil Sub-Project.

<u>Irrigation and Drainage Diagram</u>

Based on the proposed layout and unit requirement, irrigation and drainage diagram of the Wat Chre Sub-Project are respectively shown in Figure III 2.3.9 and Figure III 2.3.10.

Design Conditions of Wat Chre Headworks

Design conditions of the Wat Chre Headworks are summarized as follows:


Summary of Design Condition for Wat Chre Headworks

Design Parameter	Condition	Remarks
Design Flood Discharge Q _F :	65 m ³ /sec	T=100 year return period
Design Flood Water Level WL _F 1:	WL. 13.6m	at Weir site
Design Flood Water Level WL _F 2:	WL. 14.2m	at the Bridge on National Road No.5
Design River Bank Elevation	EL. 14.30 - 15.00m	betw/ Weir site and National Road No.5
Design Irrigation Water Level WL1:	WL. 13.00m	Top of Gate. Overflow depth=0.2m
Design River bed Elevation (Upstream):	EL. 9.60m	
Design River bed Elevation (Downstream):	EL. 9.60m	
Design Gate Sill Elevation:	EL. 9.60m	
Intake Discharge to Wat Chre Sub-project:	1.39 m ³ /sec	Peak discharge
Discharge of fish ladder	≥0.18m ³ /sec	River maintenance flow for 180 km ²

Source: JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study

(3) Crop Production Plan

The modified cropping pattern of Wat Chre Sub-project as illustrated below is made based on the same concept on rice variety selection, practice of double cropping system during the wet season because of limited discharge available in the Pursat River and fair opportunity of irrigation water use adapted to the Damnak Ampil Sub-project.

Prepared by JICA SAPROF Study Team

Revised Cropping Pattern Proposed for Wat Chre Sub-project

Transplanting method is to be fully practiced for the wet season cropping, while direct sowing method is put into practice for the early wet season cropping.

With implementation of agricultural supporting activities to improve pre- and post-harvest practices for irrigated rice cultivation for the 3-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Wat Chre Sub-project are made as shown below.

Modified Cropping Area and Predicted Crop Production in Wat Chre Sub-project Area

Cropping	Irrigation	Planting	Planted	Paddy Yield	Production
Season	Method	Method	Area (ha)	(ton/ha)	(ton)
	Gravity	Direct sowing	50	3.0	150
Early wet	Pumping	Direct sowing	30	3.0	90
	Su	b-total	80		240
	Gravity	Transplanting	620	3.3	2,046
Wet	Pumping	Transplanting	400	3.3	1,320
Sub		-project	1,020		3,366
Total			1,100		3,606

The future market situation of forwarded paddy from farmers in the Wat Chre Sub-project area will be same as the situation in the Damnak Ampil Sub-project area.

(4) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

List of Irrigation and Drainage Facilities to be Rehabilitated or Reconstructed

On the basis of the basic concept on irrigation and drainage development, facilities to be rehabilitated and/or reconstructed under the Wat Chre Sub-Project are tabulated as follows:

List of Facilities under the Project (Wat Chre Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	1,020
	(Pump irrigation area included above)	400
2.	Annual irrigation area (ha)	<u>1,100</u>
	- Early wet season paddy (ha)	80
	- Medium wet season paddy (ha)	1,020
	- Dry season paddy (ha)	0
3.	Major water source	Pursat River
	- Name of headworks	Wat Chre Headworks (Reconstruction)
	- Intake water level (EL. m)	13.00
	- Diversion water requirement at intake (m³/sec)	1.39
4.	Main canals (nos.)	1
	- Total length (km)	4.7
	- Turnout (nos.)	9
5.	Nos. of secondary/ sub-secondary canals	6
	- Total length (km)	14.7
	- Turnout (nos.)	22
6.	Number of Tertiary Blocks (No.)	27
	Total length of tertiary canals (km)	27.0
7.	Main drains	- Boeung Khnar R., - Ta Paong stream
	- Total length (km)	-
	- Drainage water requirement from paddy field (lit/sec/ha)	6.32
	- Drainage water requirement from other land (lit/sec/ha)	18~25
8.	Secondary drains (nos.)	5
	- Total length of secondary drains (km)	11.5
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0

Prepared by JICA SAPROF Study Team

Headworks and Major Facilities

Items	Description		
Wat Chre Diversion Weir	♦ Floating type weir with gates		
◆ Design Flood Discharge: Q=65m³/s (T=100	♦ width x height x length: B:20m x H:10.0m x L:35m		
years)	♦ Flood Gate: Fixed wheel gate (B:12.5m x H:3.4mx 1 no.)		
◆ Design Flood Water Level: WL. 13.6m	♦ Scouring Sluice Gate: Slide gate (B:2m x H:3.4m x 1 nos.)		
♦ with Fish Ladder: B:2.0m x H:3.1m x L:31m			
Wat Chre Intake	♦ width x height x length: B:1.0m x H:2.4m x L:6m		
◆ Design Discharge: Q=1.39m³/s	♦ Slide Gate: B:1.0m x H:1.0m x 1 no.		

Prepared by JICA SAPROF Study Team

The typical dimension of the Boueng Khanr River based on design flood discharge of 65 m³/sec is shown as follows:

Typical Dimension of River Section of the Wat Chre Diversion Weir

River Section type	Design Discharge (m³/sec)	River bed width (m)	Bed slope	Inner side slope	Water depth (m)	Free board (m)
Earth, Trapezoidal cross section	65	15.0	1/3000	1:2.5	3.3	0.6

Prepared by JICA SAPROF Study Team

Expected Output

Irrigation Facilities

♦ Stable and equitable water distribution will be materialized so that agricultural production is stabilized.

Drainage Facilities

Drainage condition will be improved so that the agricultural productivity is enhanced.

Inspection Road

- ♦ Accessibility within the command area will be improved. It will ease introduction and promotion of agricultural input as well as marketing activities contributing to the increase of agricultural production and marketing.
- ♦ O&M activities will be easier so that continuous and appropriate O&M works will be carried out by both Government and FWUC.

2.3.8 Lum Hach Sub-Project

(1) Sub-Project Command Area

The Lum Hach Sub-Project command area is determined based on the following conditions.

- ♦ The Boribo River is the main source of the Lum Hach Sub-Project. The river water is divided into two directions: (i) the Kampong Chhnang Province and (ii) the Thlea Maan River to the Pursat Province, at the Bomnak water level station located 20 km upstream of the proposed site of the Lum Hach headworks. As a water resource of the Lum Hach sub-project, 50 % of the water is planned to be delivered to the Kampong Chhnang side.
- ◆ As a secondary benefit area, water will be also distributed to the O Roluss irrigation system, the

existing main canals, intake and spillway of which were rehabilitated by MOWRAM in 2006 covering 3,400 ha, by utilizing the proposed Lum Hach Headworks.

On this basis, the command area of the Lum Hach Sub-Project is determined to be 3,100 ha of paddy fields taking into the topographic conditions and present land use.

(2) Irrigation and Drainage Plan

Basic Concept

Irrigation Method

♦ Irrigation area consists of: (i) gravity irrigation area (2,660 ha) and (ii) pump irrigation area (440 ha). Since the ground height of some of the portions are significantly higher than water level in the canal, the combination of gravity irrigation and pump irrigation is proposed as a basic concept of the plan. In the pump irrigation area, farmers need to rent pumps from communes or other sources.

Headworks

- ♦ A new headworks will be constructed at approximately 500 m upstream of the existing old structures. The water is provided to both: (i) Lum Hach Sub-Project (3,100 ha) and (ii) O Roluss irrigation system (3,400 ha). To do so, new intake structures will also be constructed for both irrigation systems.
- Fixed wheel type gates are selected for flood gates, and slide gates are selected for high reliability and easy operation as well.
- Weir type is determined as floating type because the foundation ground is not suitable for the spread foundation according to the result of geotechnical investigation.
- A fish ladder will be provided in order to conserve fish resources by supporting fish sprawling.

Irrigation and Drainage Canal Network

- ♦ The upstream reach of the January 7th canal and an existing secondary canal are rehabilitated to be utilized as the main canal for the sub-project. Since the most upstream of the January 7th canal has invert slope, approximately 800 m of an approach canal will be newly constructed from the intake.
- ◆ Tertiary canals are constructed with the command area of generally 50 ha based on MOWRAM guideline.
- Secondary level drains will be constructed to establish independent setting on irrigation and drainage. In addition, secondary drains including side drain of the road constructed by the Ministry of Public Works and Transport connect with the Boribo River to be utilized for main drain.

Inspection Road

♦ Along the main canal, an inspection road with the width of 4.0 m is provided to improve transportation within the command area.

Unit Irrigation Water Requirement

The irrigation water requirement is estimated based on the proposed cropping pattern. The basic

conditions applied are as follows:

- Meteorological data; average of mean monthly data at Pochentong International Airport in Phnom Penh
- Percolation rate 3.0 mm/day based on the observed data
- Rainfall data; Daily rainfall data at Boeung Kantout and Bamnak stations
- ♦ Effective rainfall; (i) less than 5mm/day: ineffective rainfall, (ii) 5mm to 80mm/day: Rx80%, (iii) more than 80mm: 80x80%=64mm
- Paddy is cultivated by transplanting method in all over Sub-project area
- ♦ Irrigation efficiency in the tertiary unit= 85 %
- Irrigation efficiency in the secondary canal and main canal= 88 %, respectively
- Overall efficiency= $85 \times 88 \times 88 \% = 65.8 \% = 66 \%$

The 5-day water requirement is calculated based on the proposed cropping pattern. The peak diversion water requirement in the Sub-project as a whole is figured out at 2.13 lit/sec/ha by wet season paddy in August taking into account the overall irrigation efficiency of 66%.

Drainage Water Requirement

The unit drainage water requirement of the Lum Hach Sub-Project, q (lit./sec/ha), from paddy field is calculated to be 6.83 lit/sec/ha based on the annual maximum rainfall in 3 consecutive days at one in 5 years return period.

$$q = 0.177 \times 10,000 \div (3 \times 86400) \times 1000 = 6.83$$

where, 0.177 is a probable 3 consecutive day-rainfall at Kampong Chhnang station

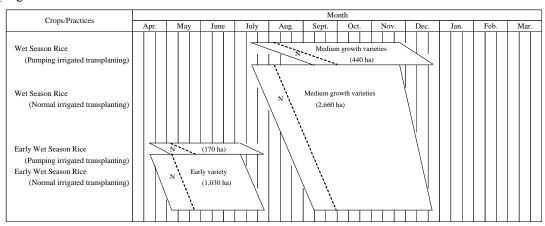
Irrigation and Drainage Diagram

Based on the proposed layout and unit requirement, irrigation and drainage diagram of the Lum Hach Sub-Project are respectively shown in Figure III 2.3.11 and Figure III 2.3.12.

Design Conditions of Lum Hach Headworks

Design conditions of the Lum Hach Headworks are summarized as follows:

Summary of Design Condition for Lum Hach Headworks


Design Parameter	Condition	Remarks
Design Flood Discharge Q _F :	430 m ³ /sec	T=100 year return period
Design Flood Water Level WL _F 1:	WL. 38.00m	at Weir site
Design River Bank Elevation	EL. 39.00m	
Design Irrigation Water Level WL1:	WL. 38.00m	Top of Gate. Overflow depth=0.2m
Design River bed Elevation (Upstream):	EL. 34.00m	
Design River bed Elevation (Downstream):	EL. 34.00m	
Design Gate Sill Elevation:	EL. 34.00m	
Intake discharge for Lum Hach Sub-project:	6.60 m ³ /sec	Maximum discharge
Intake discharge for O Roluss irrigation systems:	5.70 m ³ /sec	Maximum discharge
Discharge of fish ladder:	0.88 m ³ /sec	River maintenance flow 0.74 for 735 km ² ,
		domestic & industrial use 0.14

Source: JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study

(3) Crop Production Plan

The Lum Hach Sub-project has a large potential of the dry season rice cultivation if it is possible for creating a year-round irrigation water resource in the upstream of the Boribo River. In line with the project concept, however, the proposed crop production plan focuses on promotion of double cropping of shorter maturity rice varieties during the wet season by fully utilizing natural flow of the water source river.

In the Lum Hach Sub-project area, irrigated rice cultivation can be carried out in around 40% of the command area for the early wet season and the whole area for the wet season. Aiming to enable all beneficiaries to enjoy double cropping opportunities fairly, 5-year crop rotation system is to be introduced, comprising 3-year single cropping of the wet season rice and 2-year double cropping of the early wet season rice and the wet season rice. Early ripening varieties will be used for the early wet season cropping, while medium and medium late varieties are to be grown for the wet season cropping as shown below.

Prepared by JICA SAPROF Study Team

Revised Cropping Pattern Proposed for Lum Hach Sub-project

Transplanting method is to be practiced for each cropping season.

Supposing that beneficial farmers will put improved pre- and post-harvest technologies of rice cultivation into practices for the 3-year period after irrigation water can be distributed to each farm plot as planned, the target paddy yield and production in the command area of Lum Hach Sub-project are made as tabulated below.

Modified Cropping Area and Predicted Crop Production in Lum Hach Sub-project Area

Cropping Season	Irrigation Method	Planting Method	Planted Area (ha)	Paddy Yield (ton/ha)	Production (ton)
beason		Transplanting	1,090	3.0	3,270
	Gravity	1 0	1,090	3.0	· ·
Early wet	Pumping	Transplanting g	180	3.0	540
	Su	b-total	1,270		3,810
	Gravity	Transplanting	2,660	3.3	8,778
Wet	Pumping	Transplanting	440	3.3	1,452
Sub-pro		-project	3,100		10,230
Total		4,370		14,040	

Prepared by JICA SAPROF Study Team

The future market situation to handle paddy forwarded from farmers in five communes covering the Lum Hach Sub-project area is quite similar to other communes concerned with the five sub-projects. It is therefore envisaged that offering of useful financing menus is very attractive to local commercial

rice mill owners who intend to enhance their capacity to purchase paddy as much as possible from farmers in the Lum Hach Sub-project area.

(4) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

List of Irrigation and Drainage Facilities to be Rehabilitated or Reconstructed

On the basis of the basic concept on irrigation and drainage development, facilities to be rehabilitated and/or reconstructed under the Lum Hach Sub-Project are tabulated as follows:

List of Facilities under the Project (Lum Hach Sub-Project)

No.	Description	Quantity
1.	Sub-project area (ha)	3,100
	(Pump irrigation area included above)	440
2.	Annual irrigation area (ha)	<u>4,370</u>
	- Early wet season paddy (ha)	1,270
	- Medium wet season paddy (ha)	3,100
	- Dry season paddy (ha)	0
3.	Major water source	Boribo River
	- Name of headworks	Lum Hach Headwork (new construction)
	- Intake water level (EL. m)	36.00 - 38.00
	- Diversion water requirement at intake (m³/sec)	6.60
4.	Main canals (nos.)	1
	- Total length (km)	16.4
	- Turnout (nos.)	26
5.	Nos. of secondary/ sub-secondary canals	11
	- Total length (km) 42.4	
	- Turnout (nos.) 55	
6.	Number of Tertiary Blocks (No.)	69
	Total length of tertiary canals (km)	69.0
7.	Main drains	Boribo River
	- Total length (km)	-
	- Drainage water requirement from paddy field (lit/sec/ha)	6.83
	- Drainage water requirement from other land (lit/sec/ha)	19~25
8.	Secondary drains (nos.)	9
	- Total length of secondary drains (km)	35.7
9.	Collector drains (nos.)	0
	- Total length of collector drain (New, km)	0

Prepared by JICA SAPROF Study Team

Headworks and Major Facilities

Headworks and Major Facilities				
Items	Description			
Lum Huch Diversion Weir	♦ Floating type weir with gates			
◆ Design Flood Discharge: Q=430m³/s	♦ width x height x length: B:60.5m x H:10.8m x L:31m			
(T=100 years)	♦ Flood Gate: Fixed wheel gate (B:15 m x H:4.0m x 3 nos.)			
◆ Design Flood Water Level: WL. 38.0m	♦ Scouring Sluice Gate: Slide gate (B:2m xH:4m x 2 nos.)			
♦ Fish Ladder: B:2.0m x H:5.2m x L:52m				
Lum Hach Intake	♦ width x height x length: B:7.1m x H:3.8m x L:9.5m			
◆ Design Discharge: Q=6.60m³/s	♦ Slide Gate: B:1.5m xH:1.5m x 3nos.			
O Roluss Intake	♦ width x height x length: B:5.7m x H:4.8m x L:15m			
◆ Design Discharge: Q=5.70m ³ /s	♦ Slide Gate: B:2.0m x H:1.5mx 2nos.			
Lum Hach Approach Canal	♦ width x height x length: B:3m x H:2.0m x L:750 m			
◆ Design Discharge: Q=6.60m³/s				

Prepared by JICA SAPROF Study Team

The typical dimension of the Boribo River based on design flood discharge of 430 m³/sec is shown as

follows:

Typical Dimension of River Section of the Wat Chre Diversion Weir

River Section type	Design Discharge (m³/sec)	River bed width (m)	Bed slope	Inner side slope	Water depth (m)	Free board (m)
Earth, Trapezoidal cross section	430	25.0	1/250	1:1.0 (R) 1:0.4 (L)	3.4	0.6

Prepared by JICA SAPROF Study Team

Expected Output

Irrigation Facilities

♦ Stable and equitable water distribution will be materialized so that agricultural production is stabilized at primary benefit area (3,100 ha) and secondary benefit area, O Roluss irrigation system (3,400 ha).

Drainage Facilities

Drainage condition will be improved so that the agricultural productivity is enhanced.

Inspection Road

- Accessibility within the command area will be improved. It will ease introduction and promotion of agricultural input as well as marketing activities contributing to the increase of agricultural production and marketing.
- O&M activities will be easier so that continuous and appropriate O&M works will be carried out by both Government and FWUC.

2.4 Ancillary Activities to Enhance Project Effect

Based on the approach and strategy of the Project described in section 2.2, the following ancillary activities are proposed to enhance the Project effect.

Software Component:

- ♦ FWUC Establishment and Strengthening
- ♦ Agricultural Support Services

Project Supporting Programs:

- ♦ Meteo-hydrological Observation Strengthening
- ◆ Capacity Development for MOWRAM Staff
- ♦ Capacity Development for PDOWRAM Staff

Others

• Project Formulation Study for Other Potential Areas

The objective, strategy and activities are summarized as follows:

2.4.1 Software Component

(1) FWUC Establishment and Strengthening

Item	Description
Objective	To materialize sustainable organizational set-up for irrigation water management and facilities' O&M
Strategy	Establishment of FWUC based on new layout of each sub-project Establishment of FWUC based on new layout of each sub-project
	 Enhancement of FWUC's water management capability Strengthening of FWUCs capability in O&M of irrigation and drainage facilities
	 ♦ Strengthening of organizational management capacity ♦ Establishment of water fee collection system
Activity	Support to establishment of FWUC
	♦ Implementation of training programs with the coordination of relevant organizations
Work Quantity	♦ Number of FWUCs, FWUGs, Sub-FWUGs and WUGs to be established:
	♦ 6 FWUCs. 52 FWUGs, 287 sub-FWUGs and 2,552 WUGs
	♦ 6 (six) times of walk-through survey to determine the tertiary alignment
	♦ 3 (three) times of awareness program on FWUC's functions and responsibilities
	♦ 3 (three) times of training programs on organizational management, water management and facilities' O&M
	♦ 3 (three) times of training of trainers to train Sub-FWUGs' and WUGs' members
	♦ 3 (three) times of follow-up workshops on sustainable irrigation system usage
	♦ 6 sets of manuals on irrigation water management and O&M activities
	♦ 6 sets of manuals on training of Sub-FWUGs' and WUGs' members

Prepared by JICA SAPROF Study Team

(2) Agriculture Support Activities

Item	Description
Objective	To increase and stabilize rice farming in the sub-project areas
Strategy	Capacity development of both Agricultural Staffs and Farmers
	◆ Training of Trainers
	◆ Commune-based Agricultural Extension
	♦ Improvement of pre-harvest and post-harvest technology
	◆ Introduction of Quality Seed
Activity	Government Agricultural Staff Empowerment Program
	◆ Training of Trainers Program for Capacity Development of Group Leaders acting as Agricultural Extension Agent
	◆ Commune-base Agricultural Extension Agent Development Program
	Soil Fertility Diagnosis Program
	Pre-harvest Technology Group Training
	◆ Post-harvest Technology Group Training Program on Farmers Field School Basis
	Quality Rice Seed Production and Distribution Program
	♦ High Value Added Rice Production Promotion Program
Work Quantity	• 3 (three) times of government agricultural staff empowerment program
	♦ 6 (six) times of training of trainers program
	♦ 6 (six) times of training programs for each program identified by needs analysis
	♦ Commune-base agricultural extension manual
	◆ Materials for training programs

Prepared by JICA SAPROF Study Team

2.4.2 Project Supporting Programs

(1) Meteo-hydrological Observation Strengthening

Item	Description
Objective	 ◆ To collect basic meteo-hydrological data, and ◆ To increase technical capability of MOWRAM and PDOWRAM in meteo-hydrological observation, data processing and analysis
Strategy	♦ Enhancement of technical capability of relevant staff through On-the-Job Training
Activity	 Preparation of manual for meteo-hydrological observation Training of meteo-hydrological data collection, processing and analysis Instillation of equipment of meteo-hydrological observation in the selected points in the river basins (additional 12 nos. of equipment: 20 % increase in number from present conditions)
Work Quantity	 ♦ 4 (four) sets of manual on meteo-hydrological observation ♦ 4 (four) times of workshop on introduction of manuals ♦ On-the-Job Trainings ♦ Follow-up workshop on sustainable water resources development ♦ Installation of equipments for meteo-hydrological observation at 12 points (20% increase in number from present conditions)

Prepared by JICA SAPROF Study Team

(2) Capacity Development of MOWRAM Staff

Item	Description	
Objective	To increase technical capability of MOWRAM staff in construction supervision	
Strategy	Preparation of practical manual for construction supervision based on hardware component	
	♦ Dissemination workshops and training programs	
Activity	♦ Preparation of construction supervision manuals	
	Dissemination and training workshop	
	◆ Periodical revision of manuals	
	 Upgrade of the skills of MOWRAM staff in technical support to PDOWRAM staff in the construction supervision 	
Work Quantity	Construction supervision manual	
	◆ Construction supervision manual for field use	
	♦ 8 (eight) times of dissemination and training workshops (two for MOWRAM, six for PDOWRAM)	

Prepared by JICA SAPROF Study Team

(3) Capacity Development of PDOWRAM Staff

Item	Description		
Objective	♦ To increase technical capability of PDOWRAM staff in construction supervision		
Strategy	 Preparation of practical manual for field-use for construction supervision based on hardware component 		
	◆ Dissemination workshops and training programs		
Activity	 ◆ Preparation of construction supervision manuals ◆ Dissemination and training workshop ◆ Periodical revision of manuals 		
	♦ Upgrade of the skills of PDOWRAM staff in construction supervision supported by MOWRAM		
Work Quantity	◆ As mentioned above		

Prepared by JICA SAPROF Study Team

2.4.3 Others: Project Formulation Study for Other Potential Areas

Item	Description		
Objective	◆ To prepare irrigation development plan for other potential areas		
Strategy	 Preparation of development plan for potential project using lessons to be learnt as well as data to be obtained from the Project (West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project) implementation 		
Activity	◆ Screening of potential project		
	◆ Selection of priority project to be developed		
	♦ Assessment of available water resources through meteo-hydrolog	ical analysis	
	♦ Inventory survey of facilities		
	◆ Preparation of agriculture development plan		
	♦ Preparation of irrigation and drainage plan		
	◆ Cost estimate		
	◆ Project evaluation		
	◆ Preparation of implementation schedule		
Work Quantity Preparation of feasibility level development plan for second priority su projects) in the Basin-Wide Basic Irrigation and Drainage Master P. follows:			
	(i) Damnak Ampil Extension Project	8,000 ha	
	(ii) Nikom/Dai Ta Chan Rehabilitation Project	600 ha	
	(iii) Beoun Preah Ponley Rehabilitation Project	8,500 ha	
	(iv) Bassac Reservoir Rehabilitation Project	3,500 ha	
	(v) Chan Keak Rehabilitation Project	110 ha	
	(vi) Chak Teum, Trapeang Khlong, Don Pov Rehabilitation Pro	oject 980 ha	
	(vii) Toul Champey Rehabilitation Project	360 ha	
	(viii) 7th January Canal Rehabilitation Project	2,000ha	
	Total	24,050 ha	

Prepared by JICA SAPROF Study Team

2.5 Technical Assistance

2.5.1 Purpose

The purpose of technical assistance (T/A) is to advise and support the Project Management Unit (PMU) Japan Support Fund, an overall project management organization, in detail design, construction supervision, software component and project supporting programs so as to accomplish the Project objective and target.

2.5.2 Outline of Consulting Services

Outline of consulting services for the Project is as follows:

Outline of Consulting Services

Outline of Consulting Scr vices				
Part	Description			
Part-I	Review of previous plan and preparation of definitive development plan			
Part-II	II-1 Detail Design	Additional Survey		
		Detail Design		
		Tender Document		
		Software Component		
		Project Supporting Programs		
	II-2 Construction Supervision	Task Concept Service		
		Assistant Concept Service		

Part	Description	
		Software Component
		Project Supporting Programs
Part-III	Socio-economy/rural development baseline study	
Part-IV	Environmental Management and Monitoring	
Part-V	Project Formulation Study	
Part-VI	Preparation of Reports	

2.5.3 Scope of Consulting Services

Scope of consulting services during detail design (D/D) and construction supervision (C/S) are described as follows:

(1) During Detail Design

Task Concept

- ◆ To check and review existing plan based on Basin-Wide Basic Irrigation and Drainage Master Plan Study and the SAPROF Study,
- To check availability of irrigation water, flood discharge at weir sites, drainage conditions of subprojects,
- ♦ To check and, if necessary, modify location, layout plan and design of large or important structures including rehabilitation works such as diversion weirs, intakes, main and secondary irrigation canals, and main drains,
- Geo-technical and soil mechanical investigations,
- ♦ Topographic surveys and mapping,
- ♦ Construction material surveys,
- Detailed design of irrigation and drainage facilities including preparation of detailed design drawings,
- Preparation of bill of quantities and cost estimate, and
- ♦ To revise cost estimate, and
- ◆ To prepare pre-qualification and tender documents based on the detailed design taking into account of procurement procedure of Cambodia
- ◆ Arrangement of establishment/strengthening of FWUCs and guidance to MOWRAM/PDOWRAM staff pertaining to O&M of sub-projects

(2) Construction Supervision

Task Concept

- Preparation of pre-qualification and tender evaluation report
- ♦ To prepare quality control manuals for earth works, concrete works, stone works and other important construction works and to apply such manuals for quality control in the field,
- To check and approve construction drawings and shop drawings to be prepared by the contractors,

- ◆ To check and approve the setting-out lines and levels, and control points established by the contractors.
- ♦ To supervise field tests, sampling and laboratory tests,
- ◆ To inspect construction methods, equipment use, workmanship at the sites, and to attend shop inspection and manufacturing test in accordance with the technical specifications,
- ♦ To issue site instructions or other instructions to the contractors, as the necessity arises, on the way of clarification of construction drawings and technical specifications, and the construction supervision,
- ◆ To attend regular meetings to check and confirm construction methods, work performance, work progress, status of equipment and materials, work schedule, and problems to be solved,
- To survey and measure the work output performed by the contractors,
- To check and certify the advance payments and progress payments claimed by the contractors for approval of the project managers of sub-projects,
- ♦ To keep proper records necessary for preparation of the project completion report,
- ♦ To perform the final inspections of the works together with the sub-project offices and recommend to issue the completion certificates,
- To prepare O&M manuals, and organization management of each sub project,

Assistant Concept

- To assist and advise PMU Japan Support Fund in pre-qualification of construction firms,
- To assist and advise PMU Japan Support Fund in tender evaluation,
- To assist and advise in modifying original tender designs, technical specifications and drawings, related calculation and cost estimate as the necessity arises in accordance with the actual site condition.
- ♦ To assist and advise in settlement of the contractor's claim and disputes on the basis of the analysis of the Consultant hereof in accordance with the civil work contract,
- (3) Socio-economy/rural development baseline study

Assistant Concept

- ♦ To collect such data and information from National Institute of Statistics, Ministry of Planning and other agencies as national and provincial socio-economic data related to sub-projects,
- (4) Software Component: FWUC Establishment and Strengthening and Agricultural Support Services

Task Concept

- To carry out sub-project specific FWUCs establishment and strengthening
- To provide feedback from reviews and assessments for progress reporting, and
- ♦ To prepare manuals, materials and guidelines

Assistant Concept

- ◆ To advise and assist in the overall implementation of the program
- (5) Project Supporting Programs: Meteo-hydrological Observation Strengthening, Capacity Development for MOWRAM Staff and Capacity Development for PDOWRAM Staff

Task Concept

- ♦ To procure and install meteo-hydrological equipment
- To prepare manual for observation, data collection and processing
- ♦ To prepare manual for construction supervision

Assistant Concept

- To advise and assist in the overall implementation of the program
- To assist in the organization of in-class discussion & lectures, study tour, workshop
- (6) Project Formulation Study for Other Potential Areas

Task Concept

◆ To formulate integrated implementation plans and action plans of the candidate sub-projects for thier realization

2.5.4 Necessary Input of Consulting Services

Technical consultant consists of a team of international and local consultants in different expertise to be attached to PMU Japan Support Fund. Approximate man-month necessary for the Project consist of: (i) International consultant (148 M/M) and (ii) Local Consultant (451 M/M) as tabulated as follows:

Required Man-month for Consulting Services

No.	Item	International Consultant	Local Consultant
1	Hardware Component		
1-1	◆ Detail Design	47	102
1-2	◆ Construction Supervision	60	172
	Sub-total of Hardware Component (=1)	107	274
2	Software Component		
2-1	◆ FWUC Establishment and Strengthening	11	62
2-2	◆ Agriculture Support Services	9	32
	Sub-total of Software Component (=2)	20	94
3	Project Supporting Programs		
3-1	◆ Meteo-hydrological Observation Strengthening	6	22
3-2	◆ Capacity Development for MOWRAM Staffs	3	3
3-3	◆ Capacity Development for PDOWRAM Staffs		
	Sub-total of Project Supporting Programs (=3)	9	25
4	Project Formulation Study (=4)	12	58
	Total (=1+2+3+4)	148	451

Prepared by JICA SAPROF Study Team

CHAPTER 3 PROJECT IMPLEMENTATION AND O&M PLAN

3.1 Project Implementation Plan

3.1.1 Implementing Organization

The Project implementing organization is depicted in Figure III 3.1.1. The Project Management Unit (PMU) Japan Support Fund was established within MOWRAM in October 2008, taking responsibility on all the project implementation and management by Japan's ODA. Under PMU Japan Support Fund, five units are established to be in charge of each Project activities through coordination with relevant technical departments consisting of: (i) Engineering, (ii) Irrigated Agriculture, (iii) FWUC and (iv) TSC at the national level. As for agriculture support activities, staff will be dispatched from MAFF to be members for the Project under the control of PMU Japan Support Fund to take charge of this component.

At the provincial level, Provincial Project Implementation Unit (PIU) will be established in each PDOWRAM to supervise activities of the Project. In addition, at the field level, particularly agriculture support and FWUC strengthening activities will be jointly carried out by PDOWRAM, and Commune Councils (CCs.) and others. General tasks of those organizations are tabulated as follows:

Job Description of Relevant Organizations for the Project

Organizations	Task		
Steering Committee	 Provision of the necessary political coordination and supports from the relevant Ministries to MOWRAM to carry out the Project in effective and efficient manner 		
	◆ Assisting for the arrangement of necessary technical support and supplemental budget to be required for the Project		
	Monitoring of Project progress and provision of advices when necessary		
Project Management	Overall management of the Project		
Unit (PMU) Japan	Preparation of annual disbursement plan of the Project		
Support Fund	Coordination with relevant technical departments within MOWRAM		
	Procurement of the technical consultant		
	Procurement of contractors for hardware component		
	• Overall supervision and guidance to the technical consultant and the contractors to be engaged in the Project		
	◆ Supervision of land acquisition, necessary for the Project, by the Resettlement Unit		
	 Monitoring and evaluation as well as reporting of project progress to relevant Ministries and the Steering Committee 		
Ministry of Agriculture, Forestry and Fisheries	◆ Dispatch of necessary staff to the PMU Japan Support Fund for the implementation of Agriculture Support Activities¹		
	◆ Technical advice to PMU Japan Support Fund in Agriculture Support Activities		
Provincial Project	Supervision of construction works at the field level supported by MOWRAM		
Implementation Unit	Preparation of annual work plan in collaboration with PMU Japan Support Fund		
	◆ Coordination with relevant rural administration including provincial government and commune councils		
	 Provision of advice to the technical consultant including available data and information related with each sub-project 		

¹ Dispatch of MAFF staff to MOWRAM for the implementation of agriculture support services has been similarly carried out in Northwest Irrigation Sector Project financially supported by ADB.

Organizations	Task		
	♦ Provision of supervision and guidance to the local contractors		
	 Progress monitoring and evaluation of the Project and regular report to PMU Japan Support Fund 		
	 Performing any other tasks necessary to support PMU Japan Support Fund 		
Commune Councils	◆ Coordination with MOWRAM, PDOWRAM and farmers for the implementation of the Project at the commune level		
	♦ Support of FWUC establishment and strengthening		
	♦ Coordination with FWUC for irrigation system O&M		
	♦ Internal monitoring at the commune level		

3.1.2 Staff Required for Design and Construction Works

In order to smoothly implement the Project, full-time professional staff will be assigned to PMU Japan Support Fund at the central level and PIUs at the provincial level supported by relevant technical departments. Necessary number of staff required for design and construction stage is shown in the following table.

Staff Required for Design and Construction Works

Organizations	Position	Nos.
Central Level		
PMU Japan Support Fund	Project Director	1
	Project Manager	2
	Administration & Finance	5
	Procurement	4
	FWUC	4
	Resettlement & Environment	5
	Technical	6
Sub-total (Central Level) (=1)		27
Provincial Level		
Project Implementation Unit (PIU)		
♦ Battambang Province	Technical	5
	Agriculture	2
Sub-Total of Battambang (=2)		7
◆ Pursat Province	Technical	5
	Agriculture	2
Sub-Total of Pursat (=3)		7
♦ Kampong Chhnang Province	Technical	5
	Agriculture	2
Sub-Total of Khanpong Chhnang (=4)		7
Sub-total (Provincial Level) (=5=2+3+4)		21
Grand Total (=1+5)		48

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan Study

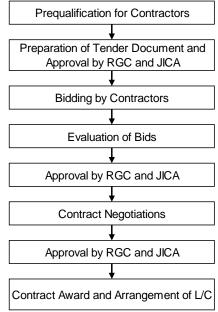
Staff to be allocated for the Project is "Engineering Level" in the staff qualification of MOWRAM. At the provincial level, number of staff are limited, therefore, technical staff(s) needs to be dispatched from the technical departments of MOWRAM to perform necessary tasks at the provincial level. As for agriculture support services at the provincial level, staff(s) will be dispatched from PDA as similarly carried out by the Northwest Irrigation Sector Project (ADB).

3.1.3 Decision and Instruction Flow

(1) Detail Design

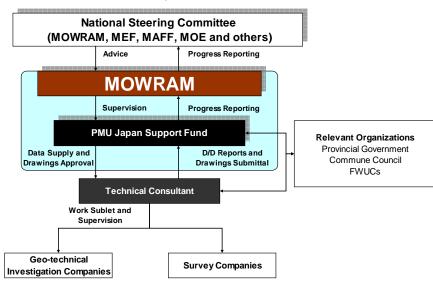
To commence the West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project in timely manner, it will be necessary to arrange and put into place well in advance to maintain higher level of success. Organization, decision and instruction flow for the Project implementation is based on the following conditions.

PMU Japan Support Fund is the organization responsible for overall management of the Project.
 Rehabilitation of irrigation and drainage facilities are carried out under international competitive bidding (ICB) for main and secondary facilities, and local competitive bidding (LCB) for tertiary


facilities, general flow of which are illustrated on the

right and as explained afterward.

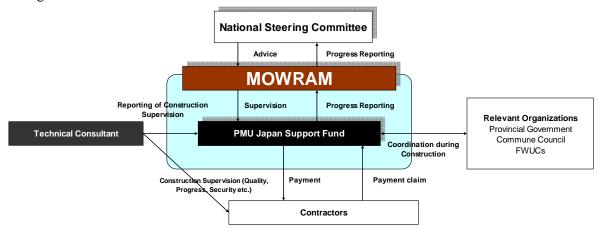
- Technical consultant provides services for detail design, tender document preparation, tender evaluation and construction supervision under the contract with MOWRAM.
- National Steering Committee will be established to coordinate among relevant Ministries at the national level. Prospective members will be: (i) MOWRAM (chair), (ii) MEF, (iii) MAFF, (iv) MOE and others so that all the parties involved will be well informed to facilitate close coordination.
- In order to smoothly implement construction works at the field level, regular meeting will be held among MOWRAM, PDOWRAM and relevant local administrations.
- Land acquisition necessary for the Project will be managed by the Resettlement Unit under NPMO, as a


key organization in communicating matters on the land acquisition and compensation with the parties concerned including the Inter-Ministerial Resettlement Committee (IRC), PIU of three Provinces and the affected people.

On this basis, the right figure shows the

Prepared by JICA SAPROF Study Team

Procedure on ICB Method and Contract Award for Hardware Component


Prepared by JICA SAPROF Study Team

Project Implementing System During Detail Design

implementing system and role of each organization during detail design.

Technical consultant will make contract with MOWRAM, however, substantial work will be executed by PMU Japan Support Fund supported by relevant technical departments under MOWRAM. Technical consultant prepares design report, drawings, pre-qualification document, tender document and submit to PMU Japan Support Fund. PMU Japan Support Fund will check the document and issue approval. Technical survey such as topographic survey and geotechnical investigation will be sublet to local consultant, under the supervision of technical consultant. Necessary data during the design will be provided from PMU Japan Support Fund to the technical consultant.

On the other hand, the implementing system during construction supervision for irrigation and drainage facilities is illustrated as follows:

Prepared by JICA SAPROF Study Team

Project Implementing System During Construction

The contractors make contract with MOWRAM, and the daily work will be supervised by PMU Japan Support Fund. The technical consultant is in charge of construction supervision under the instruction of PMU Japan Support Fund. Various problems to be raised during construction such as land acquisition for temporary works, stoppage of irrigation water etc. will be discussed with local administration through having regular meetings and committees among stakeholders.

(3) Soft Component and Project Supporting Programs

Such activities as soft component: (i) FWUC establishment and strengthening and (ii) Agriculture Support Activities will be carried out by the technical consultant through maintaining close coordination with PMU Japan Support Fund, MOWRAM and PDOWRAM. The organizational system is described as follows:

Implementing System for Soft Component, Project Supporting Programs and Project Formulation Study for Other Potential Areas

Activities	Preparation of Work Plan	Approval of Work Plan	Technical Assistance	Main Target Group
Soft Component				
FWUC Establishment and Strengthening	Technical Consultant	PMU Japan Support Fund	MOWRAM/PDOWRAM and the Consultant	FWUCs to be established
Agriculture Support Activities	Technical Consultant	PMU Japan Support Fund	MOWRAM/PDOWRAM / PDA and the Consultant	FWUCs to be established Extension Workers under PDA and DAO

Activities	Preparation of Work Plan	Approval of Work Plan	Technical Assistance	Main Target Group				
Project Supporting Pr	Project Supporting Programs							
Meteo-hydrological Observation Strengthening	Technical Consultant	PMU Japan Support Fund	MOWRAM/PDOWRAM and the Consultant	-				
Capacity Development of MOWRAM	Technical Consultant	PMU Japan Support Fund	Technical Service Centre of Irrigation System and Meteorology (TSC) and the Technical Consultant	MOWRAM technical staff				
Capacity Development of PDOWRAM	Technical Consultant	PMU Japan Support Fund	Technical Service Centre of Irrigation System and Meteorology (TSC) and the Technical Consultant	PDOWRAM technical staff				
Project Formulation Study								
Project Formulation Study for Other Potential Areas	Technical Consultant	PMU Japan Support Fund	Technical Consultant	-				

(4) Coordination with the Japanese Technical Cooperation

JICA has been providing various technical cooperation in irrigation and agriculture sector of Cambodia such as the dispatch of experts, acceptance of participants for training, study scheme including M/P and F/S, grant aid and so forth. Under the technical cooperation, JICA has been assisting the Technical Service Centre of Irrigation and Meteorology to enhance capability of the staff of both MOWRAM and PDOWRAM. In succession, "the Improvement of Agricultural River Basin Management and Development Project (TSC-3)" has commenced from September 2009 basing in TSC and pilot areas in three provinces: (i) Battambang, (ii) Pursat and (iii) Kampong Chhnang.

When looking at possible collaboration with the JICA's technical cooperation, the most productive combination is considered to be in the capacity development aspect of the Project. Part of the work would be, therefore, expected to be assisted by TSC-3 particularly activities with cross-cutting and broader objectives such as two capacity development programs since they are not the activities necessarily concentrated on six-sub-project areas but they are related with overall institutional strengthening which is one of the important missions of the TSC.

3.1.4 Procurement Plan

Procurement plan for each component of the Project is tabulated as follows:

Method of Implementation for Each Component

Component	Activities	Method
Hardware Component: Rehabilitation of	Detail Design	Implemented by the technical consultant selected though short-list method
Irrigation and Drainage Facilities	Rehabilitation and Reconstruction Works Irrigation Facilities Drainage Facilities Inspection Road	International Competitive Bidding (ICB): Main and Secondary Systems Local Competitive Bidding (LCB): Tertiary Systems, the work of which are supervised by the technical consultant
Software Component	FWUC Establishment and Strengthening Agriculture Support Services	Implemented by MOWRAM/PDOWRAM/PDA and the technical consultant

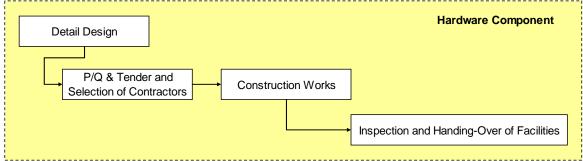
Component		Activities	Method	
		Meteo-hydrological Observation Strengthening	Implemented by MOWRAM/PDOWRAM and the technical consultant	
		Capacity Development of MOWRAM	TSC in collaboration with the technical consultant	
		Capacity Development of PDOWRAM		
Project Formulation Study Feasibility study level planning for other potential areas			Implemented by the technical consultant through coordination with construction supervision	

Among others, prospective packaging for the hardware component (rehabilitation of irrigation and drainage facilities) is tabulated as follows:

Packaging for the Works of Hardware Component

Sub-Project	Province	Number of P			ackage			
		Interna	ntional Competitive Bidding (ICB)	Loca	l Competitive Bidding (LCB) ²			
Ream Kon and Por Canal Sub- Projects	Battambang		 Construction of Moung Russei Headworks, Construction of main and Secondary Systems of Ream Kon and Por Canal Sub-Projects 	3	◆ Construction of tertiary systems			
Damnak Ampil, Wat Loung and Wat Chre Sub-Projects	Pursat	1	 Gate improvement of Damnak Ampil Headworks Construction of Wat Chre Headworks Construction of main and secondary systems of Damnak Ampil, Wat Loung and Wat Chre Sub-Projects 	5	◆ Construction of tertiary systems			
Lum Hach Sub-Project	Kampong Chhnang		 Construction of Lum Hach Headworks Construction of main and secondary systems 	3	◆ Construction of tertiary systems			
Total		1	-	11	-			

Prepared by JICA SAPROF Study Team


3.1.5 Implementation Schedule

The implementation schedule of the Project is shown in Figure 3.2.1. The Project will be implemented over 5 years from the commencement of detail design.

(1) Hardware Component: Rehabilitation of Irrigation and Drainage Facilities General procure on hardware component is illustrated as follows.

_

² The RGC has issued Procurement Manual consisting of two volumes: (i) Volume-I, Policies and Procedures and (ii) Volume-II, Standard National Bidding Documents Procurement of Goods. Although clear regulation is not specified for irrigation development project in MOWRAM, the Department of Engineering under the MOWRAM apply that the work for LCB is generally less than the cost of US\$ 1.0 million.

General Procedure on Hardware Component: Rehabilitation of Irrigation and Drainage Facilities

Detail Design

Detail design will commence from the end of 2010 over 1.5 years, major works of which are as follows:

♦ Topographic survey: longitudinal and cross sectional survey of canals and drains, and

mapping

♦ Geotechnical investigation: Moung Russei, Wat Chre and Lum Hach Headworks sites and

other major irrigation and drainage facilities such as fish ladder at

Damnak Ampil Headworks

♦ Detail Design: Detail design of headworks, irrigation, drainage canals, related

facilities and inspection roads including drawings and design

report

◆ Tender-related works: Preparation of pre-qualification (P/Q) document and tender

document

Pre-qualification and Tender

As described above, main and secondary facilities are based on ICB while tertiary facilities are carried out on LCB. In general, tender will be managed and evaluated by PMU Japan Support Fund and approved by the MEF through the Minister of MOWRAM. Prior to tendering, pre-qualification (P/Q) will be carried out to select qualified tenderer. The successful bidder will be selected based on the evaluation of proposal to be submitted by the bidders. Procurement will be made based on JICA procurement guideline.

Construction Works

Construction works will be carried out from the end of 2011 to the beginning of 2015 over 3.5 years. Major works on the construction of headworks at Moug Russei, Wat Chre and Lum Hach will be carried out during dry season.

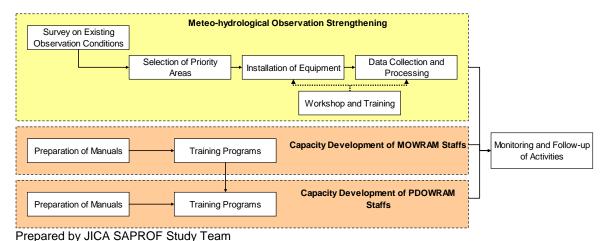
Handing-over of Facilities

The rehabilitated facilities will be transferred to MOWRAM after joint final inspection and issuance of approval.

(2) Software Component: FWUC Establishment and Strengthening and Agriculture Support Services

General procure on software component is illustrated as follows.

General Procedure on Software Component:
FWUC Establishment and Strengthening and Agriculture Support Services

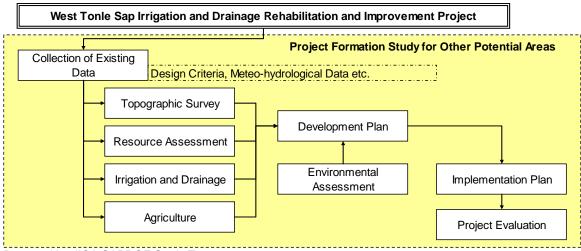

FWUC establishment and strengthening will be implemented over 3.5 years at each sub-project. The program will commence from awareness programs during detail design to technical training for water management and O&M of irrigation and drainage facilities. As a new FWUC to be established, activities in all ten steps as recommended by MOWRAM is generally followed with adequate time to be allocated.³

Agriculture support services will be started after organizational set-up will be made based on FWUC establishment and strengthening, approximately half years after FWUC establishment and strengthening activities. The Agriculture Support Services will be over 3 years for each sub-project area. The activities will be carried out by the Technical Consultant in collaboration with MOWRAM, PDOWRAM and PDA.

(3) Project Supporting Programs: Meteo-hydrological Observation Strengthening, Capacity Development for MOWRAM Staff and Capacity Development for PDOWRAM Staff General procedure on project supporting programs is illustrated as follows.

³ As a prototype, the steps recommended in "Training Manual for PIMD Module 5 on Establishing and Developing the Farmer Water Users Community" in MOWRAM are as follows:

Step 1: Initial Meeting to identify constraints and opportunities within communities Step 2: Identify irrigation area and potential members for FWUCs through Participatory Rural Appraisal (PRA) Step 3: Consensus building among FWUCs for activities plan Step 4: Preparation of FWUC statute and by-laws Step 5: Establishment of FWUCs and selection of leaders Step 6: Capacity building of FWUCs for preparation of irrigation service plan Step 7: Finalization of irrigation service plan Step 8: Preparation and adoption of management transfer agreement Step 9: Rehabilitation of systems through FWUCs participation Step 10: Provision of periodical support services to continue FWUC capacity building based on lessons learned from above activities


General Procedure on Project Supporting Programs:

Meteo-hydrological Observation Strengthening, Capacity Development of MOWRAM Staff and
Capacity Development of PDOWRAM Staff

The program will be carried out through existing organizational set-up within MOWRAM. In particular, out of three programs, the TSC will play an hub role for two programs: (i) Capacity Development for MOWRAM Staff and (ii) Capacity Development for PDOWRAM staff. Three project supporting programs will commence in parallel with detail design, each of which will be over 3 years.

(4) Project Formulation Study for Other Potential Areas

Through the coordination with the construction supervision team, general procedure on the project formulation study for other potential areas is illustrated as follows.

Prepared by JICA SAPROF Study Team

General Procedure on Project Formulation Study for Other Potential Areas

Project formulation study for other potential areas will be carried out in 2013 over 1 year to prepare feasibility level plan for second priority project (8 numbers) during Basin-wide Basic Irrigation and Drainage Master Plan Study by JICA using lessons to be learnt and data to be collected in the Project.

3.2 O&M Plan

3.2.1 Relevant Regulations for O&M of Irrigation and Drainage Facilities

Regulations and guidelines in Cambodia related with operation and maintenance of irrigation and drainage facilities are summarized as follows:

Regulations and Guidelines Related with O&M of Irrigation and Drainage Facilities

Title	Issue Year	Description	
Circular No.1 on the Implementation Policy for Sustainable Irrigation Systems	1999	 MOWRAM stipulated the role of FWUC in the policy for Sustainability of Operation and Maintenance Irrigation Systems. Circular No.1 defines organizational framework of FWUC attached with the Statute of the FWUC. The statute describes the objectives, criteria, organization, finance management, rules and punishment of FWUC. It also enhances the importance of the establishment of FWUC at each irrigation system. 	
Policy for Sustainability of Operation and Maintenance Irrigation Systems	2000	 This policy shows the management responsibility, water distribution, the functions and roles of FWUC, system of irrigation service fee (ISF), transfer of facilities to FWUC, supporting system for maintenance activity of FWUC, and monitoring and evaluation of systems. It consists of 5 chapters: (i) introduction, (ii) operation and maintenance of irrigation system, (iii) environment, (iv) human resource development, and (v) miscellaneous. 	
Steps in the Formation of a Farmer Water Users Community	2000	 FWUC has the responsibility for operation and maintenance of irrigation system. MOWRAM enhance to establish FWUC and shows steps in the formation of FWUC in this document. FWUC finally will be registered by MOWRAM. 	
Training Manual for Participatory Irrigation Management and Development (PIMD)	2003	The manual was prepared with the aim of promoting Participatory Irrigation Management and Development (PIMD) based on decentralization and Irrigation Management Transfer policy of the Government. The manual consists of 7 modules as follows: \$\display* Module 1: General concept of PIMD and lesson and learnt of PIMD around the world. \$\display* Module 2: Policy, legal and institutional framework of PIMD. \$\display* Module 3: Planning and implementing PIMD at the national level. \$\display* Module 4: Implementation of PIMD at provincial and irrigation system level. \$\display* Module 5: Functions of FWUC support team in order to establish FWUC and develop their capacity. \$\display* Module 6: Monitoring and evaluation system to support implementation and further development of PIMD. \$\display* Module 7: Technical guide for irrigation water management targeted FWUC leaders and members.	
Sub-Decree on Farmer Water User Community	Draft	The objective of this Sub-decree is to carry out effective and sustainable management and usage the irrigation systems. The sub-decree consists of 12 chapters defining the basic principles and process, function and supporting system etc. The sub-decree also fosters farmers' participation in the O&M of irrigation system through FWUC based on PIMD and IMT.	

Prepared by JICA SAPROF Study Team based on MOWRAM

In essence following issues need to be considered to prepare O&M plan.

- FWUCs need to be established at each irrigation system.
- Irrigation and drainage facilities are transferred to FWUCs depending upon the capability of the group based on PIMD and IMT policy. Although level of facilities are not clearly described in any documents, main and secondary facilities will be maintained by the Government while tertiary facilities and below will be by FWUCs in common.
- ◆ The transfer of facilities will be made based on the consensus building and preparation of agreement document between MOWRAM and FWUC.
- ♦ Transfer of facilities from the Government to FWUCs is made in gradual manner as referred to following table, the share of O&M cost mentioned in the Policy for Sustainability of Operation and Maintenance Irrigation System.

Share of O&M Cost

Year after completion	Government	Beneficial Farmers
One	80%	20%
Second	60%	40%
Third	40%	60%
Fourth	20%	80%
After Fifth	0%	100%

Prepared by JICA SAPROF Study Team based on the Policy for Sustainability of Operation and Maintenance Irrigation System, June 2000, MOWRAM

3.2.2 Staff Required for O&M Works

Necessary number of staff required for operation and maintenance of facilities is shown in the following table.

Staff Required for O&M Works

Organizations	Position	Nos.
Central Level		
PMU Japan Support Fund	Project Director	1
	Project Manager	1
Sub-total (Central Level) (=1)		2
Provincial Level		
Project Implementation Unit (PIU)		
◆ Battambang Province	Project Manager	1
	Irrigation/O&M	1
	Gate operator	1
Sub-Total of Battambang (=2)		3
◆ Pursat Province	Project Manager	1
	Irrigation/O&M	2
	Gate operator	2
Sub-Total of Pursat (=3)		5
◆ Kampong Chhnang Province	Project Manager	1
	Irrigation/O&M	1
	Gate operator	1
Sub-Total of Kampong Chhnang (=4)		3
Sub-total (Provincial Level) (=5=2+3+4)		11
Grand Total (=1+5)		13

Prepared by JICA SAPROF Study Team based on JICA (2009), Basin-Wide Basic Irrigation and Drainage Master Plan

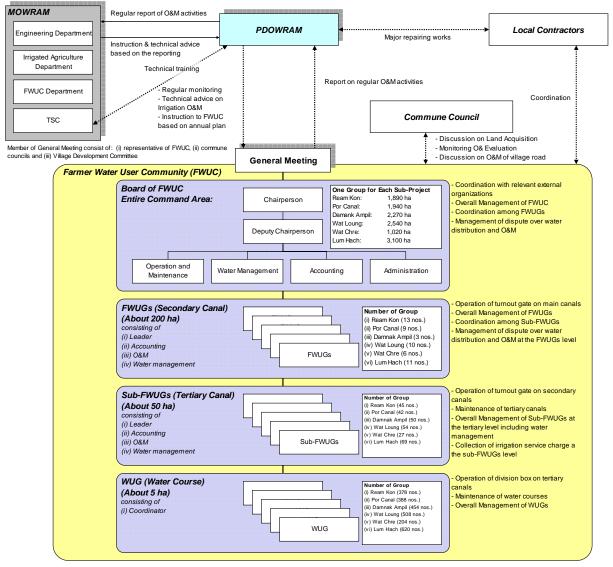
Study

3.2.3 O&M Responsibility

(1) Relevant Organizations and Responsibility of O&M

Responsibility of O&M after the Project is proposed as follows based on the abovementioned regulations and guidelines:

♦ At present, no substantial group activities are observed for O&M of irrigation facilities at all the sub-projects, transfer of all the facilities to FWUCs are not realistic. Demarcation of O&M responsibility among MOWRAM, PDOWRAM and FWUCs are proposed as follows:


O&M Responsibility Proposed for Irrigation and Drainage Facilities

Level	Headworks	Main Canal	Secondary	Tertiary canals
Activities	-		canals	
Preparation of annual O&M plan	MOWRAM /	MOWRAM /	PDOWRAM	FWUC
	PDOWRAM	PDOWRAM		
Preparation of cropping schedule	-	-	FWUC / FWUG	FUWG
Operation of facilities	MOWRAM /	MOWRAM /	PDOWRAM	FWUC
	PDOWRAM	PDOWRAM		
Maintenance work	MOWRAM /	MOWRAM /	FWUC	FWUC
	PDOWRAM	PDOWRAM		

Prepared by JICA SAPROF Study Team

♦ Operation and Maintenance Manuals will be prepared by MOWRAM and PDOWRAM and be handed over to the respective parties responsible during transfer process. The manual will be regularly updated jointly by MOWRAM and PDOWRAM based on follow-up activities.

Proposed organizational set-up for O&M of irrigation and drainage facilities for each sub-project are illustrated as follows:

Proposed Organizational Set-up for O&M of Irrigation and Drainage Facilities

O&M responsibility of each organization is described as follows:

MOWRAM

The department closely relevant to O&M would be: (i) the Engineering Department, (ii) the Irrigated Agriculture Department, (iii) the FWUC Department and (iv) the Technical Service Centre of Irrigation and Meteorology.

- ♦ Instruction & technical advice based on the reporting from PDOWRAM
- Budgetary arrangement for O&M
- Provision of technical training to PDOWRAM staff and the members of FWUCs particularly by TSC
- Major repairing and replacement works

PDOWRAM

Sub-projects operation team within PDOWRAM would consist of: (i) the director of PDOWRAM, (ii) irrigation engineer/O&M and (iii) gate operators.

- Preparation of annual O&M plan including budgetary plan
- Regular monitoring of FWUCs activities at the field level
- ◆ Technical advice on irrigation and drainage O&M
- ♦ Instruction to FWUC based on annual plan
- ♦ Regular reporting of O&M activities to MOWRAM
- Request of budgetary plan to MOWRAM
- ♦ Meteo-hydrological observation: (i) rainfall, (ii) temperature, (iii) evaporation, (iv) humidity at the sub-project and river basin level and (v) river water level and run-off for the water source

FWUC

FWUC will consist of: (i) General Meeting, (ii) Board of FWUC, (ii) FWUGs, (iii) Sub-FWUCs and (iv) WUGs, each of which are established depending upon the level of facilities.

General Meeting

- Consisting of commune councils, and the representative of FWUC
- ♦ Coordination among local authorities and FWUC

Board of FWUC

- ♦ Coordination with relevant external organization such as provincial government and commune councils through general meeting
- ♦ Coordination among FWUGs
- ♦ Management of dispute over water distribution and O&M
- ♦ Overall financial management of the group

FWUGs

- Established for each secondary canal covering 200 ha averagely
- ♦ Operation of turnout gate for main canal
- ♦ Coordination among Sub-FWUGs including ISF collection

Sub-FWUGs

- Established for each tertiary canal covering 50 ha averagely
- Operation of turnout gate for secondary canal
- ♦ Coordination among WUGs
- ♦ Collection of irrigation service fee of Sub-FWUGs members

WUGs

- Established for each water course covering 5 ha averagely
- ♦ Operation of division box on water course
- (2) O&M Cost

O&M cost for the sub-projects is estimated as follows consisting of (i) Salary and Wages for FWUCs and FWUGs, (ii) Direct cost including office expenses, labor for minor maintenance work and (iii) other expenses.

Annual Operation and Maintenance Cost for the Sub-Projects

				Government	FWUC			
Item	Unit	Qty.	Unit Rate	Amount	Amount	Unit Rate	Amount	Amount
	Ollit	Qıy.	(US\$)	(US\$)	(Riels.)	(US\$)	(US\$)	(Riels.)
1. Salary and Wages								
1.1. FWUCs								
1) Chairperson	MM	72	30	2,160	8,886,240			
2) Deputy chairperson	MM	72	25	1,800	7,405,200			
3) Other staff	MM	288	20	5,760	23,696,640			
1.2. FWUGs								
1) Leader	MM	660	20	13,200	54,304,800			
2) Other staff	MM	1,980	15	29,700	122,185,800			
2. Direct costs								
1.1. Office expenses	month	732	10	7,320	30,114,480			
1.2. Labor for minor maintenance	MD	39,260				1	39,260	161,515,640
1.3. Other expenses (gate maintenance)	L.S.	1	20,000	20,000	82,280,000			
<u>Total</u>				79,940	328,873,160		39,260	161,515,640
		,	=	US\$6.26		=	US\$3.08	
			say	US \$7.00	per ha	say	US \$3.00	per ha

As shown above, total annual O&M cost is \$10 /ha consisting of (i) \$7/ha shouldered by the Government and (ii) \$3/ha by the FWUC. As stipulated in the Policy for Sustainability of Operation and Maintenance Irrigation System, O&M of main and secondary canals will be transferred to FWUCs 5 years after the Project. Based on the gradual transfer policy, share of O&M during transfer period is tabulated as follows:

Share of O&M Cost during Transfer Period

Year after completion	Gover	rnment	Beneficia	l Farmers
	per ha Amount		per ha	Amount
One	US\$ 9.4	US\$ 119,944	US\$ 0.6	US\$7,656
Second	US\$ 8.8	US\$ 112,288	US\$ 1.2	US\$15,312
Third	US\$ 8.2	US\$ 104,632	US\$ 1.8	US\$22,968
Fourth	US\$ 7.6	US\$ 96,976	US\$ 2.4	US\$30,624
After Fifth	US\$ 7.0	US\$ 89,320	US\$ 3.0	US\$38,280

Prepared by JICA SAPROF Study Team

(3) Irrigation Service Fee

Irrigation service fee (ISF) will cover all the O&M costs to be borne by FWUCs. ISF is tentatively set to be: (i) U\$ 4.0/ha/cropping season for gravity irrigation and (ii) U\$1.0/ha/cropping season for pump irrigation to cover necessary annual O&M cost as estimated above. During the Project, the value of ISF needs to be determined through the consensus among members of FWUCs.

⁴ According to the survey on the advanced FWUCs under the pilot project under the Comprehensive Agricultural Development of Prek Thnot River Basin (JICA), the ISF and collection ratio is shown as follows:

Comparison of Relatively Advanced FWUCs in ISF

Comparison of Relatively Advanced F WCCs in 15F								
	Ou Treang FWUC	Sdau Kaong FWUC	Phoum Roung FWUC	Ou Veaeng FWUC				
Value	Rainy season	1st year: Riel 7,000	(i) Gravity: Riel 40,000	(i) Gravity: Riel 30,000				
	(i) Gravity and pump:	(\$1.75)/ha	(\$10)/ha	(\$7.5)/ha				
	Riel 20,000 (\$5)/ha	2nd year: Riel 8,000	(ii) Pump: Riel 10,000	(ii) Gravity and pump:				
	(ii) Pump: Riel 10,000	(\$2.0)/ha	(\$2.5)/ha	Riel 20,000 (\$5)/ha				
	(\$2.5) /ha	3 rd year: Riel 11,000		(iii) Pump Riel 10,000				
	Dry season	(\$2.75)/ha		(\$2.5)/ha				
	(i) and (ii): Riel 40,000							
	(\$10,0)/ha							
Ratio of	80-85%	99%	35%	10%				
Collection								

Extracted from the pilot project under the Comprehensive Agricultural Development of Prek Thnot River Basin (2008), JICA

CHAPTER 4 PROJECT COST ESTIMATE

4.1 Basic Conditions for Cost Estimate

The basic conditions and assumptions employed for the project cost estimate are as follows:

- i) Cost estimate refers to the prices as of August 2009.
- ii) Exchange rates applied are as of December 2008, and they are as follows: 1 US Dollar (US\$) = 4,114 Riel

= 96.8 Yen

- iii) Unit prices of labor, construction materials, engineering works, etc., were collected from MOWRAM and market.
- iv) Project costs are divided into foreign currency portion (FC) and local currency portion (LC). Ratios of the FC and the LC are estimated for each content, referring to similar types of the projects in Cambodia.
- v) Price escalation rates are assumed to be 2.6 %/annum for FC and 1.2 %/annum for LC.
- vi) Physical contingency is 5.0%.
- vii) Tax (VAT) is 10% according to the Government regulation.
- viii) Project administration cost is 3.0% of construction cost.
- ix) Interest during construction is 0.01% of accumulated loan portion.

4.2 Project Cost Estimate

4.2.1 Initial Investment Cost for the Project

The initial investment cost for the Project is estimated at US\$ 49.1 million consisting of JPY 2.8 billion for FC portion and Riels. 84.0 billion for LC portion as shown in Appendix B3 and summarized in the following table:

Initial Investment Cost for the Project

No.	Item	Total (US\$ 1,000)	FC (JPY million)	LC (Riels. million)
1.	Construction Cost	31,693	1,921	48,722
2.	Procurement Cost	464	35	428
3.	Consulting Services Cost	5,485	304	9,621
4.	Soft Component Activities	2,227	119	4,074
5.	Land Acquisition Cost	665	0	2,736
6.	Project Administration Cost	1,107	0	4,554
7.	Tax & Duty	1,684	0	6,928
8.	Price Escalation	3,546	267	3,243
9.	Physical Contingencies	2,202	133	3,441
10.	Interest during Construction	18	1	25
	<u>Total</u>	2,780	83,772	
Cost of	Primary Benefit Area (12,760ha)	US\$ 3,8	50/ha	
Cost of	Primary and Secondary Benefit Area (2	US\$ 1,9	20/ha	

Prepared by the JICA SAPROF Study Team

(1) Construction Cost

The construction cost includes direct construction costs and costs for general items, miscellaneous works and contractor's expenses and is estimated for the following components of each sub-project:

Item 1-1: Headworks and Major Related Structures

Diversion weir, intake structures and other important major structures.

Item 1-2: Main and Secondary Systems

Main and secondary irrigation and drainage canals and related structures.

Item 1-3: On-farm Development

Tertiary canal systems and related facilities.

The construction cost for each sub-project is estimated as shown in Appendix B3 and summarized in the following table:

Construction Cost for the Sub-Projects

	Name of Sub-project	Total (US\$ 1,000)	FC (JPY 1,000)	LC (Riels. mill.)	Remarks
1.	Ream Kon Rehabilitation Sub-Project	6,674	417,982	9,693	1,890 ha w/HW
2.	Por Canal Rehabilitation Sub-Project	2,215	129,034	3,629	1,940 ha
3.	Damnak Ampil Rehabilitation Sub-Project	4,008	190,309	8,401	2,270 ha w/HW
4.	Wat Loung Rehabilitation Sub-Project	4,811	294,853	7,261	2,540 ha
5.	Wat Chre Rehabilitation Sub-Project	3,276	193,310	5,262	1,020 ha w/HW
6	Lum Hach Rehabilitation Sub-Project	10,709	695,992	14,477	3,100 ha w/HW
	<u>Total</u>	31,693	1,921,480	48,722	

w/HW: Headworks will be re-built in the particular sub-projects.

Prepared by the JICA SAPROF Study Team

(2) Procurement Cost

Procurement cost includes: (i) procurement cost of vehicles, (ii) procurement cost of motorcycles and (iii) procurement cost of office equipment and furniture. The procurement cost is estimated as follows:

Procurement Cost for the Project

Item	Total	FC	LC	Remarks
Item	(US\$ 1,000)	(JPY 1,000)	(Riels. mill.)	Kemarks
Procurement of Vehicles	360	35,000	0	10 nos.
2. Procurement of Motorcycles	24	0	99	24 nos.
3. Procurement of office equipment and Furniture	80	0	329	
<u>Total</u>	<u>464</u>	<u>35,000</u>	<u>428</u>	

Prepared by the JICA SAPROF Study Team

(3) Consulting Services Cost

The consulting services cost consists of remuneration for necessary professional experts and direct costs such as office running cost, communication, survey and investigations, workshop costs, etc. The consulting services cost is estimated as shown in Appendix B3 and summarized in the following table:

Consulting Services Cost for the Project

	Component	Total (US\$ 1,000)	FC (JPY 1,000)	LC (Riels. mill.)
1.	Detailed Design (D/D)	2,464	133,430	4,460
2.	Construction Supervision (C/S)	3,021	170,850	5,161
	<u>Total</u>	<u>5,485</u>	304,280	<u>9,621</u>

Prepared by the JICA SAPROF Study Team

(4) Soft Component Activities

The cost for soft component activities is estimated as shown in Appendix B3 and summarized in the following table:

Soft Component Activities Cost for the Project

	Commonant	Total	FC	LC
	Component	(US\$ 1,000)	(JPY 1,000)	(Riels. mill.)
1.	FWUC Establishment and Strengthening Program	621	32,390	1,180
2.	Agricultural Extension Activities	443	26,460	692
3.	Meteo-hydrological Observation Strengthening Program	417	18,240	936
4.	Capacity Development of MOWRAM and PDOWRAM staff	113	8,670	92
5.	Project Formulation Study	633	33,570	1,174
	<u>Total</u>	2,226	119,330	4,074

Prepared by the JICA SAPROF Study Team

(5) Land Acquisition Cost

Land acquisition cost for the Project is estimated based on the actual anticipated area for each sub-project (refer to Chapter 6 for details). The land acquisition cost for each sub-project is estimated as shown in the following table:

Land Acquisition Cost for each Sub-Project

		Area (ha)				unt
Component	Headworks	Canal system*)	Drain	Total	(US\$ 1,000)	(Riels. mill.)
1. Ream Kon Rehabilitation Sub-Project	0.0	16.7	25.4	42.1	126	
2. Por Canal Rehabilitation Sub-Project	0.0	11.8	12.2	24.0	72	
3. Damnak Ampil Rehabilitation Sub-Project	0.0	3.8	10.9	14.7	44	
4. Wat Loung Rehabilitation Sub-Project	0.0	29.8	22.6	52.4	157	
5. Wat Chre Rehabilitation Sub-Project	0.0	10.2	6.9	17.1	51	
6 Lum Hach Rehabilitation Sub-Project	85.8	36.1	21.4	143.3	215	
<u>Total</u>				<u>293.6</u>	<u>665</u>	<u>2,736</u>

^{*} Main and secondary systems only

Prepared by the JICA SAPROF Study Team

(6) Annual Disbursement Schedule

The annual disbursement schedule is prepared based on the project implementation schedule shown in Figure III 3.2.1. The annual disbursement schedule is shown in Appendix B3 and summarized in the following table:

Annual Disbursement Schedule for the Project

Year	Total (US\$ 1,000)	FC (JPY 1,000)	LC (Riels. mill.)
2010	1,020	54,084	1,912
2011	2,913	157,128	5,285
2012	1,860	58,972	5,143
2013	27,755	1,588,025	46,688
2014	14,959	895,435	23,479
2015	372	15,481	870
2016	212	11,329	395
<u>Total</u>	<u>49,091</u>	<u>2,780,454</u>	<u>83,772</u>

4.2.2 Operation and Maintenance Cost

(1) Annual Operation and Maintenance Cost

Annual operation and maintenance cost includes: (i) salary and wages for staff personnel of FWUC consisting of board members of FWUC and Sub-FWUGs and (ii) direct cost for minimum office expenses and repairing works. The annual operation and maintenance cost for the sub-projects is estimated as follows:

Annual Operation and Maintenance Cost for the Sub-Projects

Item	Unit	Qty.	Unit Rate (US\$)	Amount (US\$)	Amount (Riels.)
1. Salary and Wages					
1.1. FWUCs					
1) Chairperson	MM	72	30	2,160	8,886,240
2) Deputy chairperson	MM	72	25	1,800	7,405,200
3) Other staff	MM	288	20	5,760	23,696,640
1.2. FWUGs					
1) Leader	MM	660	20	13,200	54,304,800
2) Other staff	MM	1,980	15	29,700	122,185,800
2. Direct costs					
1.1. Office expenses	month	732	10	7,320	30,114,480
1.2. Labor for minor maintenance	MD	39,260	1	39,260	161,515,640
1.3. Other expenses (gate maintenance)	L.S.	1	20,000	20,000	82,280,000
<u>Total</u>				119,200	490,388,800
			=	US\$9.34	
			say	US\$10.00	per ha

Prepared by JICA SAPROF Study Team

(2) Major Repair Cost

Major repair including replacement will be executed every 10 years and the cost is assumed to be 5% of the construction costs, referring to similar types of the projects in Cambodia. The major repair cost for every 10 years is estimated at about US\$ 1.8 million consisting of JPY 114 million for FC portion and Riels. 2.7 billion for LC portion.

CHAPTER 5 PROJECT EVALUATION

5.1 Evaluation Conditions

Project benefits generated from the rehabilitation of the six sub-projects would come from the stabilization of irrigation water supply to the rice cultivation area for the wet season. In other words, the increase in the net production value (NPV) is equivalent to the project benefit. This is the increased net income to be borne by improving the function of irrigation system after completion of the proposed civil works in the respective sub-projects. The expected increase in paddy yield by stabilizing rice production resulting from the training and/or guidance on improved farming practices and proper irrigation water use should also be added to the project benefit.

Based on the drawn-up development plan and implementation schedule, the NPV, benefit-cost (B/C) ratio and economic internal rate of return (EIRR) of the proposed project are calculated by taking the following basic assumptions into account:

- i) The evaluation period is 30 years from 2010;
- ii) The financial project cost covers civil works, engineering services including support programs, and O&M and major repairing works, which is estimated based on the price level in September 2009 and exchange rate at USD 1.00 = Riel 4,114;
- iii) The financial project cost is converted to the economic project cost by applying the standard conversion factor (SCF) of 1.0 to foreign currency portion of each cost item, 0.977 to the physical portion of civil works, engineering services and O&M estimated at local currency, and 0.75 to unskilled labor cost of the civil works;
- iv) The project benefit is to borne after the completion of civil works and reach to the target yield in the fourth year; and
- v) Discount rate is set as 12 % for calculation of B/C.

5.2 Economic Evaluation

Through re-examination of the original design capacity of irrigation facilities and available irrigation water resources, additional irrigation areas can be expected to come from the outside of command areas of Ream Kon, Por Canal, Damnak Ampil and Lum Hach Sub-projects. These areas have been quantified at 12,850 ha as the secondary benefit area in addition to 12,760 ha as the primary benefit area. From the engineering point of view, therefore, the initial investment costs of irrigation facilities commonly used for irrigation water intake purposes by the both benefit areas can be allocated according to the ratio of both command areas. Taking into account the above basic assumptions as well as the allocation concept of initial investment costs, the cash flow is projected for the respective sub-projects and then the entire proposed project as summarized below.

Cash Flow of Economic Cost and Benefit

Unit: Riel Million

								Ullit. Kiel	WITHIOH
Item	2010	2011	2012	2013	2014	2015	2016	2017	2018
Economic investment cost	2,041	9,121	3,453	80,168	42,024	1,073	592		
Economic annual O&M cost	0	0	0	0	272	410	410	410	410
Economic benefit	0	0	0	0	6,083	16,063	18,978	21,893	22,840

Prepared by JICA SAPROF Study Team

Based on the cash flow, NPV, B/C ratio and EIRR are computed for the proposed project. Also sensitivity analyses are performed for such cases as cost 10% and 20% up, benefit 10% and 20% down, and combination of each case. The results of the economic evaluation as shown below reveals that the proposed project is economically sound as its EIRR is 13.3% exceeding the bankable decision-making standard.

Results of Economic Analysis

NIDY		EIRR & S	Sensitivity		Cost	
NPV	B/C Ratio at 12% discount ratio	Analysis (%) Norm		Normal	10% up	20% up
(Riel million)	uiscount l'atto		Normal	13.3	12.0	10.9
00.526	1.10	Benefit	10% down	11.4	10.2	9.2
99,536	1.10		20% down	9.4	8.3	7.3

Prepared by JICA SAPROF Study Team

5.3 Financial Evaluation

Financial evaluation of the proposed project is undertaken in terms of financial viability from individual farmer's perspective, focusing on the beneficiary farmers' capacity to pay. Such pay is intended for shouldering partly annual O&M cost from their increments of net farm income from irrigated rice cultivation. The average annual farmer's net income in the project area is estimated to increase by Riel 1,284,000/ha from Riel 785,000/ha at present to Riel 2,069,000/ha in the future. As the annual O&M cost required is estimated at USD 10/ha or Riel 41,000/ha annually, an affordable portion of this cost can be covered with this increment of the net farm income.

5.4 Indirect Benefit and Socio-Economic Impact

In addition to the above mentioned direct benefits derived from incremental increase in paddy production, the following indirect benefits and socio-economic impacts can be expected from the implementation of the proposed Project.

(1) Increase in Employment Opportunity

The proposed Project will generate additional employment of around 82,000 person-days as extra requirement after meeting by available family labors to the maximum extent during the peak time of farm operation like transplanting and harvesting. Thus an increase in employment opportunities, especially for unskilled labors, can be expected during the construction period, because contractors will require un-skilled labors for construction from local residents. Some unskilled labors will also get technique and become to be semi-skilled labor through on-the-job training. This experience will provide them with new opportunities for post project employment.

(2) Socio-economic Impacts

When implemented, the proposed project would create various impacts not only affecting the direct beneficiaries but also the rural economy as a whole. The impacts on the direct beneficiaries attributable to an increase in their net household income are expected:

- To enable them to send their children to schools and access higher education;
- To enable their family members to buy other goods and services as well as luxuries which have positive effect to other cottage industries; and

- To secure sufficient rice supply for their family's consumption.

5.5 Operation and Effect Indicators

5.5.1 Operation Indicators

Operation indicators proposed for monitoring the sub-projects are listed as follows. The project benefit is to be borne from the next year after the completion of civil works and reach to the target yield in the fourth year.

Operation Indicators

	Indicator	Unit	Without Project	With Project
1	Irrigated area	ha	760	12,760
2	Planted area of paddy	ha	14,260	16,800
3	Cropping intensity	%	104	132
4	Number of FWUGs	nos.	0	52
5	Collection ratio of water charge	%	0	80

Prepared by JICA SAPROF Study Team

5.5.2 Effect Indicators

Effect indicators proposed for monitoring the sub-projects are listed as follows. The project benefit is to be borne from the next year after the completion of civil works and reach to the target yield in the fourth year.

Effect Indicators

	Indicator	Unit	Without Project	With Project
1	Paddy production	ton	22,000	54,000
2	Paddy yield	ton/ha	1.5	3.2
3	Annual net farm income	Riel/ha	785,000	2,069,000

Prepared by JICA SAPROF Study Team

5.5.3 Procedures for Monitoring Operation and Effect Indicators

The operation and effect indicators above mentioned will be collected by the project consultant. The consultant will carry out baseline survey and monitoring and evaluation activities (M&E). Based on the collected data, monthly, quarterly and annual report will be prepared by the project consultant. After finishing the Project, M&E activity will be handed over from the consultant to MOWRAM.

CHAPTER 6 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

6.1 List of Law and Regulations

It is necessary to ascertain whether a project complies with environmental laws and standards of the host national and local governments concerned. The following table shows the list of main legislations relating to natural and social environment in Cambodia.

List of Major Legislations for Environment

Content	Law/Regulation				
Constitution	Article 59 of the National Constitution of the Kingdom of Cambodia (1993)				
Basic Law	Law on Environmental Protection and Natural Resource Management (LEPNRM)				
Environmental Management Institution	Sub-Decree on the Organization and Functions of the Ministry of Environment (1997)				
Environmental Impact	Sub-Decree on Environmental Impact Assessment Process (1999)				
Environmental Impact Assessment	Declaration on Guidelines for Conducting Environmental Impact Assessment Report (2000)				
Assessment	Guideline for Conducting Environmental Impact Assessment(EIA) Report (2000)				
	Royal Decree on the Protection of Protected Areas (1993)				
Protected Areas	Declaration No.1033 on Protected Areas (1994)				
Management	Royal Decree on the Establishment and Management of Tonle Sap Biosphere Reserve (2001)				
	Protected Areas Law (2008)				
	Sub-Decree on Water Pollution Control (1999)				
Pollution Control	Sub-Decree on Solid Waste Management (1999)				
	Sub-Decree on Air Pollution and Noise Disturbance (2000)				
	Land Law (2001)				
Pasauraa Managamant	National Water Resources Policy for The Kingdom of Cambodia (2007)				
Resource Management	Sub-Decree on Addressing Socio-Economic Impacts caused by Development Projects (Draft)				
	Sub-Decree on Farmer Water User Community (2008)				

Prepared by JICA SAPROF Study Team

JBIC Guidelines for Confirmation of Environmental and Social Consideration (April 2002)

6.2.1 General

Japan Bank for International Cooperation (hereinafter referred to as "JBIC") has prepared "JBIC Guidelines for Confirmation of Environmental and Social Considerations" (hereinafter referred to as the "Guidelines") which is applied to all projects subject to lending or other financial operations by JBIC. JBIC makes clear in its Guidelines the environmental and social considerations required for projects to receive their funding, and confirms those environmental and social considerations. This guideline is applicable to ODA loan projects of JICA after merger of JICA and JBIC in 2008.

In light of the Guidelines and taking into account the characteristics of the project and the particular circumstances of the country and its location, JICA confirms in its environmental reviews: (i) whether appropriate and sufficient consideration is given to environmental and social issues before the implementation of the project, (ii) whether appropriate environmental and social considerations can be expected after JICA makes decisions on the funding of the project in light of such factors as the state of preparation by the project proponent and host government, their experience, operational capacity, and the state of securing funds, as well as external factors of instability.

It is required for all loan projects of JICA to undertake efficient environmental reviews through the appropriate use of the environmental checklists for each category and the result of assessing the

Project according to the checklist is shown as follows.

6.2.2 Contents of the Environmental checklist for Irrigation Projects

The contents of the environmental checklist of irrigation projects are in the right table:

6.3 Environmental and Social Impacts Anticipated

 Category
 Environmental Item

 1. Permits and Explanation
 (1) EIA and Environmental Permits

 2. Mitigation Measures
 (2) Explanation to the Public

 3. Natural Environment
 (1) Water Quality, (2)Soil Contamination

 (2) Subsidence

 (3) Natural Environment
 (1) Protected Areas, (2)Ecosystem

Contents of the Environmental checklist for Irrigation Projects

2. Mitigation Measures
(1) Water Quality, (2)Soil Contamination
(2) Subsidence
3. Natural Environment
4. Social Environment
(1) Protected Areas, (2)Ecosystem
(1) Resettlement, (2)Living and Livehood,
(2) Heritage, (4)Landscape
5. Others
(1) Impacts during Construction, (2)Monitoring
6. Note
(1) Reference to checklist of Other Sectors

(2) Note on Using Environmental Checklist

Prepared by JICA SAPROF Study Team

The result of comparing the

checklist of irrigation project with the Project, potential negative environmental impact anticipated is summarized in the table as follows and details are shown afterward. Although it is not significant, four categories of the checklist are applicable as negative impacts by the Project.

Potential Negative Environmental Impact Anticipated

	Potential Negative Environmental Impact Anticipated							
	Potentia	al Impact		Phase				
	Category	Item	Design	Construction	Operation			
1.	Permits and Explanation	_	_	_	_			
2.	Mitigation Measures	◆ Water Quality◆ Soil Contamination	_	_	◆ By the increase of agricultural input in the irrigation area			
3.	Natural Environment	◆ Ecosystem	_	Disturbance of fish migration by the construction of headworks (Lum Hach and Ream Kon)	◆ Decrease in amount of flowing in the downstream river by irrigation water			
4	Social Environment	◆ Living and livelihood	◆ Land acquisition by expansion of the main, secondary and Tertiary canal	_	◆ Due to unequal allocation of irrigation water			
5	Others	◆ Impacts during Construction	_	 Degradation of sanitation condition and security due to inflow of construction workers Noise, vibrations, turbid water, dust, exhaust gases, and wastes caused by construction vehicle and heavy equipment 				
6	Note	_	_	_	_			

Prepared by JICA SAPROF Study Team

6.3.1 Permits and Explanation

"The Sub-Decree on Environmental Impact Assessment Process" explains that irrigation development with more than 5,000 ha is required to carry out EIA or IEIA for approval from the Ministry of Environment (MOE) prior the implementation. The Six sub-project areas are

List of the Projects Require an IEIA or EIA (Agriculture)

No	Type and Activities of the	Size/Capacity
1,0	Projects	Size, Supusity
1	Concession forest	≧10,000ha
2	Logging	≥500ha
3	Land covered by forest	≥500ha
4	Agriculture and agro industrial land	≧10,000ha
5	Flooded and coastal forests	All sizes
6	Irrigation systems	≥5,000ha
7	Drainage systems	≥5,000ha
8	Fishing ports	All sizes

Prepared by JICA SAPROF Study Team

respectively less than 5,000 ha, therefore, IEIA and/or EIA is not required from regulatory view point.

Besides, an Initial Environment Examination (IEE) was carried out at the previous Study from the view point of: (i) social environment, (ii) natural environment and (iii) pollution. The IEE judged that the environmental impact by the Project is few for all the view points.

6.3.2 Mitigation Measures

(1) Water pollution and Soil Contamination (Operation)

Water pollution and soil contamination management

Item	Description
Activity	Implementation of irrigated agriculture using rehabilitated and/or constructed irrigation and drainage facilities
Affected Area	In and around Projects area including downstream areas (All the six sub-projects)
Projected	At the rehabilitation and/or new irrigation area, it is possible that usage of the fertilizer and pesticide will
Impact	increase in the future by getting enough irrigation water. In such cases, water and soil will be contaminated affecting natural habitat, flora and fauna.
Management	To control the amount of fertilizer and pesticide through the training to farmers
Measure	Sustainable agriculture needs to control appropriate amounts of fertilizer and pesticide for the future,
	therefore, all farmers should learn the appropriate use of fertilizer and pesticide though the training.
	These training should be carried out through FWUCs under the lead of PDOWRAM.
	To support check system among the FWUC members regarding farming management
	Awareness among farmers in the short-term on the hazards of using toxic chemicals should be promoted,
	and community-based mutual checking system supported by extension agent should be established
	among FWUC members for proper chemical and fertilizer application based on WHO guideline.
	To monitor water quality and soil condition
	In the operation phase, it is necessary to monitor water quality and soil conditions in each sub-project
	areas.
Conclusion of	Currently, water and soil contamination is not serious problem, because most of farmers use compost, not
Examination	chemical fertilizer. But irrigation has potential negative impacts such as salinization of soils and water
	pollution. Careful attention should be paid regularly to these factors.
Stakeholder	♦ MOWRAM
	♦ PDOWREAM
	♦ Commune Council
	♦ Affected Farmers

Prepared by JICA SAPROF Study Team

6.3.3 Natural Environment

(1) Ecosystem (Construction)

Construction of fish ladder

Item	Description
Activity	Construction and/or rehabilitation of headworks at Moung Russei, Pursat and Lum Hach Sub-Projects
Affected Area	Moung Russei river basin, Pursat river basin, Boribo river basin
Projected	The Tonle Sap lake is the largest freshwater lake in Southeast Asia. The lake and wetland area around the
Impact	lake forms rich ecosystem, in which many species of freshwater fishes live. In the rainy season, these
	species move to upper basins from the lake with flooding water, and in dry season, back to the lake. The
	construction of headworks would give negative impacts by preventing such fish sprawling.
Management	To construct Fish ladder in the new headworks (Ream Kon, Wat Chre and Lum Hach)
Measure	The Project plans to construct new headworks with fish ladder in three sub-projects, Ream Kon, Wat
	Chre and Lum Hach. The design of fish ladder is proposed to be half-cone type. Many kinds of fish live
	in the river and the lake and half-cone type is suitable for various type of species.

Item	Description
	To improve the existing headworks (Damnak Ampil)
	Because there is no fish ladder with exist headworks of Damnak Ampil, the headworks prevents fish
	migration between Pursat River and the lake. It is desirable to improve to reducing the problem for
	natural environment impacts of irrigation project.
Conclusion of	The rich ecosystem around Tonle Sap Lake plays very important role in Cambodia. Large amount of
Examination	fishes are supplied to rural communities. Freshwater fisheries play an important role in rural people life
	for household consumption to supplement rice in the meals. To construct and/or improve headworks
	would give impact onto this ecosystem, however, to construct fish ladder minimize this impact.
Stakeholder	♦ MOWRAM
	♦ PDOWRAM
	♦ Commune Council
	♦ Local Authority
	♦ Local Fisher

(2) Ecosystem (Operation)

River maintenance flow control

Item		Description					
Activity	Diversion of large amounts of irrigation water from rivers to rehabilitation and/or new irrigation area						
Affected Area	In and around Projects area including downstream areas (All the Six Sub-projects)						
Projected	Regional water balance changes by irrigation	development would have the	ne possibility of influencing the				
Impact	ecosystem particularly in the downstream area	ì.					
Management	To maintain the amount of irrigation water	Design of Ma	nintenance Flow				
Measure	The maintenance flow discharges of each River Maintenance Flow						
	river under the plan are shown in the right	er under the plan are shown in the right basin (m³/sec)					
	table. It is assumed that negative impact is Moung Russei river 0.79						
	not significant if the constant volume of Pursat river 4.48						
	water is neatly maintained.	Boribo river	0.74				
		Prepared by JICA SAPROF	F Study Team				
Conclusion of	Ecosystem consists of complex relationship	of various organisms. Even	if a limited area is affected, it				
Examination	may lead to significant environmental proble	ems by spreading to other s	pecies and areas with progress				
	time. It is necessary to control so as not to	use water too much on the	irrigation area to maintain the				
	volume of water to the downstream.						
Stakeholder	♦ MOWRAM						
	♦ PDOWRAM						
	♦ MAFF						
	♦ PDA						
	♦ Community people including those dow	nstream irrigation systems					
	♦ Local Authority						

Prepared by JICA SAPROF Study Team

6.3.4 Social Environment

(1) Living and Livelihood (Design)

Participatory land acquisition

Item	Description							
Activity	Expansion and/or new construction of facilities (Main, secondary and tertiary canals, drains)							
Affected Area	Total 475.8 ha in the I	Project Are	Area (All the Six sub-project area) as tabulated as follows:					
			Unit :ha					
			M	Main and Secondary				
		Total	Canal Drain Sub-		Sub-total	Tertiary		
			Rehabilitation	New	Diam	Sub-total		
	Ream Kon	81.6	4.2	12.5	25.4	42.1	39.5	
	Por Canal	64.8	6.5	5.3	12.2	24.0	40.8	

Item	Description						
	Damnak Ampil	62.4	3.8	0.0	10.9	14.7	47.7
	Wat Loung	105.8	9.1	20.7	22.6	52.4	53.4
	Wat Chre	38.6	3.4	6.8	6.9	17.1	21.5
	Lum Hach	122.6	5.7	30.4	21.4	57.5	65.1
	Total	475.8	32.7	75.7	99.4	207.8	268.0
	Prepared by JICA SAI	PROF Stu	dy Team				
Projected	Land acquisition is an	importar	nt and sensitive matter	for irriga	tion project.	The project n	eeds land for the
Impact	expansion and/or new	construc	tion of facilities. How	ever, ther	e will be no	large resettler	ment and/or land
	compensation necessa	ary for it	s implementation be	cause the	project ma	inly aims at	rehabilitation of
	existing irrigation and	drainage	facilities.				
	Land acquisition for	main and	secondary level faci	lities are	to be manag	ged by the Go	vernment, while
	tertiary level are to be	e manage	d by the local comm	unity. The	erefore, the	Government r	nust compensate
	required land (208 ha)		-		_		
	canals will not be co						
	acquisition among loc	al comm	unity, including all of	affected	people. Care	ful attention s	should be paid to
	the discussion process	because	their living and relation	on among	local comm	unity would be	e changed by the
	Project.						
Management	To design ca	<u>anals</u>	Paddy field	price on	field survey	as of August	2009
Measure	considering	<u>land</u>					Unit: US\$/m ²
	acquisition		Pla	ce Rot	tambang	Pursat	Kampong
	The canal alignment		Item	Dat	tambang	1 ursat	Chhnang
	generally follow exist	_	Paddy Field	0.	3~0.4\$	0.4~0.5\$	0.15~0.2\$
	bund wherever possib		Prepared by JICA SAI	PROF Stu	dy Team		
	as to minimize the area of						
	land acquisition.						
	To carry out appropriate land acquisition for main/secondary canals and drain						
	The Draft "Sub-Decree on Addressing Socio-Economic impacts caused by Development Projects (2007)"						
	explains resettlement and land acquisition management. It is necessary to facilitate coordination among						
	Inter-ministerial Resettlement Committee (IRC) and local-based authorities to properly carry out (i) asset						
	valuation at replacement cost and resettlement cost estimation to be affected through the implementation						
	and (ii) compensation measures. Compensation rate for land loss and value of land according to field						
	interview with PDOWRAM in Aug 2009 is tabulated in the right.						
	To support local authorities and community for Land acquisition for tertiary canal						
	Currently, no tertiary level facilities have been developed in the project area. At tertiary level						
	development is the responsibility of local authorities and communities technically supported by						
Conclusion of	MOWRAM and PDOWRAM. Land acquisition process is very sensitive matter, the process should be conducted very carefully from						
Examination							
Stakeholder	designing phase.						
Stakenolder	♦ MOWRAM						
	◆ PDOWRAM ◆ Commune Council						
	 ◆ Representative of farmers ◆ All affected farmers 						
	◆ FWUCs and FW						
Prepared by IICA	SAPROF Study Team						

(2) Living and livelihood (Operation)

Improvement of irrigation water management

Item	Description		
Activity	Supply of irrigation water to rehabilitation and/or new irrigation area		
Affected Area	In and around projects area (All the Six Sub-projects)		
Projected	At present, farmers in the Project area are largely dependent on rainfall and flood water especially in the		
Impact	wet season, however, it is not sufficient. Water supply is improved after the Project, however, another		
	problem "Unequal water allocation" need to be considered.		
	Unequal water allocation would be anticipated if proper water management is not carried out in the		

Item	Description			
	Project command areas. This issue is related not only within the command area but also with other			
	irrigation systems particularly located in the downstream of the Project.			
Management	To establish and strengthen FWUC for appropriate water management			
Measure	At the sub-project areas, appropriate water management should be carried out for all farmers through the			
	FWUC. In addition, staff of the FWUC needs to join training program such as: (i) Operation and			
	management of irrigation system, and (ii) Proper water management at Tertiary level			
	To monitor appropriate water management by the Government			
	It is important to carry out water management by the sub-project area FWUC. However, the organization			
	is not matured at the initial stage, and it is difficult for them to control stable water management. If the			
	organization fails in water management, conflict about water will occur at the rural community.			
	Therefore, the Government should monitor and conduct FWUC's activity to avoid such rural conflict.			
Conclusion of	Through combination of facilities' rehabilitation and institutional strengthening with appropriate			
Examination	monitoring mechanism, no significant impact will be anticipated.			
Stakeholder	♦ MOWRAM			
	♦ PDOWRAM			
	♦ Community people including those of downstream irrigation systems			
	♦ Local Authority			

6.3.5 Others

(1) Impacts during Construction (Construction Phase)

Environmental consideration in technical specification for construction works

Item	Description		
Activity	Construction and/or rehabilitation of canals, drains and those related facilities		
Affected Area	In and around Projects area (All the Six Sub-projects)		
Projected	Inflow of construction workers		
Impact	During construction phase, the construction workers inflow from out of the sub-project areas is expected.		
	Anticipated negative impacts are: (i) Degradation of sanitation condition, (ii) Degradation of rural public		
	security, (iii) local conflict among local people and construction workers from outside. The construction		
	works are not large scale because the main substance is rehabilitation, however, as two sub-projects: (i)		
	Lum Hach and (ii) Ream Kon have new construction of headworks. They should be especially		
	considered for these impacts.		
	Noise, Vibrations, Turbid water, Dust, Exhaust gases, and Wastes caused by construction vehicle and		
	heavy equipment		
	Transportation of construction vehicles and transportation/operation of heavy equipment, such as dump		
	truck, excavator, bulldozer, roller for flat and watering lorry will cause some impacts as follows: (i) noise		
	(ii) vibrations, (iii) dust, (iv) exhaust gases (e.g. nitrogen dioxide (NO ₂) and suspended particulate matter		
	(SPM)) in and around sub-project area. During construction of headworks, it is necessary to stop existing river flow and to drain turbid water by		
	construction to headworks, it is necessary to stop existing river now and to drain turbid water by constructing temporary drain. In addition, during construction works, farmers would have limited		
	irrigation water supply, instead, turbid water will would inflow in canals and drains.		
	The construction works would create many wastes such as solid waste, soil to be borne from construction		
	works and waste from construction workers' living if appropriate management measures are not carried		
	out.		
Management	To supply appropriate sanitary condition of construction workers		
Measure	The Contractors must supply proper arrangement of accommodation, installation of toilets and proper		
	water supply for construction workers.		
	To educate construction workers about environment impacts		
	All the construction workers must take the education program about environmental impacts by the		
	construction.		
	To stipulate needs to environmental consideration on technical specification for the construction works		
	Technical specification for the construction to consider matters the bellows: i) water use for agriculture		
	ii) air pollution, iii) water pollution and treatment, vi) waste disposal, v) noise and vibration, vi) accidents		

Item	Description			
	needs to be clearly specified, to mitigate negative impact in and around the sub-project sites du			
	construction period.			
	To limit construction time e.g. at daytime only			
	As a rule, construction time is to be limited only daytime (e.g. 8:00-17:00) to reduce the impacts of noise			
	and vibration.			
	To explain purpose and period of construction for rural community			
	Most of rural people living in the sub-project areas would take some impacts by the construction works.			
	It is necessary to persist in a prior explanation to understand the purpose and the period of this			
	construction to the rural communities, not to give the excessive anxiety for the rural people.			
	To recycle of material from construction work			
	The materials from construction work are recycled, e.g. soil from construction use as the material of			
	canals and drains as much as possible to reduce the amount of wastes.			
Conclusion of	Because most of the construction works are not large scale and construction phase is limited, the number			
Examination	of construction vehicles and heavy equipments for the construction will not be many. Therefore, the			
	negative impacts will not be serious if proper managements and appropriate mitigation measures are			
	carried out.			
Stakeholder	♦ MOWRAM			
	♦ PDOWRAM			
	♦ Contractors			
	♦ Construction Workers			
	♦ Around Community people			
	◆ Local Authority			

6.3.6 Note

It is not necessary to refer to checklist of other sectors, because the main activities of the project is rehabilitation and improvement, and no new large scale development is included.

6.4 Environmental Management Plan

6.4.1 Participatory Process of Land Acquisition for Tertiary Canals and Drains

(1) Purpose

To support local community to execute appropriate land acquisition for tertiary level development

(2) Procedure

Step-1 Establishment of local-based organization for compensation

Locally-based compensation committee should be establish in charge of tertiary level land acquisition consisting PDOWRAM, PDA, FWUC and other organization to relate the land acquisition process.

Step-2 Design of compensation step

Among committee members, compensation step is discussed and designed talking land tenure and local economic conditions into consideration.

Step-3 Joint walk-through to determine the alignment of canal and road network

Joint walk –through is carried out involving PDOWRAM, representatives from village and farmers to design canals and road network, view of which needs both social and technical consideration.

Step-4 Identification of affected people and contact socio-economic survey

Trough joint walk-through survey, affected areas and affected people are confirmed. At this step, socio-economic survey would collect information of land acquisition for affected people.

Step-5 Workshop organization

At this step, Workshop is organized for local community people. In the Workshop, the draft plan of tertiary canal and related facilities would be disclosed to get feed-back from stakeholders.

Step-6 Finalization of compensation plan

Land acquisition compensation as well as tertiary development plan are finalized on the basic of stakeholder's opinion in the workshop.

Step-7 Implementation of tertiary development

Based on the implementation plan agreed in the preceding steps, tertiary development is carried out.

Step-8 Monitoring and follow-up

Compensation committee is responsible for monitoring during the implementation of land acquisition. This step is very important step, it is necessary to act careful and continuous.

(3) Monitoring Period

From Design phase to Operation phase

- (4) Executing Agency
- ♦ MOWRAM (particularly resettlement unit)
- ♦ PDOWRAM
- ♦ Local authority
- ♦ IRC, if necessary
- (5) Evaluation

As the rural authorities will carry out appropriate land acquisition with support from MOWRAM and PDOWRAM for all affected people including people without formal title or rights to maintain their rights to land or property. And land acquisition needs to process of: (i) preparation of land including the set of cut-off date/final deadline, (ii) stakeholder workshop for consensus building, (iii) detailed socio-economic survey, (iv) valuation of affected asset, (v) continuous monitoring so that the Project is sustainable from social and environmental points of view.

6.4.2 Water and Soil Monitoring

(1) Purpose

To confirm the effects of water and soil by the project

- (2) Objective
- To monitor quality and flow of downstream river water, and quality of drain water
- ♦ To monitor soil contamination at irrigation area
- (3) Monitoring points (at each six sub-project)
- i) River water quality and flow

Confluence point of rivers and drains in the downstream

ii) Drain water quality

In the drainage canal

iii) Soil contamination

Representative points at rehabilitation and/or new irrigation area

(4) Frequency

Two times a year (dry and wet season respectively)

Items to be surveyed for water and soil monitoring for the project

Site	Items
i) River water	- Flow rate, Color, Odor, Appearance
quality and flow	- Physico-chemical properties (pH, EC, TSS, BOD, DO)
ii) Drain water	- Temperature of water, flow rate, color, odor, appearance
quality	- Physico-chemical properties (pH, EC, TSS, BOD, DO)
	- Organo-chemical substance (N, P)
	- Micro-organisms (bacteria, coliform group)
iii) Soil	- Total Organic Carbon
contamination	- Organo-chemical substance (N, P)
	- Micro-organisms (bacteria, coliform group)

Prepared by JICA SAPROF Study Team

(5) Items to be surveyed

The index of water and soil monitoring items are tabulated above.

(5) Executing Agency

PDOWRAM

(6) Evaluation

Monitored values should be evaluated with reference to the current date (At the former survey). If the serious impact is recognized at the sub-project site, particular survey for the factor and proper mitigation measure should be carried out at the effected site as soon as possible.

6.5 Activities for Environmental Management after SAPROF Study

After the SAPROF study, two kinds of activity for environmental assessment are proposed as follows.

6.5.1 Organizational Structure for EIA under MOWRAM

The Project doesn't require EIA according to the sub-decree of EIA, but it is necessary to consider the environmental impact for the success of the project.

Currently, Resettlement Unit under the MOWRAM is in charge of handling social environmental impact, particularly land acquisitions associated with irrigation development projects. During the project phase, the unit need to cover environmental monitoring for natural environmental impact as well. However, the unit has limited practical knowledge and experience in EIA. In order to properly carry out environmental management for the Project, MOWRAM and MAFF has to organize EIA units through the support of MOE.

6.5.2 Capacity Development Plan for Environmental Management

All agricultural developments give impact to peripheral area more or less. Environmental management is prerequisite measures for sustainable development. Therefore, it is important to enhance the capability of MOWRAM, PDOWRAM and village authorities staff in environmental management, among which village authorities should manage their land directly and continuously by their own hands in the future.

Prospective training programs for strengthening the staff capability are: (i) On-the-Job Training for IEIA and preparation of TOR for EIA, (ii) Training for Environmental Impact Mitigation and Management Planning.

6.6 Recommendation

6.6.1 Land Acquisition (Residential Area)

Large scale involuntary resettlement is not expected by the project. The project's main activity is the rehabilitation of existing irrigation and drainage facilities, therefore, main construction areas are around existing canals, drains, and paddy fields, not in and around residential area.

Resettlement and land acquisition is very sensitive and important issues for success of the project. The resettlement should be carried out in a careful stepwise approach to build consensus among stakeholders with appropriate measure from the project design phase.

If few involuntary resettlements will be generated in D/D phase by the project, Resettlement Unit

under MOWRAM should prepare resettlement plan through the cooperation of Inter-ministerial Resettlement Committee (IRC), and execute the appropriate land acquisition during the project process.

6.6.2 Approach on Rural Poverty Alleviation Program Using FWUC – Consideration to Socially Vulnerable Groups

The large problem in rural economy in Cambodia is limited ability of farmers to manage agricultural production and non-farm enterprise. Farmers do not generate enough profits from agricultural products and small non-farm business because they lack access to markets. There is shortage of transportation facilities to go to markets and of knowledge of farm management and non-farm business.

FWUC needs to be established and strengthened to carry out appropriate water management in the project. The organization's purpose is effectively and sustainably to manage and to use the irrigation water, moreover, to equally use water for all farmers without exception: women, old people, and those without title to land, in the sub-project areas. Currently, there isn't such organization in which a lot of people participate like this in the rural community.

Establishment and strengthening of FWUC is one of the activities of the Project. Strengthened FWUC under the Project would obtain a function of mutual help in rural communities. Each of the farmers belonging to FWUC would have a role and responsibility in FWUC, thus socially and economically weak people in the communities such as women, old people, the sick and wounded and those without title to land also would get an opportunity to be employed by FWUC so as to get some roles and responsibilities in FWUC and simultaneously get a way to live stably.

As the next phase of the organization, it is proposed to construct system aiming to solve problems of rural economy, e.g. "construction of the access nets to markets" through the FWUC organization. If the system functions well, various people can use through the organization and access to market easily. Such activity might lead to dissolve rural poverty problem.

6.6.3 Construction of Fish Ladder of Downstream Headworks in Pursat River

It is proposed to construct fish ladder in the improvement of the Damnak Ampil headworks to support fish sprawling between the river and the Tonle Sap lake. However, there is the other headworks named Char Rec headworks in the downstream of the Damnak Ampil headworks. The existence of the Char rec headworks would reduce effect of construction of fish ladder of Moung Russei headworks in the project.

Improvement of the Char Rec Headworks is not included in the Project component since it is located outside of the Project area. Therefore, it is proposed that budgetary arrangement be made by MOWRAM to provide Char Rec Headworks with fish ladder in order to maintain fish resources in the whole Pursat River Basin.

_

³ JICA, Project on Gender Mainstreaming (2008) PGM Experience on Gender Mainstreaming

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The RGC stresses agriculture and irrigation development in the national development policies and sectoral policies such as (i) National Poverty Reduction Strategy (NPRS) 2003-2005, (ii) National Development Plan (NSDP) 2006-2010 and (iii) Agriculture Sector Strategic Development Plan (ASDP) 2006-2010.

Six sub-projects: (i) Ream Kon, (ii) Por Canal, (iii) Damnak Ampil, (iv) Wat Loung, (v) Wat Chre and (vi) Lum Hach are the target irrigation systems for the SAPROF Study on the West Tonle Sap Irrigation and Drainage Rehabilitation and Improvement Project. According to the result, following project components are recommended for the Project.

Scope of the Project

Area					
No.	Sub Project	River Basin	Province	Scope of the Project	
1	1 D V	Moung	Battambang	Toward: Six Sub-Project Areas	
1	Ream Kon			Hardware Component:	
		Russei		(i) Rehabilitation of Irrigation and Drainage Facilities	
2	Por Canal			Software Component:	
				(i) FWUC Establishment and Strengthening	
3	3 Damnak Ampil		Pursat	(ii) Agriculture Support Services	
				Toward: Six Sub-Project Areas and River Basins-related	
4	337 4 T	Pursat		Project Supporting Program:	
4	Wat Loung			(i) Meteo-hydrological Observation Strengthening Program	
				Project Formation Study for Other Potential Areas	
5	Wat Chre			Toward: Entire Countries including Six Sub-Project related Provinces	
				Project Supporting Program:	
6	Luii Hacii Bolloo Cl.1	(ii) Capacity Development of MOWRAM Staffs			
		dili Hacii Dolloo	Chhnang	(iii) Capacity Development of PDOWRAM Staffs	

Prepared by JICA SAPROF Study Team

By combining hardware and software activities in the Project, the area, 25,610 ha consisting of: (i) primary benefited area (12,760 ha) and (ii) secondary benefited area (12,850 ha) will be benefited from the Project in: (i) effective utilization of available resources through the rehabilitation of irrigation and drainage facilities and (ii) establishment of sustainable O&M system to increase agricultural productivity and to enhance living standard of farmers. From the Project, 32,000 ton of incremental rice production is expected, which correspond to 27 % of a shortage of rice (117,000 tons)¹ in 2020 in the country.

The evaluation shows that the Project is economically feasible and contributing to the enhancement of "capacity to pay" of farmers. In addition, no significant adverse environmental impact will be expected, if proposed mitigation measures are concurrently carried out. In conclusion, the SAPROF Study Team recommends that the Project be carried out in the manner proposed in the SAPROF Study.

¹ The figure is according to "Food Balance and Food Security" explained in Section 2.2 based on: (i) Seed and post harvest loss: 13 %, (ii) conversion rate to milled rice: 64 %: the figure utilized for the Food Balance Sheet of 2001 afterward, and (iii) 143 kg/person (MAFF).

7.2 Recommendations

Following issues need to be considered as risks for the smooth implementation of the Project.

- (1) No large scale resettlement is necessary, instead land acquisition is required for the construction of main, secondary and tertiary canals. Appropriate procedure based on the regulation of the Government through consensus building is important in this process.
- (2) Project Management Unit (PMU) Japan Support Fund is primarily in charge of Project implementation. Without constructing coordinating systems among relevant organizations, it will be difficult to smoothly implement the Project. It is necessary to carry out arrangement for the preparation of implementing organization mechanism by coordination with relevant organizations including local administration such as provincial government and commune councils.
- (3) Without arranging O&M budget as proposed, the system sustainability will be imperiled. O&M budget necessary for the rehabilitated facilities need to be arranged by both Government and FWUCs based on the analysis in the SAPROF Report.
- (4) Although it is an external factor, implementation of the Project will be jeopardized by drastic price increase of construction works-related goods and materials in Cambodia.

After the SAPROF Study, the following preparatory works and arrangement are recommended to be carried out by MOWRAM.

- (1) On the basis of the SAPROF Study Report, relevant organizations consisting of MOWRAM, PDOWRAM of Battambang, Pursat and Kampong Chhnang, MEF, MAFF, MOE needs to discuss and exchange opinions to commence the Project in the earliest stage.
- (2) Project Management Unit (PMU) Japan Support Fund of MOWRAM is required to start arrangement for the establishment of a project management office and steering committee at the national level and project implementation units at the provincial level. The member of the steering committee would be listed in the following table.

List of Organizations to be Members of Steering Committee for the Project (at the National Level)

No.	Organizations		
1.	Ministry of Water Resources and Meteorology (MOWRAM)		
2.	Ministry of Agriculture, Forestry and Fisheries (MAFF)		
3.	Ministry of Economy and Finance (MEF)		
4.	Ministry of Environment		
5.	Others (Ministry of Public Works and Transport etc.)		

Prepared by JICA SAPROF Study Team

- (3) PMU Japan Support Fund is requested to explain information on the Project such as contents and implementation schedule to the members of Steering Committee for the necessary arrangement.
- (4) PMU Japan Support Fund needs to arrange establishment of PIU at each province. In addition, arrangement with relevant rural administration consisting of provincial government and commune councils needs to be made for smooth commencement and implementation of the Project.

List of Organizations Relevant to the Project (at the Local Level)

No.	Organizations		
Provincial Level			
1.	Provincial Department of Water Resources and Meteorology (PDOWRAM)		
2.	Provincial Department of Agriculture (PDA)		
3.	Provincial Government (Battambang, Pursat and Kampong Chhnang		
4.	Provincial Coordination Committee		
Commune Level			
4.	Commune Councils (CCs) under the sub-projects		

Prepared by JICA SAPROF Study Team

(5) Resettlement unit under PMU Japan Support Fund is required to carry out pre-arrangement for land acquisition for the Project such as confirmation of latest regulation and discussion with relevant Ministerial organization.

JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap

Irrigation and Drainage Rehabilitation and Improvement Project

Draft Final Report

PART III IMPLEMENTATION PROGRAM TABLE

Table III 1.2.1 Five-day Discharge at Basak Reservoir and from Residual Area

Basak	Reservo	ir on	Moung	Russei	<u>river</u>	

CA	_		Reservoi m2	r on Moun		<u>river</u> m3/s)
Mon			(IIIZ	Year		1113/5)
5-d		2001	2002	2003	2004	2005
Jan	1	3.18 2.63	0.26 0.25	1.37 1.11	1.32 1.28	1.73 1.45
	3	2.05	0.25	1.05	1.23	1.25
	4	2.43	0.25	0.99	1.15	1.07
	5	2.19	0.23	0.94	1.02	0.96
	6	2.02	0.23	0.88	0.85	0.94
Feb	1	1.92	1.62	0.85	0.74	0.90
	2	1.75	1.56	0.81	0.71	0.86
	3	1.61 1.52	1.53 1.50	0.77 0.72	0.70	0.86
	5	1.52	1.45	0.72	0.68 0.68	0.83 0.83
	6	1.39	1.40	0.78	0.67	0.81
Mar	1	1.29	1.43	0.68	0.66	0.80
	2	1.22	1.36	0.66	0.65	0.78
	3	1.25	1.33	0.66	0.64	0.77
	4	1.34	1.32	0.66	0.62	0.75
	5 6	1.70 3.24	1.32 1.33	0.64 0.63	0.61 0.61	0.73
Apr	1	2.83	2.04	0.62	0.60	0.72
, vpi	2	1.89	2.04	0.62	0.60	0.73
	3	1.54	1.97	0.61	0.60	0.74
	4	1.43	1.93	0.60	0.62	0.86
	5	1.33	1.93	0.60	0.77	1.13
	6	1.22	3.73	0.60	0.74	1.85
May	1	1.31	6.64	0.79	1.52 2.26	2.41
	2	1.31 1.39	4.43 3.88	1.19 1.34	2.26	2.58 3.21
	4	1.96	3.38	2.46	3.03	3.38
	5	1.85	3.65	2.38	2.09	2.59
	6	1.61	2.86	1.96	1.43	1.97
Jun	1	0.36	1.22	1.56	3.26	3.98
	2	0.47	1.10	1.18	4.84	5.41
	3	0.56	1.14	1.10	4.71	5.11
	4 5	0.46 0.38	1.20 1.07	1.05 1.06	4.79 5.42	5.15
	6	0.34	1.07	1.04	5.42	5.87 5.68
Jul	1	1.14	0.47	1.10	6.00	6.80
	2	1.12	0.49	1.25	7.06	8.11
	3	1.06	0.42	1.64	5.65	7.18
	4	1.03	0.38	2.10	4.69	6.20
	5	1.08	0.34	2.19	4.21	5.16
Aug	6	1.33 0.42	0.32 4.56	2.24 3.34	3.49 2.61	4.36 3.34
Aug	2	0.54	4.46	4.83	2.98	3.68
	3	0.67	4.45	4.96	4.16	4.88
	4	0.76	4.59	4.76	3.97	4.62
	5	0.91	4.71	4.07	3.43	3.95
	6	1.12	6.04	3.01	3.76	4.71
Sep	1	1.17	1.16	1.86 1.27	3.82 4.39	4.46 5.01
	2	1.65 1.88	1.61 2.00	1.27	4.39 5.53	5.01 5.92
	4	2.13	2.43	1.19	6.76	7.70
	5	2.36	3.01	1.78	7.97	8.78
	6	2.46	3.41	2.52	8.38	9.60
Oct	1	13.14	4.69	4.83	8.31	9.82
	2	13.27	4.83	7.25	7.86	9.17
	3 4	14.01 14.06	4.25 3.85	7.69 9.30	9.53 10.08	9.19 11.35
	5	12.84	3.85 3.43	10.90	8.21	11.87
	6	12.07	5.09	11.78	7.45	9.96
Nov	1	9.38	12.46	8.79	6.71	11.18
	2	9.09	11.11	6.75	5.57	9.38
	3	8.40	9.50	5.63	4.60	8.31
	4	7.47	8.47	4.98	4.26	10.13
	5 6	6.46	8.67	4.23	3.84	12.69
Dec	1	5.02 1.85	8.85 3.82	3.57 2.66	3.57 3.45	6.90 5.24
ع ال	2	1.38	3.32	1.95	3.49	4.76
	3	1.07	2.77	1.66	2.80	4.12
	4	1.00	2.05	1.61	2.39	3.65
	5	0.95	1.50	1.53	2.26	3.23
<u> </u>	6	0.84	1.27	1.51	2.10	2.79
ı		l				

residi	uai Aita	III WOUNG	Russei	river basin
CA = 187	km2			(m3/s)

CA Mon		187	km2	Year	(m3/s)
5-d:		2001	2002	2003	2004	2005
Jan	1	0.99	0.08	0.42	0.41	0.54
	2	0.82	80.0	0.34	0.40	0.45
	3	0.76 0.75	0.08 0.08	0.33 0.31	0.38	0.39 0.33
	5	0.73	0.08	0.31	0.36 0.32	0.30
	6	0.63	0.07	0.27	0.26	0.29
Feb	1	0.60	0.50	0.26	0.23	0.28
	2	0.54	0.48	0.25	0.22	0.27
	3	0.50	0.47	0.24	0.22	0.27
	4	0.47 0.45	0.47 0.45	0.22 0.22	0.21 0.21	0.26 0.26
	6	0.43	0.43	0.22	0.21	0.25
Mar	1	0.40	0.44	0.21	0.20	0.25
	2	0.38	0.42	0.20	0.20	0.24
	3	0.39	0.41	0.20	0.20	0.24
	4 5	0.42 0.53	0.41 0.41	0.20 0.20	0.19 0.19	0.23 0.23
	6	1.00	0.41	0.20	0.19	0.23
Apr	1	0.88	0.63	0.19	0.19	0.23
•	2	0.59	0.62	0.19	0.19	0.22
	3	0.48	0.61	0.19	0.19	0.23
	4	0.44	0.60	0.19	0.19	0.27
	5	0.41 0.38	0.60 1.16	0.19 0.19	0.24 0.23	0.35 0.57
May	1	0.36	2.06	0.19	0.23	0.57
	2	0.41	1.37	0.37	0.70	0.80
	3	0.43	1.20	0.42	0.83	1.00
	4	0.61	1.05	0.76	0.94	1.05
	5	0.57	1.13	0.74	0.65	0.80
Jun	1	0.50 0.11	0.89	0.61 0.48	0.44 1.01	0.61 1.23
Jun	2	0.11	0.34	0.48	1.50	1.68
	3	0.17	0.35	0.34	1.46	1.58
	4	0.14	0.37	0.33	1.48	1.60
	5	0.12	0.33	0.33	1.68	1.82
Jul	6	0.11 0.35	0.32 0.15	0.32	1.86 1.86	1.76 2.11
Jul	2	0.35	0.15	0.34	2.19	2.11
	3	0.33	0.13	0.51	1.75	2.23
	4	0.32	0.12	0.65	1.45	1.92
	5	0.33	0.11	0.68	1.31	1.60
Aug	6	0.41 0.13	0.10 1.41	0.69 1.04	1.08 0.81	1.35 1.04
nug	2	0.13	1.41	1.04	0.81	1.04
	3	0.17	1.38	1.54	1.29	1.51
	4	0.24	1.42	1.48	1.23	1.43
	5	0.28	1.46	1.26	1.06	1.22
C	9	0.35	1.87	0.93	1.17	1.46
Sep	1 2	0.36 0.51	0.36 0.50	0.58 0.39	1.18 1.36	1.38 1.55
	3	0.51	0.62	0.39	1.71	1.84
	4	0.66	0.75	0.41	2.10	2.39
	5	0.73	0.93	0.55	2.47	2.72
	6	0.76	1.06	0.78	2.60	2.98
Oct	1 2	4.07	1.45	1.50 2.25	2.58	3.04
	3	4.11 4.34	1.50 1.32	2.25 2.38	2.44 2.95	2.84 2.85
	4	4.36	1.19	2.88	3.12	3.52
	5	3.98	1.06	3.38	2.55	3.68
	6	3.74	1.58	3.65	2.31	3.09
Nov	1	2.91	3.86	2.72	2.08	3.46
	2	2.82 2.60	3.44 2.95	2.09 1.75	1.73 1.43	2.91 2.58
	4	2.32	2.63	1.75	1.43	3.14
	5	2.00	2.69	1.31	1.19	3.93
	6	1.56	2.74	1.11	1.11	2.14
	- 1	0.57	1.18	0.82	1.07	1.62
Dec	1		4 02	0.60	1.02	1.48
Dec	2	0.43	1.03		0.07	
Dec	2	0.33	0.86	0.51	0.87	1.28
Dec	2 3 4	0.33 0.31	0.86 0.64	0.51 0.50	0.74	1.13
Dec	2	0.33	0.86	0.51		1.13 1.00
Dec	2 3 4 5	0.33 0.31 0.29	0.86 0.64 0.47	0.51 0.50 0.47	0.74 0.70	

Annual 2.94 2.90 2.47 3.42 4.43 Annual Note: Residual Area is between Basak Reservoir and Moung Russei Source: JICA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study

Table III 1.2.2 Five-day Discharge at Damnak Ampil Weir

8.2 26.2 34.0 7.1 14.5 30.7 25.6 11.9 17.3 6.2 51.6 6.0 23.1 26.5 6.5 13.6 26.6 21.5 11.2 15.0 5.3 6.5 16.0 23.1 26.5 6.5 13.6 26.6 21.5 11.2 15.0 5.3 6.5 15.1 12.1 12.6 5.5 12.8 23.3 19.1 10.3 13.4 4.8 5.5 11.2 12.1 12.6 5.5 12.8 23.3 19.1 10.3 13.4 4.8 5.5 11.1 11.0 15.9 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 11.5 11.0 15.9 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 11.0 15.9 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 11.9 10.0 10.8 4.7 5.5 11.9 7 15.4 4.1 10.7 20.1 11.9 9.0 13.1 10.0 10.8 4.7 5.5 11.9 7 15.4 4.1 10.7 20.1 11.9 9.0 10.5 3.8 4.4 1.0 10.7 20.1 11.9 9.0 10.5 3.8 4.4 1.0 10.7 20.1 11.9 9.0 10.5 3.8 4.4 1.0 10.9 3.3 10.9 10.5 3.8 4.4 1.0 10.9 3.3 10.9 10.5 3.8 4.4 1.0 10.9 3.3 10.9 10.5 3.8 4.4 1.0 10.9 3.3 10.9 10.5 3.8 4.4 1.0 10.9 3.3 10.9 10.5 3.8 4.4 1.0 10.9 3.3 10.9 10.5 3.8 4.9 10.0 10.8 13.8 3.5 9.6 14.5 10.3 8.5 21.9 3.1 4.6 4.9 8.0 10.4 3.5 10.9 3.3 9.1 11.9 8.0 8.7 21.6 3.2 4.4 1.0 10.9 3.3 10.9 10.4 3.5 10.9 3.3 10.1 10.8 8.5 21.9 3.1 4.6 4.9 8.0 10.4 3.3 9.1 11.9 8.5 8.3 9.1 3.4 4.9 4.9 8.6 - 28.8 83 20.9 3.5 8.3 9.1 3.4 4.9 4.9 7.1 - 2.7 8.2 10.9 3.0 10.4 3.5 4.9 4.9 7.1 - 2.7 8.2 10.9 3.0 10.1 11.5 3.2 4.4 4.9 7.1 - 2.7 8.2 10.9 3.0 10.1 11.5 3.2 4.4 4.9 7.3 - 2.5 8.0 14.5 38.5 8.5 8.3 9.1 13.1 4.4 4.9 6.6 - 2.4 8.6 11.2 29.9 8.1 18.7 3.0 4.4 4.9 6.6 - 2.4 8.6 11.2 29.9 8.1 18.7 3.0 4.4 4.9 6.6 - 2.4 8.6 11.2 29.9 8.1 18.7 3.0 4.4 4.9 6.6 - 2.4 8.6 11.2 29.9 8.1 18.7 3.0 4.4 4.9 6.6 - 2.4 8.6 11.2 29.9 8.1 18.7 3.0 4.0 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 0.1 2.3 3.6 6.2 14.2 - 2.2 34.2 91.6 11.5 11.5 13.1 3.1 4.4 9.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 0.1 2.3 3.3 4.8 8.4 19.5 - 2.1 7.5 11.8 18.0 8.4 12.2 2.3 44.9 1.0 10.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.8 3.0 1.0 1.0 1.2 3.0 3.0 1.0 1.0 1.2 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CA	_ 	4,480		Pursat rive		4000	2000	2004	2002	2002		(m3/s)
6.0 23.1 6 25.5 6.5 13.6 26.6 21.5 11.2 15.0 5.3 8.1 5.1 14.6 21.5 5.8 13.1 24.8 19.2 10.8 14.0 4.9 6.6 5.1 12.1 18.6 5.5 12.8 23.3 19.1 10.3 13.4 4.8 6.5 11.5 11.5 17.1 5.1 12.0 22.1 16.8 9.9 12.8 4.7 5.5 11.1 11.5 17.1 5.1 12.0 22.1 16.8 9.9 12.8 4.7 5.5 11.1 14 15.3 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 1.5 11.0 15.9 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 1.5 11.0 11.8 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 1.5 11.1 11.5 15.4 4.1 10.7 20.1 11.9 90 10.5 3.8 4.5 15.1 19.7 15.4 4.1 10.7 20.1 11.9 90 10.5 3.8 4.5 15.1 19.7 15.4 3.7 10.1 19.3 11.3 10.0 10.8 4.7 5.5 1.5 19.7 15.4 4.1 10.7 20.1 11.9 90 10.5 3.8 4.5 15.1 19.7 15.4 3.3 10.9 19.0 13.8 7.2 16.5 3.2 4.5 15.1 19.7 15.4 3.3 15.9 14.5 15.3 8.5 21.9 3.1 4.5 15.1 19.7 15.4 13.3 3.5 9.6 14.5 10.3 8.7 21.6 3.2 4.5 15.1 19.7 15.4 13.3 3.5 9.6 14.5 10.3 8.7 21.6 3.2 4.5 15.1 19.9 15.4 3.1 19.8 19.8 13.9 15.8 2.1 19.3 3.1 4.5 15.1 19.9 10.4 3.1 19.8 13.9 18.8 8.2 21.9 3.1 4.5 15.1 19.9 19.9 19.0 10.5 3.8 13.9 13.9 18.9 19.0 10.4 3.1 19.8 13.9 13.9 18.9 18.9 3.2 4.4 4.9 7.6 - 2.8 8.3 16.5 30.9 11.1 15. 3.2 4.4 4.9 7.6 - 2.8 8.3 16.5 30.9 11.1 15. 3.2 4.4 4.9 7.6 - 2.8 8.3 16.5 30.9 18.1 11.5 3.2 4.4 4.9 7.6 - 2.8 8.3 16.5 30.9 18.1 11.5 3.2 4.4 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.4 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.4 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.4 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.4 9.5 1.5 10.5 3.2 4.6 8.1 12.2 23.3 8.1 18.7 3.0 4.1 8.8 4.4 4.7 - 2.2 17.2 5.1 13.8 18.0 8.4 12.2 2.3 4.5 14.9 14.9 14.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	lon	4	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
5.1 14.6 21.5 5.8 13.1 24.8 19.2 10.8 14.0 4.9 5.5 12.8 13.1 12.0 21.1 10.8 14.0 4.9 5.5 12.8 23.3 19.1 10.3 13.4 4.8 5.5 12.6 11.5 11.5 11.5 11.5 12.0 22.1 16.8 9.9 12.8 4.7 5.5 11.5 11.0 15.9 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 11.5 11.0 15.9 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 11.9 1 15.4 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 11.5 1.9 1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 11.5 11.4 13.3 13.8 3.5 9.6 14.5 10.3 8.5 21.9 3.1 4.5 14.9 9.0 10.4 3.1 8.8 13.5 9.6 14.5 10.3 8.5 21.9 3.1 4.5 14.9 9.0 10.4 3.1 8.8 13.5 9.6 14.5 10.3 8.5 21.9 3.1 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 14.9 9.0 10.4 1.5 14.9 14.9 14.9 7.6 2.2 8 8.3 16.9 30.9 8.1 11.5 3.2 2.4 14.4 9.7 6 2.2 8 8.3 16.9 30.9 8.1 11.5 3.2 2.4 14.4 9.7 6 2.2 8 8.3 12.9 3.0 8.1 11.5 3.2 2.4 14.4 9.7 6 2.2 8 8.3 12.9 3.0 8.1 11.5 3.2 2.4 14.4 9.6 6 2.2 8 8.6 11.2 23.9 8.1 18.7 3.0 2.2 44.4 9.6 6 2.2 4 8.6 11.2 23.9 8.1 18.7 3.0 2.2 44.4 9.6 6 2.2 4 8.6 11.2 23.9 8.1 18.7 3.0 2.2 44.4 9.6 6 2.2 4 8.6 11.2 23.9 8.1 18.7 3.0 2.2 44.9 16.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12		1											
5.1 11.5 17.1 5.1 12.0 22.1 16.8 9.9 12.8 4.7 5.5 5.1 11.5 17.1 5.1 12.0 22.1 16.8 9.9 12.8 4.7 5.5 5.1 11.4 15.3 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 5.1 11.4 15.3 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 5.1 11.4 15.3 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 5.1 19.7 15.4 4.1 10.7 20.1 11.9 9.0 10.5 3.8 4.5 5.1 9.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 9.1 15.4 3.3 10.9 19.0 13.1 10.0 8.7 21.6 3.2 4.5 5.1 9.1 15.4 3.3 10.9 10.5 3.8 4.5 21.9 3.1 4.4 9.8 6.1 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.5 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 1.2 8.8 4.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.2 8 8.6 11.2 20.3 8.6 8.1 11.5 3.2 4.7 4.9 7.6 - 2.2 8 8.6 11.2 20.3 8.6 8.1 11.5 3.2 4.6 4.9 7.1 2.2 13.2 1.2 11.5 21.3 7.9 10.5 3.2 4.6 8.1 4.9 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4		2											
5.1 11.5 17.1 5.1 12.0 22.1 16.8 9.9 12.8 4.7 5.5 5.1 11.4 15.3 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 5.1 11.4 15.3 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 5.1 9.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 9.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 9.3 13.8 3.5 9.6 14.5 10.3 8.5 21.9 3.1 4.8 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.4 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.6 4.9 7.3 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 6.6 - 2.2 8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 6.6 - 2.2 13.2 11.5 2.3 1.3 1.0 1.5 1.3 3.2 4.7 4.9 6.6 - 2.1 7.5 11.8 18.0 18.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		3											
5.1 11.0 15.9 4.7 11.4 20.8 14.7 10.5 11.7 4.7 5.5 5.1 11.4 15.3 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 5.1 19.7 15.4 4.1 10.7 20.1 11.9 90 10.5 3.8 4.5 5.1 19.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 19.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 19.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 19.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 19.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 19.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 19.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 10.4 10.4 13.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 10.4 10.4 13.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 10.4 10.4 13.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 7.6 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 10.5 30.9 8.1 11.5 3.2 4.7 4.9 7.3 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.4 4.9 7.3 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.7 4.9 8.8 - 2.8 8.3 10.5 14.5 38.6 8.1 11.3 3.1 4.1 4.9 8.6 10.9 3.2 1.7 2.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 9.7 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 19.7 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 19.7 - 2.1 43.9 12.6 11.5 10.5 10.1 2.8 8.3 12.2 - 2.3 43.2 11.5 21.3 7.9 16.9 2.5 4.5 8.3 12.2 - 3.5 39.4 18.8 18.3 18.1 11.1 10.0 2.8 9.0 19.5 - 7.4 97.3 10.5 18.8 18.8 18.1 11.1 10.0 2.8 9.0 19.5 - 7.4 97.3 10.5 18.8 18.8 18.1 11.1 10.0 2.8 9.0 19.5 - 7.4 97.3 10.3 10.5 11.1 10.5 10.1 2.8 9.0 19.5 - 7.4 97.3 10.5 18.8 18.8 18.8 18.1 11.1 10.0 2.8 9.0 19.5 - 7.4 97.3 10.5 18.8 18.8 18.8 14.7 2.4 7.7 1.1 56.1 - 9.5 20.5 58.3 20.4 12.3 24.6 6.5 34.7 9.0 19.5 - 7.4 97.3 10.5 18.8 18.8 18.8 18.8 14.7 2.4 7.7 1.1 56.6 16.5 2 - 10.8 15.6 8.4 27 22.3 14.9 13.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8		4							19.1				
5.1 11.4 15.3 4.3 10.9 19.0 13.1 10.0 10.8 4.7 5.5 5.1 9.7 15.4 4.1 10.7 20.1 11.9 90 10.5 3.8 4.5 5.1 9.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.8 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 - 2.8 8.4 13.2 31.2 7.9 8.9 3.2 4.7 4.9 9.0 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 20.9 32.8 7.6 11.3 3.2 4.7 4.9 7.6 - 2.8 8.3 20.9 32.8 7.6 11.3 3.2 4.7 4.9 7.6 - 2.8 8.3 20.9 32.8 7.6 11.3 3.2 4.7 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.9 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.9 4.9 7.3 - 2.2 13.2 11.5 21.3 7.9 16.9 2.5 4.9 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 4.9 6.6 - 2.2 4.6 6.1 22.3 4.9 6.1 18.7 3.0 4.1 4.9 6.6 - 2.2 4.6 4.1 4.9 6.6 - 2.2 4.6 4.1 4.9 6.6 - 2.2 4.5 4.9 6.1 11.5 21.3 7.9 16.9 2.5 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.5 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.5 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.5 6.2 10.7 - 2.3 46.4 11.8 10.8 4.1 2.9 6.5 4.6 4.1		5											5.6
5.1 9.7 15.4 4.1 10.7 20.1 11.9 9.0 10.5 3.8 4.5 5.1 9.1 15.4 3.7 10.1 19.3 11.0 8.7 21.6 3.2 4.5 5.1 8.3 13.8 3.5 9.6 14.5 10.3 8.5 21.9 3.1 4.5 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 1.2 8.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 9.8 8 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 9.6 1.2 8.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.2 8.6 14.5 38.6 8.1 13.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.8 1.9 5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 11.3 1.5 10.5 3.2 4.6 4.1 9.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 12.2 - 3.5 39.4 88.2 10.8 13.1 10.0 2.8 7.5 8.3 12.2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.0 19.5 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 4.9 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.9 19.5 12.1 13.8 16.8 14.7 2.4 7.1 17.5 5.1 12.1 1.5 12.6 4.1 18.8 13.2 19.6 3.7 9.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 19.8 3.4 8.9 13.4 13.8 16.8 14.7 2.4 7.1 1.5 5.1 1.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		6	5.1							10.5		4.7	5.4
5.1 8.3 13.8 3.5 9.6 14.5 10.3 8.7 21.6 3.2 4.5 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.9 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 1.2 8 8.4 13.2 31.2 7.9 8.9 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.4 9.6 6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.8 1.9 5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 10.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.5 8.8 1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 4.6 7.7 8.3 11.8 7 3.5 3.5 3.4 88.3 12.2 - 3.5 3.9 4 88.2 10.8 13.2 19.6 3.7 3.9 4.0 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 19.6 3.7 3.9 4.0 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 19.6 3.7 3.9 4.0 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 12.6 4.1 8.4 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 1.5 6.1 - 9.5 20.5 58.3 2.2 9 13.0 18.7 3.8 8.2 6.9 9.8 2.9 1.3 1.3 1.3 1.2 12.1 21.6 4.1 8.4 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 1.5 6.1 - 9.5 20.5 58.3 20.9 13.3 18.7 3.8 8.2 12.9 9.5 9.0 1.3 1.0 1.3 1.2 1.2 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		1	5.1	11.4	15.3	4.3	10.9	19.0		10.0	10.8	4.7	5.1
5.1 8.3 13.8 3.5 9.6 14.5 10.3 8.7 21.6 3.2 4.5 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.9 4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 1.2 8 8.4 13.2 31.2 7.9 8.9 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.4 9.6 6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.8 1.9 5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 10.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.5 8.8 1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 4.6 7.7 8.3 11.8 7 3.5 3.5 3.4 88.3 12.2 - 3.5 3.9 4 88.2 10.8 13.2 19.6 3.7 3.9 4.0 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 19.6 3.7 3.9 4.0 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 19.6 3.7 3.9 4.0 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 12.6 4.1 8.4 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 1.5 6.1 - 9.5 20.5 58.3 2.2 9 13.0 18.7 3.8 8.2 6.9 9.8 2.9 1.3 1.3 1.3 1.2 12.1 21.6 4.1 8.4 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 1.5 6.1 - 9.5 20.5 58.3 20.9 13.3 18.7 3.8 8.2 12.9 9.5 9.0 1.3 1.0 1.3 1.2 1.2 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		2	5.1	9.7	15.4	4.1	10.7	20.1	11.9	9.0	10.5	3.8	4.9
5.1 8.3 13.8 3.5 9.6 14.5 10.3 8.5 21.9 3.1 4.5 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.9 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 1.2 8.8 4.4 13.2 31.2 7.9 8.9 3.2 4.7 4.9 8.8 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 20.9 3.2 8.7 6 11.3 3.2 4.7 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.1 9.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 13.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.1 1.9 5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 13.1 3.1 4.1 9.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.2 11.8 18.7 3.0 4.1 8.1 1.8 1.9 5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.2 11.8 18.7 3.0 4.1 8.1 1.8 1.7 3.0 1.2 1.5 1.5 1.0 1.0 1.2 2.8 7.5 8.3 12.2 - 3.5 39.4 88.2 10.8 13.1 10.0 2.8 7.5 8.3 12.2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.9 19.5 1.0 1.0 1.0 1.0 1.0 1.2 8 7.5 8.3 12.2 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.9 19.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		3	5.1	9.1	15.4		10.1		11.0	8.7		3.2	4.9
4.9 8.6 10.9 3.3 9.1 11.5 9.8 8.3 9.1 3.4 4.9 4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.5 4.9 9.0 1.2 8 8.4 13.2 31.2 7.9 8.9 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 3.1 4.1 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 3.1 4.1 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 3.1 4.1 4.9 7.3 - 2.2 13.2 11.5 21.3 7.9 16.9 2.5 4.6 8.1 9.5 1.2 1.2 1.3 7.9 16.9 2.5 4.6 8.1 9.5 1.2 1.2 1.3 7.9 16.9 2.5 4.6 8.1 9.5 1.2 1.3 7.9 16.9 2.5 4.6 8.1 9.5 1.2 1.3 7.9 16.9 2.5 4.6 8.1 1.2 2.3 4.8 1.8 1.9 1.2 1.3 7.9 16.9 2.5 4.6 8.1 1.2 2.3 4.8 1.9 1.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		4					9.6	14.5	10.3		21.9		
4.9 9.0 10.4 3.1 8.8 13.9 9.5 8.2 9.0 4.0 4.9 4.9 4.9 9.0 - 2.8 8.4 13.2 31.2 7.9 8.9 3.2 4.7 4.9 8.8 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 20.9 32.8 7.6 11.3 3.2 4.7 4.9 7.6 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 4.9 9.6 6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.1 19.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 19.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 19.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 6.2 10.7 - 2.1 4.39 12.9 13.1 10.5 10.1 2.3 8.3 6.2 11.2 11.5 10.1 2.3 8.3 11.2 11.5 10.1 10.0 2.8 7.5 8.3 11.2 1.5 10.1 10.0 2.8 7.5 8.3 11.2 1.5 10.5 10.1 2.3 8.3 11.2 2 - 3.5 39.4 88.2 10.8 13.1 10.0 2.8 7.5 8.3 11.2 2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.7 9.7 20.3 - 7.4 189.5 48.5 13.1 12.1 21.6 4.1 8.3 11.7 9.6 4.6 7.7 9.7 9.7 20.3 - 7.4 189.5 48.5 13.1 12.1 21.6 4.1 8.3 11.7 9.6 4.6 7.7 9.7 9.7 20.3 - 7.4 189.5 48.5 13.1 12.3 8 16.8 14.7 2.4 7.7 19.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 19.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 19.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 19.3 1.8 19.6 19.5 10.5 10.1 10.5 10.1 10.1 10.1 10.1 10		5									9.1		
4.9 9.0 - 2.8 8.4 13.2 31.2 7.9 8.9 3.2 4.7 4.9 7.6 - 2.8 8.3 16.5 30.9 8.1 11.5 3.2 4.7 4.9 7.6 - 2.8 8.3 20.9 32.8 7.6 11.3 3.2 4.7 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.7 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 13.1 3.1 3.1 4.1 8.4 4.7 - 2.2 13.2 11.5 21.3 7.9 16.9 2.5 4.5 8.1 9.5 - 2.1 7.2 11.8 18.0 8.4 12.2 2.3 4.8 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.6 6.2 11.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.0 19.5 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.4 9.0 19.5 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 7.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.2 6.9 68.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.7 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 13.0 93.2 - 8.4 205.0 15.5 13.1 12.3 86.8 14.7 2.4 7.1 15.6 165.2 - 10.8 15.8 15.5 13.6 10.6 21.0 17.1 10.1 15.6 165.2 - 10.8 15.8 15.8 13.4 38.8 35.4 32.7 15.6 165.2 - 10.8 15.8 15.8 13.4 38.8 35.4 32.7 15.6 165.2 - 10.8 15.8 15.5 13.6 10.6 21.0 17.1 10.1 15.6 165.2 - 10.8 15.8 15.5 13.1 12.3 38.6 2.9 10.5 15.6 165.2 - 10.8 15.8 15.5 13.1 4.9 13.7 20.5 5.1 19.3 15.6 165.2 - 10.8 15.8 15.5 13.6 10.6 21.0 17.1 10.1 15.6 165.2 - 10.8 15.8 15.5 13.6 10.6 21.0 17.1 10.1 15.6 165.2 - 10.8 15.8 15.5 13.6 10.6 21.0 17.1 10.1 15.6 165.2 - 10.8 15.6 10.2 12.8 13.0 7.7 3 19.3 63.9 62.9 10.5 15.6 165.2 - 10.8 15.6 10.2 12.1 10.9 16.2 60.6 27.9 15.7 15.5 15.6 165.2 - 10.8 15.5 10.8 16.8 17.7 22.1 14.9 13.7 20.5 5.1 15.6 15.6 15.6 15.6 10.2 2.2 15.1 8.8 14.7 2.2 15.8 14.9 15.7 10.9 15.6 15.6 15.6 15.6 15.2 11.0 10.8 15.5 13.0 19.8 20.4 11.8 12.5 11.7 10.9 15.6 15.6 15.6 15.2 11.0 10.8 15.5 13.0 19.8 20.4 11.8 12.5 11.7 10.9 15.6 15.5 13.0 19.8 20.4 11.8 12.5 11.7 10.1 10.1 10.1 10.1 10.1 10.1 10.1		6											
4.9 8.8 - 2.8 8.3 16,5 30,9 8.1 11,5 3,2 4,7 4.9 7.6 - 2.8 8.3 20,9 32,8 7.6 11,3 3,2 47,4 4.9 7.1 - 2.7 8.2 17,9 20,3 7.5 10,5 3,2 46,4 4.9 7.3 - 2.5 8.0 14,5 38,6 8.1 13,1 3,1 41,4 4.9 6.6 - 2.4 8.6 11,2 23,9 8.1 18,7 3,0 4,1 8.4 4.7 - 2.2 13,2 11,5 21,3 7,9 16,9 2.5 48,6 8.1 9.5 - 2.1 72,5 11,8 18,0 8.4 12,2 2,3 4,5 6.2 10,7 - 2.1 43,9 12,9 13,1 10,5 10,1 2,3 8,6 6.2 10,7 - 2.1 43,9 12,9 13,1 10,5 10,1 2,3 8,6 6.2 11,2 - 2.2 34,2 91,6 11,6 11,1 10,0 2,8 7,5 8.3 12,2 - 3.5 39,4 88,2 10,8 13,2 19,6 3,7 9,4 9.7 20,3 - 7.4 16,5 54,5 13,1 12,1 21,6 4,6 7,7 8.3 12,2 - 3.5 39,4 88,2 10,8 13,2 19,6 3,7 9,4 9.0 19,5 - 7,4 16,5 46,5 13,1 12,1 21,6 4,6 7,7 9.7 19,3 - 8.0 95,1 124,1 13,8 16,8 14,7 2,4 7,7 10,7 19,3 - 8.0 95,1 124,1 13,8 16,8 14,7 2,4 7,7 10,7 19,3 - 8.0 95,1 124,1 13,8 16,8 14,7 2,4 7,7 10,7 19,3 - 8.0 95,1 124,1 13,8 16,8 14,7 2,4 7,7 10,7 19,3 - 8.0 95,1 124,1 13,8 16,8 14,7 2,4 7,7 10,7 19,3 - 8.0 13,7 7,8 15,3 12,2 12,6 6,5 34,7 4,8 34,8 - 8.9 134,7 53,1 14,9 13,7 20,5 5,1 13,5 1,0 14,8 13,0 18,7 3,8 8,2 1,0 18,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1		1											
4.9 7.6 - 2.8 8.3 20.9 32.8 7.6 11.3 3.2 4.7 4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.1 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.4 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.4 19.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 11.8 1.2 12.1 11.5 10.1 2.3 8.3 12.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 8.3 12.2 13.3 12.2 13.5 34.2 91.6 11.6 11.1 10.0 2.8 7.7 8.3 11.2 12.1 21.6 4.1 8.8 10.8 15.1 9.6 4.6 7.7 8.3 12.2 3.5 3.5 39.4 88.2 10.8 13.2 19.8 3.7 9.4 9.0 19.5 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.9 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.7 1.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.2 6.9 66.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.6 9.5 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 51.1 19.3 13.0 93.2 - 8.4 205.0 155.1 14.9 13.7 20.5 51.1 19.3 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.5 11.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 156.8 8.2 12.5 191.7 162.4 218.0 17.5 2 19.8 96.8 38.8 29.1 15.6 15.1 12.5 191.7 161.2 10.9 16.2 60.6 27.9 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15					-								
4.9 7.1 - 2.7 8.2 17.9 20.3 7.5 10.5 3.2 4.6 4.9 7.3 - 2.5 8.0 14.5 38.6 8.1 13.1 3.1 4.4 9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.4 47 - 2.2 13.2 11.5 21.3 7.9 16.9 2.5 48.8 1 19.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 19.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.5 8.1 18.7 - 2.2 14.3 9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.8 8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.8 4.6 7.7 8.8 11.8 18.7 - 2.5 46.4 118.8 10.8 15.1 9.8 4.6 7.7 8.8 11.2 2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.9 9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.4 10.5 10.1 10.5 10.1 2.3 10.7 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 2.3 10.5 10.1 10.5 1		2			-		0.3	10.5	30.9				
4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.4 4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.4 4.7 - 2.2 13.2 11.5 21.3 7.9 16.9 2.5 4.5 8.1 18.7 - 2.2 13.2 11.5 21.3 7.9 16.9 2.5 4.5 8.1 18.7 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.8 8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 46 7.7 8.3 11.2 2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 99.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.9 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 10.6 3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 10.6 3 13.7 13.0 18.2 3.2 8.4 10.8 13.2 19.6 3.7 99.0 19.5 - 7.4 97.3 10.6 3 13.7 13.0 18.2 3.2 8.4 10.8 13.2 19.6 3.7 99.0 19.5 - 7.4 97.3 10.6 3 13.7 13.0 18.2 3.2 8.4 10.7 1.1 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 1.7 1.5 1.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.2 10.9 19.5 10.0 19.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		3			-		8.3		32.8				
4.9 6.6 - 2.4 8.6 11.2 23.9 8.1 18.7 3.0 4.1 8.1 9.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.8 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 4.8 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.5 8.1 18.7 - 2.5 4.64 11.8 10.8 15.1 96 46 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 21.6 4.1 8.4 9.0 19.5 - 7.4 19.3 10.6 31.7 13.0 18.2 3.2 3.2 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 7.1 4.8 <		4			-				20.3				
8.1 9.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.6 6.5 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.8 8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.0 19.5 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.9 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 32 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 32 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 32 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 32 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 32 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 32 8.4 9.0 19.5 - 9.5 20.5 58.3 22.9 13.0 18.7 3.8 8.2 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.5 19.5 19.5 19.5 19.5 19.5 19.		5			-								4.1
8.1 9.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.5 8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 9.6 4.6 7.7 9.7 9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.4 10.8 10.7 19.5 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 17.1 56.1 - 9.5 20.5 58.3 22.9 13.0 18.7 3.8 8.2 6.9 68.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.7 19.5 19.5 19.3 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5		6	4.9		-			11.2	23.9	8.1	18.7	3.0	4.1
8.1 9.5 - 2.1 72.5 11.8 18.0 8.4 12.2 2.3 4.6 6.2 10.7 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.5 8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 9.6 4.6 7.7 9.7 9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.4 10.8 10.7 19.5 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 17.1 56.1 - 9.5 20.5 58.3 22.9 13.0 18.7 3.8 8.2 6.9 68.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.7 19.5 19.5 19.3 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 18.7 3.8 8.2 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	Apr	1	8.4	4.7	-	2.2	13.2	11.5		7.9	16.9	2.5	4.9
6.2 14.2 - 2.1 43.9 12.9 13.1 10.5 10.1 2.3 8.3 6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.5 8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 15.1 9.6 3.7 9.4 9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 7.1 15.1 15.1 9.5 20.5 58.3 22.9 13.0 18.7 3.8 8.2 4.8 34.8 - 9.8 95.1 124.1 13.8 16.8 14.7 2.4 7.1 7.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.2 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 19.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 156.1 156.3 10.3 2 - 10.8 70.3 64.4 17.3 13.4 58.0 147.3 18.8 12.1 13.0 2.2 13.0 18.7 3.8 8.2 13.3 13.3 13.3 13.2 13.3 13.4 156.7 15.5 13.3 13.4 13.3 13.8 35.4 32.7 15.6 156.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 156.3 13.3 14.1 2.1 15.3 15.5 13.1 15.0 15.0 15.1 13.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 15.8 13.3 14.1 2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 14.3 34.3 14.1 2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.5 15.1 84.3 11.5 16.3 15.5 15.1 16.0 15.3 19.4 93.0 40.6 22.7 15.5 13.3 12.0 15.1 84.3 11.5 16.3 15.5 15.1 16.0 15.3 19.4 93.0 40.6 22.5 15.5 15.0 15.1 15.3 19.4 93.0 40.6 22.5 15.5 15.0 15.0 12.0 15.3 19.4 93.0 40.6 22.5 15.5 15.0 15.0 12.0 15.3 19.4 93.0 40.6 22.5 15.5 15.0 15.0 12.0 15.3 19.4 93.0 40.6 22.5 15.5 15.0 15.0 12.0 15.3 19.4 93.0 40.6 22.5 15.8 83.3 130.0 - 42.7 164.9 149.9 40.3 81.0 70.2 15.1 84.3 118.7 16.3 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15		2	8.1	9.5	-					8.4			4.9
6.2 14.2 - 2.2 34.2 91.6 11.6 11.1 10.0 2.8 7.8 8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 4.6 7.7 8.3 12.2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.1 10.7 19.5 1.7 19.		2 3		10.7	_				13 1				8.3
8.1 18.7 - 2.5 46.4 118.8 10.8 15.1 9.6 3.6 3.7 9.4 8.3 12.2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 9.0 19.5 124.1 13.8 16.8 14.7 2.4 7.1 7.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.2 46.6 5.3 47.4 8.3 4.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.5 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 103.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.5 15.4 13.3 14.5 15.5 15.1 15.3 15.5 15.1 15.3 15.5 15.1 15.3 15.5 15.1 15.5 15.1 15.5 15.1 15.5 15.5 15.1 15.5 15.5 15.1 15.5 15.5 15.1 15.5 15.5 15.1 15.5		4											
8.3 12.2 - 3.5 39.4 88.2 10.8 13.2 19.6 3.7 9.4 9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 12.1 12.1 6 4.1 8.4 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 156.1 - 9.5 20.5 58.3 22.9 13.0 18.7 3.8 8.2 6.9 68.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.7 14.8 4.8 4.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 19.5 19.3 19.3 19.3 18.2 18.8 18.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 19.5 19.3 19.3 19.2 19.5 19.3 18.2 19.5 19.3 19.5 19.3 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.3 19.5 19.5 19.3 19.5 19.5 19.3 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5		5			-				10.0	11.1			
9.7 20.3 - 7.4 169.5 48.5 13.1 12.1 21.6 4.1 84.9 9.0 19.5 - 7.4 97.3 106.3 13.7 13.0 18.2 3.2 8.4 10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 2.4 7.1 7.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.2 4.6 6.9 68.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.7 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 193. 9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 13.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 10.3 2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 10.3 2 - 10.8 70.3 66.4 17.3 19.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 157.3 4.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 23.1 34.3 34.1 2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.3 44.5 40.9 22.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 22.1 34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.3 13.6 10.6 21.0 17.1 10.1 10.1 10.1 10.1 10.1 10.1 1		اء			-								
90		6			-					13.2			
10.7 19.3 - 8.0 95.1 124.1 13.8 16.8 14.7 24 7.7 17.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.2 6.9 68.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.7 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 193. 9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 10.3 2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 15.5 15.1 15.5 16.3 10.8 2 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.5 15.4 13.4 13.4 14.2 - 17.4 70.7 17.4 6 36.3 19.7 88.9 8.8 38.8 29.1 34.3 141.2 - 17.4 70.7 17.4 6 36.3 19.7 88.9 8.8 38.8 29.1 34.3 141.2 - 17.4 70.7 17.4 6 36.3 19.7 88.9 8.8 38.8 29.1 34.3 141.2 - 17.4 70.7 17.4 6 36.3 19.7 88.4 31.1 11.5 23.6 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 12.7 26.5 24.5 111.0 15.3 19.4 93.0 40.6 282.2 127.8 211.7 - 26.5 24.5 111.0 15.3 19.4 93.0 40.6 282.2 127.8 211.7 - 26.5 24.5 110.0 15.3 19.4 93.0 40.6 282.2 127.8 211.7 - 26.5 24.5 110.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.2 133.3 12.8 56.1 97.0 191.0 59.4 69.5 94.3 86.3 193.3 31.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 144.8 270.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 148.9 40.3 81.0 70.2 102.3 20.9 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 24.4 48.1 13.6 62.5 14.8 66.3 37.9 - 115.4 100.8 219.0 13.6 88.8 39.3 17.2 12.5 12.5 12.3 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5		1			-								
7.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.6 6.9 6.9 68.5 - 9.8 260.7 53.9 20.4 12.3 24.6 6.5 34.7 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.6 163.1 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.8 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 34.3 41.2 - 17.4 70.7 174.6 36.3 19.7 67.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 18.5 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.7 133.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.3 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.3 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.3 145.5 102.3 12.8 12.8 25.1 11.7 18.5 25.1 19.1 15.6 15.1 15.3 19.4 93.0 40.6 282.5 11.3 12.8 25.5 19.5 19.1 12.8 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 11.3 12.8 25.1 10.6 51.7 3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16		2	9.0		-			106.3	13.7	13.0			8.4
7.1 56.1 - 9.5 220.5 58.3 22.9 13.0 18.7 3.8 8.6 6.9 6.9 68.5 - 9.8 260.7 53.9 20.4 12.3 24.6 6.5 34.7 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.6 163.1 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.8 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 34.3 41.2 - 17.4 70.7 174.6 36.3 19.7 67.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 18.5 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.7 133.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.3 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.3 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.3 145.5 102.3 12.8 12.8 25.1 11.7 18.5 25.1 19.1 15.6 15.1 15.3 19.4 93.0 40.6 282.5 11.3 12.8 25.5 19.5 19.1 12.8 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 11.3 12.8 25.1 10.6 51.7 3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.4 16.5 16.5 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 157.3 26.9 36.2 162.8 153.6 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16		3			-				13.8	16.8	14.7		7.1
6.9 68.5 - 9.8 269.7 53.9 20.4 12.3 24.6 6.5 34.7 4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 11.7 15.6 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 11.7 15.6 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 11.7 15.6 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 62.9 10.8 21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 151.8 43.3 118.7 16.3 77.2 85.3 - 19.4 48.5 125.3 19.3 15.0 12.0 4 115.2 36.8 40.8 294.0 - 254.4 185.9 146.6 17.0 23.6 257.0 78.6 93.5 213.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 133.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 29.8 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 29.8 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 29.8 156.4 133.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.5 80.5 - 55.9 40.1 170.0 162.8 83.3 33.6 62.4 17.5 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.8 156.4 156.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 60.2 145.8 139.5 306.3 - 138.8 77.5 82.3 34.3 42.1 84.6 61.3 70.9 29.8 156.4 12.1 14.5 23.0 14.8 13.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12		4		56.1	-			58.3	22.9	13.0	18.7		8.2
4.8 34.8 - 8.9 134.7 53.1 14.9 13.7 20.5 5.1 19.3 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 155.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 15.6 85.8 - 12.5 191.7 161.2 10.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 37.0 2018 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7		5			-					12.3			34.7
9.5 90.3 - 8.0 113.5 78.9 15.3 10.8 20.4 11.8 12.5 13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1 11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 198.8 96.8 38.8 29.1 34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 77.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.6 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 25.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 194.9 93.0 62.9 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 194.9 93.0 62.9 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 194.9 93.0 62.9 98.5 21.3 121.8 - 56.1 97.0 191.0 594.6 69.5 94.3 86.3 19.3 33.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.8 113.3 121.8 - 56.1 97.0 191.0 594.6 69.5 94.3 86.3 19.3 33.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.8 113.3 121.8 - 56.1 97.0 191.0 592.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.8 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.5 155.5 399.4 - 212.7 310.6 55.1 48.6 61.3 70.9 29.4 155.5 399.4 - 22.1 17.0 58.2 83.3 33.6 62.4 17.5 25.8 13.5 106.5 55.1 48.6 61.3 70.9 29.4 155.5 399.4 - 22.2 127.3 106.9 39.1 17.5 73.1 60.5 56.9 40.1 17.0 58.2 83.3 33.6 62.4 17.5 25.8 30.4 52.4 22.9 99.8 596.6 31.3 30.0 37.4 15.4 100.8 219.0 113.6 98.8 93.3 178.2 102.3 20.8 113.3 121.8 - 56.1 97.0 191.0 592.4 69.5 94.3 86.3 19.3 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 56.4 32.4 22.5 30.6 33.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 58.3 99.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 259.0 578.5 293.5 53.7 201.6 158.3 392.4 24.2 399.9 - 62.2 561.0 220.6 78.9 58.0 40.4 43.1 301.4 40.0 569.4 32.8 13.1 30.4 40.0 32.2 32.3 388.5 - 48.6 672.1 340.4 155.6 22.3 32.0 48.6 33.4 30.4		6			_								
13.0 93.2 - 8.4 205.0 155.1 31.6 10.6 21.0 17.1 10.1		1			_								
11.6 152.1 - 9.0 113.9 69.0 23.8 14.3 38.8 35.4 32.7 15.6 165.2 - 10.8 156.8 42.7 22.3 14.9 41.5 156.7 15.5 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.5 15.6 68.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 17.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 42.2 99.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 153.4 109.5 80.5 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 33.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 45.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 460.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 58.0 59.6 88.8 37.9 115.4 40.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 39.4 60.2 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 39.4 60.2 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 39.4 60.2 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 39.4 60.2 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 39.4 60.2 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 39.4 60.3 30.4 60.2 230.3 218.3 218.6 39.8 96.4 438.1 301.4 40.0 218.1 186.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 250.0 370.4 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 39.4 60.2 230.3 218.3 218.6 39.8 96.4 438.1 301.4 40.0 37.3 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 33.3 31.7 7 - 37.4 220.2 250.5 30.0 49.2 250.0 30.1 71.6 222.3 335.5 - 66.3 80.2 120.0 220.3 32.0 48.6 337.4 121.2 323 388.5 - 48.6 672.1 340.4 156.6 354.4 340.4 33.6 52		2			_				31.6	10.6	21.0		
16.6 166.2 - 10.8 166.8 42.7 22.3 14.9 41.5 156.7 15.6 16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 14.3 14.3 14.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 17.2 18.8 96.8 29.1 17.2 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 133.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 63.3 70.9 29.4 46.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 6.3 70.9 29.4 46.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 6.3 70.9 29.4 46.0 370.4 - 218.1 86.2 259.1 217.2 114.5 231.0 58.0 55.9 155.4 106.6 55.1 48.6 61.3 70.9 29.4 45.8 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 50.2 50.3 19.5 50.3 39.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 50.2 50.3 19.3 19.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 28.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 370.4 - 218.1 86.2 259.1 217.2 114.5 231.0 58.0 55.0 55.9 40.4 17.7 19.0 19.0 53.5 53.7 201.6 158.3 99.2 60.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 171.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 19.6 67.1 151.4 10.8 219.0 113.6 98.8 93.3 178.2 124.0 253.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 337.4 42.1 80.8 73.2 151.5 50.2 50.0 578.5 293.5 53.7 201.6 158.3 99.2 50.0 578.5 293.5 53.7 201.6 158.3 99.2 50.0 578.5 293.5 53.7 201.6 158.3 99.2 50.0 578.5 293.5 53.7 201.6 158.3 99.2 50.0 578.5 293.5 53.7 201.6 158.3 99.2 50.0 578.5 293.5 53.4 30.4 43.3 27.2 20.5 68.9 17.6 24.3 20.0 48.6 33		3			-								
16.3 103.2 - 10.8 70.3 66.4 17.3 13.4 58.0 117.3 10.8 21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 77.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 127.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 127.8 21.1 7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 15.0 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 131.3 120.1 120.4 115.2 36.8 135.4 135.		1			-				23.0	14.5	30.0		32.7
21.9 57.4 - 11.3 73.8 103.7 77.3 19.3 63.9 62.9 10.5 15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2		4			-					14.9			
15.6 85.8 - 12.5 191.7 161.2 100.9 16.2 60.6 27.9 15.7 34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.6 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 77.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 133.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 399.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 2251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.4 252.8 33.3 38.6 62.4 17.8 399.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 522.0 171.7 582.3 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 252.3 34.3 38.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.5 156.0 22.5 56.0 220.6 78.9 58.0 40.4 41.4 211.5 58.0 55.5 56.0 26.1 1 27.2 13.5 56.0 33.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 33.4 32.2 117.7 - 65.4 83.8 205.2 24.2 390.6 234.0 250.3 230.0 48.6 337.4 242.4 89.8 33.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 24.2 250.3 34.3 24.1 89.8 32.2 13.0 40.0 37.4 - 218.1 86.2 259.1 277.2 114.5 231.0 58.0 55.5 231.5 231.0 250.0 40.4 41.4 211.5 250.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 31.0 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 31.0 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 31.0 26.0 26.		5			-					13.4			
34.5 92.3 - 16.5 102.4 218.0 175.2 19.8 96.8 38.8 29.1 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 17.7 2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.1 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 39.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.6 523.1 304.0 6 259.1 217.2 114.5 231.0 58.0 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 52.8 34.0 6 230.3 218.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 55.9 30.4 30.6 2.2 20.9 30.0 48.6 379.2 20.9 30.4 32.6 30.9 30.0 70.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 30.4 32.6 30.9 30.4 32.6 30.9 30.4 32.6 30.9 30.4 32.6 30.4 33.0 30.4 32.8 32.8 32.8 32.8 34.0 6 230.3 218.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 22.0 30.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 22.0 30.5 32.8 34.0 6 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 22.0 30.5 32.8 30.0 40.6 438.1 301.4 40.0 22.0 30.0 30.0 30.0 30.0 30.0 30.0 3		6			-					19.3			
34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 177.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 42.0 30.4 13.8 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 171.7 1562.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 171.7 562.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 156.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 156.7 - 179.2 429.4 562.6 23.3 38.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 33.4 34.1 - 251.7 399.6 340.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 38.6 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 157.7 - 65.4 83.8 205.2 24.2 35.3 25.0 43.9 25.0 174.7 12.1 14.5 231.0 56.0 37.4 22.5 12.0 25.3 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 27.6 24.3 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 174.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 383.5 - 56.5 80.2 13.4 178.6 45.8 54.6 34.0 37.3 112.1 12.1 12.1 12.1 12.1 12.1 12.1 1	Jul	1	15.6	85.8	-	12.5			100.9				15.7
34.3 141.2 - 17.4 70.7 174.6 36.3 19.7 87.8 40.9 22.8 37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 177.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 42.0 30.4 13.8 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 171.7 1562.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 171.7 562.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 156.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 156.7 - 179.2 429.4 562.6 23.3 38.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 33.4 34.1 - 251.7 399.6 340.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 38.6 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 157.7 - 65.4 83.8 205.2 24.2 35.3 25.0 43.9 25.0 174.7 12.1 14.5 231.0 56.0 37.4 22.5 12.0 25.3 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 27.6 24.3 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 174.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 383.5 - 56.5 80.2 13.4 178.6 45.8 54.6 34.0 37.3 112.1 12.1 12.1 12.1 12.1 12.1 12.1 1		2	34.5	92.3	-	16.5	102.4	218.0	175.2	19.8	96.8	38.8	29.1
37.0 201.8 - 20.4 65.6 311.3 20.2 15.1 84.3 118.7 16.3 77.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 31.9 31.9 31.9 31.9 31.9 31.9 31.9 31.9		3			_		70.7		36.3	19.7			
77.2 85.3 - 19.4 48.5 125.3 19.3 15.0 120.4 115.2 36.8 275.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 55.5 940.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 133.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 92.4 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.3		4			_				20.2	15.1		118 7	
40.8 294.0 - 25.4 185.9 146.6 17.0 23.6 257.0 78.6 98.5 275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 87.1 160.5 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 445.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3		5			_						120.4		
275.8 211.7 - 26.5 245.5 111.0 15.3 19.4 93.0 40.6 282.2 133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 445.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5		6			_								
133.6 116.1 - 37.4 155.0 140.6 35.3 57.9 161.7 69.8 87.5 87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5		1						111.0					
87.1 160.5 - 44.2 53.5 106.5 157.3 26.9 36.2 162.8 153.4 109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 39.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.2 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 231.0 56.0 56.9 126.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 12.1 151.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 151.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 211.5 211.5 233.3 177.7 - 37.4 220.2 68.9 17.6 24.2 35.3 21.9 27.6 24.2 35.3 21.9 27.6 24.2 35.3 21.9 27.6 24.2 35.3 21.9 27.6 24.3 35.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 35.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 33.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 20.3 25.1 20.0 20.3 13.2 20.3 25.1 20.0 20.3 33.1 77.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 20.3 25.1 20.0 18.3 20.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 20.0 20.0 20.2 31.2 20.3 25.1 20.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.0 58.6 32.6 68.5 42.9 43.4 25.5 60.0 20.8 81.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13					-								
109.5 80.5 - 55.9 40.1 170.0 162.8 58.2 42.2 99.8 59.6 113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 239.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 25.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 33.3 25.1 26.3 20.1 10.7 9.0 14.8 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 42.5 56.0 12.6 56.1 10.7 13.8 20.1 10.7 9.0 14.8 42.5 56.0 12.3 12.1 10.7 9.0 14.8 42.5 56.0 12.3 12.1 10.7 9.0 14.8 42.5 56.0 12.3 12.1 10.7 9.0 14.8 42.5 56.0 12.3 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.1 10.7 9.0 14.8 42.5 56.0 12.2 12.2 12.2 12.3 12.2 12.3 12.4 13.6 15.8 12.2 12.3 12.4 13.6 15.8 12.2 12.3 12.2 12.3 12.2 12.3 12.3 12.4 13.6 15.8 12.2 12.3 12.3 12.4 13.0 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12		2			-					57.9			
113.3 121.8 - 56.1 97.0 191.0 59.4 69.5 94.3 86.3 19.3 333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 626.0 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 25.7 247.4 - 83.2 109.2 263.5 30.0 49.2 250.0 30.1 71.6 451.1 172.7 - 654.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 40.4 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 20.0 20.9 24.0 25.0 30.1 10.7 9.0 14.8 20.4 20.0 20.9 24.0 25.0 30.1 10.7 9.0 14.8 20.4 20.0 20.9 24.0 25.0 30.1 10.7 9.0 14.8 20.4 20.0 20.9 24.0 25.0 30.1 10.7 9.0 14.8 20.4 20.0 20.9 25.0 30.0 30.0 30.1 30.0 30.0 30.0 30.0 30					-								
333.3 130.0 - 42.7 164.9 148.9 40.3 81.0 70.2 102.3 20.9 446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 <t< td=""><td></td><td>4</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		4			-								
446.0 121.3 - 99.1 382.2 117.0 58.2 83.3 33.6 62.4 17.8 145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.4 326.8 - 299.2 <t< td=""><td></td><td>5</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>94.3</td><td></td><td></td></t<>		5			-						94.3		
145.8 270.0 - 127.8 253.1 106.6 55.1 48.6 61.3 70.9 29.4 158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 113.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 67.1 151.4 117.1 1562.7 - 120.0		6	333.3	130.0	-	42.7	164.9	148.9	40.3	81.0	70.2	102.3	20.9
158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0	Sep	1	446.0	121.3	_	99.1	382.2	117.0	58.2	83.3	33.6	62.4	17.8
158.5 399.4 - 82.2 127.3 106.9 39.1 72.5 73.1 60.2 58.0 319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0	-	2	145.8	270.0	-	127.8	253.1	106.6			61.3	70.9	29.4
319.5 306.3 - 138.8 77.5 82.3 34.3 42.1 80.8 73.2 151.5 288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 42.4 26.8 134.1 - 43.2 128.5 125.0 58.6 32.6 68.5 42.9 43.4 26.2 38.5 54.9 33.0 - 33.0 - 33.0 - 34.2 25.0 30.1 71.6 24.9 18.7 22.5 20.5 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 42.4 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 42.4 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 42.4 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 42.5 42.9 43.4 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 42.5 42.9 43.4 42.5 4		3			-								58.0
288.8 137.9 - 115.4 100.8 219.0 113.6 98.8 93.3 178.2 124.0 304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6		4			-								
304.0 370.4 - 218.1 186.2 259.1 217.2 114.5 231.0 58.0 55.9 393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5		5			_								
393.4 534.4 - 251.7 399.6 347.0 244.4 82.1 344.7 139.7 24.0 523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		6			_								
523.8 340.6 - 230.3 218.3 218.6 398.8 96.4 438.1 301.4 40.0 569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 215.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5		1											
569.4 326.8 - 299.2 259.0 578.5 293.5 53.7 201.6 158.3 99.2 260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
260.6 363.7 - 179.2 429.4 562.6 221.3 26.7 491.6 67.1 151.4 117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 250.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		2			-								
117.1 562.7 - 120.0 279.5 477.1 268.4 34.0 433.6 52.9 192.6 174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 <td></td> <td>3</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		3			-								
174.7 641.1 - 84.1 502.2 390.6 234.0 250.3 230.0 48.6 337.4 232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3		4			-								
232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		5			-								192.6
232.3 388.5 - 48.6 672.1 340.4 155.6 134.5 82.0 43.9 88.6 115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		6			-								337.4
115.7 293.9 - 62.2 561.0 220.6 78.9 58.0 40.4 41.4 211.5 260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average	Nov	1	232.3	388.5	-	48.6	672.1	340.4	155.6	134.5	82.0	43.9	88.6
260.0 261.1 - 49.8 312.4 178.6 45.8 54.6 34.0 37.3 112.1 91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 20.4 (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		2			-								211.5
91.0 263.8 - 103.5 198.4 286.2 38.5 53.4 30.4 33.2 73.2 58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		3			-								
58.7 247.4 - 83.2 109.2 263.5 30.0 49.2 25.0 30.1 71.6 45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average </td <td></td> <td>4</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		4			_								
45.1 172.7 - 65.4 83.8 205.2 24.2 35.3 21.9 27.6 24.3 28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average Annual average		5			-								
28.2 383.5 - 56.3 80.2 120.0 20.2 31.2 20.3 25.1 20.0 23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 43.9 51.4 50.1 10.7 9.0 14.8 5					-								
23.3 177.7 - 37.4 220.2 68.9 17.6 24.9 18.7 22.5 20.5 18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 86.8 134.1 - 43.2 128.5 125.0 58.6 32.6 68.5 42.9 43.4 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		6			-								
18.8 89.8 - 28.4 88.4 54.5 16.3 25.1 26.3 20.1 18.3 42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 86.8 134.1 - 43.2 128.5 125.0 58.6 32.6 68.5 42.9 43.4 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		1											
42.5 56.0 - 23.6 58.1 67.9 16.0 18.8 14.3 15.7 16.7 38.3 43.5 - 19.8 43.9 51.4 15.0 20.8 12.4 13.6 15.8 30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 86.8 134.1 - 43.2 128.5 125.0 58.6 32.6 68.5 42.9 43.4 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		2			-								20.5
38.3		3			-		88.4					20.1	18.3
38.3		4	42.5	56.0	-	23.6	58.1	67.9	16.0	18.8	14.3	15.7	16.7
30.7 33.0 - 16.6 35.4 37.2 13.8 20.1 10.7 9.0 14.8 86.8 134.1 - 43.2 128.5 125.0 58.6 32.6 68.5 42.9 43.4 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		5	38.3	43.5	-								15.8
86.8 134.1 - 43.2 128.5 125.0 58.6 32.6 68.5 42.9 43.4 CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		6			_								14.8
CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average		\top											
CA (2009), Basin-wide Basic Irrigation and Drainage Master Plan Study Annual average	Annu	اہ	86 B	134 1	_	43.2	128 5	125.0	58.6	32.6	68.5	42 Q	43 4
					a Racio Irria								73.4
/6.4 m3/s	Jourc	♥. J	IUM (2009)	, Dasiii-WiQ	e pasic iilig	auon and L	ramaye Ma	ister Fidir S	nuuy	,	Tilludi ave		m2/a
													/6.4

Table III 1.2.3 Five-day Discharge at Lum Hach Headworks

		1998	km2 1999	Boribo rive 2000	2001	2002	2003	2004	2005	2006	(m3/s) 2007
an	1	-	1.25	8.85	8.42	2.73	9.67	12.95	5.94	_	1.5
	2	-	1.21	6.34	7.00	2.66	9.77	12.95	5.94	-	1.7
	3	-	1.25	6.18	7.96	2.23	9.23	11.82	5.94	_	1.6
	4	_	1.68	5.94	8.62	1.57	8.41	10.80	5.75	_	1.4
	5	_	3.37	4.97	6.10	9.76	8.61	6.69	5.01	_	1.2
		-								-	
	6	-	10.95	3.97	5.04	10.61	9.64	4.63	5.01		1.2
eb	1	-	8.99	6.62	4.55	8.37	10.90	4.05	4.31	-	1.0
	2	-	7.05	7.26	4.00	8.89	9.52	3.78	4.62	-	1.0
	3	-	5.88	7.00	3.35	7.96	9.53	3.49	4.25	-	1.0
	4	-	3.23	3.73	2.98	9.25	9.67	3.38	4.28	_	0.9
	5	_	2.44	2.84	2.51	9.82	9.77	3.31	4.31	_	0.8
	6		1.81							_	
				2.27	2.43	9.64	9.97	3.18	4.26		0.7
аг	1	-	2.17	2.28	2.40	5.26	10.90	4.95	4.29	-	0.7
	2	-	2.18	2.14	2.50	4.85	9.52	5.19	3.77	-	0.7
	3	-	1.93	2.27	5.82	9.18	9.53	4.69	4.05	-	0.9
	4	_	1.72	2.43	6.72	9.82	9.67	3.83	3.86	-	0.9
	5	_	1.76	2.38	9.04	10.33	9.82	3.53	3.80	_	0.8
	6	_	2.60	2.79	5.63	9.60	10.33	3.28	4.10	_	0.9
pr	1	-	1.61	2.25	4.01	7.19	8.42	3.86	30.42	-	0.9
	2	-	1.82	3.57	3.74	4.38	9.58	5.33	18.22	-	0.8
	3	-	2.95	4.73	3.80	4.95	8.67	5.38	14.78	-	0.7
	4	-	2.59	5.18	3.05	6.48	9.15	4.94	9.21	-	0.9
	5	_	5.51	7.13	3.59	7.22	9.72	4.87	7.74	_	0.8
	6	_	4.15	5.96	8.85	6.55	9.05	4.35	6.55	_	0.8
21/			16.22	5.22					3.37	-	1.2
ay	1				3.87	6.92	5.82	3.50		-	
	2	-	13.59	4.97	3.10	6.60	2.63	3.09	3.37	-	1.9
	3	-	13.61	4.31	2.30	9.02	2.55	3.74	4.42	-	3.0
	4	-	51.18	4.15	2.08	9.97	3.58	3.62	6.96	-	3.9
	5	_	92.76	4.15	2.06	10.43	4.73	4.09	9.88	_	4.2
	6	_	30.46	3.86	2.06	6.49	3.69	4.68	8.53	_	4.5
ın	1	1.40	14.19	7.62	8.13	8.12	3.52				4.4
111								4.65	13.57		
	2	3.82	22.01	10.61	9.63	10.22	4.23	7.82	8.59	-	4.7
	3	4.60	37.95	17.83	9.58	9.58	3.20	10.82	5.79	-	5.7
	4	3.75	61.93	22.12	9.38	9.62	3.31	10.98	5.01	-	6.3
	5	2.44	42.08	26.17	9.28	2.93	5.16	11.18	5.85	-	12.8
	6	1.36	45.42	22.73	8.70	6.52	6.46	6.80	12.78	_	18.7
اد	1	3.19	20.67	44.29	6.53	5.16	6.44	6.02	15.14		9.0
41											
	2	3.66	16.78	59.15	4.49	9.35	5.64	5.98	19.74	•	9.4
	3	3.87	20.30	14.15	6.34	6.64	6.55	6.86	22.67	-	13.4
	4	4.11	19.35	25.70	8.00	7.26	5.52	5.98	22.67	-	11.8
	5	4.93	26.29	44.46	5.79	5.69	8.52	14.84	17.08	_	13.9
	6	10.61	18.31	64.62	5.09	7.54	11.46	13.31	9.66	_	11.4
ug	1	9.81	16.71	23.21	9.24	10.61	12.03	12.28	6.96		10.1
ug						14.92				_	
	2	13.81	10.83	71.81	16.41		5.99	11.82	6.96	-	5.2
	3	14.04	8.29	52.98	18.11	18.11	4.25	10.03	6.96	-	4.3
	4	16.70	10.34	40.73	20.33	25.41	3.72	12.11	6.96	-	14.3
	5	12.49	16.31	26.77	13.31	21.93	2.79	30.34	7.87	-	33.7
	6	14.18	27.09	20.25	16.29	18.39	2.74	26.50	10.53	_	69.6
ер	1	40.47	89.58	19.47	42.56	20.70	2.45	54.35	13.57		63.7
٦٢	2	25.75	43.96	32.82	61.56	20.73	3.17	74.03	16.09	_	29.9
	3	25.01	29.49	19.68	44.52	32.82	5.62	22.29	23.84	-	35.1
	4	47.48	20.48	18.72	74.80	56.06	16.49	32.98	37.73	-	77.0
	5	43.63	40.30	18.72	38.16	85.21	33.01	26.64	53.66	-	42.3
	6	80.21	58.63	28.64	36.40	54.73	88.34	11.68	97.88	-	35.0
ct	1	46.70	73.21	34.29	72.30	18.73	74.60	33.29	13.05	_	37.8
	2	28.16	28.59	48.08	62.10	24.36	38.28	85.70	17.96	_	62.8
		23.21		134.99			33.51	53.28	6.96	-	
	3		53.20		47.27	11.76					79.1
	4	39.30	33.47	93.58	29.08	10.64	32.80	25.54	8.84	-	103.3
	5	22.58	19.37	75.34	25.55	26.18	32.05	16.67	12.19	-	48.5
	6	23.50	46.86	52.19	21.28	101.51	19.85	11.84	20.93	-	26.6
ov	1	23.83	122.18	40.15	20.31	21.88	16.71	6.37	7.93	-	20.6
	2	25.40	104.65	23.16	16.51	13.68	13.37	5.01	6.96	_	16.0
	3	30.88	37.24	16.83	15.29	29.71	9.32	5.01			
									6.96	-	11.9
	4	34.51	30.12	20.05	13.07	14.10	6.47	5.01	8.78	-	14.8
	5	29.09	18.74	24.73	12.04	10.93	5.08	4.42	7.18	-	14.9
	6	24.73	17.28	18.19	9.04	6.75	4.97	9.76	6.96	-	10.8
ec	1	-	16.83	8.85	6.50	7.86	4.20	9.56	6.96	2.43	9.2
	2	_	50.51	6.34	5.26	5.99	3.86	8.09	6.96	2.43	7.9
		-									
	3	-	18.30	6.18	4.32	4.94	15.74	7.61	6.96	2.43	7.1
	4	-	16.12	5.94	3.09	4.65	13.64	6.96	6.96	2.43	6.2
	5	-	13.59	4.97	2.55	4.55	12.72	6.96	8.78	2.25	4.6
	6	_	9.80	3.97	2.09	4.45	12.71	6.96	9.23	1.86	3.8
	-					10					<u></u>
	ا		22.06	20 65	12 72	14.00	11 04	10 45	11 40		441
nn.		-	23.96	20.65	13.72	14.02	11.84	12.45	11.46	_	14.9
าทเ		JICA (2009	\ m - · ·	(- D		D! 11		OL			

Table III 1.6.1 Function of Departments under MOWRAM

Department	Function
1 Director General of	- Overall management of administrative services in the Ministry
Administration Affairs	
1.1 Administration and	- Document control
Human Resources	- Salary and insurance management for staffs
Department	- Capacity development for staffs through external and internal training
•	- Personal management
1.2 Planning and International	- Statistical data management
Cooperation Department	- Planning of public investment
	- Coordination among the Ministry and foreign donors
1.3 Financial Department	- Budget control
	- Accounting
1.4 Technical Service Center	- Capacity development of staffs in technical aspect
for Irrigation and	- Technology development of irrigation and meteorology
Meteorology	- Extension of new technology
	- Prepare manual relevant to irrigation and drainage engineering
	- Technical support for PDOWRAM
2 Director General of Technical	- Overall management of technical services in the Ministry
2.1 Water Management and	- Formulation of policy for water resources management and conservation
Conservation Department	 Technical support for conservation of catchments area Technical inspection for water resources structures including irrgation
2.2 Hydrology and River	- Management of river system
Works Department	Monitoring of water level and water quality
Works Department	- Forecast of flood and drought
	- Development of geographical information system for hydrological use
2.3 Meteorology Department	- Development of meteorological observation system
	- Management of meteorological stations
	- Collection of meteorological information
2.4 Irrigated Agriculture	- Management of pump station and machine
Department	- Extension of irrigated agriculture with relevant organization
2.5 Water Supply and	- Monitoring water on land and underground
Sanitation Department	- Management of sewage water
	- Monitoring of water quality
2.6 Engineering Department	- Technical development of construction works (more than 200 ha)
	- Monitoring material and machinery for construction
	- Technical inspection of geological condition of structures
2.7 FWUC Department	- Support of establishment of FWUC
	- Strengthening of capacity of FWUC
	- Preparation of documents relevant to FWUC establishment and
	strengthening
	- Preparation of maintenance and improvement plan of irrigation system
	through participation of FWUC
	- Monitoring of FWUC activities in collaboration with PDOWRAM
Source: MOWPAM	- Support of transfer of irrigation system management to FWUC

Source: MOWRAM

Prepared by JICA SAPROF Study Team

Table III 1.6.2 Budget and Expendures of MOWRAM for 2005-2008

)	₹.				
ž	Veces	Team			MOWRAM Budget		Descent	1-7-31	D
3	Ical	TIGHT		Estimated Budget	Approved Budget	Actual Expenditures	Donors	TOTAL	Кетатк
-	2005	Ordinary Budget							
	THE	National level R	Riel	*	11,335,700,000	9,857,989,107		1	T
		Provincial level R.	Riel	ı	4,122,800,000	3,837,095,975	1	•	T
		Sub-total R	Riel	1	15,458,500,000	13,695,085,082	1	•	
		Total R	Riel		30,917,000,000	27,390,170,164	İ		·
		n	\$SO		11	905'586'9			
		Ü.	US\$						
7	2006	Ordinary Budget							
		National level R.	Riel	•	12,517,402,000	11,117,803,108	•	9	
		Provincial level R	Riel	ŧ	8,018,018,000	7,671,117,867	1	1	
		Sub-total R	Riel	•	20,535,420,000	18,788,920,975	2		ı
		Total R	Riel	ı	41,070,840,000	37,577,841,950	I		
		in in the second	US\$			9,583,739			
		n .	ns\$						
3	2007	Ordinary Budget							
		National level R	Riel	1	13,210,000,000	12,392,062,761	- 1		Exchange rate
		Provincial level Ri	Riel	1	8,666,638,000	8,022,791,619		1	=\$SOI
		Sub-total Ri	Riel	•	21,876,638,000	20,414,854,380	1	***	Riel 3,921
		Total Ri	Riel		43,753,276,000	40,829,708,760	•	-	
		Ŋ	\$SO		II	10,413,086			
		. D	US\$						
4	2008	Ordinary Budget							
		National level Ri	Riel	ı	16,880,800,000	15,650,387,295	•	T.	Exchange rate
		Provincial level Ri	Riel		10,500,270,000	10,150,858,901	•		IUS\$=
		Sub-total Ri	Riel	1	27,381,070,000	25,801,246,196	ı	I	Riel 3,980
		Total Ri	Riel	1	54,762,140,000	51,602,492,392	ı	ı	
		Ü	US\$		=	12,965,450			
		Ü.	US\$						
	Source: MOWRAM	WRAM							

Source: MOWRAM

*: Cambodia Economic Watch

JICA Special Assistance for Project Formation (SAPROF) for West Tonle Sap

Irrigation and Drainage Rehabilitation and Improvement Project

Draft Final Report

PART III IMPLEMENTATION PROGRAM FIGURE

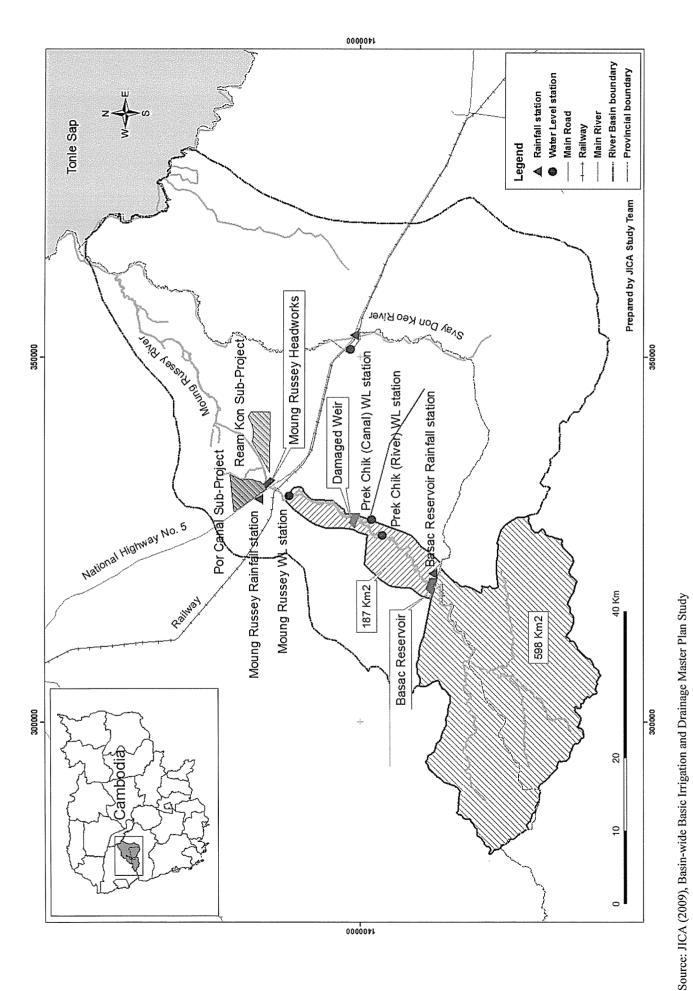


Figure III 1.2.1 Catchment Area of Moung Russei Headworks, and Ream Kon and Por Canal Sub-Projects

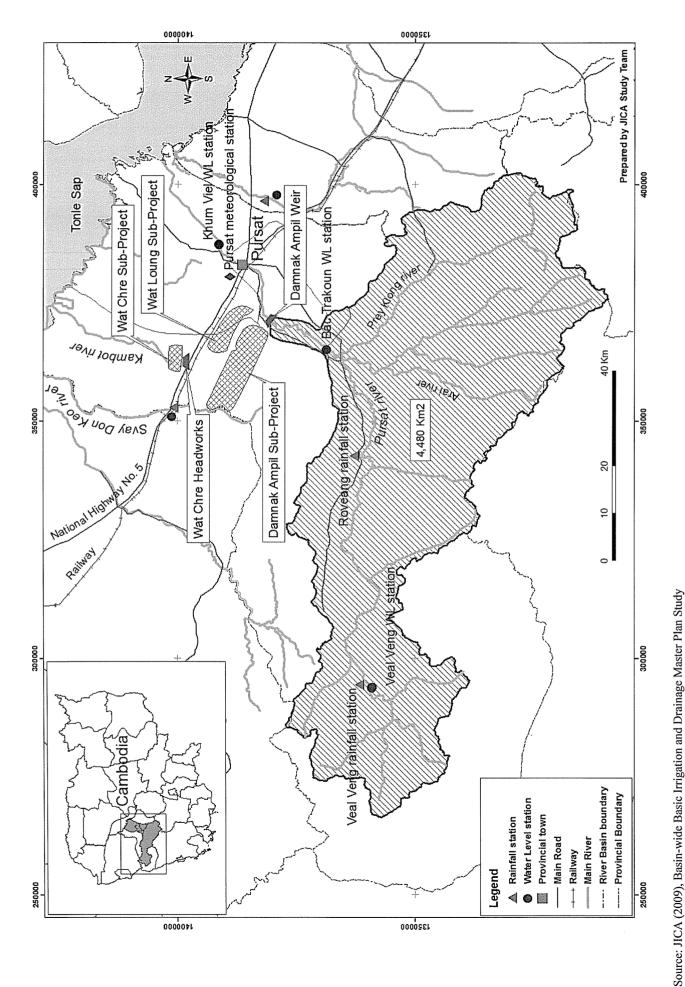
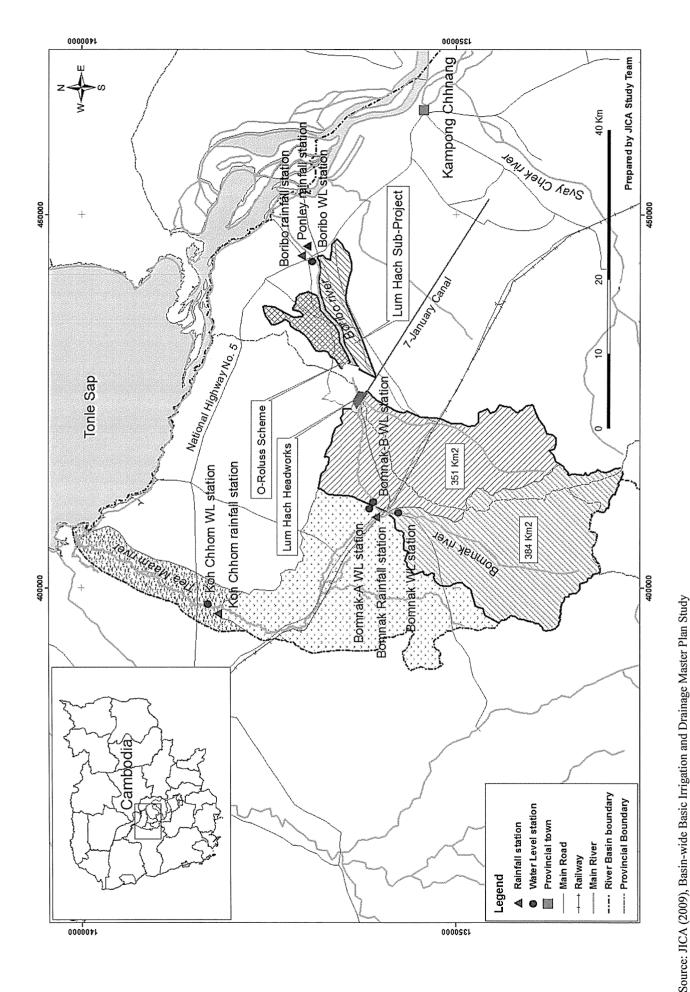



Figure III 1.2.2 Catchment Area of Damnak Ampil Headworks, and Damnak Ampil, Wat Loung and Wat Chre Sub-Projects

Catchment Area of Boribo River Basin at the Lum Hach Headworks and the Lum Hach Sub-Project Figure III 1.2.3

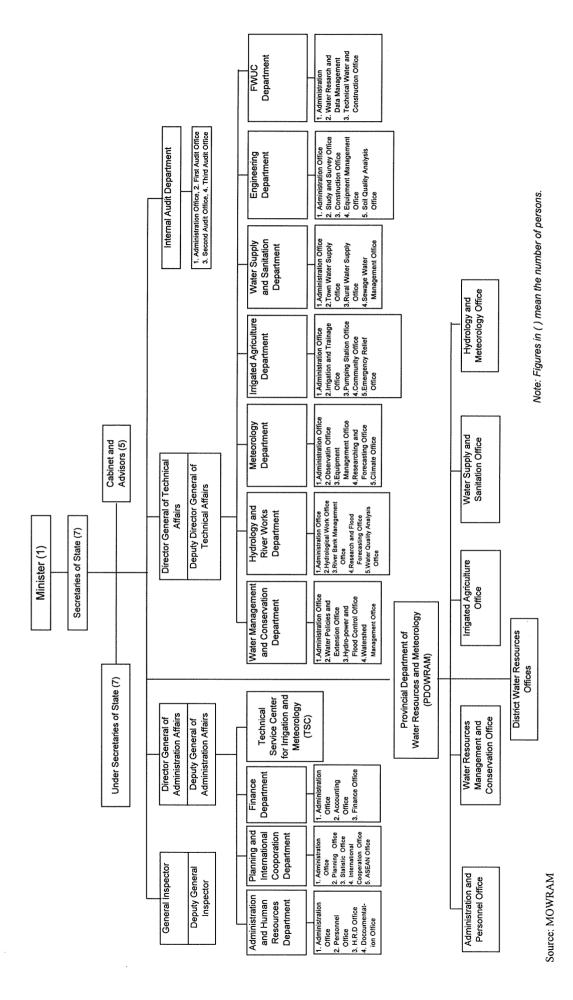


Figure III 1.6.1 Organizational Structure of Ministry of Water Resources and Meteorology (MOWRAM)

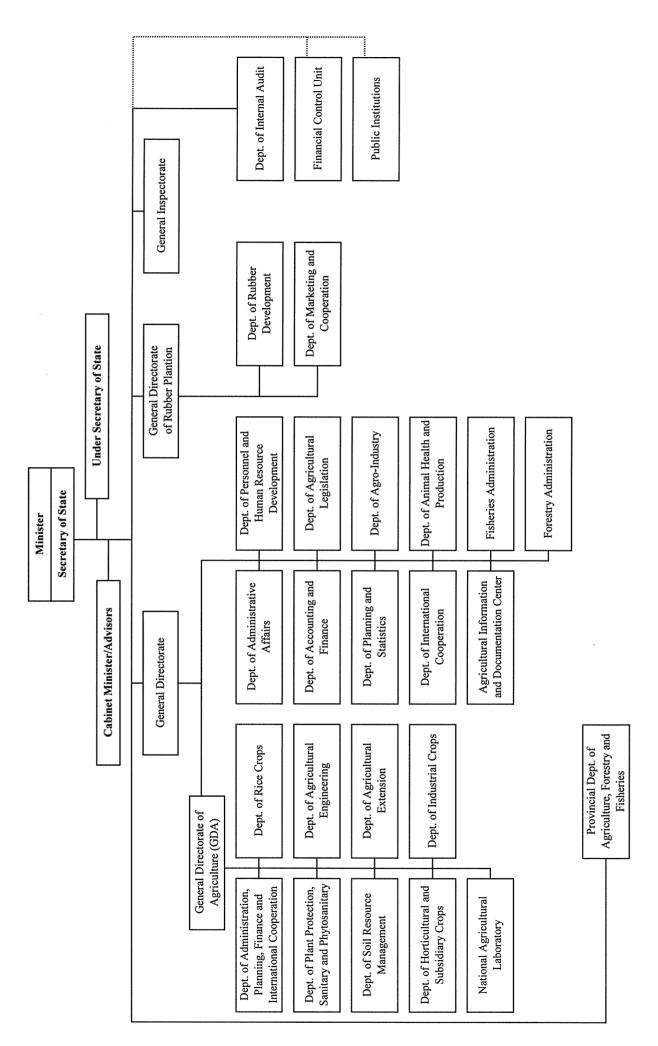


Figure III 1.6.2 Organizational Structure of Ministry of Agriculture, Forestry and Fisheries (MAFF)

Figure III 2.3.1 Irrigation Diagram of Ream Kon Sub-project

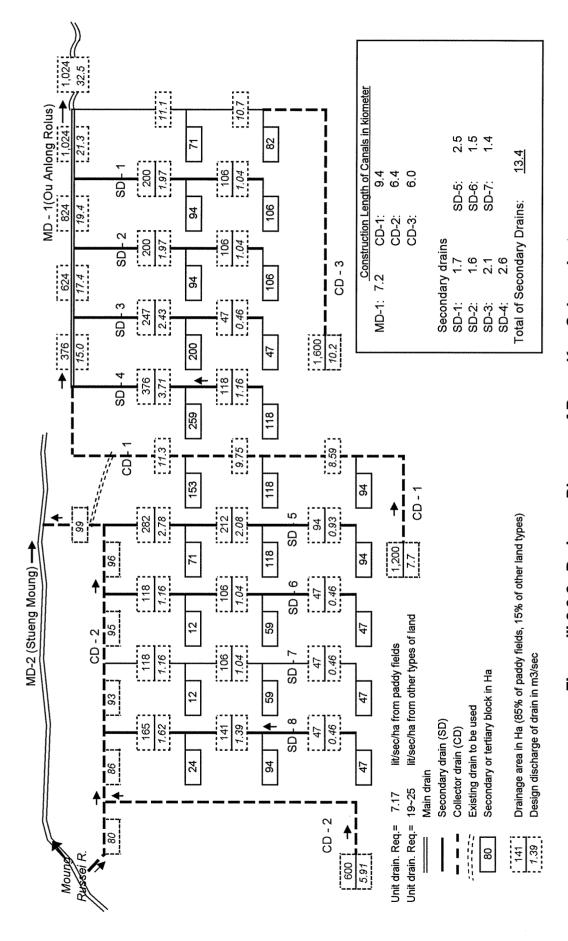


Figure III 2.3.2 Drainage Diagram of Ream Kon Sub-project

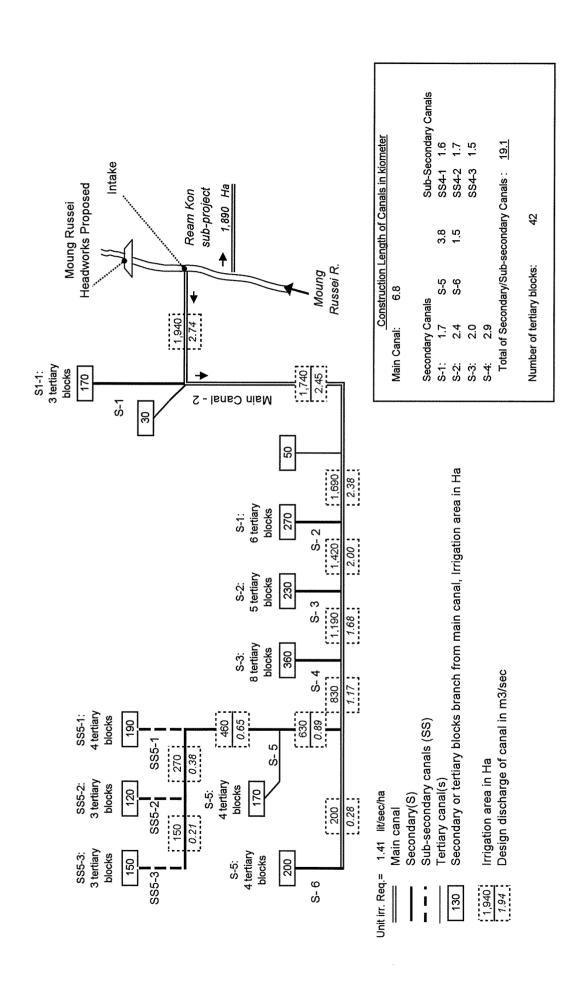


Figure III 2.3.3 Irrigation Diagram of Por Canal Sub-project

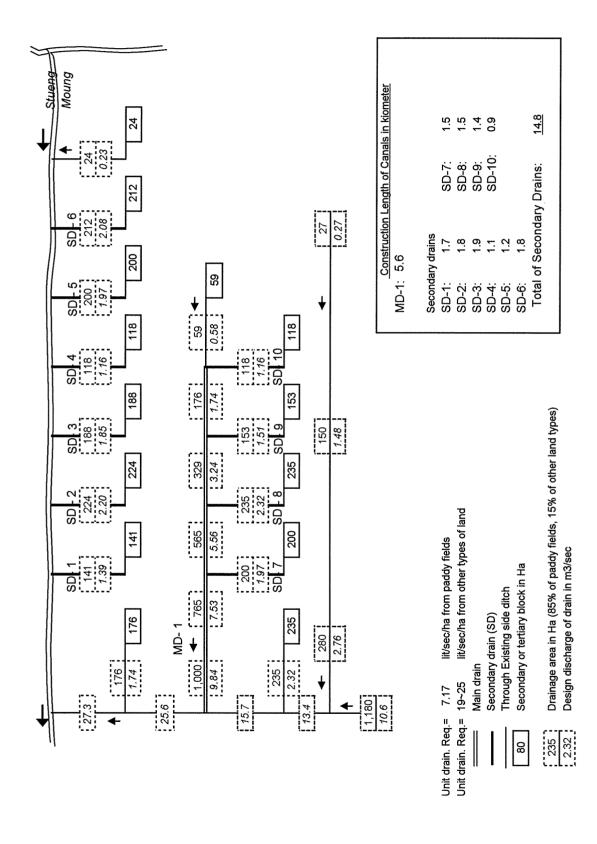


Figure III 2.3.4 Drainage Diagram of Por Canal Sub-project

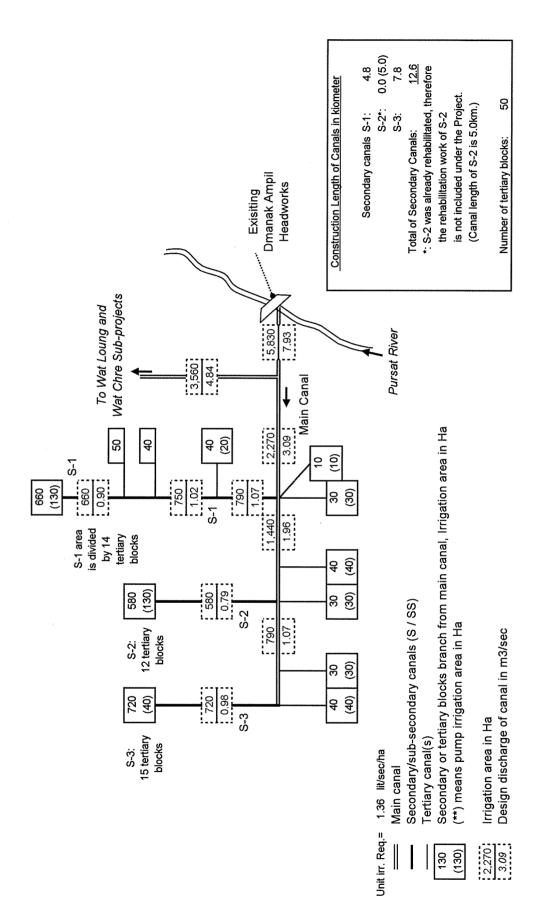


Figure III 2.3.5 Irrigation Diagram of Damnak Ampil Sub-project

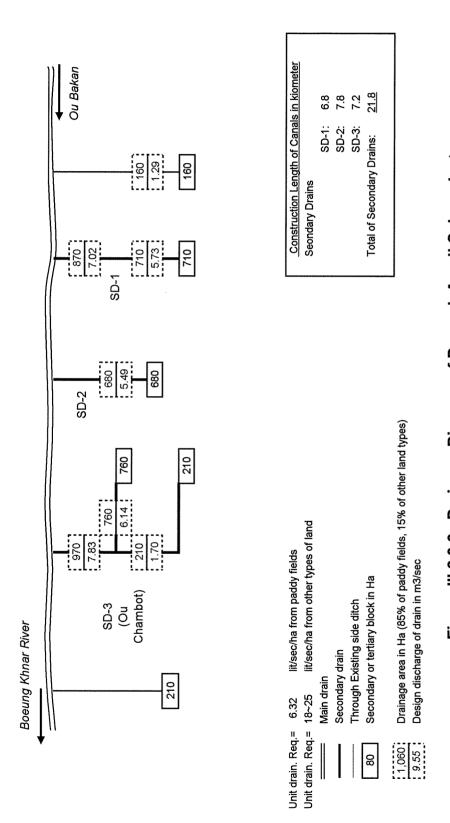


Figure III 2.3.6 Drainage Diagram of Damnak Ampil Sub-project

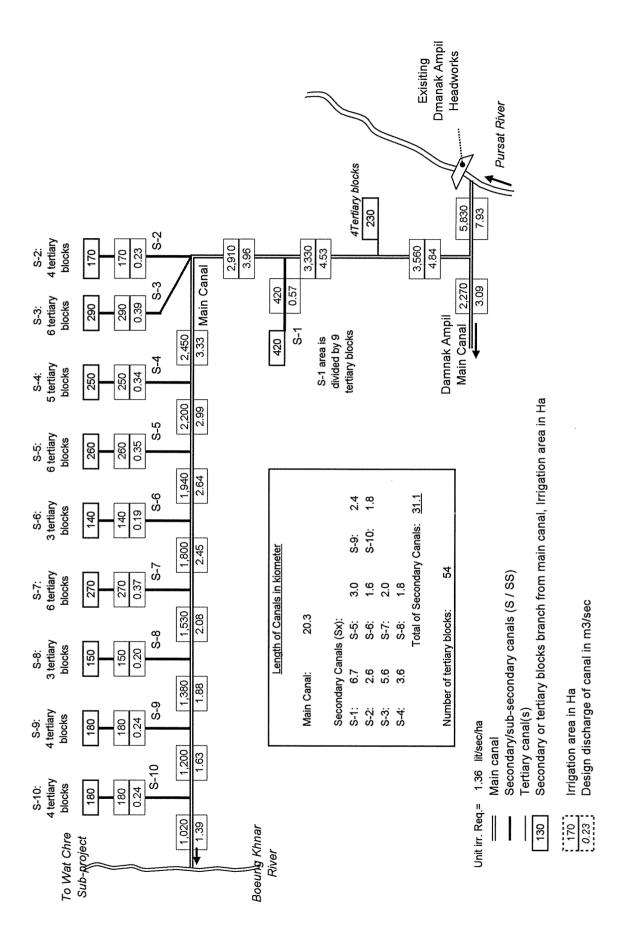


Figure III 2.3.7 Irrigation Diagram of Wat Loung Sub-project

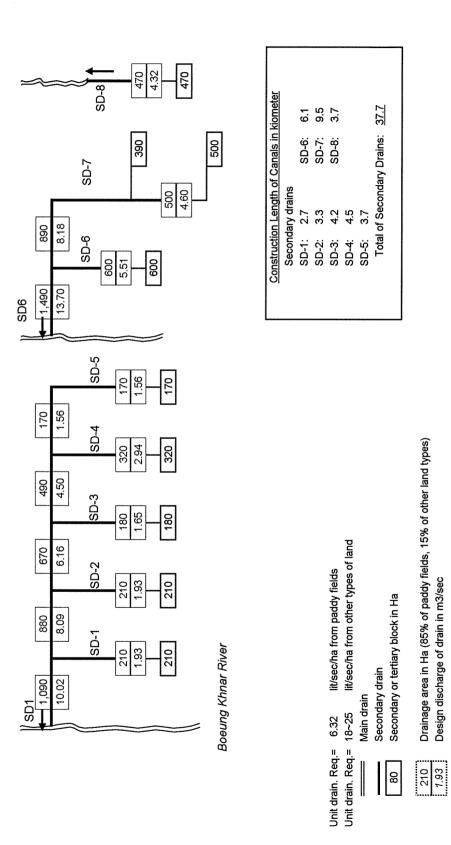


Figure III 2.3.8 Drainage Diagram of Wat Loung Sub-project

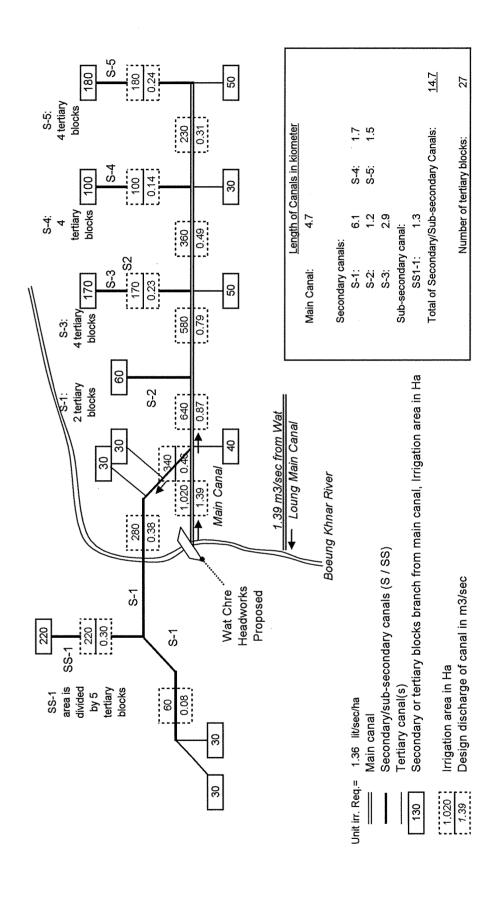


Figure III 2.3.9 Irrigation Diagram of Wat Chre Sub-project

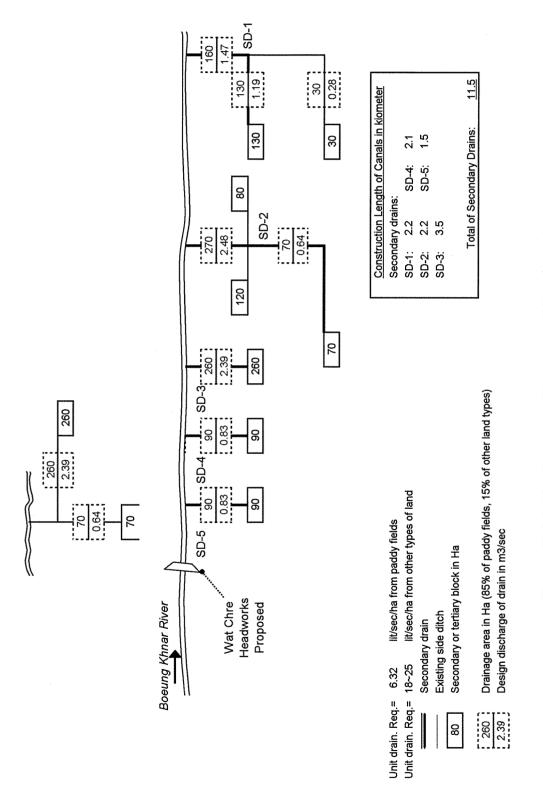


Figure III 2.3.10 Drainage Diagram of Wat Chre Sub-project

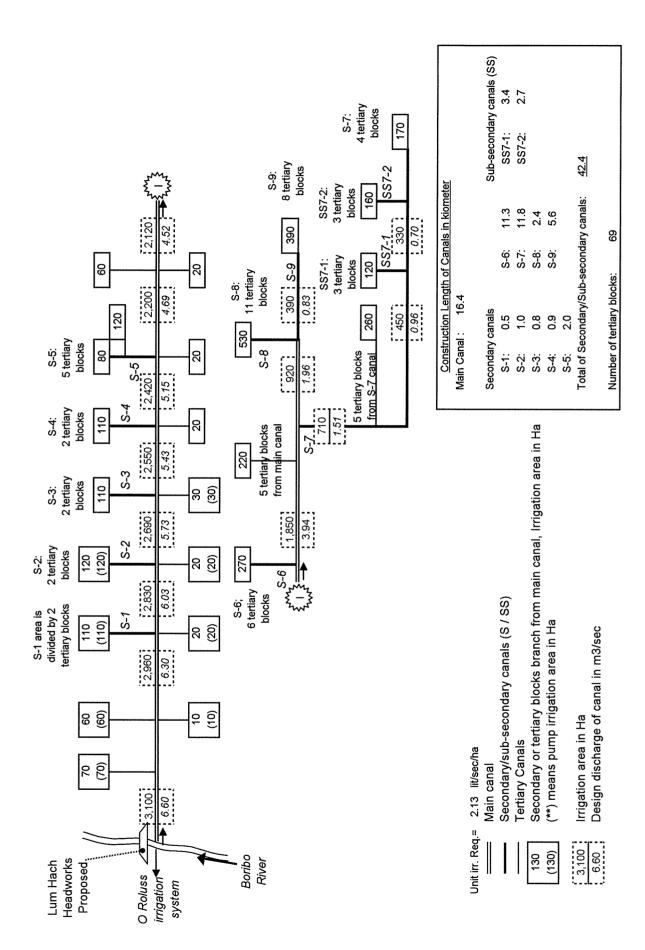


Figure III 2.3.11 Irrigation Diagram of Lum Hach Sub-project

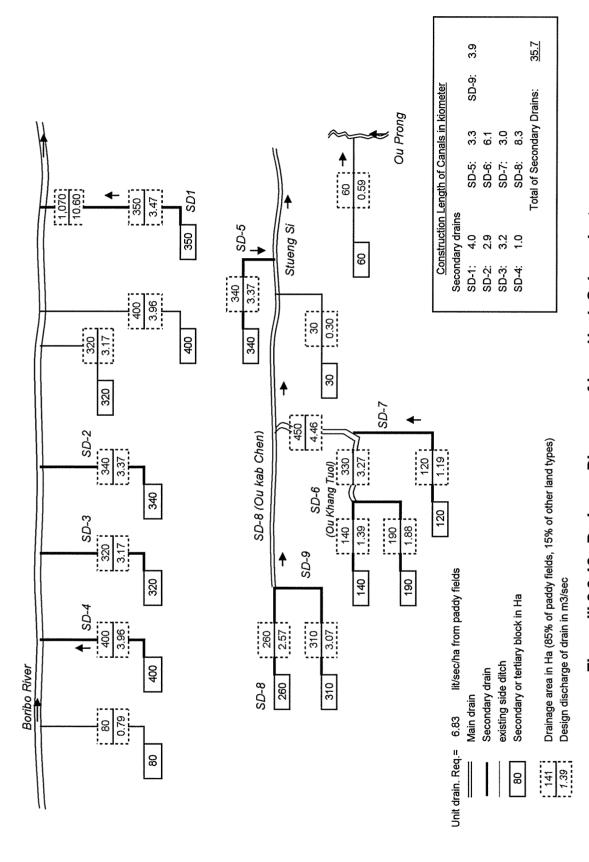
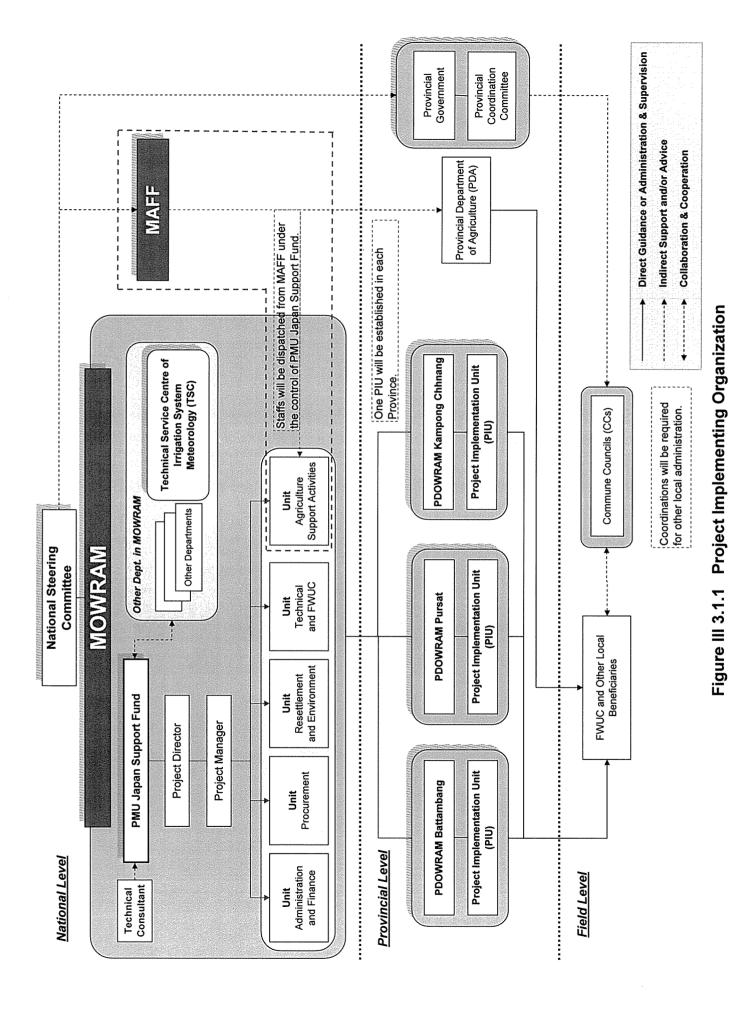



Figure III 2.3.12 Drainage Diagram of Lum Hach Sub-project

III - F - 18

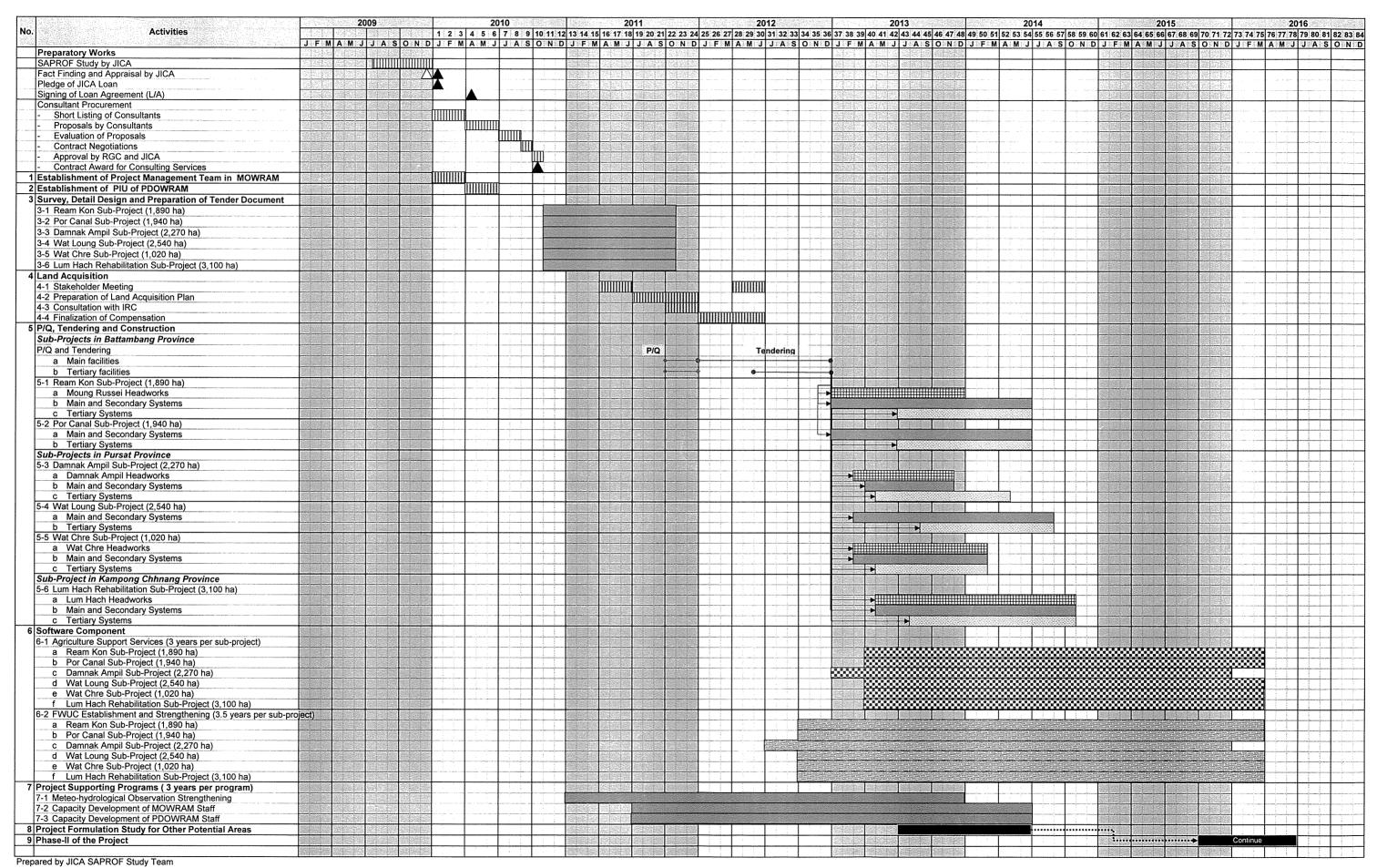


Figure III 3.2.1 Project Implementation Schedule