Volta River Authority (VRA) Ministry of Energy (MOE) Republic of Ghana

# PREPARATORY SURVEY REPORT ON THE PROJECT FOR IMPROVEMENT OF POWER DISTRIBUTION SYSTEM IN THE REPUBLIC OF GHANA

**MARCH 2012** 

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

YACHIYO ENGINEERING CO., LTD.



# PREFACE

Japan International Cooperation Agency (JICA) decided to conduct the preparatory survey on the project for Improvement of Power Distribution System in the Republic of Ghana, and organized a survey team headed by Mr. Masatsugu KOMIYA of Yachiyo Engineering Co., Ltd. between November 2010 and March 2012.

The survey team held a series of discussions with the officials concerned of the Government of Ghana, and conducted field investigations. As a result of further studies in Japan, the present report was finalized.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of Ghana for their close cooperation extended to the survey team.

March 2012

Kyoko KUWAJIMA Director General, Industrial Development and Public Policy Department, Japan International Cooperation Agency

### SUMMARY

#### **(1)** Overview of the Country

The Republic of Ghana (hereinafter referred to as "Ghana") located in central western Africa between 4° and 11° north latitude, and 3° west and 1° east longitude, Ghana faces the Gulf of Guinea to the South, and is bordered by Togo to the east, the Republic of Cote d'Ivoire to the west, and the Republic of Burkina Faso to the north. The population of Ghana is about 24.2 million (FY2010). Its territory is approximately 238,000 km<sup>2</sup> — about 0.6 times of the area of Japan — and is almost completely flat land less than 300 meters above sea level. Its climate is tropical and humid throughout the year with an annual average temperature of about 23C° to 35C°. The rainy season extends from May to July and from September to November, and its annual rainfall reaches more than 1400mm.

In 1995, the Government of Ghana formulated the "Vision 2020" which comprises comprehensive long-term development guidelines for the purpose of promoting sustainable economic growth, poverty reduction and democratic policies and actively pursued the economic development of the country. Especially, such subjects as development of human resources, economic growth, agricultural development and provision of circumstances for these developments are prioritized. For power sector development, "to achieve sure access to electricity in villages holding population more than 500" is adopted as the final objectives.

However, economy of Ghana is dependent on the primary industry, as its main exporting materials are cacao, gold and timber materials. Ghana is exposed to fluctuation of their international market prices. As the result, Ghana is designated as the heavily-indebted poor country (HIPC).

#### 2 Background of the Project

Aiming at boosting the domestic economy to break free from the HIPC status, the Government of Ghana has placed emphasis on the development of the electricity sector to form the foundation for the country's economic development. The Energy Commission (EC) of Ghana which is the body responsible for the planning of policies to utilise energy resources prepared the Strategic National Energy Plan (SNEP) in 2005. In addition, there has been a strong drive for electrification in Ghana based on the National Electrification Scheme (NES) and the Self Help Electrification Project (SHEP). Results of these endeavours have achieved an electrification rate of 66% (2010) which is the third highest among Sub-Saharan African countries. The Growth and Poverty Reduction Strategy II (GPRS II) formulated in 2006 calls for the modernisation and expansion of the power infrastructure as a service sector underpinning economic growth and poverty reduction.

The electricity sector in Ghana has been experiencing a severe financial situation and the expansion and renewal of the system and equipment have been insufficient despite an increase of the power demand and ageing of the equipment. Because of this, the power distribution grid in Ghana suffers from a high level of distribution loss and the poor reliability of the power supply has been hampering the development of the local economy and improvement of the daily lives of the people, particularly those living in rural

areas. Under these circumstances, the Government of Ghana made a request to the Government of Japan to conduct a master plan study for the power distribution sector with a view to formulating a master plan for the nationwide power distribution sector incorporating the renewal and enhancement of the distribution equipment and extension of the grid to rural areas. In response to this request, the Government of Japan completed the said study under its technical cooperation scheme.

Based on this master plan, the Government of Ghana then made a further request for improvement of the power distribution system as a Japanese grant aid project to improve the situation of power distribution through reduction of the distribution loss and improvement of the power supply reliability, thereby achieving accelerated economic growth and improvement of the living conditions.

#### **③** Outline of the Study Findings and Project Contents

In response to the request, JICA dispatched the Study Team to Ghana from November 20 to December 18, 2010 (first field survey) and from January 23 to February 25, 2011 (second field survey) in order to reconfirm the contents of the request and discuss the contents for implementation with related agencies on the Ghanaian side (responsible government agency: Ministry of Energy (MOE), and implementing agency: Volta River Authority(VRA)), survey the Project sites and gather related materials and data.

On returning to Japan, the Study Team examined the necessity, social and economic impacts and validity of the Project based on the field survey materials and compiled the findings into the draft preparatory study report. Furthermore, JICA dispatched the Study Team to Ghana for the third field survey from May 21 to May 30, 2011 in order to explain and discuss the draft preparatory study report and reach a basic agreement with the Ghanaian counterparts.

The Project plan compiled based on the survey findings targets procurement and installation of new 34.5 kV sub-transmission lines, including extension work of 34.5 kV switchgears in Bulk Supply Points, and new 11.5 kV distribution lines and construction of new substations (34.5/11.5 kV) in Tamale Area (Northern Region) and Sunyani Area (Brong Ahafo Region)

|              | Improvement of Distribution System                               | Improvement of Distribution System                               |
|--------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Category     | in Tamale Area                                                   | in Sunyani Area                                                  |
|              | (Northern Region)                                                | (Brong-Ahafo Region)                                             |
|              | 1. Construction of UDS Primary Substation                        | 1. Construction of Kotokrom Primary Substation                   |
|              | (1) Transformer (34.5/11.5 kV, 7.5 MVA): 1 set                   | (1) Transformer (34.5/11.5 kV, 7.5 MVA): 1 set                   |
|              | (2) 34.5 kV Switchgear Cubicle: 2 sets                           | (2) 34.5 kV Switchgear Cubicle: 2 sets                           |
| Procurement  | (3) 11.5 kV Switchgear Cubicle: 5 sets                           | (3) 11.5 kV Switchgear Cubicle: 5 sets                           |
| and          | (4) Station transformer $(11.5/0.43 \text{ kV}, 100 \text{ kV})$ | (4) Station transformer $(11.5/0.43 \text{ kV}, 100 \text{ kV})$ |
| Installation | kVA): 1 set                                                      | kVA): 1 set                                                      |
| of           | (5) Substation building (single story, floor area                | (5) Substation building (single story, floor area                |
| Equipment    | of some $260 \text{ m}^2$ )                                      | of some $260 \text{ m}^2$ )                                      |
|              | ,                                                                | ,                                                                |
|              |                                                                  | 2. 34.5 kV Sub-transmission line (between Sunyani                |
|              | 2. 34.5 kV Sub-transmission line (between Tamale                 | BSP to new Kotokrom Primary Substation):                         |

#### Outline of the Basic Design

|             | BSP and the UDS Primary Substation):             | approx. 8.5 km                                   |
|-------------|--------------------------------------------------|--------------------------------------------------|
|             | approx. 19 km                                    | (including underground section: approx 0.5 km)   |
|             | (including underground section: approx 5 km)     |                                                  |
|             |                                                  | 3. 11.5 kV distribution lines (from new Kotokrom |
|             | 3.11.5 kV distribution lines (from new UDS       | Primary Substation to the existing distribution  |
|             | Primary Substation to the existing distribution  | lines)                                           |
|             | lines)                                           | (1) Hospital feeder: approx. 4.3 km              |
|             | (1) UDS feeder: approx. 0.2 km                   | (2) New Dormaa feeder: approx. 0.6 km            |
|             | (2) Tolon feeder: approx. 0.7 km                 | (3) Chiraa feeder: approx. 0.7 km                |
|             | (3) Cheshegu feeder: approx. 0.3 km              |                                                  |
|             |                                                  | 4. Extension 34.5 kV Switchgear at Sunyani BSP:  |
|             | 4. Extension 34.5 kV Switchgear at Tamale BSP: 3 | 3 sets                                           |
|             | sets                                             |                                                  |
|             |                                                  | 5. Ring main unit (RMU): 1 set                   |
|             | 1. Testing Instruments                           | 1. Testing Instruments                           |
| Procurement | (                                                | (including Cable Failure Point Detector)         |
| of          | 2. Maintenance Tools                             | 2. Maintenance Tools                             |
| Equipment   | (including Aerial Platform Vehicle)              | (including Aerial Platform Vehicle)              |
| and Other   | 3. Replacement Parts                             | 3. Replacement Parts                             |
|             | 4. Emergency Spare Parts                         | 4. Emergency Spare Parts                         |

#### **④** Project Implementation schedule and Cost Estimation

In the event where the Project is implemented based on the Japan's Grant Aid scheme, the total cost of the Project will be (*confidential*). The contents and costs to be borne by the Ghanaian side will primarily be provision of ground levelling and preparation, weeding and removal of obstacles at the Project sites (approximately 14 million yen), auxiliary work for new substation (water supply and drainage work) (approximately 9 million yen), and construction of permanent fencing and gate at the new substations (approximately 7 million yen). The implementation schedule for the Project including the detailed design will be approximately 16 months.

## **5** Project Evaluation

#### (1) Relevance

The relevance of the Project to the spirit of Japan's grant aid scheme is judged to be strong as it not only contributes to the realisation of the development programme and energy policy of Ghana but also benefits the people of Ghana, including the poor.

#### (2) Efficiency

The following effects are expected as a result of the implementation of the Project.

| Indicator                       | Reference Value (2010) | Target Value (2018)    |
|---------------------------------|------------------------|------------------------|
| Voltage Drop (%)                | Tamale : -25%          | Tamale : -10% or less  |
|                                 | Sunyani : -37%         | Sunyani : -10% or less |
| Annual Total of Outage Duration | Tamale : 125           | Tamale : 88            |

#### 1) Quantitative Effects (Size of Population Directly Benefitting: 114,000)

| (hours/year)                   | Sunyani : 27 | Sunyani : 19                         |
|--------------------------------|--------------|--------------------------------------|
| Improvement of Electrification | Tamale : -   | Tamale :                             |
| (households)                   | Sunyani : -  | Existing Customers: 5,084 households |
|                                |              | Waiting: 3,916 households            |
|                                |              | Total: 9,000 households              |
|                                |              | (Approx. 66,600 persons)             |
|                                |              | Sunyani :                            |
|                                |              | Existing Customers: 4,577 households |
|                                |              | ➢ Waiting: 4,380 households          |
|                                |              | Total 8,957 households               |
|                                |              | (Approx.47,500 persons)              |

| 2) Qualitative Effects (Size of Population Indirectly Benefitting: 675,000) |
|-----------------------------------------------------------------------------|
|                                                                             |

| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Current Situation and Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Improvement Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Project Effects and Degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| <ul> <li>&lt; Large-Scale Medical Facility &gt;         <ol> <li>Sunyani is a main local city in which the Sunyani Regional Hospital is located for the treatment of seriously ill inpatients and outpatients from not only Brong-Ahafo Region but also from other nearby regions. There have been incidents where the emergency power generating system at the time of an outage has not properly functioned during an operation, threatening patient safety. The poor power quality (voltage drop or fluctuations) impede efficient medical treatment as precision medical equipment can be badly affected.</li> </ol></li></ul> <li>Sunyani Regional Hospital This hospital is ranked fourth in the country after only the university hospitals in Accra, Kumasi and Tamale. It currently experiences outages some six times a month with a total duration of eight hours. There have been breakdowns of its medical equipment due to voltage fluctuations.</li> | Under the Project<br>< Improvement of the Distribution<br>System in Sunyani ><br>Following the master plan for the<br>distribution sector, equipment and<br>materials for the Kotokrom<br>Primary Substation (7.5 MVA),<br>34.5 kV sub-transmission lines (5<br>km) and 11.5 kV distribution lines<br>(three feeders) will be procured<br>and installed.<br>Other items to be procured under<br>the Project include such<br>maintenance equipment as a cable<br>failure point detector and aerial<br>platform vehicle and spare parts<br>for distribution equipment. | of ImprovementThe implementation of the Projectwill improve the quality andsupply reliability of power inSunyani and the resultingavoidance of outages duringoperations will enable safemedical treatment. The overallmedical treatment. The overallmedical care conditions for urgentpatients and other outpatients fromthe local area and other regionswill be greatly improved.The improved power supply willprevent failures of the X-ray andother important medicalequipment and treatment based onaccurate data will be consistentlyprovided.Through such improvements, theProject will contribute to theachievement of the MDGs:"lowering of infant mortality" and"improvement of the health ofpregnant women".• Sunyani Regional HospitalPatients: approx. 20,000/monthAn exclusive feeder to thehospital will be installed underthe Project and the availabilityof two supply sources willimprove the power supplyreliability. The normal use ofan exclusive line will meanbetter power quality. <td <="" colspan="2" td=""></td> |  |  |
| 2. At health centres and other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < Improvement of the Distribution<br>System in Tamale >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The implementation of the Project<br>will improve the power quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| small medical facilities used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Following the master plan for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and supply reliability, ensuring the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Improvement Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Effects and Degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Current Situation and Problems                                                                                                                                                                                                                                                                                                                                                                                                                         | Under the Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| by local residents, refrigerators<br>to store medicines and<br>vaccines, sterilisers and other<br>electrical equipment play an<br>important role in medical care.<br>An outage means that such<br>equipment cannot be used as<br>well as a lack of lighting,<br>hampering the medical care<br>provided by these facilities.                                                                                                                            | distribution sector, equipment and<br>materials for the UDS Primary<br>Substation (7.5 MVA), 34.5 kV<br>sub-transmission lines (19 km)<br>and 11.5 kV distribution lines<br>(three feeders) will be procured<br>and installed.<br>Other items to be procured under<br>the Project include such<br>maintenance equipment as a cable<br>failure point detector and aerial<br>platform vehicle and spare parts<br>for distribution equipment.<br>< Improvement of the Distribution<br>System in Sunyani ><br>Following the master plan for the<br>distribution sector, equipment and<br>materials for the Kotokrom<br>Primary Substation (7.5 MVA),<br>34.5 kV sub-transmission lines (5<br>km) and 11.5 kV distribution lines<br>(three feeders) will be procured<br>and installed.<br>Other items to be procured under<br>the Project include such<br>maintenance equipment as a cable<br>failure point detector and aerial<br>platform vehicle and spare parts<br>for distribution equipment. | proper functioning of refrigerators<br>to store medicines and vaccines,<br>sterilisers and other medical<br>equipment. These improvements<br>will result in assured medical<br>treatment at the facilities and the<br>vaccination of children in<br>communities. As the local patients<br>include many infants and pregnant<br>women, their health will be<br>improved. The proper treatment of<br>patients at night will also be<br>possible. Through such<br>improvements, the Project will<br>contribute to the achievement of<br>the MDGs: "lowering of infant<br>mortality" and "improvement of<br>the health of pregnant women".<br>< Improvement of the Distribution<br>System in Tamale ><br>• God Cares Community<br>Hospital<br>• Tolon Health Center<br>• Nyamkpala Health Center<br><u>Patients: 4,500/month</u><br><u>The Project will benefit 79<br/>communities (some 75,000<br/>people) in the service areas of</u><br>these medical facilities. |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < Improvement of the Distribution<br>System in Sunyani >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chiraa Health Center <u>Patients: 1,000/month</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| < Educational Facilities > 3. Universities, vocational schools and senior high schools for the education of those who will become major players in future industries and the economy experience poor teaching efficiency as the use of electrical equipment is often prevented by outages or voltage fluctuations or drops. Outages at night also affect not only the work of students in dormitories but also the preparation of lessons by teachers. | As above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The Project will enable the steady<br>use of lighting systems, PCs,<br>laboratory equipment and others,<br>vitalising educational activities.<br>The homework of students in the<br>dormitories, etc. at night will not<br>be disrupted by outages,<br>improving their learning<br>efficiency.<br>With these improvements, the<br>Project will contribute to the<br>"achievement of universal primary<br>education", a MDG, and<br>educational activities at higher<br>levels.<br>< Improvement of the Distribution<br>System in Tamale ><br>• UDS University<br>• Grich Computer and<br>Secretarial School<br>• Tamale Technical Institute<br>• Bisco Senior High School                                                                                                                                                                                                                                                                                        |  |

| Current Situation and Problems                                                                                                                                                                                                                                                                                                                                                                                                           | Improvement Measures<br>Under the Project | Project Effects and Degree<br>of Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | <ul> <li>Tolon Senior High School</li> <li>Other primary and junior high schools<br/>Students: approx. 23,000</li> <li>&lt; Improvement of the Distribution System in Sunyani &gt;</li> <li>Sunyani Nurses' Training College</li> <li>Catholic Technical Institute</li> <li>Sunyani Business and Secretarial School</li> <li>Chiraa Senior High School</li> <li>Twene Amanfo Senior High School</li> <li>Other primary and junior high schools<br/>Students: approx. 27,000</li> </ul> |
| <ul> <li>&lt; Local Industries &gt;</li> <li>4. Local industrial facilities at the<br/>Project sites, including<br/>sawmills, raw cotton factories,<br/>agricultural equipment<br/>manufacturing factories and<br/>corn mills, suffer from a low<br/>level of productivity due to the<br/>malfunctioning of processing<br/>equipment caused by voltage<br/>drops or equipment<br/>breakdowns due to voltage<br/>fluctuations.</li> </ul> | As above                                  | The Project will improve the<br>power supply quality (fewer<br>voltage drops or fluctuations) and<br>the power supply reliability at the<br>Project sites, improving the<br>operating rate of processing<br>equipment and thereby vitalising<br>local industries.                                                                                                                                                                                                                      |

# CONTENTS

| Preface                                                 |
|---------------------------------------------------------|
| Summary                                                 |
| Contents                                                |
| Location of the Project Site                            |
| Transmission System Diagram in Ghana (as of Feb., 2011) |
| Rendering of Primary Substation of the Project          |
| List of Figures & Tables                                |
| Abbreviations                                           |

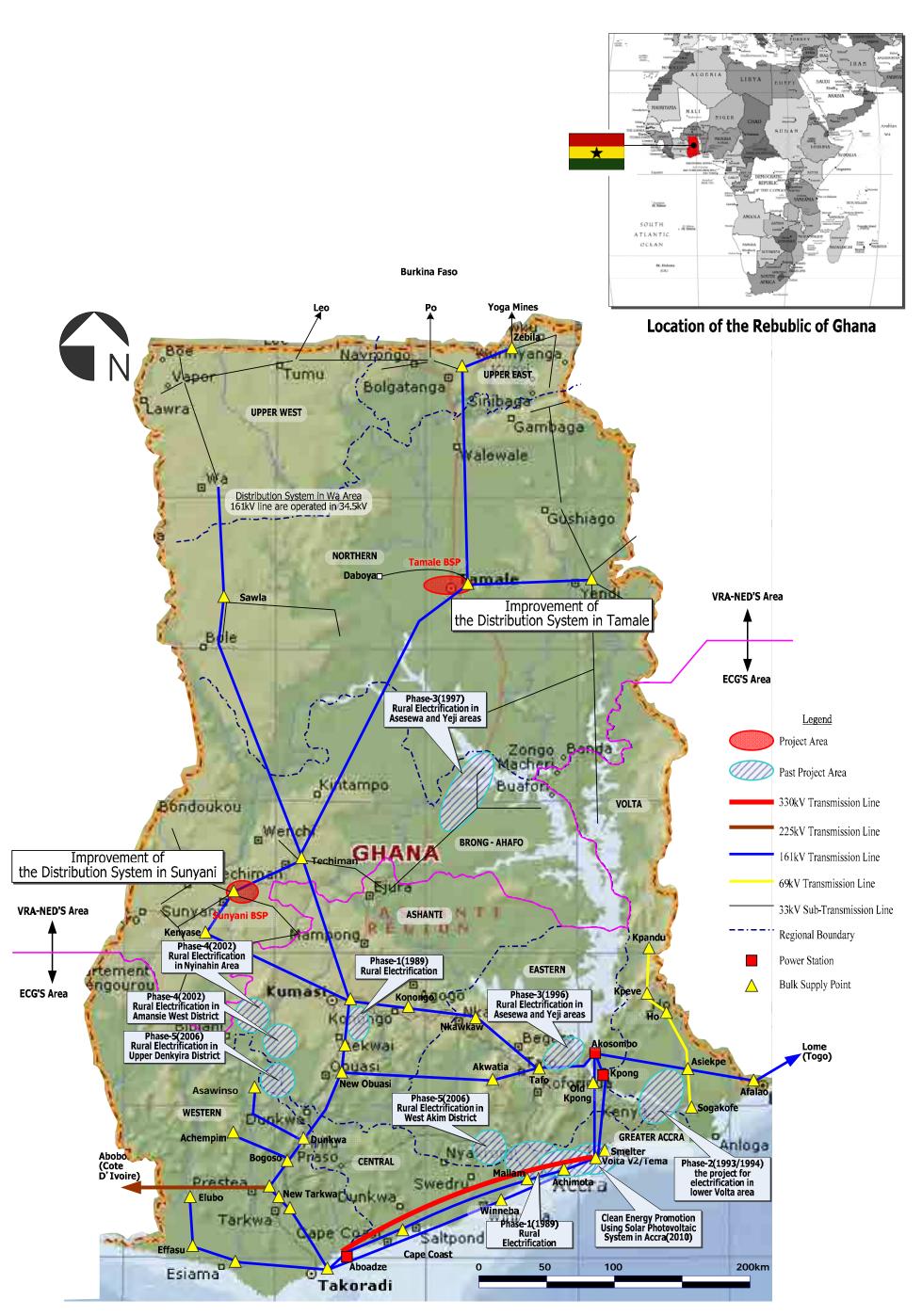
2-2-1-1 2-2-1-2

2-2-1-3

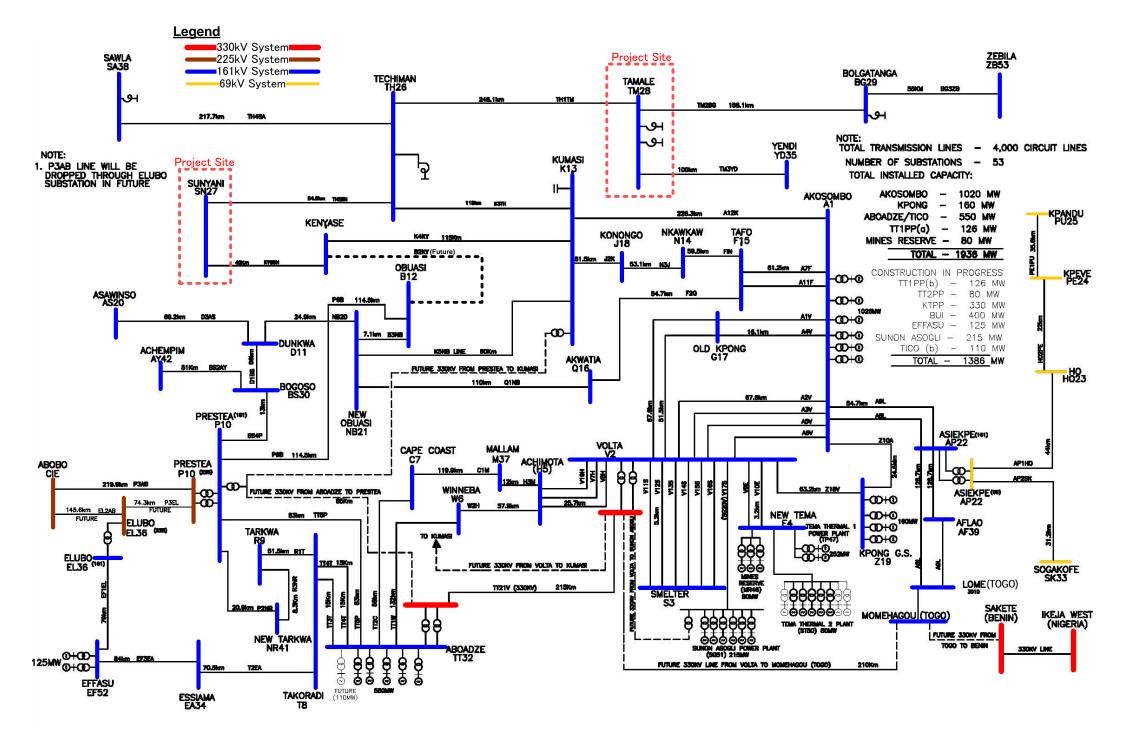
2-2-1-4

2-2-1-5

2-2-1-6


2-2-1-7

| Chapter | ·1 Ba                                   | ackground  | l of the Project                                           |      |
|---------|-----------------------------------------|------------|------------------------------------------------------------|------|
| 1-1     | Background of the Japanese Assistance   |            |                                                            | 1-1  |
| 1-2     | Natural Conditions                      |            |                                                            | 1-1  |
| 1-3     | Environmental and Social Considerations |            |                                                            | 1-4  |
|         | 1-3-1                                   | Environr   | nental Impact Evaluation                                   | 1-4  |
|         |                                         | 1-3-1-1    | Project Components                                         | 1-4  |
|         |                                         | 1-3-1-2    | Outlines around the Project Sites                          | 1-4  |
|         |                                         | 1-3-1-3    | Institution and Organization of Environmental              |      |
|         |                                         |            | and Social Considerations in Ghana                         | 1-5  |
|         |                                         | 1-3-1-4    | Comparison of the Alternatives                             | 1-11 |
|         |                                         | 1-3-1-5    | Evaluation of Anticipated Environmental and Social Impacts | 1-15 |
|         |                                         | 1-3-1-6    | Mitigation Measures                                        | 1-19 |
|         |                                         | 1-3-1-7    | Stakeholder Meetings                                       | 1-20 |
|         | 1-3-2                                   | Land Ac    | quisition and Resettlement                                 | 1-21 |
|         |                                         | 1-3-2-1    | Land Acquisition                                           | 1-21 |
|         |                                         | 1-3-2-2    | Other: Sunyani Wednesday Market                            | 1-23 |
|         | 1-3-3                                   | Draft Mo   | onitoring Forms and Draft Monitoring Forms                 | 1-23 |
|         |                                         | 1-3-3-1    | Draft Monitoring Forms                                     | 1-23 |
|         |                                         | 1-3-3-2    | Environmental Check List                                   | 1-24 |
| Chapter | · 2 Co                                  | ontents of | the Project                                                |      |
| 2-1     | Basic                                   | Concept o  | f the Project                                              | 2-1  |
| 2-2     | Outlin                                  | e Design o | of the Japanese Assistance                                 |      |
|         | 2-2-1                                   | Design P   | Policies                                                   | 2-2  |


Operation and Maintenance Capability

Use of Local Construction Companies and Local Materials......2-4

|          |          | 2-2-1-8      | Construction and Procurement Methods and Schedule |       |
|----------|----------|--------------|---------------------------------------------------|-------|
|          | 2-2-2    | Basic Pla    | an                                                |       |
|          |          | 2-2-2-1      | Preconditions for Planning                        |       |
|          |          | 2-2-2-2      | Design Conditions                                 |       |
|          |          | 2-2-2-3      | Outline of the Basic Plan                         |       |
|          | 2-2-3    | Outline l    | Design Drawings                                   |       |
|          | 2-2-4    | Impleme      | entation Plan                                     |       |
|          |          | 2-2-4-1      | Implementation Policy                             |       |
|          |          | 2-2-4-2      | Implementation Conditions                         |       |
|          |          | 2-2-4-3      | Scope of Works                                    |       |
|          |          | 2-2-4-4      | Consultant Supervision                            |       |
|          |          | 2-2-4-5      | Quality Control Plan                              |       |
|          |          | 2-2-4-6      | Equipment Procurement Plan                        |       |
|          |          | 2-2-4-7      | Operational Guidance Plan                         |       |
|          |          | 2-2-4-8      | Soft Component Plan                               |       |
|          |          | 2-2-4-9      | Implementation Schedule                           |       |
| 2-3      | Obliga   | ations of th | he Recipient Country                              |       |
| 2-4      | Projec   | t Operatio   | n Plan                                            |       |
|          | 2-4-1    | Basic Po     | olicy                                             |       |
|          | 2-4-2    | Regular      | Check Items                                       |       |
|          | 2-4-3    | Spare Pa     | urts Procurement Plan                             |       |
| 2-5      | Projec   | t Cost Eva   | aluation                                          |       |
|          | 2-5-1    | Initial Co   | ost Estimation                                    |       |
|          | 2-5-2    | Operatio     | on and Maintenance Cost                           |       |
|          |          |              |                                                   |       |
| Chapte   |          | roject Eva   |                                                   |       |
| 3-1      |          |              |                                                   |       |
| 3-2      | Neces    | sary Input   | s by the Recipient Country                        | 3-1   |
| 3-3      | •        |              | nptions                                           |       |
| 3-4      | Projec   | t Evaluati   | on                                                |       |
|          | 3-4-1    | Relevand     | ce                                                |       |
|          | 3-4-2    | Effective    | eness                                             |       |
| [Anne    | ndices]  |              |                                                   |       |
| 1.       | -        |              | the Study Team                                    | A_1_1 |
| 1.<br>2. |          |              |                                                   |       |
| 2.<br>3. | •        |              | oncerned in the Recipient Country                 |       |
| 3.<br>4. |          |              | ussions                                           |       |
| 4.<br>5. |          |              | ussions                                           |       |
| э.       | 1 ICIU I | xeport       |                                                   | A-J-I |



# Location Map of the Project Site



Transmission System Diagram in Ghana (as of Feb., 2011)



Rendering of Primary Substation of the Project

# LIST OF FIGURES & TABLES

(Figures)

| Fig. 1-3-1.1  | Organizational Structure of the Environmental Protection Agency in Gha | ana 1-7 |
|---------------|------------------------------------------------------------------------|---------|
| Fig. 1-3-1.2  | Procedure to Obtain Environmental Permit in Ghana                      | 1-9     |
|               |                                                                        |         |
| Fig. 2-2-2.1  | Direct Benefitting Area of the Planned Distribution System             |         |
|               | Under the Project in the Tamale Area                                   | 2-12    |
| Fig. 2-2-2.2  | Direct Benefitting Area of the Planned Distribution System             |         |
|               | Under the Project in the Sunyani Area                                  | 2-13    |
| Fig. 2-2-3.1  | Tamale 34.5/11.5 kV Network Diagram                                    | 2-43    |
| Fig. 2-2-3.2  | Single Line Diagram of UDS Primary Substation                          | 2-44    |
| Fig. 2-2-3.3  | Single Line Diagram of Tamale BSP Substation                           | 2-45    |
| Fig. 2-2-3.4  | Layout of UDS Primary Substation                                       | 2-46    |
| Fig. 2-2-3.5  | Elevational Plan of UDS Primary Substation                             | 2-47    |
| Fig. 2-2-3.6  | Sectional Plan of UDS Primary Substation                               | 2-48    |
| Fig. 2-2-3.7  | Layout of Tamale BSP Control Room                                      | 2-49    |
| Fig. 2-2-3.8  | Cable Route of Tamale BSP                                              | 2-50    |
| Fig. 2-2-3.9  | Route Map of Tamale Distribution System                                | 2-51    |
| Fig. 2-2-3.10 | Sunyani 34.5/11.5 kV Network Diagram                                   | 2-52    |
| Fig. 2-2-3.11 | Single Line Diagram of Kotokrom Primary Substation                     | 2-53    |
| Fig. 2-2-3.12 | Single Line Diagram of Sunyani BSP Substation                          | 2-54    |
| Fig. 2-2-3.13 | Layout of Kotokrom Primary Substation                                  | 2-55    |
| Fig. 2-2-3.14 | Elevational Plan of Kotokrom Primary Substation                        | 2-56    |
| Fig. 2-2-3.15 | Sectional Plan of Kotokrom Primary Substation                          | 2-57    |
| Fig. 2-2-3.16 | Layout of Sunyani BSP Control Room                                     | 2-58    |
| Fig. 2-2-3.17 | Cable Route of Sunyani BSP                                             | 2-59    |
| Fig. 2-2-3.18 | Layout of Ring Main Unit                                               | 2-60    |
| Fig. 2-2-3.19 | Route Map of Sunyani Distribution System                               | 2-61    |
| Fig. 2-2-3.20 | 34.5/11.5 kV Intermediate Pole (0 – 5 deg.)                            | 2-62    |
| Fig. 2-2-3.21 | 34.5/11.5 kV Light Angle Pole (5 – 20 deg.)                            | 2-62    |
| Fig. 2-2-3.22 | 34.5/11.5 kV Medium Angle Pole (20 – 60 deg.)                          | 2-63    |
| Fig. 2-2-3.23 | 34.5/11.5 kV Heavy Angle Pole (60 – 90 deg.)                           | 2-63    |
| Fig. 2-2-3.24 | 34.5/11.5 kV Cross Pole (90 deg.)                                      | 2-64    |
| Fig. 2-2-3.25 | 34.5/11.5 kV Section Pole                                              | 2-64    |
| Fig. 2-2-3.26 | 34.5/11.5 kV T-off Pole                                                | 2-65    |
| Fig. 2-2-3.27 | 34.5/11.5 kV Terminal Pole                                             |         |
| Fig. 2-2-3.28 | 34.5/11.5 kV Disconnecting Switch Pole (Horizontal Type)               | 2-66    |
| Fig. 2-2-3.29 | 34.5/11.5 kV Disconnecting Switch Pole (Vertical Dead End Type)        | 2-66    |
| Fig. 2-2-3.30 | 34.5/11.5 kV Disconnecting Switch Pole (Vertical Section Type)         | 2-67    |

| Fig. 2-2-4.1   | Project Implementation Regime                                              | 2-73  |
|----------------|----------------------------------------------------------------------------|-------|
| Fig. 2-2-4.2   | Project Implementation Schedule                                            | 2-77  |
|                |                                                                            |       |
| Fig. 2-4-1-1   | Basic Concept of the Maintenance of the Transforming, Transmission         |       |
|                | and Distribution Facilities                                                | 2-78  |
| Fig. 3-4-1.1   | Effects and Contribution from the JICA Electricity Distribution Projects   |       |
| Fig. 3-4-1.2   | Project Effects from Enhancement of Electricity Networks                   |       |
| Fig. 3-4-1.3   | Linkage of the Existing Electrical Problems                                |       |
| C              | and Improvement of Risks on the Beneficiaries                              | 3-7   |
| (Tables)       | 1                                                                          |       |
| Table 1-2.1    | Weather Data for Tamale (2010)                                             | 1-3   |
| Table 1-2.2    | Weather Data for Sunyani (2010)                                            |       |
|                |                                                                            |       |
| Table 1-3-1.1  | Legal Framework for Environmental and Social Considerations in Ghana       | 1-5   |
| Table 1-3-1.2  | Comparison of the Alternative Routes (Tamale)                              | 1-13  |
| Table 1-3-1.3  | Comparison of the Alternative Routes (Sunyani)                             | 1-14  |
| Table 1-3-1.4  | Environmental and Social Impacts Evaluation Sheet: Tamale and Sunyani      | 1-15  |
| Table 1-3-1.5  | Environmental Impacts Mitigation Measures (Tamale and Sunyani)             | 1-20  |
| Table 1-3-3.1  | Draft Monitoring Forms                                                     | 1_23  |
| Table 1-3-3.2  | Environmental Checklist: Power Transmission and Distribution Lines         |       |
| 14010 1-5-5.2  | Environmental enceknist. Fower Transmission and Distribution Ences         | 1-2-7 |
| Table 2-2-2.1  | Estimated Power Demand at the Project Site (Tamale)                        | 2-8   |
| Table 2-2-2.2  | Estimated Power Demand at the Project Site (Sunyani)                       | 2-9   |
| Table 2-2-2.3  | New 34.5 kV Sub-Transmission Line Construction Plan                        | 2-10  |
| Table 2-2-2.4  | Connection Method Between the Existing and                                 |       |
|                | New 11.5 kV Distribution Lines (Tamale)                                    | 2-11  |
| Table 2-2-2.5  | Connection Method Between the Existing and                                 |       |
|                | New 11.5 kV Distribution Lines (Sunyani)                                   | 2-11  |
| Table 2-2-2.6  | Meteorological Conditions                                                  | 2-14  |
| Table 2-2-2.7  | Electric Mode                                                              | 2-14  |
| Table 2-2-2.8  | Outline of the Basic Design                                                | 2-15  |
| Table 2-2-2.9  | List of the Main Rooms and Building Services for the Substation Building . | 2-18  |
| Table 2-2-2.10 | Specifications of the Principal Structural Bodies                          | 2-18  |
| Table 2-2-2.11 | Exterior Finishes                                                          | 2-19  |
| Table 2-2-2.12 | Interior Finishes                                                          | 2-19  |
| Table 2-2-2.13 | Outline Specifications of the Main Equipment                               |       |
|                | for the UDS Primary Substation                                             | 2-23  |
| Table 2-2-2.14 | Outline Specifications of the Main Equipment                               |       |
|                | for the 34.5 kV Sub-Transmission Line                                      |       |
|                | (from the Tamale BSP Substation to the UDS Primary Substation)             | 2-27  |
|                |                                                                            |       |

| Table 2-2-2.15                 | Outline Specifications of the Main Equipment                             |        |
|--------------------------------|--------------------------------------------------------------------------|--------|
|                                | for the 11.5 kV Distribution Lines                                       |        |
|                                | (11.5 kV distribution lines from the UDS Primary Substation)             | . 2-28 |
| Table 2-2-2.16                 | List of the Main Rooms and Building Services for the Substation Building | . 2-31 |
| Table 2-2-2.17                 | Specifications of the Principal Structural Bodies                        | . 2-31 |
| Table 2-2-2.18                 | Exterior Finishes                                                        | . 2-31 |
| Table 2-2-2.19                 | Interior Finishes                                                        | . 2-32 |
| Table 2-2-2.20                 | Outline Specifications of the Main Equipment                             |        |
|                                | for the Kotokrom Primary Substation                                      | . 2-36 |
| Table 2-2-2.21                 | Outline Specifications of the Main Equipment                             |        |
|                                | for the 34.5 kV Sub-Transmission Line                                    |        |
|                                | (from the Sunyani BSP Substation to the Kotokrom Primary Substation)     | . 2-40 |
| Table 2-2-2.22                 | Outline Specifications of the Main Equipment                             |        |
|                                | for the 11.5 kV Distribution Lines                                       |        |
|                                | (11.5 kV distribution lines from the Kotokrom Primary Substation)        | . 2-41 |
| Table 2-2-4.1                  | Division of Works (Provisional)                                          | 2-70   |
| Table 2-2-4.1<br>Table 2-2-4.2 | Engineers to be Dispatched by the Contractor                             |        |
| 1 4010 2-2-4.2                 | Engineers to be Dispatened by the Contractor                             | . 2-74 |
| Table 2-4-1.1                  | Post-Project Operation and Maintenance System                            | . 2-78 |
|                                |                                                                          |        |
| Table 2-4-2.1                  | Regular Check Items for Power Equipment                                  | . 2-79 |
| Table 2-4-3.1                  | Spare Parts, Testing Instruments and                                     |        |
|                                | Maintenance Tools to be Procured under the Project                       | . 2-82 |
|                                |                                                                          |        |
| Table 3-4-2.1                  | Emission Factor by Type of Fuel                                          |        |
| Table 3-4-2.2                  | Annual Power Consumption at Each Project Site                            |        |
| Table 3-4-2.3                  | CO <sub>2</sub> Reduction at the Project Sites                           | . 3-13 |

# Abbreviations

| AAAC   | All Aluminum Alloy Conductor                                     |
|--------|------------------------------------------------------------------|
| ACGF   | African Catalytic Growth Fund                                    |
| AFD    | Agence Francaise Developpment                                    |
| AfDB   | African Development Bank                                         |
| A/P    | Authorization to Pay                                             |
| ASEAN  | Association of South-East Asian Nations                          |
| B/A    | Banking Arrangement                                              |
| BSP    | Bulk Supply Point                                                |
| CHPS   | Community-Based Health Planning & Services                       |
| DAC    | Development Assistance Committee                                 |
| EC     | Energy Commission                                                |
| ECG    | Electricity Company of Ghana                                     |
| EIA    | Environmental Impact Assessment                                  |
| EIB    | European Investment Bank                                         |
| E/N    | Exchange of Notes                                                |
| EP     | Environmental Permit                                             |
| EPA    | Environmental Protection Agency                                  |
| ESA    | Environmentally Sensitive Areas                                  |
| EU     | European Union                                                   |
| G/A    | Grant Agreement                                                  |
| GDP    | Gross Domestic Product                                           |
| GEDAP  | Ghana Energy Development and Access Project                      |
| GEF    | Global Environmental Facility                                    |
| GHS    | Ghana Health Service                                             |
| GNI    | Gross National Income                                            |
| GPRS   | Ghana Poverty Reduction Strategy                                 |
| GRIDCo | Ghana Grid Co. Ltd                                               |
| GSGDA  | Ghana Shared Growth and Development Agenda                       |
| HIPCs  | Heavily Indebted Poor Countries                                  |
| IDA    | International Development Association                            |
| IEC    | International Electrotechnical Commission                        |
| IFC    | International Finance Corporation                                |
| IMF    | International Monetary Fund                                      |
| ISO    | International Organization for Standards                         |
| JCS    | Japanese Electrical Wire and Cable Maker's Association Standards |
| JEC    | Japanese Electrotechnical Committee                              |
| JEM    | Standards of Japan Electrical Manufacturer's Association         |
| JICA   | Japan International Cooperation Agency                           |
|        |                                                                  |

| JIS    | Japanese Industrial Standards                 |
|--------|-----------------------------------------------|
| KfW    | Kreditanstalt für Wiederaufbau                |
| LED    | Light Emitting Diode                          |
| MDGs   | Millennium Development Goals                  |
| MOC    | Ministry of Communication                     |
| MOE    | Ministry of Energy                            |
| MP     | Master Plan                                   |
| NED    | Northern Electricity Department               |
| NEP    | National Electrification Project              |
| NES    | National Electrification Scheme               |
| NREL   | National Renewable Energy Laboratory          |
| O&M    | Operation and Maintenance                     |
| ODA    | Official Development Assistance               |
| OJT    | On the Job Training                           |
| PEA    | Preliminary Environmental Assessment          |
| PER    | Preliminary Environmental Report              |
| POGE   | Poverty Oriented Grid Extension Program       |
| PRSP   | Poverty Reduction Strategy Paper              |
| PURC   | Public Utilities Regulatory Commission        |
| PVC    | Polyvinyl Chloride                            |
| RMU    | Ring Main Unit                                |
| SECO   | Swiss State Secretariat for Economic Affaires |
| SHEP   | Self Help Electrification Project             |
| SNEP   | Strategic National Energy Plan                |
| UDS    | University of Development Studies             |
| UN     | United Nations                                |
| UNEP   | United Nations Environment Programme          |
| UNICEF | United Nations Children's Fund                |
| VRA    | Volta River Authority                         |
| WAPP   | West Africa Power Pool                        |
| WB     | World Bank                                    |
| XLPE   | Cross Linked Polyethylene                     |
|        |                                               |

# CHAPTER 1 BACKGROUND OF THE PROJECT

#### 1-1 Background of the Japanese Assistance

In 1995, the Government of Ghana formulated the "Vision 2020" which comprises comprehensive long-term development guidelines for the purpose of promoting sustainable economic growth, poverty reduction and democratic policies and actively pursued the economic development of the country. The domestic economy was typically dependent on primary products which were vulnerable to price fluctuations in the international market and Ghana was identified as a heavily-indebted poor country (HIPC) under the HIPC programme of the IMF and the World Bank in 2001. Aiming at boosting the domestic economy to break free from the HICP status, the Government of Ghana has placed emphasis on the development of the electricity sector to form the foundation for the country's economic development. The Energy Commission (EC) of Ghana which is the body responsible for the planning of policies to utilise energy resources prepared the Strategic National Energy Plan (SNEP) in 2005. There has been a strong drive for electrification Project (SHEP) aiming at achieving an electrification rate of 66% (2010) which is the third highest among Sub-Saharan African countries. The Growth and Poverty Reduction Strategy II (GPRS II) formulated in 2006 calls for the modernisation and expansion of the power infrastructure as a service sector underpinning economic growth and poverty reduction.

The electricity sector in Ghana has been experiencing a severe financial situation and the expansion and renewal of the system and equipment have been insufficient despite an increase of the power demand and ageing of the equipment. Because of this, the power distribution grid in Ghana suffers from a high level of distribution loss and the poor reliability of the power supply has been hampering the development of the local economy and improvement of the daily lives of the people, particularly those living in rural areas. Under these circumstances, the Government of Ghana made a request to the Government of Japan to conduct a master plan study for the power distribution sector with a view to formulating a master plan for the nationwide power distribution sector incorporating the renewal and enhancement of the distribution equipment and extension of the grid to rural areas. In response to this request, the Government of Japan completed the said study under its technical cooperation scheme. Based on this master plan, the Government of Ghana then made a further request for improvement of the power distribution system as a Japanese grant aid project to improve the situation of power distribution through reduction of the distribution loss and improvement of the power supply reliability, thereby achieving accelerated economic growth and improvement of the living conditions.

#### 1-2 Natural Conditions

#### (1) Overview

The Tamale area of the Northern Region is located in the savannah zone of northern Ghana and the local elevation ranges from 150 m to 240 m. Meanwhile, the Sunyani area of the Brong Afaho Region is located in the transitional zone between the tropical rain fore zone (high forest

zone) in southern Ghana and the savannah zone in northern Ghana and the local elevation ranges from 290 m to 325 m.

#### (2) Climate

1) Temperature

According to observation data of the Tamale and Sunyani municipal meteorological bureaus (hereinafter referred to as "observation data"), the highest mean monthly maximum temperature in Tamale is 38.6°C in February and March when the temperature exceeds 40°C some days. The lowest mean monthly minimum temperature is 17.4°C in December. In December and January, the daily temperature range of around 20°C is quite large. The mean monthly maximum temperature is the lowest in July at 30.1°C while the mean monthly minimum temperature in July is 23.0°C, indicating a relatively small temperature fluctuation. The mean annual temperature of 28.8°C is high.

In Sunyani, the highest mean monthly maximum temperature is 35.4°C in February while the lowest mean monthly minimum temperature is 20.1°C in January. However, the mean monthly minimum temperature is fairly constant throughout the year, ranging from 20°C to 22°C. In January and February, the daily range of around 15°C is fairly large. The mean annual temperature of 26.4°C is fairly high.

2) Humidity

Observation data for the humidity in Tamale shows a large seasonal fluctuation between the rainy season and the dry season. In January, the average humidity in the morning is 45.0% and then drops to as low as 17% in the afternoon. In September, however, the average humidity in the morning is very high at 95% and the average humidity in the afternoon is still high at 73.0%. The average annual humidity is 62.8%. In Sunyani, the humidity in the morning is fairly constant throughout the year at around 85%. The highest and lowest mean monthly humidity in the afternoon occurs in August at 77.0% and in January at 32.0% respectively. The mean annual humidity is high at 75.8%.

3) Rainfall

There are two wet seasons lasting from May to July and from September to November at the Project sites, and the dry season lasts from December to April. According to observation data, the mean monthly rainfall in Tamale from June to October is high at 206.7 mm. In contrast, the mean monthly rainfall in the dry season of 39.0 mm is quite low. The annual rainfall exceeds 1,300 mm. In Sunyani, the mean monthly rainfall from April to October is 168.5 mm. The mean monthly rainfall in the dry season of 82.1 mm is relatively low. The annual rainfall exceeds 1,400 mm.

4) Wind Velocity

According to observation data, the highest mean monthly wind velocity in Tamale is 9.7 km/hr in April while the lowest mean monthly wind velocity is 4.3 km/hr in November. The mean annual wind velocity is 6.7 km/hr. In Sunyani, the highest and lowest mean monthly

wind velocities are 11.0 k/hr in July and 5.4 km/hr in November respectively. The mean annual wind velocity is 8.8 km/hr. In both cities, the mean monthly wind velocity is relatively constant throughout the year.

|                       | Month | 1    | 2    | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11   | 12   | Mean  |
|-----------------------|-------|------|------|------|-------|------|-------|-------|-------|-------|-------|------|------|-------|
| Temperature           | Max.  | 37.9 | 38.6 | 38.6 | 37.3  | 35.3 | 32.3  | 30.1  | 30.6  | 30.3  | 32.6  | 35.2 | 36.2 | 34.6  |
| (°C)                  | Min.  | 18.4 | 23.9 | 26.3 | 26.3  | 25.8 | 23.7  | 23.0  | 22.8  | 22.8  | 23.0  | 22.3 | 17.4 | 23.0  |
| Humidity (%)          |       | 26.5 | 46.5 | 48.3 | 60.3  | 66.8 | 75.5  | 80.0  | 80.8  | 83.5  | 77.5  | 66.0 | 42.3 | 62.8  |
| Rainfall (mm)         |       | 0.0  | 58.8 | 26.8 | 176.6 | 10.3 | 199.3 | 107.6 | 287.2 | 255.0 | 184.4 | 0.8  | 0.0  | 108.9 |
| Wind Velocity (km/hr) |       | 7.6  | 7.5  | 7.7  | 9.7   | 8.3  | 6.7   | 7.9   | 6.1   | 4.6   | 5.0   | 4.3  | 5.2  | 6.7   |

Table 1-2.1 Weather Data for Tamale (2010)

Source: Tamale Weather Bureau

|                       | Month | 1    | 2    | 3     | 4     | 5     | 6     | 7     | 8    | 9     | 10    | 11   | 12   | Mean  |
|-----------------------|-------|------|------|-------|-------|-------|-------|-------|------|-------|-------|------|------|-------|
| Temperatur            | Max.  | 34.0 | 35.4 | 33.9  | 33.4  | 32.2  | 30.4  | 29.0  | 28.3 | 29.3  | 30.3  | 31.0 | 31.7 | 31.6  |
| e (°C)                | Min.  | 20.3 | 21.6 | 22.4  | 22.1  | 22.1  | 21.2  | 20.3  | 20.6 | 20.7  | 20.8  | 20.9 | 20.6 | 21.1  |
| Humidity (%           | )     | 65.6 | 63.8 | 71.6  | 73.8  | 77.1  | 80.6  | 80.3  | 82.9 | 81.3  | 80.6  | 78.2 | 73.6 | 75.8  |
| Rainfall (mm)         |       | 0.0  | 28.5 | 115.8 | 203.5 | 141.7 | 293.4 | 158.8 | 91.5 | 151.4 | 139.2 | 64.9 | 20.0 | 117.4 |
| Wind Velocity (km/hr) |       | 6.5  | 9.6  | 9.9   | 10.7  | 9.8   | 8.9   | 11.0  | 10.7 | 9.0   | 7.3   | 5.4  | 6.6  | 8.8   |

Table 1-2.2Weather Data for Sunyani (2010)

Source: Sunyani Weather Bureau

#### (3) Harmattan

As in the case of the rest of Ghana, the Project sites experience the harmattan, which is a dry and dusty trade wind from the Sahara, from January to March. The heavy amount of dust in the air can reduce visibility to some 200 m.

#### (4) Geology

The soil of the planned substation construction sites under the Project is laterite which is a typical soil in the tropics. It originates from weathered rock and is a rusty-red due to iron oxides.

# 1-3 Environmental and Social Considerations

## 1-3-1 Environmental Impact Evaluation

#### 1-3-1-1 Project Components

The Project components are summarized as follows.

- (1) Improvement of the Distribution System in Tamale
  - Construction of the UDS primary substation (34.5/11.5 kV, 7.5 MVA), including the construction of a control building (single story with some 260 m<sup>2</sup>)
  - Procurement and installation of cables for a 34.5 kV sub-transmission line (from the Tamale BSP substation to the UDS primary substation; approximately 19 km including 5km underground cable)
  - Procurement and installation of cables for 11.5 kV distribution lines (for connection to the existing distribution line; three feeder lines)
  - Procurement and installation of a 34.5 kV distribution panel (for interconnection with the BSP system; one set)
- (2) Improvement of the Distribution System in Sunyani
  - Construction of the Kotokrom primary substation (34.5/11.5 kV, 7.5 MVA), including the construction of a control building (single story with some 200 m<sup>2</sup>)
  - Procurement and installation of cables for a 34.5 kV sub-transmission line (from the Sunyani BSP substation to the Kotokrom primary substation; approximately 8.5 km including 0.5km underground cable)
  - Procurement and installation of cables for 11.5 kV distribution lines (for connection to the existing distribution line; three feeder lines of which one is exclusively used by a regional hospital)
  - Procurement and installation of a 34.5 kV distribution panel (for interconnection with the BSP system; one set)

## 1-3-1-2 Outlines around the Project Sites

The Project sites have mostly flat lands in suburbs of Tamale and Sunyani urban areas. There are no protected areas, national parks, specific cultural heritages and subjects to be resettled are located in the Project sites. The natural conditions are described in the section 1.2. In the Project sites which include some built-up areas in the suburbs of regional cities, the plans were designed to avoid resettlement.

(1) Tamale

Potential beneficiaries can be expected at around 9,000 households and 66,600 populations around the Project route. They usually live together with multiple families and on farming in the suburbs of Tamale urban area. They produce maize as a food crop, rice and groundnut as cash

crops. Most households also breed goats or chickens, and peddle agricultural products or beverages to earn hard cash.

Farmer's dwelling places consist of small cylindrical or square-shaped huts built in mud wall with raftered roof and a square-shaped main house built in mud wall with zinc roof. Similar houses can be seen even in Tamale urban area. Most unelectrified households use kerosene lamps in the suburbs. Flashlights or electric bulbs with dry butteries are also used in households around Tamale outlying area. They mostly use fire woods collected from neighbouring bushes for cooking fuels. Domestic water can be supplied by pipe in the urban area but the other water sources are public wells, holding ponds, and purchased water. The public wells and holding ponds can dry in the dry season.

#### (2) Sunyani

Potential beneficiaries can be expected at around 9,000 households and 47,500 populations around the Project route. They usually live together with multiple families and on two income sources. Most households except in Sunyani urban area are farming to grow maize for personal consumption and groundnut as a cash crop.

Most unelectrified households use LED miniature bulbs with dry butteries attaching a compact disc as a reflector, flashlights, candles or kerosene lamps. The kerosene lamps are used fewer than Tamale. They mostly use fire woods collected from neighbouring bushes or purchased charcoals for cooking fuels. Domestic water can be supplied by pipe in the urban area but the other water sources are public wells and purchased water.

# 1-3-1-3 Institution and Organization of Environmental and Social Considerations in Ghana

#### (1) Legal Framework for Environmental and Social Considerations in Ghana

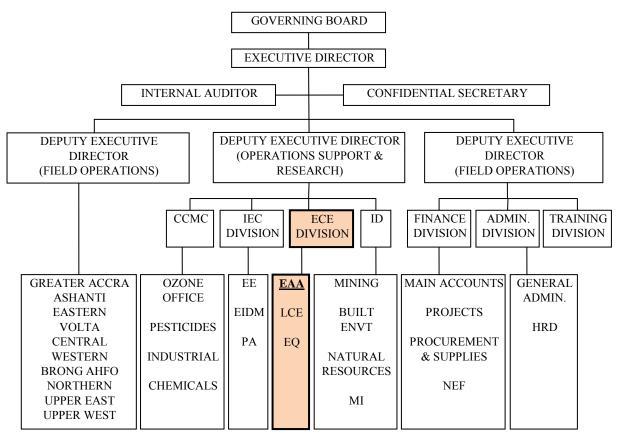
Table 1-3-1.1 shows the legal framework for environmental and social considerations in Ghana. The Environmental Assessment Regulations 1999 (LI 1652) in particular stipulate the types of projects subject to environmental impacts assessment and the procedure for the said assessment, forming the basis for environmental impacts assessment in Ghana.

| Category              | Title                                                  | Year of<br>Enforcement | Competent<br>Body |
|-----------------------|--------------------------------------------------------|------------------------|-------------------|
| Environmental         | The Environmental Protection Agency Act 1994 (Act 490) | 1994                   | EPA               |
| Impacts<br>Assessment | Environmental Assessment Regulations 1999, LI 1652     | 1999                   | EPA               |
|                       | Wildlife Reserves Regulations                          | 1971                   | FC                |
| Protected Areas       | Wildlife Conservation Regulations                      | 1971                   | FC                |
|                       | Wetland Management (Ramsar Sites) Regulations          | 1999                   | FC                |
| Land Acquisition      | The Land Title Registration Law 1986 (PNDCL. 152)      | 1986                   | MOL               |
| and Resettlement      | The Lands Act 1963 (Statutory Way Leaves Act)          | 1963                   | MOL               |
| Cultural Heritage     | The Cultural Policy of Ghana                           | 2004                   | NCC               |

Table 1-3-1.1 Legal Framework for Environmental and Social Considerations in Ghana

| Category   | Title                                      | Year of<br>Enforcement | Competent<br>Body |
|------------|--------------------------------------------|------------------------|-------------------|
|            | Environmental Assessment in Ghana, A GUIDE | 1996                   | EPA               |
| Guidelines | Environmental Impact Assessment Procedures | 1995                   | EPA               |
|            | Environmental Guidelines for Energy Sector | 2007                   | EPA               |

Source: Environmental Protection Agency (EPA), Master Plan Study for the Power Distribution Sector (2008)(2) Organizational Structure for Environmental Impacts Assessment in Ghana


Environmental impacts assessment in Ghana falls under the jurisdiction of the Environmental Protection Agency (EPA) which was established in 1994 based on the Environmental Protection Agency Act 1994 (Act. 490). As shown in Fig. 1-3-1.1, the Environmental Audit and Assessment (EAA) Section belonging to the Environmental Compliance and Enforcement (ECE) Division is in charge of environmental impacts assessment.

- (3) EIA Procedure in Ghana
  - 1) Procedure to Obtain an Environmental Permit

In Ghana, the Environmental Assessment Regulations 1999, LI 1652 stipulate the types of projects subject to an EIA and the EIA procedure. According to these regulations, anyone planning to implement a project which may have an impact on the environment must register the project with the EPA in advance and obtain an environmental permit (EP) for the project.

In such a case, the person concerned must firstly complete the environmental assessment registration form designated by the EPA and must submit this form to a local office of the EPA along with the project drawings and other documents demanded by the EPA. After this registration, the project in question is reviewed by the Technical Screening Committee within 25 working days of the date of registration and one of the following judgements is made.

- Issue of an EP
- Demand for the submission of a preliminary environmental report (PER)
- Demand for the implementation of an EIA
- Rejection of the project



#### CCMC-Chemical Control and Management IEC-Information Education and Communication ECE-Environmental Compliance and Enforcement

EE-Environmental Education

EIDM-Environmental Information and Data Management PA-Public Affairs

#### EAA-Environmental Audit and Assessment

LCE-Legal Compliance Enforcement EQ-Environmental Quality HRD-Human Resources Development ID-Intersectoral Division MI-Manufacturing Industries

Source: Environmental Protection Agency (EPA), the Master Plan Study for the Power Distribution Sector (2008)

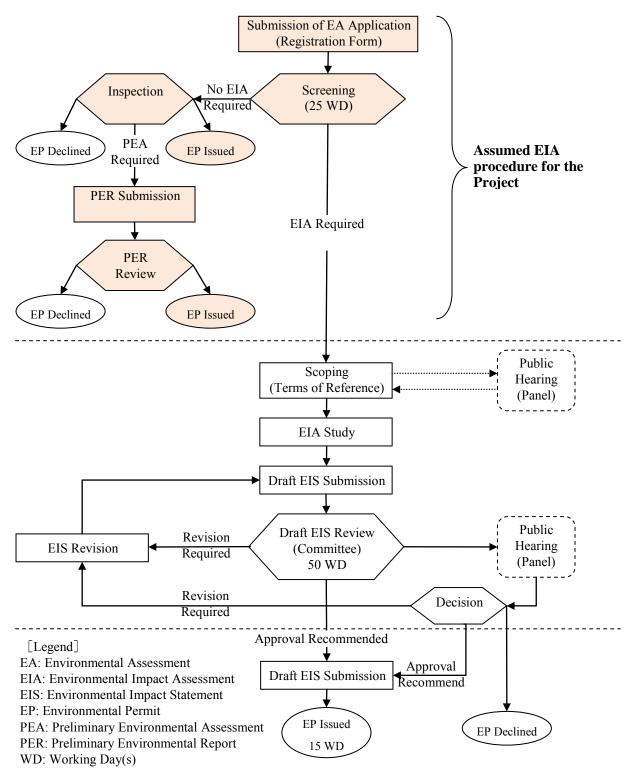

Fig.1-3-1.1 Organizational Structure of the Environmental Protection Agency in Ghana

Fig. 1-3-1.2 shows the overall process for an EP in Ghana. For the Project, it is assumed that the submission of a PER rather than the implementation of EIA will be demanded. As the VRA-NED is the implementing body for the Project, it will meet any obligations under the EP procedure.

# Assumed Procedure to Obtain an EP for the Project

- ① Registration of the Project with the EPA and application for environmental screening
- ② Screening of the Project by the EPA within 25 working days to determine whether or not an EIA is required for the Project
- ③ When an EIA is found to be unnecessary, the necessity for a preliminary environmental assessment (PEA) is reviewed.
- ④ When a PEA is found to be unnecessary, an EP is issued.

- (9) When a PEA is found to be necessary, the EPA proposes the assessment items to the VRA.
- The VRA-NED conducts the EPA and submits a preliminary environmental report (PER) to the EPA.
- The EPA examines the PER and issues and EP if it does not find any problems with the PER.
- If the EPA does find any problems with the PER, it returns the PER to the VRA-NED for revision.



Source: Environmental Protection Agency (EPA), the Master Plan Study for the Power Distribution Sector (2008)

Fig. 1-3-1.2 Procedure to Obtain Environmental Permit in Ghana

#### 2) Screening

The Environmental Assessment Regulations demand an EIA for the following categories of work in the power generation and transmission fields. As the project components, i.e. the construction of primary substations (7.5 MVA) and the procurement and installation of 34.5 kV sub-transmission lines and 11.5 kV distribution lines, do not fall in any of these categories, it is safe to assume that an EIA will not be required for the Project.

- Construction of a thermal power station
- Construction of a dam and hydropower station
- Construction of a combined cycle power station inside a national park
- Construction of a nuclear power station
- Construction of a transmission line

Source: Environmental Assessment Regulations, Schedule 2 (Regulation 3), Paragraph 13

3) Environmental Guidelines for the Energy Sector

The Project plans the construction of 7.5 MVA primary substations, 34.5 kV sub-transmission lines and 11.5 kV distribution lines. The EPA's Environmental Guidelines for the Energy Sector demand the registration of any project involving the construction of a medium high voltage transmission line between 11 kV and 36 kV which does not pass through an environmentally sensitive area (ESA) with the EPA. In contrast, a PEA is required for the construction of a substation with a capacity of 1 MVA or higher on a transmission/distribution grid. As the construction of distribution lines under the Project is combined with the construction of a substation in each project area, a PEA is assumed to be necessary to obtain an EP for the Project.

Attached Table 5 of the Environmental Assessment Regulations of Ghana lists the different types of ESAs as shown below. However, there is no definitive information on the locations of ESAs and it is essential to check the existing of any local ESAs in the project areas. Each of the planned new substation sites is located at unused public land while the sub-transmission and distribution liens will be constructed on road reserve zones of existing roads. On this basis, it is judged that no ESAs exist in the project areas.

#### Environmentally Sensitive Areas (ESAs)

- 1. All areas declared by law as national parks, watershed reserves, wildlife reserves and sanctuaries, including sacred groves
- 2. Areas with potential tourist value
- 3. Areas which constitute the habitat of any endangered or threatened species of indigenous wildlife (flora and fauna)
- 4. Areas of unique historic, archaeological or scientific interest
- 5. Areas which are traditionally occupied by cultural communities
- 6. Areas prone to natural disasters (geological hazards, floods, rainstorms, earthquakes, landslides or volcanic activities)

- 7. Areas prone to bushfires
- 8. Hilly areas with critical slopes
- 9. Areas classified as prime agricultural land
- 10. Recharge areas of aquifers
- 11. Water bodies characterised by one or any combination of the following conditions
  - a) Water tapped for domestic purposes
  - b) Water within controlled and/or protected areas
  - c) Water which supports wildlife and fishery activities
- 12. Mangrove areas characterised by one or any combination of the following conditions
  - a) Areas with primary pristine and dense growth
  - b) Areas adjoining the mouth of major river systems
  - c) Areas near or adjacent to traditional fishing grounds
  - d) Areas which act as natural buffers to shore erosion, strong winds or storm floods
- (4) Procedure to Obtain an Environmental Permit (EP)

To proceed with the Project, the VRA-NED must firstly register the Project with the Environmental Protection Agency by submitting an application form together with project drawings and the written permissions issued by the Urban Planning Bureaus of the municipalities involved. After reviewing these documents, the Environmental Protection Agency will decide whether to issue an environmental permit (EP) for the Project, to request the implementation of an EIA or to request the implementation of a preliminary environmental assessment (PEA). As described earlier, the Project is likely to receive a request for a PEA rather than an EIA in view of the EIA screening criteria of the Environmental Assessment Regulations and the Environmental Guidelines for the Energy Sector. It is understood that the Environmental Department of the VRA-NED will obtain an EP for the Project in accordance with the relevant instructions by the Environmental Protection Agency.

## 1-3-1-4 Comparison of the Alternatives

Three alternative routes including the zero option (the case without the Project) were compared for Tamale and Sunyani in Table 1-3-1.2 and Table 1-3-1.3. For designing the alternatives, the public lands were considered as the first priority for the locations of primary substations and routes of feeder lines in order to avoid resettlement. The difference of alternatives is the totally shorter route passing more residential area as Alternative-2 and a totally longer route passing less residential area as Alternative-1.

The zero option will not solve the existing electrical problems: blackout, voltage fluctuations and voltage drop by over load and long distanced feeder lines. The risks on the beneficiaries cannot be reduced, which includes the existing consumers, waiting consumers, patients and medical staffs of hospitals, students of schools and rural communities. Consequently, improvements cannot be expected for socio-economic activities, living environment and social surveices. Moreover, those risks can increase in the near future.

In the Alternative-2 of Tamale, the 34.5kV sub-transmission line passes in front of the built-up area along Tamale – Nyampala Rd. at about 1.5km. The Alternative-1 was proposed to avoid the built-up area once bypassing there and an abandoned runway to back to Tamale – Nyampala Rd. The Alternative-1 has longer total length but the length of underground cable is shorter than the Alternative-2, and the construction cost of Alternative-1 can be either equalling or a little lower than the Alternative-2. Therefore, the Alternative-1 is more appropriate for the Project in Tamale.

In the Alternative-1 of Sunyani, the 34.5kV sub-transmission line has longer total length with higher construction cost but less impact on the residential area than the Alternative-2. In the Alternative-2, the 34.5kV sub-transmission line passes the residential area and parallel to the planed 11.5kV distribution line in the road reserve of Sunyani – Techiman Rd. The construction spaces are not enough and the Alternative-2 can affect the residential area more than the Alternative-1. Therefore, the Alternative-1 is more appropriate for the Project in Sunyani.

| No.        | Item                      | Alt1                                                                          | Alt2                                                             | Alt3 (Zero Option)                                    |
|------------|---------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
|            |                           | Length: 19km (underground cable 5km)                                          | Length: 17.5km (underground cable 6km)                           | _                                                     |
|            | 34.5kV                    | Main route: in the road reserves of                                           | Main route: in the road reserves<br>of Sutadium Rd. and Tamale – |                                                       |
| 1          | sub-transmi<br>ssion line | Sutadium Rd. and Tamale –<br>Nyampala Rd. once bypassing the                  | Nyampala Rd.                                                     |                                                       |
|            |                           | built-up area and abandoned runway to back to Tamale – Nyampala Rd.           |                                                                  |                                                       |
|            | 11.5kV                    | Length: 1.2km                                                                 | Same as on the left                                              | _                                                     |
| 2          | distribution line         | For connections from UDS primary substation to the existing 11.5kV            |                                                                  |                                                       |
|            | Primary                   | distribution lines<br>UDS primary substation                                  | Same as on the left.                                             |                                                       |
| 3          | substation                |                                                                               |                                                                  | X                                                     |
|            |                           | The existing blackout, voltage                                                | Same as on the left.                                             | $\times$ No benefits to the existing and              |
|            |                           | fluctuations and voltage drop will be<br>improved by the Project. A stable    |                                                                  | waiting consumers.                                    |
| ~          | Benefits to the existing  | power supply will improve                                                     |                                                                  |                                                       |
| 4          | and waiting               | self-employed business<br>environment, operating environment                  |                                                                  |                                                       |
|            | consumers                 | of small factories, opportunities to                                          |                                                                  |                                                       |
|            |                           | obtain new livelihoods, children's learning environment, and living           |                                                                  |                                                       |
|            |                           | environment.                                                                  | (O)                                                              | ×                                                     |
|            |                           | The stable power supply will also                                             | Same as on the left.                                             | No benefits to the existing                           |
| 5          | Benefits to public        | improve qualities of core and rural medical service and increase              |                                                                  | public facilities.                                    |
|            | facilities                | benefits to patients, infants and parturient. Educational environment         |                                                                  |                                                       |
|            |                           | will be also improved in schools.                                             |                                                                  |                                                       |
|            |                           | The construction cost can be either                                           | $\triangle$ The construction cost can be                         | ©<br>No cost.                                         |
|            |                           | equalling or a little lower than the                                          | either equalling or a little higher                              |                                                       |
| 6          | Cost                      | Alt2 as the underground cable of 34.5kVsub-transmission line is               | than the Alt1 as the<br>underground cable of                     |                                                       |
|            |                           | shorter than the Alt2 although total length is longer.                        | 34.5kVsub-transmission line is longer than the Alt1 although     |                                                       |
|            |                           |                                                                               | total length is shorter.                                         |                                                       |
|            | 0 1                       | Less impacts on the built-up area                                             | $\triangle$<br>More impacts on the built-up                      | ©<br>No impacts on social                             |
| $\bigcirc$ | Social environment        | along Tamale – Nyampala Rd. than                                              | area along Tamale – Nyampala                                     | environment.                                          |
|            |                           | the Alt2 because the Alt1 avoids passing in front of the area.                | Rd. than the Alt1 because the Alt2 passes in front of the area.  |                                                       |
|            |                           | Little impacts on natural                                                     | Same as on the left.                                             | ©<br>No impacts on natural                            |
|            | Natural                   | environment as the sites are located                                          | Same us on the feft.                                             | environment.                                          |
| 8          | environment               | along the road and in the public land<br>in the suburbs of Tamale urban area, |                                                                  |                                                       |
|            |                           | which has residential, cultivated or unused lands.                            |                                                                  |                                                       |
|            |                           | $\bigcirc$                                                                    | 0                                                                | ×                                                     |
|            |                           | Less impact on the built-up area and<br>the construction cost is either       | More impact on the built-up area<br>and the construction cost is | The risks on living environment, socio-economic       |
| 9          | Evaluation                | equalling or a little lower than the                                          | either equalling or a little higher                              | activities and social survices                        |
|            |                           | Alt2.                                                                         | than the Alt1.                                                   | by the existing electrical problems will not decrease |
|            |                           |                                                                               |                                                                  | and can increase more.                                |

 Table 1-3-1.2
 Comparison of the Alternative Routes (Tamale)

| No. | Item                                                    | Alt1                                                                                                                                                                                                                                                                                                                                             | Alt2                                                                                                                                                                                         | Alt3 (Zero Option)                                                                                                                                                                                |
|-----|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1)  | 34.5kV<br>sub-transmi<br>ssion line                     | Length: 8.5km (underground cable<br>0.5km)<br>Main route: in the existing 161kV<br>transmission line wayleave, on the<br>border of public land                                                                                                                                                                                                   | Length: 6.5km (underground<br>cable 0.5km)<br>Main route: in the existing<br>residential area, in the road<br>reserve of Sunyani – Techiman<br>Rd.                                           |                                                                                                                                                                                                   |
| 2   | 11.5kV<br>distribution<br>line                          | Length: 5.6km<br>For connections from Kotokrom<br>primary substation to the existing<br>11.5kV distribution lines                                                                                                                                                                                                                                | Same as on the left.                                                                                                                                                                         | _                                                                                                                                                                                                 |
| 3   | Primary<br>substation                                   | Kotokrom primary substation                                                                                                                                                                                                                                                                                                                      | Same as on the left.                                                                                                                                                                         | —                                                                                                                                                                                                 |
| 4   | Benefits to<br>the existing<br>and waiting<br>consumers | ©<br>The existing blackout, voltage<br>fluctuations and voltage drop will be<br>improved by the Project. A stable<br>power supply will improve<br>self-employed business<br>environment, operating environment<br>of small factories, opportunities to<br>obtain new livelihoods, children's<br>learning environment, and living<br>environment. | ©<br>Same as on the left.                                                                                                                                                                    | ×<br>No benefits to the existing and<br>waiting consumers.                                                                                                                                        |
| (5) | Benefits to<br>public<br>facilities                     | ©<br>The stable power supply will also<br>improve qualities of core and rural<br>medical service (Sunyani Regional<br>Hospital) and increase benefits to<br>patients, infants and parturient.<br>Educational environment will be<br>also improved in schools.                                                                                    | ©<br>Same as on the left                                                                                                                                                                     | ×<br>No benefits to the existing<br>public facilities.                                                                                                                                            |
| 6   | Cost                                                    |                                                                                                                                                                                                                                                                                                                                                  | The construction cost is lower<br>than the Alt1 as the<br>34.5kVsub-transmission line is<br>shorter than the Alt1.                                                                           | ©<br>No cost.                                                                                                                                                                                     |
| 7   | Social<br>environment                                   | Less impacts on the residential area<br>than the Alt2 because the Alt1<br>uses the lands in the existing<br>wayleave of 161kVtrasmission line<br>and on the border of public land.                                                                                                                                                               | △<br>More impact on residential area<br>because the route passes in the<br>residential area, in the road<br>reserve of Sunyani – Techiman<br>Rd. parallel to the 11.5kV<br>distribution line | ©<br>No impacts on social<br>environment                                                                                                                                                          |
| 8   | Natural<br>environment                                  | Little impacts on natural<br>environment as the sites are located<br>along the road and in the public land<br>in the suburbs of Sunyani urban<br>area, which has residential,<br>cultivated or unused lands                                                                                                                                      | Same as on the left                                                                                                                                                                          | ©<br>No impacts on natural<br>environment                                                                                                                                                         |
| 9   | Evaluation                                              | ©<br>Less impact on the residential area<br>although the construction cost is<br>higher than the Alt2.                                                                                                                                                                                                                                           | More impact on the residential area although the construction cost is lower than the Alt1.                                                                                                   | ×<br>The risks on living<br>environment, socio-economic<br>activities and social survices<br>by blackout, voltage<br>fluctuations and voltage drop<br>will not decrease and can<br>increase more. |

 Table 1-3-1.3
 Comparison of the Alternative Routes (Sunyani)

### 1-3-1-5 Evaluation of Anticipated Environmental and Social Impacts

The principal components of the Project are the construction of one primary substation (site size of approximately 40 m x 30 m (1,200 m<sup>2</sup>) each in Tamale and Sunyani, the construction of a 34.5 kV sub-transmission line totalling some 19 km and 11.5 kV distribution lines stretching approximately 1.2 km in Tamale and the construction of a 34.5 kV sub-transmission line totalling some 8.5 km and 11.5 kV distribution lines stretching approximately 5.6 km in Sunyani.

In reference to these project components, their anticipated environmental and social impacts were evaluated as shown in Table 1-3-1.4 incorporating the findings of the field reconnaissance and interviews with various stakeholders. Both of the substation sites in Tamale and Sunyani are currently not used and are owned by public bodies. There are no private houses or any other structures at these sites. The planned work at each of these sites includes levelling of the ground, foundation work for equipment, construction of a small building and installation of a transformer. While some parts of the planned 34.5 kV sub-transmission lines and 11.5 kV distribution lines are located in the suburbs, the electric poles and cables (either overhead or underground) will be installed on the road reserves, i.e. areas reserved for such infrastructure facilities as electricity supply, water supply, sewerage and communication facilities. For either case, VRA-NED will obtain the permissions to use those sites.

In Tamale and Sunyani, a crane and other heavy machinery will be used for the ground levelling work, foundation work and transformer installation at the new substation sites. However, the installation of the electric poles and cables for the sub-transmission and distribution lines will be manually conducted, making the occurrence of severe adverse impacts on the natural environment, social environment and pollution highly unlikely because of the Project.

Meanwhile, the Project will provide an enhanced power supply capacity as well as reliable power supply and the beneficiaries will not be confined to existing users, including households, stores and business places but will also include hospitals and schools. The power supply to hitherto unelectrified households will possibly provide new means of livelihood and extend night-time learning for children at home. At hospitals and schools, their public services will be more accessible and reliable for people in a wider area.

| No.   | Item                        | Planning<br>Stage | Constructi<br>on Stage | Operating<br>Stage | Anticipated Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-----------------------------|-------------------|------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [ Soc | ial Environment]            |                   |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.    | Involuntary<br>resettlement | D                 | D                      | D                  | ① Tamale<br>The planned site for the UDS primary substation is unused land owned by<br>the Animal Research Institute which is a public body and no private<br>houses or other structures exist on this land. The earmarked sites for the<br>installation of sub-transmission and distribution lines are along existing<br>roads and there are some dwelling areas along the planned routes.<br>However, as these new power lines are designed to be located inside the<br>designated road reserves so that existing houses will not be affected, there<br>will be no involuntary resettlement of residents. |

 Table 1-3-1.4
 Environmental and Social Impacts Evaluation Sheet: Tamale and Sunyani

|     |                                                           |                   | žti                    | ac                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|-----------------------------------------------------------|-------------------|------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Item                                                      | Planning<br>Stage | Constructi<br>on Stage | Operating<br>Stage | Anticipated Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                                           | D                 | D                      | D                  | <sup>(2)</sup> Sunyani<br>The planned site for the Kotokrom primary substation is unused land<br>owned by the military and no private houses or other structures exist on<br>this land. The planned 34.5 kV sub-transmission line from the Sunyani<br>BSP substation will run along the boundary between the wayleave for the<br>existing 151 kV transmission line and the military-owned land. The<br>planned 11.5 kV distribution line from the Kotokrom primary substation<br>to the Sunyani Regional Hospital is designed to be located on the road<br>reserve along the Sunyani-Techiman road to avoid any negative impacts<br>on local residents and there will be no involuntary resettlement of<br>residents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2   | Local economy,<br>such as<br>employment and<br>livelihood | D                 | B <sup>+/-</sup>       | $\mathbf{A}^+$     | <ul> <li>① Tamale</li> <li>Planning stage: The acquisition of land for the UDS primary substation<br/>has been agreed in writing between the Animal Research Institute, the<br/>owner, and the VRA-NED. In the case of the sub-transmission and<br/>distribution lines, the planned routes use publicly-owned road reserves<br/>that VRA-NED will obtain the use permit from Town and Country<br/>Planning Department and no serious negative impacts are anticipated.</li> <li>Construction stage: Temporary stalls and shops exist on the road<br/>reserves from the Tamale BSP substation to the stadium and their partial<br/>and/or temporary relocation may be necessary because of the<br/>introduction of the sub-transmission line and its electric poles. As the<br/>construction work will be mostly manually conducted, its impacts on<br/>economic activities in the area will be minimal. The manual work means<br/>a high likelihood of a temporary boost for local employment.</li> <li>Operating stage: The increased and more reliable power supply will<br/>generate positive effects for households, public facilities and<br/>manufacturing and other industries. The new power supply to hitherto<br/>unelectrified households will enhance the scope of developing new<br/>livelihoods using electricity and will provide a longer time for<br/>homework by children at night.</li> </ul>                                                                              |
|     |                                                           | D                 | B <sup>+/-</sup>       | $A^+$              | <ul> <li>② Sunyani</li> <li>The acquisition of land for the Kotokrom primary substation has been agreed in writing between the Sunyani Barracks, the owner, and the VRA-NED. In the case of the distribution line, the planned route uses publicly-owned road reserves that VRA-NED will obtain the use permit from Town and Country Planning Department and no serious negative impacts are anticipated.</li> <li>Construction stage: Temporary stalls and stores exist on the road reserves in the section from the Kotokrom primary substation to the Sunyani Regional Hospital along the Sunyani-Techiman Road and their partial and/or temporary relocation may be necessary because of the introduction of the distribution line and its electric poles. As the construction work will be mostly manually conducted, its impacts on economic activities in the area will be minimal. The manual work means a high likelihood of a temporary boost for local employment.</li> <li>Operating stage: The increased and more reliable power supply will generate positive effects for households, public facilities and manufacturing and other industries. The new power supply to hitherto unelectrified households will enhance the scope of developing new livelihoods using electricity and will provide a longer time for homework by children at night. Better and more reliable public services will be provided by the hospital and schools for people in a wider area.</li> </ul> |

| No. | Item                                                                                                          | , Planning<br>Stage |    | , Operating<br>Stage |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|---------------------------------------------------------------------------------------------------------------|---------------------|----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | Land use and<br>utilisation of local<br>resources                                                             | D                   | D  | D                    | Each of the UDS primary substation and Kotokrom primary substation will occupy an area of some $1,200 \text{ m}^2$ at publicly-owned unused land (currently grassland). Meanwhile, the new sub-transmission and distribution lines will use the road reserves of existing roads, etc. As the scale of the project sites is small, the Project is not expected to have any significant impact on the land use and utilisation of local resources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4   | Social<br>infrastructure,<br>such as social<br>infrastructure and<br>local<br>decision-making<br>institutions | D                   | D  | D                    | The scale of the Project is small and the geographically affected areas are<br>very limited. As the Project aims at improving the power supply which is a<br>public service, no negative impacts on social institutions are anticipated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5   | Existing social<br>infrastructure and<br>services                                                             | D                   | B  | A+                   | <ul> <li>① Tamale</li> <li>Construction stage: As the work to construct the sub-transmission and distribution lines will take place along existing roads, the movement of local residents may be hampered at this stage. However, the work will be mostly conducted manually and its scope is limited. The short construction period means that the impacts of the work on the social infrastructure and services will also be limited. There is a chance that the existing infrastructure, such as water supply and communication lines, on the road reserves could be damaged by the construction work.</li> <li>Operation stage: Better and more reliable public services improved by stable electricity supply will be provided by the health centers and schools for people in wider area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                                                                               | D                   | В. | A+                   | <ul> <li>② Sunyani</li> <li>Construction stage: As the work to construct the distribution lines will take place along existing roads, the movement of local residents may be hampered at this stage. However, the work will be mostly conducted manually and its scope is limited. The short construction period means that the impacts of the work on the social infrastructure and services will also be limited. There is a chance that the existing infrastructure, such as water supply and communication lines, on the road reserves could be damaged by the construction work. The wayleave site for the 161 kV transmission line next to the Sunyani BSP substation is the site of a Wednesday market run by the Sunyani municipal authority and temporary stalls are situation at this site, albeit illegally. With the introduction of the sub-transmission line and electric poles, some of these stalls may require permanent or temporary relocation.</li> <li>Operation stage: Better and more reliable public services improved by stable electricity supply will be provided by the hospital and schools for people in wider area. Particularly, the benefit for medical services of Sunyani Regional Hospital will cover broad area.</li> </ul> |
| 6   | Traffic congestion                                                                                            | D                   | D  | D                    | • Construction stage: As the work to construct the sub-transmission and distribution lines will be conducted along existing roads, the local traffic may be affected by the delivery of materials, etc. to the sites. However, the work will mostly be manually conducted in relatively confined areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7   | Sagmantation of                                                                                               | D                   | D  | D                    | The short construction period means limited impact on the local traffic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| /   | Segmentation of communities                                                                                   |                     | D  | D                    | As the distribution lines will use either overhead or underground cables,<br>they will not cause any geographical segmentation of communities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8   | Poor, indigenous<br>people and ethnic<br>minorities                                                           | D                   | D  | D                    | There are no indigenous people or ethnic minorities in the areas affected<br>by the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| No.     | Item                                                                  | Planning<br>Stage |   | Operating<br>Stage |                                                                                                                                                                                                                                                                                                                                                |
|---------|-----------------------------------------------------------------------|-------------------|---|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9       | Uneven<br>distribution of<br>benefits or<br>damage                    | D                 | D | D                  | The Project will improve the local electricity supply as a public service.<br>This item is, therefore, irrelevant.                                                                                                                                                                                                                             |
| 10      | Cultural heritage                                                     | D                 | D | D                  | As there is no cultural heritage in the project areas to be considered, no impacts will occur in regard to cultural heritage.                                                                                                                                                                                                                  |
| 11      | Local conflict of interests                                           | D                 | D | D                  | The Project will improve the local electricity supply as a public service.<br>This item is, therefore, irrelevant.                                                                                                                                                                                                                             |
| 12      | Water use, water<br>rights and rights<br>of common                    | D                 | D | D                  | As there are no rivers, lakes or reservoirs in the vicinity of the planned project sites, this item is irrelevant.                                                                                                                                                                                                                             |
| 13      | Health and sanitation                                                 | D                 | D | D                  | As the scale of the expected construction work, which is mostly manual work, is small, no impacts will occur on local health and sanitation.                                                                                                                                                                                                   |
| 14      | Risks of disasters<br>and infectious<br>diseases, such as<br>HIV/AIDS | D                 | D | D                  | As the scale of the construction work is small and local labourers will be<br>employed, there is no tangible risk of a disaster or the occurrence of<br>infectious diseases due to the mass inflow of labourers from other areas.                                                                                                              |
| [Natur  | al Environment]                                                       | 1                 | 1 |                    |                                                                                                                                                                                                                                                                                                                                                |
| 15      | Topography and geology                                                | D                 | D | D                  | As the planned project sites are generally flat, the construction work will<br>not involve any major alteration of the topography or civil engineering<br>work. As the foundations for the electric poles, etc. are shallow, no<br>impacts are anticipated on the local topography or geology.                                                 |
| 16      | Soil erosion                                                          | D                 | D | D                  | As the planned project sites are generally flat, the construction work will<br>not involve any major alteration of the topography or civil engineering<br>work, causing no impact on soil erosion.                                                                                                                                             |
| 17      | Groundwater                                                           | D                 | D | D                  | The foundations for the building and transformer at the primary substation sites will be some 1 m deep while the foundations for the electric poles will be some 2.5 m deep. In both cases, these shallow foundations mean that there will be little impact on groundwater.                                                                    |
| 18      | Lakes and rivers                                                      | D                 | D | D                  | As there are no lakes or rivers near the planned project sites, this item is irrelevant.                                                                                                                                                                                                                                                       |
| 19      | Coastal zone                                                          | D                 | D | D                  | As the planned project sites are not near a coastal zone, this item is irrelevant.                                                                                                                                                                                                                                                             |
| 20      | Flora and fauna                                                       | D                 | D | D                  | The planned project sites are located along existing roads or on public land<br>without any endangered species in the vicinity. No negative impacts are,<br>therefore, anticipated on the local flora and fauna.                                                                                                                               |
| 21      | Climate                                                               | D                 | D | D                  | The scale of the construction work is small and the work will be mostly conducted manually. Therefore, no impacts on the local climate will occur.                                                                                                                                                                                             |
| 22      | Landscape                                                             | D                 | B | D                  | • Construction stage: There is no rare natural or cultural landscape in the vicinity of the planned project sites and no negative impacts will occur on the local landscape. However, there is a possibility of the cutting down of valuable trees (Mango, Shea Butter) or those branches along the planned routes for the distribution lines. |
| 23      | Global warming                                                        | D                 | D | D                  | The scale of the construction work is small and the work will be mostly conducted manually. Therefore, hardly any impact on global warming will occur.                                                                                                                                                                                         |
| [Pollut |                                                                       |                   |   |                    |                                                                                                                                                                                                                                                                                                                                                |
| 24      | Air pollution                                                         | D                 | D | D                  | As the use of heavy construction machinery is very limited with manual<br>work accounting for the bulk of the construction work, air pollution due to<br>the Project, if any, will be negligible.                                                                                                                                              |
| 25      | Water pollution                                                       | D                 | D | D                  | There are no lakes or rivers in the vicinity of the planned project sites. As<br>no large-scale alteration of the topography or civil engineering work is<br>planned, water pollution due to soil runoff will not occur.                                                                                                                       |

| No. | Item                 | Planning<br>Stage | Constructi<br>on Stage | Operating<br>Stage | Anticipated Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|----------------------|-------------------|------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26  | Soil contamination   | D                 | D                      | D                  | The electric poles to be erected for the distribution lines will be steel poles<br>and no soil contamination will occur due to copper chromated arcenate, a<br>chemical substance used as a preservative for wooden poles.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 27  | Waste                | D                 | D                      | D                  | The Project aims at the construction of new primary substations and distribution lines and does not involve the replacement of existing transformers or wooden poles. Therefore, no abandonment of chemical substances contained in existing facilities will occur. Only a minimum amount of surplus soil will be generated by the construction work. Therefore, no significant negative impact by waste materials is anticipated.                                                                                                                                                                                                                                                     |
| 28  | Noise and vibration  | D                 | D                      | D                  | Noise at a level of approximately 60 dB will occur at the 1 m point from<br>the transformers at the primary substations but there will be sufficient<br>space around the transformer for the noise to dissipate. Given the fact that<br>there are no houses near the planned substation sites, no noise or vibration<br>pollution will occur.                                                                                                                                                                                                                                                                                                                                          |
| 29  | Ground<br>subsidence | D                 | D                      | D                  | As the scale of the planned primary substations is small, no ground subsidence is anticipated to occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30  | Offensive odour      | D                 | D                      | D                  | No offensive odour is anticipated to originate from the distribution facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31  | Bottom sediment      | D                 | D                      | D                  | As there are no lakes or rivers in the vicinity of the project sites, this item is irrelevant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32  | Accidents            | D                 | D                      | D                  | <ul> <li>Construction stage: Although the scale of the planned construction work is small, the manual nature of the work means that there is the opportunity for accidents involving workers to occur. Besides, the construction work will abide by the labour laws of Ghana and ensure good and safe working conditions in accordance with contractor's and VRA-NED's construction manuals which are required in the contract.</li> <li>Operating stage: The new primary substations will be fenced off, making it unlikely that accidents involving local residents will occur. Although rare, the overhead cables may be cut and dangled due to an accident or disaster.</li> </ul> |

Legend

 $A^{+/-}$ : Significant negative impacts are anticipated

 $\mathbf{B}^{\text{+/-}}$  : Considerable negative impacts are anticipated

 $C^{+/-}$ : Minor negative impacts/possibility of negative impacts are anticipated depending on further planning

D : No or negligible negative impacts are anticipated

# 1-3-1-6 Mitigation Measures

As the environmental items which may experience negative impacts of the Project and their evaluation scores are identical for both the Tamale and Sunyani sites based on the evaluation results, their common mitigation measures are identified as shown in Table 1-3-1.5.

| No. | Item                                                             | Possible Negative Impacts                                                                                                                                                                                           | Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                  | Organization                                           |
|-----|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Co  | nstruction stag                                                  | e                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 1   | Local<br>economy,<br>such as<br>employme<br>nt and<br>livelihood | Construction stage: Stalls and<br>other simple structures may<br>require temporary removal or<br>relocation during the work to<br>construct the sub-transmission<br>and distribution lines on the<br>road reserves. | <ul> <li>The relocation of these structures will be arranged by the VRA-NED through negotiations with the owners.</li> <li>The installation work will not affect stalls' businesses because the installation of poles and distribution lines require little space and they can move in short distance during short time of the work. However, VRA-NED will negotiate compensation with them if they cannot do businesses.</li> </ul> | VRA - NED                                              |
| 2   | Existing<br>infrastruct<br>ure and<br>services                   | Construction stage: The work<br>to construct the<br>sub-transmission and<br>distribution lines on the road<br>reserves may damage the<br>existing infrastructure (utility<br>lines).                                | <ul> <li>The existing providers of water supply, communication and other services will be consulted on the locations of their service lines at the planned work sites before construction.</li> <li>The site supervisors will issue instructions to be followed to avoid any unintentional damage to the existing infrastructure.</li> </ul>                                                                                         | VRA - NED,<br>Supervising<br>Consultant,<br>Contractor |
|     | services                                                         | Construction stage: The work<br>to construct a sub-transmission<br>line on the wayleave zone for<br>the existing 161 kV<br>transmission line may make<br>the temporary relocation of<br>stalls necessary.           | • The Sunyani municipal authority will move these stalls within a market area.                                                                                                                                                                                                                                                                                                                                                       | VRA - NED,<br>Sunyani<br>municipality                  |
| 3   | Landscape                                                        | The work to construct the new sub-transmission and distribution lines can involve the cutting of trees or their branches along the routes.                                                                          | • The planned routes for the new sub-transmission and distribution lines will avoid large trees and Mango/Shea butter trees with economic value as much as possible.                                                                                                                                                                                                                                                                 | Supervising<br>Consultant,<br>Contractor               |

| Table 1-3-1.5 | Environmental Impacts M | litigation Measures | (Tamale and Sunyani) |
|---------------|-------------------------|---------------------|----------------------|
|               |                         |                     |                      |

# 1-3-1-7 Stakeholder Meetings

The VRA-NED Sunyani and VRA-NED Tamale organized a stakeholder meeting on 4th February, 2011 and 18<sup>th</sup> February, 2011 respectively. These meetings were attended by representatives of the Urban Planning bureau and Road Bureau of the respective municipal authority as well as local chiefs representing local residents. Other attendants included representatives of the UDS Nyankpala Campus and the Animal Research Institute at the Tamale meeting and a representative of the Sunyani Regional Hospital at the Sunyani meeting.

At the meetings, the VRA-NED explained the background, objectives and components of the Study, followed by a Q & A session. There was general enthusiasm among the attendants for improvement of the power supply. In particular, the representative of the Sunyani Regional Hospital expressed the hospital's expectation that improvement of the power supply would mean the steady use of medical equipment and improvement of the medical services at the hospital through the elimination or

significant reduction of power outages and voltage fluctuations. The hospital expects a positive impact of the improved power supply on the infant mortality rate and general health of pregnant women. Meanwhile, requests were made by the attendants for sufficient coordination and liaison with other providers of infrastructure services, such as communication and water supply, as well as the municipal planning bureau, local chiefs and communities. Another request for the use of local labour for the construction work was also made.

Bothe Sunyani and Tamale VRA-NEDs are under taking the coordination and liaison with relevant organizations through the process of project approval in the municipalities. They will further communicate with the local chiefs and communities after the Project is approved by the grant agreement. Besides, they will announce the local people with radio before the installation works are started. A supervising consultant and a contractor will suggest the local contractors to hire the local labour as many as possible.

# 1-3-2 Land Acquisition and Resettlement

The lands for sub-stations in Tamale and Sunyani Areas are public lands and unused lands. There are no houses or structure in the sites. The 34.5 kV sub-transmission lines and the 11.5 kV distribution lines will be installed with aerial and underground cables within the road reserves allocated for infrastructure (electricity, water supply, drainage, communication) in the suburban areas. Those lines are designed not to affect the structures in the road reserves and no resettlement is required for the Project. However, VRA-NED is processing the following procedures described in the section 1.3.2.1 to obtain those land-use permits from the authorities. The scales of those lands are summarized as follows.

- Tamale: the UDS primary substation site area (about 1,200 m<sup>2</sup>), 34.5 kV sub-transmission line (about 19 km), 11.5 kV distribution lines (about 1.2 km)
- Sunyani: the Kotokrom primary substation site area (about 1,200 m<sup>2</sup>), 34.5 kV sub-transmission line (about 8.5 km), 11.5 kV distribution lines (about 5.6 km)

# 1-3-2-1 Land Acquisition

- (1) Tamale Area
  - 1) UDS Primary Substation

Under the Project, the construction of the new UDS primary substation  $(1,200 \text{ m}^2)$  is planned using land owned by the Animal Research Institute<sup>1</sup> near the UDS Nyankpara Campus. The VRA-NED has already sent a letter requesting permission to use the land in question to the Animal Research Institute. On receipt of a letter of intent to grant such permission from the Institute, the VRA-NED plans to conclude an agreement on the use of this land with the Institute. The VRA-NED also intends to obtain permission for the construction of the UDS Primary substation from the Municipal Urban Planning Bureau.

<sup>&</sup>lt;sup>1</sup> The Animal Research Institute belongs to the Council for Scientific Industrial Research which is controlled by the Ministry of Environment, Science and Technology.

#### 2) 34.5 kV Sub-Transmission Line and 11.5 kV Distribution Lines

The plan for the Project includes the construction of a 34.5 kV sub-transmission line on the road reserve of the existing road over some 19 km from the Tamale BSP Substation to the UDS primary substation (including an underground cable section of some 5 km). According to the Tamale Municipal Urban Planning Bureau, the total road width, including the roadbed and road reserve, of the said section is 15 m on each side of the centre line. The VRA-NED intends to obtain a permit to use the road reserve from the said Urban Planning Bureau for the 34.5 kV sub-transmission line. Part of the underground cable section runs through the boundary zone of disused military-owned land. A letter requesting permission to use this zone has already been sent to the military and a letter granting the requested permission is expected.

#### (2) Sunyani Area

1) Kotokrom Primary Substation

Under the Project, the construction of the new Kotokrom primary substation  $(1,200 \text{ m}^2)$  is planned using unused land owned by the Sunyani Barracks. The VRA-NED has sent a letter requesting permission to use this land to the Sunyani Barracks and has already received a letter granting the requested permission. The VRA-NED now plans to conclude a formal agreement on the use of this land with the Sunyani Barracks, presenting the drawings for the planned substation.

2) RMU (Ring Main Unit) at the Sunyani Regional Hospital

Under the Project, one RMU will be installed on the premises of the Sunyani Regional Hospital. The VRA-NED has sent a letter requesting a permit to use the land to install this RMU and has already received a letter granting the requested permission.

3) 34.5 kV Sub-Transmission Line

Under the Project, the construction of a new some 8.5 km long 34.5 kV sub-transmission line is planned using the wayleave for the existing 161 kV transmission line stretching eastwards from the Sunyani BSP substation. This wayleave extends for 15 m on both sides of the line linking the centre points of the pylons and should be sufficient to accommodate the new sub-transmission line. Given the fact that the existing 161 kV transmission line is controlled by GRIDCo, the VRA-NED has already sent a letter requesting permission to use the wayleave and expects to receive the said permission soon.

Part of the planned 34.5 kV sub-transmission line will run along the boundary of land owned by the military. The VRA-NED has sent a letter requesting permission to use the land to the Sunyani Barracks along with a similar letter concerning the new Kotokrom primary substation site and has already received written permission.

# 4) 11.5 kV Distribution Lines

Under the Project, the construction of a new some 4.3 km long 11.5 kV distribution line is planned from the new Kotokrom primary substation to the Sunyani Regional Hospital using the road reserve of the Sunyani-Techiman Road. According to the Sunyani Municipal Urban Planning Bureau, the total road width, including the roadbed and road reserve, for this section is 15 m on each side of the centre line in urban areas and 30 m on each side of the centre line in suburban areas. As in the case of the Tamale area, the VRA-NED plans to obtain permission for use of the road reserve to accommodate the planned 11.5 kV distribution line from the said Urban Planning Bureau.

# 1-3-2-2 Other: Sunyani Wednesday Market

There is a Wednesday market site next to the eastern edge of the Sunyani BSP substation premises. As its name suggests, a market is held every Wednesday. On other days, the skeletons of temporary stalls occupy the site. This market is run by the Sunyani municipal authority and the sellers pay a daily rent for a stall. There are no designated spaces for the products for sale. The sellers come from not only the municipal area but also from neighbouring towns, etc.

The existing 161 kV transmission line runs over this site. The regulations of the VRA-NED do not allow active land use on the wayleave zones of this transmission line. As the new 34.5 kV sub-transmission line will be constructed on the wayleave zone running through the market site, space will need to be secured for the erection of three new permanent electric poles on the market site. During the construction work, extra space will be required to allow the work without hindrance. However, no actual impacts on the market will occur if the work avoids Wednesdays and the stalls are moved during the work on other days and then moved back to their original places before Wednesday. The Sunyani municipal authority will move the existing stalls at the planned electric pole sites to other places on the market site.

# 1-3-3 Draft Monitoring Forms and Environmental Check List

# 1-3-3-1 Draft Monitoring Forms

Draft monitoring forms during the construction phase are shown in Table 1-3-3.1.

|     | <ul> <li>Monitoring Item: 1. Explanation of the Project Schedule for the Local People</li> <li>The local people on the Project routes will be informed the Project schedule before the installation work starts.</li> </ul> |          |        |      |             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------|-------------|
| No. | Date                                                                                                                                                                                                                        | Location | Method | Note | Frequency   |
| 1   |                                                                                                                                                                                                                             |          |        |      | 6 months    |
| 2   |                                                                                                                                                                                                                             |          |        |      | before the  |
| 3   |                                                                                                                                                                                                                             |          |        |      | works,      |
|     |                                                                                                                                                                                                                             |          |        |      | Every       |
|     |                                                                                                                                                                                                                             |          |        |      | Community   |
| 1   |                                                                                                                                                                                                                             |          |        |      | Just before |
| 2   |                                                                                                                                                                                                                             |          |        |      | the works,  |

Table 1-3-3.1Draft Monitoring Forms

| Mo  | Monitoring Item: 1. Explanation of the Project Schedule for the Local People                                        |          |        |      |           |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|----------|--------|------|-----------|--|--|
| - ' | - The local people on the Project routes will be informed the Project schedule before the installation work starts. |          |        |      |           |  |  |
| No. | Date                                                                                                                | Location | Method | Note | Frequency |  |  |
| 3   |                                                                                                                     |          |        |      | Every     |  |  |
|     |                                                                                                                     |          |        |      | 1.0km     |  |  |
|     |                                                                                                                     |          |        |      |           |  |  |

| Monitoring Item: 2. | Stalls moved in the Road Reserve |
|---------------------|----------------------------------|
|                     |                                  |

- The stalls on the Project routes in the road reserve will be informed the installation schedule before the work starts and they will be moved if necessary.

| No. | Location | Type of Stall | Condition | Reason | Frequency |
|-----|----------|---------------|-----------|--------|-----------|
| 1   |          |               |           |        | Every     |
| 2   |          |               |           |        | 0.5km     |
| 3   |          |               |           |        |           |
|     |          |               |           |        |           |

Monitoring Item: 3. Trees felled

- If the installation works affect on the trees on the Project routes, valuable trees (Mango, Shea Butter) and landmark trees will be left according to the communication with the local people along the Project routes.

|     |          |              |           |        | -         |
|-----|----------|--------------|-----------|--------|-----------|
| No. | Location | Type of Tree | Condition | Reason | Frequency |
| 1   |          |              |           |        | Every     |
| 2   |          |              |           |        | 0.5km     |
| 3   |          |              |           |        |           |
|     |          |              |           |        |           |

# 1-3-3-2 Environmental Check List

Based on the JICA's Guidelines for Environmental and Social Considerations (April, 2010 Version), the Study Team conducted an environmental review of the Project using the Environmental Checklist: Power Transmission and Distribution Lines with VRA-NED as shown in Table 1-3-3.2.

| Category                      | Environmental Item                      | Main Check Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes:Y<br>No:N |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Permits and<br>Explanation | (1) EIA and<br>Environmental<br>Permits | <ul> <li>(a) Have EIA reports been already prepared<br/>in official process?</li> <li>(b) Have EIA reports been approved by<br/>authorities of the host country's<br/>government?</li> <li>(c) Have EIA reports been unconditionally<br/>approved? If conditions are imposed on<br/>the approval of EIA reports, are the<br/>conditions satisfied?</li> <li>(d) In addition to the above approvals, have<br/>other required environmental permits<br/>been obtained from the appropriate<br/>regulatory authorities of the host<br/>country's government?</li> </ul> |               | <ul> <li>(a) According to the Environmental Assessment<br/>Regulations 1999, LI 1652, which stipulates<br/>the types of projects subject to an EIA and<br/>the procedure of EIA, the Project is not<br/>included in the EIA subjected projects.<br/>The Project plans the construction of 7.5<br/>MVA primary substations, 34.5 kV<br/>sub-transmission lines and 11.5 kV<br/>distribution lines. The EPA's Environmental<br/>Guidelines for the Energy Sector demand the<br/>registration of any project involving the<br/>construction of a medium high voltage<br/>transmission line between 11 kV and 36 kV<br/>which does not pass through an<br/>environmentally sensitive area (ESA) with<br/>the EPA. In contrast, a PEA is required for<br/>the construction of a substation with a<br/>capacity of 1 MVA or higher on a<br/>transmission/distribution grid. Therefore, a<br/>PEA is necessary to obtain an EP for the<br/>Project.<br/>The Environment &amp; Sustainable</li> </ul> |

Table 1-3-3.2 Environmental Checklist: Power Transmission and Distribution Lines

| Category                  | Environmental Item                          | Main Check Items                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes:Y               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               | No:N<br>N<br>Y<br>Y | <ul> <li>(Reasons for Yes/No, Mitigation Measures)</li> <li>Development Department of VRA has coordinated the preparation of the PER, and is currently under in-house review.</li> <li>(b) The PER is expected to be submitted to EPA by the end of May 2011. EPA will assess the PER and give VRA instructions toward the EP. The EP is expected by the beginning of August.</li> <li>(c) Conditions can be imposed especially for the construction activities and VRA will satisfy those conditions.</li> <li>(d) In order to use road reserves, VRA consulted with the Regional offices of the Town &amp; Country Planning Departments for assistance in selecting the line routes. Both the Sunyani and Tamale offices of Town &amp; Country Planning Department has formally submitted maps indicating the routes that VRA intends utilising for the distribution</li> </ul> |
|                           | (2) Explanation to<br>Local<br>Stakeholders | <ul> <li>(a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders?</li> <li>(b) Have the comment from the stakeholders (such as local residents) been reflected to the project design?</li> </ul>                                                              |                     | <ul> <li>lines.</li> <li>(a) VRA-NED conducted stakeholder meetings<br/>at two Project sites of Sunyani and Tamale in<br/>February 2011. Following this, detailed<br/>community consultations were held in May<br/>2011 in Choggu, Shishegu, Nyohini,<br/>Nyakpala, Kotokrom and New Dormaa.<br/>Consultations will be continued till when all<br/>issues regarding environmental management<br/>and compensation (if necessary) are<br/>successfully addressed.</li> <li>(b) Comments made at the various community<br/>consultations have informed mitigation<br/>measures proposed in the PER.</li> </ul>                                                                                                                                                                                                                                                                      |
|                           | (3) Examination of<br>Alternatives          | (a) Have alternative plans of the project been<br>examined with social and environmental<br>considerations?                                                                                                                                                                                                                                                                                                                                   |                     | <ul> <li>(a) The Project consists of the installation of<br/>sub-transmission and distribution lines and<br/>the construction of primary substations. The<br/>locations of substations and the routes of<br/>feeder lines were studied from a technical<br/>perspective, geography (flat land), land use<br/>(unused land, no residence and permanent<br/>structures), land availability (public land,<br/>road reserve), consistency with urban plan.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. Pollution<br>Control   | (1) Water Quality                           | (a) Is there any possibility that soil runoff<br>from the bare lands resulting from<br>earthmoving activities, such as cutting<br>and filling will cause water quality<br>degradation in downstream water areas?<br>If the water quality degradation is<br>anticipated, are adequate measures<br>considered?                                                                                                                                  |                     | <ul> <li>(a) The planned installation of distribution lines<br/>and construction of primary substations will<br/>not involve any major alteration of the local<br/>topography or large-scale civil engineering<br/>work. Consequently, there will be no soil<br/>runoff to the extent of worsening the water<br/>quality.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3. Natural<br>Environment | (1) Protected Areas                         | <ul> <li>(a) Is the project site located in protected<br/>areas designated by the country's laws or<br/>international treaties and conventions? Is<br/>there a possibility that the project will<br/>affect the protected areas?</li> </ul>                                                                                                                                                                                                   |                     | (a) The Project sites are not located in protected areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | (2) Ecosystem                               | <ul> <li>(a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)?</li> <li>(b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions?</li> <li>(c) If significant ecological impacts are anticipated, are adequate protection</li> </ul> |                     | (a)-(f) Almost all of the project sites are located<br>in suburbs and there are no special habitats<br>for endangered fauna or flora.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Category                 | Environmental Item                             | Main Check Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes:Y<br>No:N | Confirmation of Environmental Considerations<br>(Reasons for Yes/No, Mitigation Measures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                | <ul> <li>measures taken to reduce the impacts on the ecosystem?</li> <li>(d) Are adequate measures taken to prevent disruption of migration routes and habitat fragmentation of wildlife and livestock?</li> <li>(e) Is there any possibility that the project will cause the negative impacts, such as destruction of forest, poaching, desertification, reduction in wetland areas, and disturbance of ecosystem due to introduction of exotic (non-native invasive) species and pests? Are adequate measures for preventing such impacts considered?</li> <li>(f) In cases where the project site is located in undeveloped areas, is there any possibility that the new development will result in extensive loss of natural environments?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. Social<br>Environment | (3) Topography and<br>Geology (1) Resettlement | <ul> <li>environments?</li> <li>(a) Is there any soft ground on the route of power transmission and distribution lines that may cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides, where needed?</li> <li>(b) Is there any possibility that civil works, such as cutting and filling will cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides? (c) Is there a possibility that soil runoff will result from cut and fill areas, waste soil disposal sites, and borrow sites? Are adequate measures taken to prevent soil runoff?</li> <li>(a) Is involuntary resettlement caused by project implementation? If involuntary resettlement?</li> <li>(b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement?</li> <li>(c) Is the resettlement plan, including compensation with full replacement?</li> <li>(d) Are the compensations going to be paid prior to the resettlement?</li> <li>(e) Are the compensation policies prepared in document?</li> <li>(f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly,</li> </ul> | Y             | <ul> <li>(a)(b) All of the project sites are almost flat. No major alterations of the local topography or large-scale civil engineering work will occur under the Project, making slope failures, landslides or soil runoff highly unlikely.</li> <li>(c) The preparation of the substation sites could have an adverse impact on soils through excavation for the foundations of the site. This potential impact will, however, be short-lived on the flat land or temporary since it is expected that the exposed areas will be covered quickly by vegetative re-growth to stabilize the soil and minimize erosion. VRA will apply erosion control practices such as re-grading, compaction and early re-vegetation to promote soil conservation.</li> <li>(a)-(j) No involuntary resettlement is expected in the Project. There are no residence and structures at the sites of primary substations, which are unused in public lands. The sub-transmission lines and distribution lines will be installed within road reserve allocated for utilities along the present roads.</li> </ul> |
|                          |                                                | <ul> <li>people below the poverty line, ethnic minorities, and indigenous peoples?</li> <li>(g) Are agreements with the affected people obtained prior to resettlement?</li> <li>(h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan?</li> <li>(i) Are any plans developed to monitor the impacts of resettlement?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Category | Environmental Item                                                   | Main Check Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes:Y<br>No:N |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                      | (j) Is the grievance redress mechanism established?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | <ul><li>(2) Living and<br/>Livelihood</li><li>(3) Heritage</li></ul> | <ul> <li>(a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered to reduce the impacts, if necessary?</li> <li>(b) Is there a possibility that diseases, including infectious diseases, such as HIV will be brought due to immigration of workers associated with the project? Are adequate considerations given to public health, if necessary?</li> <li>(c) Is there any possibility that installation of structures, such as power line towers will cause a radio interference? If any significant radio interference? If any significant radio interference is anticipated, are adequate measures considered?</li> <li>(d) Are the compensations for transmission wires given in accordance with the domestic law?</li> </ul> | N             | <ul> <li>(a) In construction phase, the construction works can affect residential properties, stalls and shops which are located within the road reserves. This category of people will have to be moved and may temporary lose their livelihoods. In the consultations by VRA, they were aware of occupying public land. However if necessary, appropriate compensation shall be paid in line with the conditions of the Land Acquisition &amp; Resettlement Framework (LARF). VRA shall engage the Lands Valuation Division (LVD) to undertake a detailed survey of project-affected persons for the purposes of compensation payment. Information on modalities for compensation including grievance procedures is explained at the construction works will be done by humans at limited areas and in short-term. The adverse impact is not serious and limited. Construction observers will direct the local people can be affected. However, the construction observers will direct the local people and traffic passing safely.</li> <li>(b) The Project do not expect any adverse impact regarding infectious diseases because no massive influx of workers is expected as most labour s can be supplied locally for the small-scale projects and construction works by humans. However, with the introduction of some migrant workers into the communities along the proposed line route, mitigation measures will be required to minimize the potential danger of the spread of sexually transmitted diseases (STDs) including HIV AIDS. In line with VRA's "HIV&amp;AIDS Policy", the VRA in collaboration with the Northern and Brong Ahafo Regional Health Services shall undertake HIV/AIDS education for the workforces of the contractors and consultants.</li> <li>(c) The planned construction of the 34.5 kV sub-transmission lines and 11.5 kV distribution lines will not cause any radio interference which will negatively affect local people.</li> <li>(d) The Project is not installation of transmission wires. The currently unused sites for the planed primary substation will need acquisition of public</li></ul> |
|          |                                                                      | damage the local archeological,<br>historical, cultural, and religious<br>heritage? Are adequate measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | historical, cultural or religious sites to<br>consider at the Project sites.<br>However, an unused cemetery belongs to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Category  | Environmental Item                                    | Main Check Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes:Y<br>No:N | Confirmation of Environmental Considerations (Reasons for Yes/No, Mitigation Measures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                       | considered to protect these sites in accordance with the country's laws?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | New Dormaa Chief is located at the opposite<br>side of the Kotokrom Primary Substation and<br>the 11.5kV line can pass the land.<br>Therefore, consultations have been held with<br>the Municipal Chief Executive representative<br>on follow-up with the New Dormaa Chief<br>when project construction is about to<br>commence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | (4) Landscape                                         | (a) Is there a possibility that the project will<br>adversely affect the local landscape? Are<br>necessary measures taken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N             | (a) No significant impact is expected on<br>landscape because there are no special natural<br>and cultural landscapes around the project<br>sites although some street trees can be felled<br>or their leaves can be cut for the construction<br>of feeder lines in the road reserves.<br>VRA-NED will avoid valuable trees to install<br>feeder lines or just cut their leaves, consider<br>replanting the existing trees or plant new<br>trees at where the trees do not disturb the<br>feeder lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | (5) Ethnic<br>Minorities and<br>Indigenous<br>Peoples | <ul><li>(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?</li><li>(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources respected?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | (a)(b) There are no settlements of ethnic<br>minorities or indigenous peoples at the<br>Project sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Othera    | (6) Working<br>Conditions                             | <ul> <li>(a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project?</li> <li>(b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials?</li> <li>(c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.?</li> <li>(d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents?</li> </ul> | Y<br>Y<br>Y   | <ul> <li>(a) The Japanese contractor responsible for the construction work will abide by the labour laws of Ghana and ensure good and safe working conditions in accordance with their own and VRA-NED's construction manuals. The following laws shall be abided with Labour Act No (2003) Act 651 and the Factories, Offices and Shops Act (1970) Act 328.</li> <li>(b) Safety Rules, Protection Code &amp; Safe Working Practice are in place in line with VRA's Safety Rules and are to be adhered to during project implementation.</li> <li>(c) Before the order to commence any works, the Contractor is required to prepare his own Environmental Management Plan and Safety &amp; Health Plan (SHP) for each subproject. This will have to be approved by VRA.</li> <li>(d) Security guards on the project shall be trained on appropriate measures to take in handling and dealing with the general public. This shall be included in regular safety communications to be done by the contractor.</li> </ul> |
| 5. Others | (1) Impacts During<br>Construction                    | <ul> <li>(a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)?</li> <li>(b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts?</li> <li>(c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                         | Y             | <ul> <li>(a) The Safety &amp; Health Plan (SHP) shall be prepared by the contractor and approved by VRA and shall be in line with VRA's Corporate Safety Policy.</li> <li>(b) The project sites are located in suburbs and little adverse impacts on natural environmental are expected. However, an Environmental Officer shall be assigned on the project to monitor project construction activities to ensure impacts on the ecosystem are reduced.</li> <li>(c) The construction works can affect shops, stalls and the residents in the road reserves. However, consultations will be continued during the construction when all issues are successfully addressed.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |

| Category | Environmental Item                          | Main Check Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes:Y<br>No:N | Confirmation of Environmental Considerations<br>(Reasons for Yes/No, Mitigation Measures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                             | <ul> <li>implement monitoring program for the environmental items that are considered to have potential impacts?</li> <li>(b) What are the items, methods and frequencies of the monitoring program?</li> <li>(c) Does the proponent establish an adequate monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)?</li> <li>(d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities?</li> </ul> | Y<br>Y        | <ul> <li>process, an Environmental Management &amp; Monitoring Plan (EMMP) will be prepared in the PER and implemented by VRA.</li> <li>(b) The following items are agreed and will be included in the EMMP: Explanation of the Project Schedule for the Local People, Stalls moved in the Road Reserve and Trees felled. The other items including contractor's matters will also be comprised in the EMMP in the coordination with EPA.</li> <li>(c) An organizational structure consists of the director, manager and officer in the Environmental &amp; Sustainable Development Department of VRA. VRA and Contractor shall make budgetary allocations towards all environmental Programmes.</li> <li>(d) The Environmental Officer of VRA shall coordinate the production of internal monthly/quarterly reports for VRA, and an annual report for submitting to EPA.</li> </ul> |
| 6. Note  | Checklist for Other<br>Sectors              | also be checked (e.g., projects including<br>installation of electric transmission lines<br>and/or electric distribution facilities).                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | (a) The Project is irrelevant as it only involves<br>the project components consist of small-scale<br>and limited areas, which are installations of<br>sub-transmission and distribution lines,<br>constructions of two primary substations, and<br>is planned within the road reserve allocated<br>for utilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | Note on Using<br>Environmental<br>Checklist | (a) If necessary, the impacts to<br>transboundary or global issues should be<br>confirmed, (e.g., the project includes<br>factors that may cause problems, such as<br>transboundary waste treatment, acid rain,<br>destruction of the ozone layer, or global<br>warming).                                                                                                                                                                                                                                                                                                                   |               | (a) The Project is irrelevant as it only involves<br>the project components consist of small-scale<br>and limited areas, which are installations of<br>sub-transmission and distribution lines,<br>constructions of two primary substations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Source: VRA-NED, Study Team

# CHAPTER 2 CONTENTS OF THE PROJECT

# 2-1 Basic Concept of the Project

In the past, Ghana has pursued economic liberalisation policies based on structural adjustment policies led by the IMF and the World Bank and had achieved an annual economic growth rate of around 5% in the second half of the 1980's. The Government of Ghana continued its economic development efforts in the 1990's and formulated the "Vision 2020", comprehensive guidelines for the long-term development of the country, in 1995 with the aim of achieving sustainable economic growth, poverty reduction and the democratisation of society.

The Government of Ghana incorporated the Millennium Development Goals (MDGs) agreed at the UN Millennium Summit in 2000 in its Ghana Poverty Reduction Strategy II (GPRS II; 2006 – 2009). The Ghana Shared Growth and Development Agenda ( $2010 \sim 2013$ ) which followed the GPRS II has adopted a strategy of economic reform through (i) infrastructure development and agricultural modernisation to create employment/income opportunities for poverty reduction and (ii) industrialisation with the active use of natural resources. However, the country is still facing the serious problem of a significant economic gap between urban and rural areas with severe poverty in rural areas.

Under these circumstances, the Ghanaian Ministry of Energy (MOE) formulated the National Electrification Scheme (NES) in 1989 and launched a nationwide electrification drive with the highest priority for electrification given to provincial capitals and key commercial cities because of the high investment effect in these cities. The MOE also introduced the Self-Help Electrification Programme (SHEP) to respond to demands for early electrification by communities in rural areas where the speed of electrification has been slow under the NES. Under the SHEP, government aid for electrification is provided when the self-help efforts of rural communities are judged to warrant such aid. Meanwhile, the National Energy Policy (NEP) adopted in 2009 aims at (i) making Ghana an exporting country of electricity through the development of new power sources and (ii) achieving 100% access to electricity nationwide by 2020.

Through these conscious efforts, Ghana's electrification rate of 66% in 2010 is the third highest among sub-Saharan countries. However, Ghana's distribution system is marred by such problems as a high distribution loss rate and low supply reliability. These problems are hampering the further improvement of the country's electrification rate. To solve these problems, the Government of Ghana has requested the Government of Japan to formulate a master plan for the distribution sector and the JICA produced such master plan, the contents of which include the necessary rehabilitation, augmentation and extension of the distribution grids, in 2008.

Japan has so far conducted five grant aid cooperation projects for electrification in Ghana and their positive effects are highly visible in the respective target areas. These effects include direct effects on residents as a result of an increased electrification rate and indirect effects, including improved public services by hospitals, schools and other public facilities. The positive contribution to the achievement

of the MDGs has been verified in the form of a reduced infant mortality rate and the improved health of pregnant women, for example.

The facilitation of electrification nationwide requires a huge amount of foreign currency. Even though the national average electrification rate in Ghana considerably increased from 43% in 2006 to 67% in 2009, the rate remains low at around  $30\% \sim 44\%$  in poorer northern Ghana. This figure is far below the  $58\% \sim 96\%$  in central and southern Ghana, causing a lingering huge socioeconomic gap between northern Ghana and central/southern Ghana.

The Project intends to improve the power distribution system in two areas, i.e. Tamale which is the capital city of the Northern Region and Sunyani which is the capital city of Brong-Ahafo in northern Ghana (to be more precise, the service area of the VRA-NED) by means of extending and augmenting the existing distribution grids. The ultimate objective to achieve such targets of the GSGDA as infrastructure development, improvement of the standard of living for the rural populace and vitalisation of local industries, thereby contributing to poverty development which is one of the MDGs.

The implementation of the Project is expected to stimulate socioeconomic activities and to improve local life with the provision of a reliable power supply, which is an essential component of modern social infrastructure, in the Project sites. The Japanese assistance for the Project is the construction of 34.5/11.5 kV primary substations and the procurement and installation of cables, etc. to construct new 34.5 kV sub-transmission and 11.5 kV distribution lines in the Project sites.

# 2-2 Outline Design of the Japanese Assistance

# 2-2-1 Design Policies

# 2-2-1-1 Basic Policies

The principal project components are the construction of new 34.5/11.5 kV primary substations and the procurement and installation of cables, etc. for 34.5 kV sub-transmission and 11.5 kV distribution lines so that the new sub-transmission line extending from the existing 161/34.5/11.5 kV BSP substation and new distribution lines can provide reliable power supply at each Project site.

# 2-2-1-2 Natural Conditions

# (1) Temperature and Humidity

At the Project sites, the wet season lasts from May to July and again from September to November and the periods between these two wet seasons constitute the dry seasons. Weather data for Tamale in 2010 indicate that the maximum temperature is 40°C (in the dry season while the minimum temperature is 17°C (in the wet season). The highest humidity exceeding 95% is recorded in the wet season. In general, both the wet and dry seasons are fairly distinctive. It is essential for the distribution and substation equipment to be procured under the Project to take these weather characteristics into consideration so that all of the equipment continually operates

normally in the face of a temporary sharp rise of its temperature due to a high ambient temperature and/or direct sunlight or high ambient humidity. In the case of sealed panels, a space heater will be provided to prevent condensation originating from large temperature fluctuations.

(2) Rainfall and Lightning

The mean monthly rainfall in the Project sites is some 160 mm although there is a significant difference between the dry and wet months. Given the likelihood of tropical squalls at some sites, the introduction of waterproofing measures is considered for some of the distribution equipment. There is also a chance of lightning incidents involving the electric poles during the construction work of especially the sub-transmission and distribution lines, making careful planning of the schedule of work in high places necessary. As a full-time operator will be assigned to each new substation, the installation of a lightning conductor will be necessary to prevent any personal injury as well as damage to the building by lightning.

#### (3) Other Important Matters

The Project sites are subject to the harmattan and the accumulation of sandy dust on the insulators will reduce the level of insulation performance. The local farming practice of burning fields could also damage the electric poles. Careful planning is, therefore, necessary in regard to the creepage distance for insulation and the selection of the electric pole specifications to ensure a steady power supply.

# 2-2-1-3 Socioeconomic Conditions

The planned substation construction work under the Project will include expansion work inside the 34.5 kV distribution switchboard room of the existing BSP substation and it will be necessary to temporarily switch off the electricity supply to connect a new 34.5 kV sub-transmission cable to the existing distribution switchboard. The schedule for this work must be carefully planned to make the duration of power outage as short as possible in order to minimise any negative impacts on power users.

The new 34.5 kV sub-transmission and 11.5 kV distribution lines will, in principle, be constructed in the wayleave zones of the existing transmission distribution routes. The Ghanaian side must undertake such work as weeding and the removal of rocks as well as the relocation of market stalls and farming fields along the planned routes. Some sections of the planned routes run on the road reserve of a trunk road or along the boundary between military land and private land. The Ghanaian side must fully explain the contents of the Project to the affected road department, land owners and local residents in advance to avoid any disputes after the commencement of the Project. At the stage of the foundation work and digging and the erection of the electric poles as part of the construction work for the new substations and sub-transmission and distribution lines, extra care will be required to avoid any damage to existing underground infrastructure (telephone, water supply and sewer lines). In the case of the overhead cabling work, a safety distance from the existing power line, telephone line, railway line and road must be established in accordance with the relevant laws and regulations in Ghana. In short, the construction work must be designed so as to not interfere with such existing infrastructure.

# 2-2-1-4 Local Construction Industry

Both of the cities targeted by the Project are key local cities in Ghana and local construction companies have been involved the construction of up to medium size commercial and office buildings. There are several local companies, including those which specialise in electrical installation. The local construction industry is, therefore, judged to be adequate for general construction work. However, there is no local company which is capable of installing the planned high voltage transformer, sub-transmission and distribution lines. In view of this, the company for the installation work under the Project will be selected from leading construction companies based in the Greater Accra Region along the coast.

# 2-2-1-5 Use of Local Construction Companies and Local Materials

The interview results with local construction companies and past records for construction orders by the VRA-NED have established that the recruitment of workers and the procurement of construction vehicles and construction materials are relatively easy in Ghana. As it is judged to be feasible to order the recruitment of technicians (skilled workers) and ordinary workers necessary for the construction work for the substations and sub-transmission and distribution lines to a local construction company, the use of local companies is planned for the construction work.

Aggregates, cement, reinforcing bars and other materials for the construction of the substations can be locally procured in Ghana and these local materials will be used as much as possible for the Project. However, most of the transforming and distribution equipment of the scale planned under the Project is not manufactured in Ghana. This equipment will be procured in Japan and/or third countries in the light of past importation records of such equipment, the operation and maintenance capability of the VRA-NED and other relevant matters.

# 2-2-1-6 Operation and Maintenance Capability of the Project Implementing Body

Since 1989, a series of work to construct distribution lines has been conducted in Ghana under the five phases of the rural electrification project assisted by Japan's grant aid scheme and also under the SHEP involving similar voltage classes to those of the Project. As the specifications of the transforming, transmission and distribution equipment to be procured under the Project are similar to those procured under past grant aid projects, it can be safely assumed that the VRA-NED has sufficient capability to install, operate and maintain the new equipment. A note of caution here is the fact that the existing transforming, transmission and distribution equipment shows much deterioration as well as malfunctioning, partly because of the insufficient replacement of parts due to the financial difficulty of the VRA-NED. It is also possible that the engineers, operators and maintenance workers of the VRA-NED do not fully understand the technical details of the latest distribution equipment and systems. To ensure the proper operation of the new equipment, Japanese engineers will provide OJT on the operation and maintenance of the new equipments, maintenance tools and operation and maintenance work. In addition, the necessary spare parts, testing instruments, maintenance tools and operation and maintenance

system after the commencement of operation of the new facilities and equipment will be proposed to the VRA-NED so that the new facilities and equipment are effectively and efficiently operated.

# 2-2-1-7 Scope and Grades of Facilities and Equipment

In consideration of the various conditions described above, the following policies are adopted in regard to the scope and technical grades of the equipment, etc. to be procured under the Project.

(1) Scope of Facilities and Equipment

The Project intends the improvement of the power supply system at the Project sites to ensure a stable power supply for residents and public facilities in these areas based on the assumed power demand in the target year of 2018. The Japanese side will procure and install the minimum but necessary range of equipment while requiring the Ghanaian side to procure and install the necessary equipment as is reasonably possible at its own expense with a view to encouraging self-reliant operation and maintenance by the Ghanaian side. The specifications of the new equipment will comply with the international standards as much as possible to ensure an economical design and compatibility with the existing facilities and equipment. The equipment will also have the minimum but necessary configuration to achieve the objectives of the Project.

(2) Grades

For the design of the transforming and distribution equipment and facilities to be procured and constructed under the Project, special care will be taken to ensure that the technical requirements of the equipment and facilities do not exceed the technical level of the VRA-NED which will be responsible for their operation and maintenance. For this purpose, the configuration of the existing facilities and the technical standards and work manuals of the VRA-NED will be taken into consideration at the design stage of the new equipment and facilities.

# 2-2-1-8 Construction and Procurement Methods and Schedule

As the Project will be implemented in accordance with the rules of the grant aid scheme of the Government of Japan, it must be completed within a single fiscal year. For the completion of the Project within the finalised schedule to ensure the achievement of the expected effects of electrification, the coordination of the work between the Japanese side and Ghanaian side is essential. The schedule must be carefully planned with proper consideration of suitable routes, methods, timing of and procedures to be followed for inland transportation.

Despite the long distance between the two Project sites (some 5 hour travelling distance by car), the construction work for the 34.5 kV sub-transmission and 11.5 kV distribution lines, totalling some 34.4 km (some 20.2 km in the Tamale area and some 14.2 km in the Sunyani area), will be simultaneously conducted in the two areas. The organization of appropriate construction teams and schedule is, therefore, essential to ensure the efficiency of the work. The construction methods should be those with which local construction companies and engineers are familiar and a carefully arranged work management system is required so that all of the planned work is safely and smoothly completed.

The equipment procured in Japan or a third country will be landed at the Port of Tema and will then be transported overland to the Project sites more than 400 km away, making careful packing of the equipment essential to avoid any problems at the transportation stage.

# 2-2-2 Basic Plan

# 2-2-2-1 Preconditions for Planning

(1) Estimation of the Power Demand at the Project Sites

The power demand in five years time from the commencement of operation of the new equipment and facilities introduced under the Project at each Project site is estimated in accordance with the following procedure based on the estimated current power demand.

1) Number of Connected Consumers and Those Awaiting Connection

There are many potential consumers at the Project sites awaiting connection to the distribution system even though a distribution line has already been extended to their vicinity. The number of applications by potential consumers for new connection has been rapidly increasing in the Tamale and Sunyani areas in recent years and it is inferred that most of these people will be connected to the distribution system in the next five years. For this reason, the power demand of those awaiting connection is included in the estimate of the likely power demand in the target year of the Project.

2) Annual Increase Rate of Demand and Power Factor

The annual increase rate of the demand of 5.4% is adopted as assumed by GRIDCo which controls the transmission grids, for these two areas. The power factor used for the present power demand estimation is 0.85 which is the average power factor at the Project sites.

3) Average Unit Demand per User and Load Utilisation Factor

Both of the Project sites have a household electrification rate of more than 50%. As the main loads of ordinary consumers and small shops are inferred to be lamps, television sets and refrigerators, the average unit demand is set at 400 kW/user. In the case of relatively large consumers for which an exclusive transformer is installed, the power demand is assumed to be the value obtained by multiplying the transformer capacity by a factor of 0.7. The load utilisation factor is also set at 0.7. Using these conditions, the current maximum power demand of existing consumers is estimated and the result is almost identical to the actual power demand value. The power demand in the target year of 2018, i.e. five years after the assumed commencement of operation of the new equipment, etc. in 2013, is estimated using the same conditions.

4) Estimation of the Power Demand in the Target Year

The target year of the Project is set at five years after the completion year of the construction work under the Project and the power demand in the target year is estimated

using the number of consumers at each Project site and the various conditions described above, including the rate of increase of the maximum power demand. The estimation results are shown in Table 2-2-2.1 and Table 2-2-2.2. As these tables show, the total maximum power demand at the Project sites in the target year is estimated to be approximately 11.5 MW (approximately 13.5 MVA). This value represents some 0.6% of the nationwide generating capacity as of 2010. As such, any impact of the Project on the nationwide balance of the power supply and demand is likely to be very small.

< Power Demand at the Project Sites in 2018 >

| • | Tamale (Northern Region)     | 5,770 kW (6,788 KVA) |
|---|------------------------------|----------------------|
| • | Sunvani (Brong-Ahafo Region) | 5.683 kW (6.686 KVA) |

Sunyani (Brong-Ahafo Region) 5,683 kW (6,686 KVA) Total approx. 11.5 MW (approx. 13.5 MVA)

|                               |                                      |                                     |                       |                      | Demand in 2010 (Estimated)                   |                                                   |                                               |                   |                                                            | Demand Forecast (Projected) |            |                              |            |            |            |            |                                      |
|-------------------------------|--------------------------------------|-------------------------------------|-----------------------|----------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------|------------------------------------------------------------|-----------------------------|------------|------------------------------|------------|------------|------------|------------|--------------------------------------|
|                               |                                      | А                                   | В                     | С                    | 1                                            | 2                                                 | 3                                             | 4                 | 5                                                          |                             |            | Completion of<br>the Project |            |            |            |            | Target Year fo<br>Demand<br>Forecast |
| Feeder No.<br>(Name) Distribu | Distribution Transformer             | Existing<br>Transformer<br>Capacity | Existing<br>Consumers | Waiting<br>Consumers | Average<br>Unit<br>Demand<br>per<br>Consumer | Demand<br>for<br>Existing<br>Consumers<br>[B x ①] | Demand for<br>Waiting<br>Consumers<br>[C x ①] | Total kW<br>【②+③】 | Total<br>Demand<br>(④ x Load<br>Utilization<br>Factor=0.7] | 2011                        | 2012       | 2013                         | 2014       | 2015       | 2016       | 2017       | 2018                                 |
|                               |                                      | kVA                                 | Households            | Households           | kW                                           | kW                                                | kW                                            | kW                | k W                                                        | k W                         | k W        | k W                          | k W        | k W        | k W        | k W        | k W                                  |
| UDSF1B U                      | UDS                                  | 315                                 | 1                     | 0                    | 220.5                                        | 220.5                                             | 0.0                                           | 220.5             | 154                                                        | 163                         | 171        | 181                          | 190        | 201        | 212        | 223        | 235                                  |
| (UDS) I                       | UDS Annex                            | 315                                 | 1                     | 0                    | 220.5                                        | 220.5                                             | 0.0                                           | 220.5             | 154                                                        | 163                         | 171        | 181                          | 190        | 201        | 212        | 223        | 23:                                  |
|                               | UDS Hostel No.1                      | 200                                 | 1                     | 0                    | 140.0                                        | 140.0                                             | 0.0                                           | 140.0             | 98                                                         | 103                         | 109        | 115                          | 121        | 127        | 134        | 142        | 14                                   |
|                               | UDS Hostel No.2                      | 100                                 | 1                     | 0                    | 70.0                                         | 70.0                                              | 0.0                                           | 70.0              | 49                                                         | 52                          | 54         | 57                           | 60         | 64         | 67         | 71         | 7                                    |
|                               | Kpaliga                              | 100                                 | 50                    | 44                   | 0.4                                          | 20.0                                              | 17.6                                          | 37.6              | 26                                                         | 28                          | 29         | 31                           | 32         | 34         | 36         | 38         | 4                                    |
|                               | Cheshegu                             | 50                                  | 10                    | 24                   | 0.4                                          | 4.0                                               | 9.6                                           | 13.6              | 10                                                         | 10                          | 11         | 11                           | 12         | 12         | 13         | 14         | 1                                    |
|                               | Bagnegilu                            | 100                                 | 85                    | 80                   | 0.4                                          | 34.0                                              | 32.0                                          | 66.0              | 46                                                         | 49                          | 51         | 54                           | 57         | 60         | 63         | 67         | 7                                    |
|                               | Nwogu                                | 50                                  | 66                    | 85                   | 0.4                                          | 26.4                                              | 34.0                                          | 60.4              | 42                                                         | 45                          | 47         | 50                           | 52         | 55         | 58         | 61         | 6                                    |
|                               | Islamic JSS                          | 100                                 | 86                    | 143                  | 0.4                                          | 34.4                                              | 57.2                                          | 91.6              | 64                                                         | 68                          | 71         | 75                           | 79         | 83         | 88         | 93         | 9                                    |
|                               | Nyamkpala Chief Palace               | 100                                 | 100                   | 165                  | 0.4                                          |                                                   | 66.0                                          | 106.0             | 74                                                         | 78                          | 82         | 87                           | 92         | 97         | 102        | 107        | 11                                   |
|                               | Penti Cost                           | 100                                 | 150                   | 80                   | 0.4                                          |                                                   | 32.0                                          | 92.0              | 64                                                         | 68                          | 72         | 75                           | 79         | 84         | 88         | 93         | 9                                    |
|                               | Tingoli                              | 100<br>200                          | 90                    | 107                  | 0.4                                          | 36.0                                              | 42.8                                          | 78.8              | 55                                                         | 58                          | 61         | 65                           | 68         | 72         | 76         | 80         | 84<br>232                            |
|                               | Nyankpala Bungalows                  |                                     | 250                   | 295                  | 0.4                                          | 100.0                                             | 118.0                                         | 218.0             | 153                                                        | 161                         | 170        | 179                          | 188        | 198        | 209        | 221        |                                      |
|                               | Woribogu<br>Tolon Sec                | 50<br>100                           | 65                    | 89<br>0              | 0.4                                          | 26.0<br>70.0                                      | 35.6                                          | 61.6<br>70.0      | 43<br>49                                                   | 45<br>52                    | 48<br>54   | 50<br>57                     | 53<br>60   | 56         | 59<br>67   | 62<br>71   | 6                                    |
|                               |                                      | 100                                 | 100                   | 120                  | 0.4                                          | 40.0                                              | 48.0                                          | 70.0              | 62                                                         | 65                          | 68         | 72                           | 76         | 64<br>80   | 84         | 89         | 9                                    |
|                               | Tolon Admin<br>Tolon Mosque          | 100                                 | 100                   | 120                  | 0.4                                          | 40.0                                              | 48.0                                          | 90.0              | 62                                                         | 66                          | 70         | 72                           | 78         | 80         | 86         | 91         | 9                                    |
|                               | Tolon Chief Palace                   | 100                                 | 135                   | 125                  | 0.4                                          | 54.0                                              | 74.4                                          | 128.4             | 90                                                         | 95                          | 100        | 105                          | 111        | 117        | 123        | 130        | 13                                   |
|                               | Dimobi No 1                          | 50                                  | 80                    | 100                  | 0.4                                          | 32.0                                              | 40.0                                          | 72.0              | 50                                                         | 53                          | 56         | 59                           | 62         | 66         | 69         | 73         | 13                                   |
|                               | Dimobi No 2                          | 50                                  | 80                    | 100                  | 0.4                                          | 32.0                                              | 40.0                                          | 72.0              | 50                                                         | 53                          | 56         | 59                           | 62         | 66         | 69         | 73         | 7                                    |
|                               | Dimobi No 3                          | 50                                  | 60                    | 35                   | 0.4                                          | 24.0                                              | 14.0                                          | 38.0              | 27                                                         | 28                          | 30         | 31                           | 33         | 35         | 36         | 38         | 4                                    |
|                               | Yipalgu                              | 100                                 | 98                    | 130                  | 0.4                                          | 39.2                                              | 52.0                                          | 91.2              | 64                                                         | 67                          | 71         | 75                           | 79         | 83         | 88         | 92         | 9                                    |
|                               | ECG                                  | 50                                  | 15                    | 22                   | 0.4                                          | 6.0                                               | 8.8                                           | 14.8              | 10                                                         | 11                          | 12         | 12                           | 13         | 13         | 14         | 15         |                                      |
|                               | Kasalugu                             | 100                                 | 72                    | 81                   | 0.4                                          | 28.8                                              | 32.4                                          | 61.2              | 43                                                         | 45                          | 48         | 50                           | 53         | 56         | 59         | 62         | 6                                    |
|                               | Albasta                              | 100                                 | 1                     | 0                    | 70.0                                         | 70.0                                              | 0.0                                           | 70.0              | 49                                                         | 52                          | 54         | 57                           | 60         | 64         | 67         | 71         | 7                                    |
|                               | Abattoir                             | 200                                 | 192                   | 108                  | 0.4                                          | 76.8                                              | 43.2                                          | 120.0             | 84                                                         | 89                          | 93         | 98                           | 104        | 109        | 115        | 121        | 12                                   |
| Ş                             | Sheshegu                             | 50                                  | 100                   | 150                  | 0.4                                          | 40.0                                              | 60.0                                          | 100.0             | 70                                                         | 74                          | 78         | 82                           | 86         | 91         | 96         | 101        | 10                                   |
|                               | Gbambaya No.1                        | 50                                  | 92                    | 122                  | 0.4                                          | 36.8                                              | 48.8                                          | 85.6              | 60                                                         | 63                          | 67         | 70                           | 74         | 78         | 82         | 87         | 9                                    |
| (                             | Gbambaya No.2                        | 50                                  | 98                    | 116                  | 0.4                                          | 39.2                                              | 46.4                                          | 85.6              | 60                                                         | 63                          | 67         | 70                           | 74         | 78         | 82         | 87         | 9                                    |
|                               | Bisco                                | 50                                  | 1                     | 0                    | 35.0                                         | 35.0                                              | 0.0                                           | 35.0              | 25                                                         | 26                          | 27         | 29                           | 30         | 32         | 34         | 35         | 3                                    |
|                               | Sheshegu Chief Palace                | 100                                 | 193                   | 180                  | 0.4                                          | 77.2                                              | 72.0                                          | 149.2             | 104                                                        | 110                         | 116        | 122                          | 129        | 136        | 143        | 151        | 15                                   |
|                               | Social Welfare                       | 100                                 | 113                   | 99                   | 0.4                                          | 45.2                                              | 39.6                                          | 84.8              | 59                                                         | 63                          | 66         | 70                           | 73         | 77         | 81         | 86         | 9                                    |
|                               | Remand Home                          | 200                                 | 235                   | 82                   | 0.4                                          | 94.0                                              | 32.8                                          | 126.8             | 89                                                         | 94                          | 99         | 104                          | 110        | 115        | 122        | 128        | 13                                   |
|                               | Daboya                               | 315                                 | 428                   | 128                  | 0.4                                          | 171.2                                             | 51.2                                          | 222.4             | 156                                                        | 164                         | 173        | 182                          | 192        | 203        | 213        | 225        | 23                                   |
|                               | Zoggbeli No.1                        | 300                                 | 275                   | 83                   | 0.4                                          | 110.0                                             | 33.2                                          | 143.2             | 100                                                        | 106                         | 111        | 117                          | 124        | 130        | 137        | 145        | 15                                   |
|                               | Zoggbeli No.2                        | 200                                 | 320                   | 100                  | 0.4                                          | 128.0                                             | 40.0                                          | 168.0             | 118                                                        | 124                         | 131        | 138                          | 145        | 153        | 161        | 170        | 17                                   |
|                               | Lamakara                             | 100                                 | 188                   | 60                   | 0.4                                          | 75.2                                              | 24.0                                          | 99.2              | 69                                                         | 73                          | 77         | 81                           | 86         | 90         | 95         | 100        | 10                                   |
|                               | Cotton                               | 500                                 | 1                     | 0                    | 350.0                                        | 350.0                                             | 0.0                                           | 350.0             | 245                                                        | 258                         | 272        | 287                          | 302        | 319        | 336        | 354        | 37.                                  |
|                               | Gratis Fundation<br>Oil Mill         | 315<br>500                          | 1                     | 0                    | 220.5<br>350.0                               | 220.5<br>350.0                                    | 0.0                                           | 220.5<br>350.0    | 154<br>245                                                 | 163<br>258                  | 171<br>272 | 181<br>287                   | 190<br>302 | 201<br>319 | 212<br>336 | 223<br>354 | 37                                   |
|                               | STC                                  | 800                                 | 634                   | 190                  | 0.4                                          | 253.6                                             | 76.0                                          | 329.6             | 243                                                        | 238                         | 272        | 287                          | 285        | 319        | 316        | 333        | 35                                   |
|                               | Street Lights                        | 100                                 | 1                     | 190                  | 70.0                                         | 233.6                                             | 0.0                                           | 70.0              | 49                                                         | 52                          | 236<br>54  | 57                           | 283        | 64         | 67         | 71         | 33                                   |
|                               | Sadelmi                              | 200                                 | 180                   | 90                   | 0.4                                          | 70.0                                              | 36.0                                          | 108.0             | 76                                                         | 80                          | 84         | 89                           | 93         | 98         | 104        | 109        | 11                                   |
|                               | Old Airport                          | 315                                 | 58                    | 52                   | 0.4                                          | 23.2                                              | 20.8                                          | 44.0              | 31                                                         | 32                          | 34         | 36                           | 38         | 40         | 42         | 45         | 4                                    |
|                               |                                      |                                     | 58                    |                      |                                              |                                                   |                                               |                   |                                                            |                             |            |                              |            |            |            |            | 23                                   |
| (                             |                                      | 400                                 | 250                   | 300                  | 0.4                                          | 100.0                                             | 120.0                                         | 220.0             | 154                                                        | 162                         | 171        | 180                          | 190        | 200        | 211        | 223        | 21                                   |
| 1                             | Nyankpala Agri. W/S<br>Sari Quarters | 400                                 | 250<br>25             | 300<br>45            | 0.4                                          |                                                   | 120.0<br>18.0                                 | 220.0             | 154<br>20                                                  | 162                         | 22         | 180                          | 190<br>24  | 200<br>25  | 211 27     | 223        | 23                                   |

0.85

 Table 2-2-2.1
 Estimated Power Demand at the Project Site (Tamale)

0.7

"Average Unit Demand per Consumers" is based on actual record of VRA. "Power factor" is based on the average of actual data of VRA. "Load Utilization Factor" is based on the VRA Load Monitoring Survey (2010) "Annual Increasing Ratio for Demand" is based on GRIDCo Demand Forecast 1) 2) 3) 4) 1.054

Projected Demand Required Capacity [kW] [kVA]

5770 6788

2-8

|                      |                           |                                     |            |                      | Demand in 2010 (Estimated)                   |       |                                               |       | Demand Forecast (Projected)                               |       |       |                              |       |       |       |       |                                      |
|----------------------|---------------------------|-------------------------------------|------------|----------------------|----------------------------------------------|-------|-----------------------------------------------|-------|-----------------------------------------------------------|-------|-------|------------------------------|-------|-------|-------|-------|--------------------------------------|
|                      |                           | А                                   | В          | С                    | 1                                            | 2     | 3                                             | 4     |                                                           |       |       | Completion of<br>the Project |       |       |       |       | Target Year fo<br>Demand<br>Forecast |
| Feeder No.<br>(Name) | Distribution Transformer  | Existing<br>Transformer<br>Capacity |            | Waiting<br>Consumers | Average<br>Unit<br>Demand<br>per<br>Consumer |       | Demand<br>for Waiting<br>Consumers<br>[C x ①] | [2+3] | Total<br>Deman<br>(④ x Load<br>Utilization<br>Factor=0.7] | 2011  | 2012  | 2013                         | 2014  | 2015  | 2016  | 2017  | 2018                                 |
|                      |                           | kVA                                 | Households | Households           | kW                                           | kW    | kW                                            | kW    | k W                                                       | k W   | k W   | k W                          | k W   | k W   | k W   | k W   | k W                                  |
| KTF1B (Hospital)     | Brong-Ahafo Regional Hosp | 1500                                | 1          | 0                    | 1050                                         | 1050  | 0                                             | 1,050 | 735                                                       | 775   | 817   | 861                          | 907   | 956   | 1,008 | 1,062 | 1,119                                |
| KTF2B                | Low Cost                  | 315                                 | 300        | 300                  | 0.4                                          | 120   | 120                                           | 240   | 168                                                       | 177   | 187   | 197                          | 207   | 219   | 230   | 243   |                                      |
| (New Dormaa]         | Postrial                  | 100                                 | 250        | 200                  | 0.4                                          | 100   | 80                                            | 180   | 126                                                       | 133   | 140   | 148                          | 156   | 164   | 173   | 182   | 192                                  |
|                      | Low Cost Extension        | 315                                 | 300        | 200                  | 0.4                                          | 120   | 80                                            | 200   | 140                                                       | 148   | 156   | 164                          | 173   | 182   | 192   | 202   |                                      |
|                      | Low Cost Extension Annex  | 200                                 |            | 100                  | 0.4                                          | 60    |                                               | 100   |                                                           |       | 78    | 82                           | 86    |       | 96    | 101   | 107                                  |
| l l                  | Quarter Guard             | 200                                 | 140        | 120                  | 0.4                                          | 56    | 48                                            | 104   |                                                           | 77    | 81    | 85                           | 90    |       | 100   | 105   |                                      |
|                      | New Dormaa                | 315                                 | 400        | 250                  | 0.4                                          | 160   | 100                                           | 260   | 182                                                       | 192   | 202   | 213                          | 225   | 237   | 250   | 263   | 277                                  |
|                      | New Dormaa Extension      | 315                                 | 200        | 250                  | 0.4                                          | 80    | 100                                           | 180   | 126                                                       | 133   | 140   | 148                          | 156   | 164   | 173   | 182   | 192                                  |
|                      | Asuakwa                   | 100                                 | 200        | 200                  | 0.4                                          | 80    | 80                                            | 160   | 112                                                       | 118   | 124   | 131                          | 138   | 146   | 154   | 162   | 17                                   |
|                      | Barracks No.2             | 200                                 | 1          | 0                    | 140                                          | 140   | 0                                             | 140   | 98                                                        | 103   | 109   | 115                          | 121   | 127   | 134   | 142   | 149                                  |
|                      | Barracks No.3             | 500                                 | 1          | 0                    | 350                                          | 350   | 0                                             | 350   | 245                                                       | 258   | 272   | 287                          | 302   | 319   | 336   | 354   | 373                                  |
|                      | Asuakwa Extension         | 50                                  | 150        | 200                  | 0.4                                          | 60    | 80                                            | 140   | 98                                                        | 103   | 109   | 115                          | 121   | 127   | 134   | 142   |                                      |
|                      | Barracks No.1             | 200                                 | 1          | 0                    | 140                                          | 140   | 0                                             | 140   | 98                                                        | 103   | 109   | 115                          | 121   | 127   | 134   | 142   | 149                                  |
| (                    | Super A1                  | 100                                 | 200        | 220                  | 0.4                                          | 80    | 88                                            | 168   | 118                                                       | 124   | 131   | 138                          | 145   | 153   | 161   | 170   | 179                                  |
| KTF3B                | Kotokrom                  | 100                                 | 150        | 100                  | 0.4                                          | 60    | 40                                            | 100   | 70                                                        | 74    | 78    | 82                           | 86    | 91    | 96    | 101   | 107                                  |
| (Chiraa)             | Kotokrom West             | 100                                 | 120        | 250                  | 0.4                                          | 48    | 100                                           | 148   | 104                                                       | 109   | 115   | 121                          | 128   | 135   | 142   | 150   | 158                                  |
|                      | Kotokrom Aviation         | 100                                 | 110        | 240                  | 0.4                                          | 44    | 96                                            | 140   | 98                                                        | 103   | 109   | 115                          | 121   | 127   | 134   | 142   | 14                                   |
|                      | Yawhema                   | 100                                 | 300        | 200                  | 0.4                                          | 120   | 80                                            | 200   | 140                                                       | 148   | 156   | 164                          | 173   | 182   | 192   | 202   | 213                                  |
|                      | Nana Gyedu                | 50                                  | 50         | 100                  | 0.4                                          | 20    | 40                                            | 60    | 42                                                        | 44    | 47    | 49                           | 52    | 55    | 58    | 61    | 64                                   |
| ,                    | GWCL Kobedi               | 100                                 | 1          | 0                    | 70                                           | 70    | 0                                             | 70    | 49                                                        | 52    | 54    | 57                           | 60    | 64    | 67    | 71    | 7                                    |
|                      | Kobedi Central            | 25                                  | 60         | 200                  | 0.4                                          | 24    | 80                                            | 104   | 73                                                        | 77    | 81    | 85                           | 90    |       | 100   | 105   | 11                                   |
|                      | Oti Sawmill               | 600                                 |            | 150                  | 0.4                                          | 140   |                                               | 200   | 140                                                       |       | 156   | 164                          | 173   | 182   | 192   | 202   | 213                                  |
| 1                    | Chiraa Presby             | 200                                 | 300        | 350                  | 0.4                                          | 120   | -                                             | 260   | 182                                                       | 192   | 202   | 213                          | 225   | 237   | 250   | 263   | 277                                  |
|                      | Chiraa Central            | 315                                 | 200        | 200                  | 0.4                                          | 80    | 80                                            | 160   | 112                                                       | 118   | 124   | 131                          | 138   | 146   | 154   | 162   | 17                                   |
|                      | Chiraa Apostolic          | 100                                 | 250        | 200                  | 0.4                                          | 100   | 80                                            | 180   | 126                                                       | 133   | 140   | 148                          | 156   | 164   | 173   | 182   |                                      |
|                      | Asuakwa Chiraa            | 100                                 | 92         | 150                  | 0.4                                          | 37    | 60                                            | 96.8  | 68                                                        | 71    | 75    | 79                           | 84    | 88    | 93    | 98    |                                      |
|                      | Chiraa Clinic             | 100                                 | 300        | 200                  | 0.4                                          | 120   | 80                                            | 200   | 140                                                       | 148   | 156   | 164                          | 173   | 182   | 192   | 202   | 213                                  |
|                      | Total                     | 6400                                | 4577       | 4380                 |                                              | 3,579 | 1752                                          | 5,331 | 3,732                                                     | 3.933 | 4,145 | 4,369                        | 4,605 | 4,854 | 5,116 | 5,392 | 5,68                                 |

0.85

0.7

Table 2-2-2.2 Estimated Power Demand at the Project Site (Sunyani)

Notes:

"Average Unit Demand per Consumers" is based on actual record of VRA. 1)

2) "Power factor" is based on the average of actual data of VRA.

"Load Utilization Factor" is based on the VRA Load Monitoring Survey (2010)

3) 4) "Annual Increasing Ratio for Demand" is based on GRIDCo Demand Forecast 1.054 in the target year, 2018

**Projected Demand** [kW] 5683

**Required Capacity** [kVA] 6686

- (2) Distribution Plan
  - 1) Construction of 34.5 kV Sub-Transmission Lines

At both Project sites, the existing BSP substation does not have an unused 34.5 kV feeder facility and the new 34.5 kV line for the new primary substation will be drawn in the following manner. In this way, the duration of power outages due to the work is likely to be shortened.

- Two 34.5 kV circuit breaker boards and one connecting board will be installed at the BSP substation.
- One of the existing 34.5 kV feeders will be detached from the existing 34.5 kV circuit breaker board and will be attached to one of the new circuit breaker boards.
- A feeder for the new primary substation will be attached to the other new circuit breaker board.
- The existing 34.5 kV circuit breaker board will be connected to the new connecting board to share the bus.

After drawing out a new 34.5 kV sub-transmission line from the existing BSP substation in the above manner, this sub-transmission line will be extended at each Project site as described in Table 2-2-2.3.

| Project Site                                | Outline of the Construction Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tamale<br>(UDS Primary<br>Substation)       | As the Tamale BSP Substation is situated in an urban area, the new sub-transmission line will use underground cabling near the Tamale BSP Substation to avoid the need for the resettlement of residents (for approximately 5 km). This underground cabling will be laid along Stadium Road. However, an overhead line will be opted for at the section crossing Stadium Road to avoid any disruption to traffic due to the work. The underground line will continue along the former airport site and become an overhead line at the end of the former airport site. (The total length, including underground sections, will be approximately 19 km.) |
| Sunyani<br>(Kotokrom Primary<br>Substation) | The first pole will be located near the Sunyani BSP Substation and an overhead line will be constructed on the wayleave zone (15 m wide zone on each side of the line linking the centre of the pylons) of the existing 161 kV transmission line extending from the Techiman BSP Substation. This line runs northwards along the perimeter of the military site from the position of existing pylon No. 144 and then turns westwards after hitting Regional Hospital Road to reach the new Kotokrom Primary Substation. (The total length will be approximately 8.5 km.)                                                                               |

Table 2-2-2.3 New 34.5 kV Sub-Transmission Line Construction Plan

Source: JICA Study Team

#### 2) Connection Method Between the Existing and New Distribution Lines

Each new primary substation to be constructed under the Project will receive 34.5 kV power supply from the existing BSP substation. This 34.5 kV will be stepped down to 11.5 kV at the new substations to supply power to the connected distribution lines. The connection method between the existing and new distribution lines is described in Table 2-2-2.4 and Table 2-2-2.5.

While the final connection work will be undertaken by the Ghanaian side, the connecting equipment and materials will be provided by the Japanese side. Fig. 2-2-2.1 and Fig. 2-2-2.2 show the areas expected to directly benefit from the Project at Tamale and Sunyani respectively.

| Table 2-2-2.4 | Connection Method Between the Existing and |
|---------------|--------------------------------------------|
| New           | 11.5 kV Distribution Lines (Tamale)        |

| Feeder Name | Connection Method                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| UDS         | The first pole will be located on the USD Primary Substation site, an overhead line will be constructed (approx. 0.2 km) to the existing distribution line serving the USD and a jumper connection will be made to the existing distribution line.                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Tolon       | The first pole will be located on the USD Primary Substation site and an underground line will be constructed to a point near the existing distribution line heading towards Tolon after crossing UDS Road. The line will become an overhead line just before the section crossing the approach road to the Animal Research Institute and a jumper connection will be made to the existing distribution line. (Total length: approx. 0.7 km). |  |  |  |  |  |  |  |
| Sheshegu    | The first pole will be located on the UDS Primary Substation site. After crossing Tolon-Cheshegu Road, the line will become an underground line near the existing distribution line heading for Cheshegu. Connection to the existing distribution line will be made after the terminal treatment of the new line. (Total length: approx. 0.3 km)                                                                                              |  |  |  |  |  |  |  |

Source: JICA Study Team

| Table 2-2-2.5 | Connection Method Between the Existing and |
|---------------|--------------------------------------------|
| New           | 11.5 kV Distribution Lines (Sunyani)       |

| Feeder Name           | Connection Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dedicated<br>Hospital | The first pole will be located on the Kotokrom Primary Substation site and an overhead line will be constructed to the regional hospital site (approx. 4.3 km). A new RMU will be installed near the terminal pole at the regional hospital site and the existing 11.5 kV line from the Sunyani BSP Substation and a new 11.5 kV line from the Kotokrom Primary Substation will be connected to this RMU to improve the reliability of power supply to the regional hospital. The normal operating mode of the RMU will be that the Kotokrom Primary Substation side will be off while power supply to the regional hospital will use a dedicated line. |
| New Dormaa            | The first pole will be located on the Kotokrom Primary Substation site and an overhead line will be constructed to the nearest terminal pole of the distribution line heading for New Dormaa to the Kotokrom Primary Substation (approx. 0.6 km). The line will go underground from this connection point to connect to the existing distribution line after the terminal treatment of the new line.                                                                                                                                                                                                                                                    |
| Chiraa                | The first pole will be located on the Kotokrom Primary Substation site and an overhead line will be constructed to the nearest dead-end pole of the distribution line heading for Chiraa to the Kotokrom Primary Power Station (approx. 0.7 km). The line will go underground from this connection point to connect to the existing distribution line after the terminal treatment of the new line.                                                                                                                                                                                                                                                     |

Source: JICA Study Team

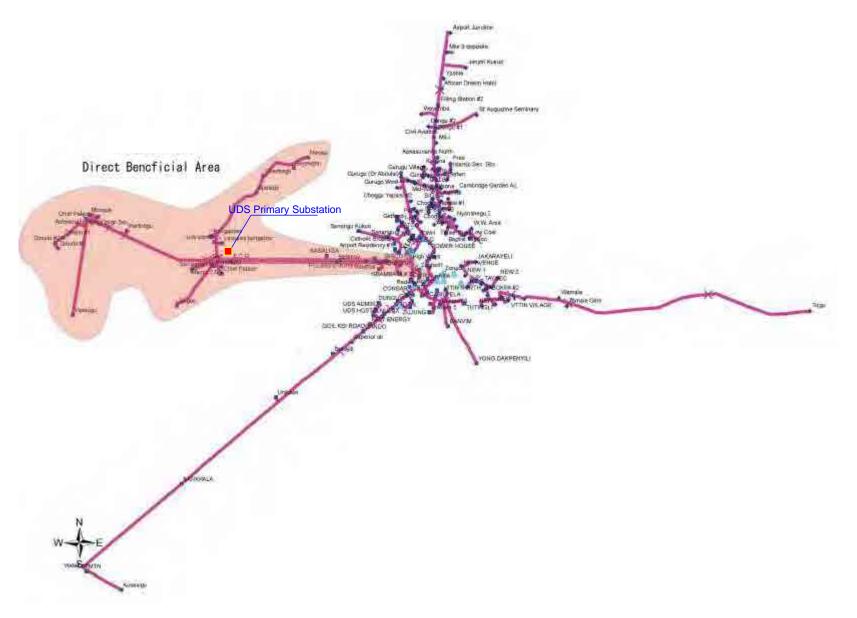



Fig. 2-2-2.1 Direct Benefitting Area of the Planned Distribution System Under the Project in the Tamale Area

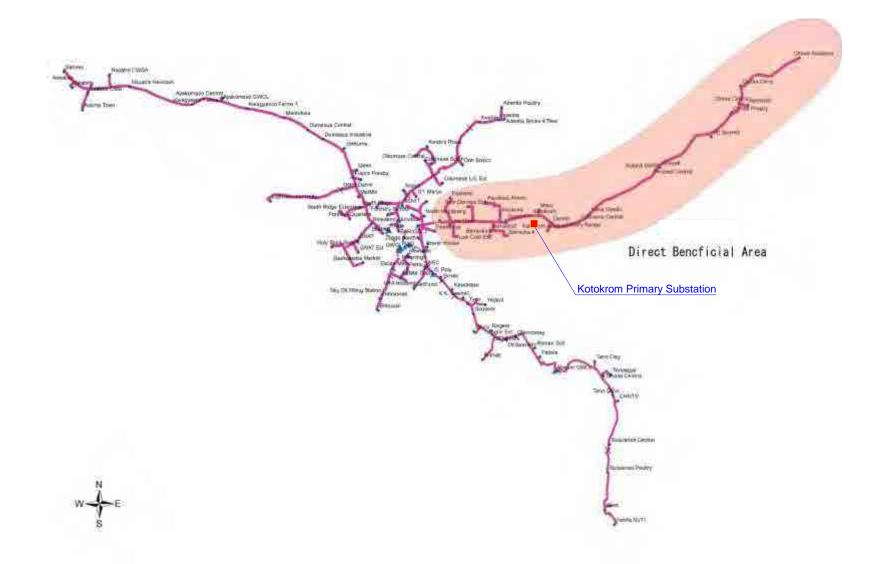



Fig. 2-2-2.2 Direct Benefitting Area of the Planned Distribution System Under the Project in the Sunyani Area

# 2-2-2-2 Design Conditions

The design conditions for the Project are described in this section.

(1) Meteorological Conditions

The meteorological conditions to be used for the design of the transformation and distribution facilities, substation buildings and foundations are shown in Table 2-2-2.6.

| Project Site          |         | Northern Region and Brong-Ahafo Region |
|-----------------------|---------|----------------------------------------|
| Elevation             |         | <u>≤</u> 500 m                         |
|                       | Maximum | 40°C                                   |
| Ambient Temperature   | Minimum | 10°C                                   |
|                       | Mean    | 30°C                                   |
| Maximum Humidity      |         | 85%                                    |
| Maximum Wind Velocity | 7       | 34 m/sec                               |
| Rainfall              |         | 1,400 mm/year                          |
| Seismic Force         |         |                                        |
| Soil Bearing Capacity |         | $20 \text{ tons/m}^2$                  |

Table 2-2-2.6 Meteorological Conditions

#### (2) Electric Mode

The details of the electric mode to be used for the design of the transforming and distribution systems are shown in Table 2-2-2.7.

| Item                                        | Distributi       | on System                                             | Station Power Source |                                    |  |  |  |  |
|---------------------------------------------|------------------|-------------------------------------------------------|----------------------|------------------------------------|--|--|--|--|
| Nominal Voltage                             | 34.5 kV          | 11.5 kV                                               | AC 415/240           | V DC 125 V                         |  |  |  |  |
| Maximum Voltage                             | 36 kV            | 12 kV                                                 | AC 435/252           | V DC 131 V                         |  |  |  |  |
| Frequency                                   | 50               | Hz                                                    | Irre                 | elevant                            |  |  |  |  |
| Short-Time Withstand Current                | 25 kA<br>(1 sec) | 12.5 kA<br>(1 sec)                                    | 12.5 kA<br>(1 sec)   | Irrelevant                         |  |  |  |  |
| Lightning Impulse Withstand Voltage         | 170 kV           | 75 kV                                                 | Irrelevant           | Irrelevant                         |  |  |  |  |
| Grounding System                            | Effective grou   | unding system                                         | Irre                 | elevant                            |  |  |  |  |
| Ingress Protection Rating                   |                  | Outdoor: IP43                                         | 3 / Indoor: IP20     |                                    |  |  |  |  |
| Colour Coding                               | red/yello        | andards (three )<br>w/blue; neutra<br>counding: greer | l: black;            | Positive: red<br>Negative:<br>blue |  |  |  |  |
| Cable Armour Colour                         | Black            |                                                       |                      |                                    |  |  |  |  |
| Minimum Creepage Distance                   | 25 mm/kV         | / Irrel                                               | evant                | Irrelevant                         |  |  |  |  |
| Minimum Isolation Distance for Conductors   |                  |                                                       |                      |                                    |  |  |  |  |
| Between Phase Conductors (mm)               | 370              | 315                                                   | Irrelevant           | Irrelevant                         |  |  |  |  |
| Between Phase and Grounding Conductors (mm) | 320              | 320 220                                               |                      | Irrelevant                         |  |  |  |  |
| Height of Conductor for Distribution Line   |                  |                                                       |                      |                                    |  |  |  |  |
| Ordinary Section (m)                        | 6                | 6                                                     | Irrelevant           | Irrelevant                         |  |  |  |  |
| Road Crossing Section (m)                   | 7                | 7                                                     | Irrelevant           | Irrelevant                         |  |  |  |  |

 Table 2-2-2.7
 Electric Mode

(3) Applicable Codes/Standards and Units

Such international standards as IEC and ISO and the Japanese standards listed below will be applied for the design of the main functions of the equipment to ensure compatibility with existing equipment in Ghana.

- IEC : applied to electrical products in general
- ISO : applied to industrial products in general
- JIS : applied to industrial products in general
- JEC : applied to electrical products in general
- JEM : applied to electrical products in general
- JCS : applied to electrical wires and cables
- Technical Standards for Electrical : applied to electrical work in general Facilities in Japan

# 2-2-2-3 Outline of the Basic Plan

The outline of the basic plan for the requested Japanese assistance for the Project shown in Table 2-2-2.8 is based on the findings of the field survey as well as the results of consultations with the Ghanaian side and taking the design policies described in 2-2-1 into consideration.

| Category                                              | Improvement of Distribution System<br>in Tamale Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Improvement of Distribution System<br>in Sunyani Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category                                              | (Northern Region)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Brong-Ahafo Region)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Procurement<br>and<br>Installation<br>of<br>Equipment | <ol> <li>Construction of UDS Primary Substation         <ol> <li>Transformer (34.5/11.5 kV, 7.5 MVA): 1 set</li> <li>34.5 kV Switchgear Cubicle: 2 sets</li> <li>11.5 kV Switchgear Cubicle: 5 sets</li> <li>Station transformer (11.5/0.43 kV, 100 kVA): 1 set</li> <li>Substation building (single story, floor area of some 260 m<sup>2</sup>)</li> </ol> </li> <li>34.5 kV Sub-transmission line (between Tamale BSP and the UDS Primary Substation): approx. 19 km (including underground section: approx 5 km)</li> <li>11.5 kV distribution lines (from new UDS Primary Substation to the existing distribution lines)             <ol> <li>UDS feeder: approx. 0.2 km</li> <li>Tolon feeder: approx. 0.3 km</li> </ol> </li> <li>Extension 34.5 kV Switchgear at Tamale BSP: 3 sets</li> </ol> | <ol> <li>Construction of Kotokrom Primary Substation         <ol> <li>Transformer (34.5/11.5 kV, 7.5 MVA): 1 set</li> <li>34.5 kV Switchgear Cubicle: 2 sets</li> <li>11.5 kV Switchgear Cubicle: 5 sets</li> <li>Station transformer (11.5/0.43 kV, 100 kVA): 1 set</li> <li>Substation building (single story, floor area of some 260 m<sup>2</sup>)</li> </ol> </li> <li>34.5 kV Sub-transmission line (between Sunyani BSP to new Kotokrom Primary Substation): approx. 8.5 km             (including underground section: approx. 0.5 km)</li> <li>11.5 kV distribution lines (from new Kotokrom Primary Substation to the existing distribution lines)             <ol> <li>Hospital feeder: approx. 4.3 km</li> <li>New Dormaa feeder: approx. 0.6 km</li> <li>Chiraa feeder: approx. 0.7 km</li> </ol> </li> <li>Extension 34.5 kV Switchgear at Sunyani BSP: 3 sets</li> </ol> |
| Procurement                                           | 1. Testing Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Testing Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| of                                                    | (including Cable Failure Point Detector)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (including Cable Failure Point Detector)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Equipment                                             | 2. Maintenance Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. Maintenance Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| and Other                                             | (including Aerial Platform Vehicle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (including Aerial Platform Vehicle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 2-2-2.8Outline of the Basic Design

| 3. Replacement Parts     | 3. Replacement Parts     |
|--------------------------|--------------------------|
| 4. Emergency Spare Parts | 4. Emergency Spare Parts |

- (1) Improvement of the Distribution System at the Tamale Site (Northern Region)
  - 1) Basic Points and Plan Contents
    - ① Construction of the UDS Primary Substation
      - a) Construction Site for the New Substation

The VRA-NED will secure part of the land owned by the Animal Research Institute which is controlled by the Ministry of the Environment, Science and Technology and the new substation will be constructed on a site of some 40 m x 30 m.

b) Installation of Transforming Equipment

One main transformer  $(34.5/11.5 \text{ kV}, 7.5 \text{ MVA}, \text{oil-filled}, \text{self-cooling}, with on-load tap changer}), one station transformer <math>(11.5/0.433 - 0.25 \text{ kV}, 100 \text{ kV}, \text{oil-filled}, \text{self-cooling})$ , one terminal pole for the 34.5 kV sub-transmission line (steel pole with a disconnecting switch and lightning arrester) and three terminal poles for the 11.5 kV distribution lines (steel poles with a disconnecting switch and lightning arrester) will be installed outdoors.

Two 34.5 kV distribution boards, five 11.5 kV distribution boards and a station power supply system (low voltage board and DC power supply unit) will be installed inside the substation building (approximately  $260 \text{ m}^2$ ).

c) Main Transforming Equipment

Based on the estimated power demand in 2018, the main transformer to be installed at the new substation will be one transformer with a capacity of 7.5 MVA and an on-load tap changer (voltage adjustment range of 34.5 kV  $\pm$  10%) will be provided. The winding for this transformer will use the delta connection for the 34.5 kV side which is used as the standard connection by the VRA for primary substations and the star connection for the 11.5 kV side (vector symbol: Dyn11). The neutral point will be directly grounded. The impedance will be roughly 6% which is the standard value for transformers of this class.

Both the 34.5 kV and 11.5 kV distribution boards will use air insulation as in the case of the existing transformers. The circuit breakers will be operated from a distribution board and instruments and protection relays will be installed on the distribution board. The circuit breakers will be vacuum circuit breakers and will have a mechanism to allow their drawing out. The short-time withstand current value for the circuit breakers of the 34.5 kV distribution boards and 34.5 kV distribution equipment will be 25 kA (one second) which is the standard value adopted by Japanese manufacturers based on the relevant JIS and JEC standards. This decision is aided by the fact that the short-circuiting current value will be

approximately 4.2 kA for the current main transformer (161/34.5/11.5 kV, 20/12.5/12.5 MVA, %Z: 10% (161/34.5 kV)) at the Tamale BSP Substation when replaced by a new transformer (161/34.5/11.5 kV, 33/25/25 MVA, %Z: 10% (161/34.5 kV)) in 2012. The short-time withstand current value for the circuit breakers of the 11.5 kV distribution boards and 11.5 kV distribution equipment will be 12.5 kA (one second) which is the standard value adopted by Japanese manufacturers based on the relevant JIS and JEC standards. This is based on a three phase short-circuiting value of approximately 6.3 kA for the main transformer (34.5/11.5 kV, 7.5 MVA, %Z: 6%) at the UDS Primary Substation. An automatic reclosing relay will be installed for each distribution feeder from a 11.5 kV distribution board so that a circuit breaker will be automatically restored at the time of a minor grounding incident to improve the power supply reliability. The VRA standards will be used as the specifications for the instrument transformers for the 34.5 kV distribution boards and 11.5 kV distribution boards and instrument current transformers (secondary side current value: 5A) and instrument voltage transformers (secondary side voltage: 115/53 V) will be installed.

The station transformer will be an oil-filled type and will be installed outdoors. The capacity of this single transformer will be 100 kVA to operate the transforming equipment and to supply the station power. The primary/secondary voltages of the transformer will use the VRA standard of 11.5 kV/433 – 250 V (zero voltage switching). The neutral point on the secondary side will be directly grounded.

An alkali battery or lead battery may be used as the DC power source. As the cadmium contained in an alkali battery poses a problem for its disposal, a lead battery will be used. The capacity of this battery will be sufficient to cover a power outage lasting 12 hours. The voltage of the DC power source will be 125 V which is the standard voltage adopted by the VRA.

#### d) Auxiliary Electrical Installations

The 36 kV and 12 kV cables to be used at the new substation sites will be aluminium conductor, XLPE insulation, aluminium strand, armoured sheathed power cables in accordance with the VRA standards and will be buried approximately 1.2 m below the ground surface. The low voltage and control cables will be copper conductor cables and will be laid in conduits.

The design grounding resistance at the new substations will be 1 ohm or less based on the relevant VRA standard. As the planned substation site has firm ground, it will be necessary to use grounding mesh and grounding electrodes (grounding poles, a grounding plate and grounding resistance reducer). The grounding wire to be used for the grounding mesh will be stranded bare copper wire. The lightning rod of the substation building will be linked to the grounding mesh of the said substation.

e) Substation Building and Auxiliary Facilities

A building (260 m<sup>2</sup>) and auxiliary facilities will be constructed at the UDS Primary Substation Site to house the 34.5 kV distribution board, 11.5 kV distribution board and station power supply system. The earmarked land for the UDS Primary Substation is some 70 m wide (east – west) and 60 m long (north – south) and is large enough to accommodate the planned new substation. The location of the substation building will be determined in view of the planned installation of one terminal pole for the 34.5 kV sub-transmission line and three terminal poles for the 11.5 kV distribution lines. This building is outlined below.

- Building : one single story building
- Structure : RC rigid structure and concrete block walls
- Area : building area of 260  $m^2$  and floor area of 260  $m^2$

The main features of the building and building services and other relevant aspects of its construction plan are described next.

f) Principal Rooms and Building Services

 Table 2-2-2.9
 List of the Main Rooms and Building Services for the Substation Building

| Rooms                    | Area (m <sup>2</sup> ) | Systems/Specifications                                                              |
|--------------------------|------------------------|-------------------------------------------------------------------------------------|
| Distribution Board Room  | 195                    | Lighting, air-condition and ventilation                                             |
| Battery Room             | 15                     | Lighting and ventilation                                                            |
| Staff Office             | 23.5                   | Lighting, air-conditioning and ventilation                                          |
| Spare Parts Storage      | 17.5                   | Lighting and ventilation                                                            |
| Toilet                   | 9                      | Lighting, flush toilet, wash basin and ventilation                                  |
| Exterior                 | -                      | Gravelled premises, concrete parking area and stormwater drainage ditches           |
| Plumbing                 | -                      | Water supply tank, flush toilet, wash basin, septic tank and infiltration basin     |
| Electrical Installations | -                      | Distribution boards, indoor lighting, outdoor lighting, lightning rod and grounding |
| Auxiliary Facility       | -                      | Oil separator for the transformer                                                   |
| Total                    | 260                    |                                                                                     |

g) Specifications of the Principal Structural Bodies

 Table 2-2-2.10
 Specifications of the Principal Structural Bodies

| Structural Body                 | Specifications         |
|---------------------------------|------------------------|
| Foundations                     | RC, spread foundations |
| Floor and plumbing/cabling pits | RC                     |
| Pillars and beams               | RC                     |
| Walls                           | Concrete block masonry |

#### h) Exterior Finishes

| Section                                                  | Type of Finish                                                 |
|----------------------------------------------------------|----------------------------------------------------------------|
| Foundations                                              | Exposed concrete                                               |
| External walls Mortar with a trowel finish and EP finish |                                                                |
| Roof                                                     | Aluminium zinc alloy plated steel sheeting with a paint finish |

Table 2-2-2.11 Exterior Finishes

#### i) Interior Finishes

| Area                    | Section     | Type of Finish                                            |
|-------------------------|-------------|-----------------------------------------------------------|
| Distribution Board Room | Floor       | Mortar with trowel finish and non-slip paint finish       |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joists and veneer gypsum board                        |
| Battery Room            | Floor       | Mortar with trowel finish and acid-resistant paint finish |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joists and veneer gypsum board                        |
| Staff Room              | Floor       | Mortar with trowel finish and P tile finish               |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joists and veneer gypsum board                        |
| Spare Parts Storage     | Floor       | Mortar with trowel finish and non-slip paint finish       |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joints and veneer gypsum board                        |
| Toilet                  | Floor       | Ceramic tile finish                                       |
|                         | Wainscoting | Earthenware tile finish                                   |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joints and veneer gypsum board                        |

Table 2-2-2.12 Interior Finishes

The structural plan for the substation is outlined next.

j) Principal Building Structure

The principal structure of the new substation building will be a RC rigid structure with concrete block masonry employed for the walls. As this type of structure is commonly used in Ghana, all of the necessary materials can be easily procured. Its advantages include the existence of many engineers and technicians who are familiar with this type of structure and the building maintenance is easy.

k) Foundations

The geological survey results for the Project sites indicate that there is a  $0.4 \sim 0.8$  m thick sand gravel layer at the surface of which the allowable bearing capacity is 200 kN/m<sup>2</sup>. Below this is a solid gravel layer to a depth of 1.6 m with an allowable bearing capacity of 400 kN/m<sup>2</sup>. As the bearing capacity of the ground is sufficient, spread foundations will be employed.

The plan for the building services is outlined next.

1) Lighting and Power Outlet System

The relevant JIS standard will be used to determine the illuminance for indoor lighting and such lighting will, in principle, be provided by fluorescent lamps. Mercury lamps will be used for outdoor lighting.

m) Air-Conditioning System

An air-conditioning system will be installed in the distribution board room and staff room.

n) Ventilation System

The installation of a ventilation fan in every room will be considered.

o) Fire Extinguishing System

A fire extinguisher (10 kg) will be provided in the distribution board room and battery room for initial fire extinguishing activities.

p) Equipment Foundations

Separate foundations will be constructed to support heavy transforming equipment, etc.

- ② Construction of 34.5 kV Sub-Transmission Line (from the Tamale BSP Substation to the UDS Primary Substation)
  - a) Construction of 34.5 kV Sub-Transmission Line

To determine the route for the new 34.5 kV sub-transmission line, a route map was firstly prepared using a satellite image map of the area. This was followed by field reconnaissance by a Study Team member accompanied by a VRA-NED engineer to check any obstacles, special natural conditions and other relevant matters. The routes for the underground cable section and overhead cable section were then finalised.

This sub-transmission line using 36 kV cable will run underground from the 34.5 kV distribution board room of the existing Tamale BSP Substation for approximately 5 km along Stadium Road, Nyankpala Road and the former airport runway. It will become an overhead line at the end of the former airport runway, stretching some 14 km along Nyankpala Road to the UDS Primary Substation. At the two sites where the planned route crosses a trunk road, an overhead line will be constructed to avoid any disruption to traffic by underground cabling work. The flat ground along Nyankpala Road (some 5 km section before reaching the UDS Primary Substation) is often flooded during the wet season and, therefore, the

electric poles in this section will require a concrete lining for the underground portion.

In view of preventing damage due to open burning and preserving the urban landscape, steel electric poles will be used for this sub-transmission line. The height of these poles will be 15 m above ground and the new sub-transmission line will run above the existing 34.5 kV sub-transmission and 11.5 kV distribution lines. The standard span will be 90 m in consideration of the planned cable size, tensile load of the cable and pole strength. The overhead cable will be the VRA standard AAAC 120 mm. The creepage distance for the insulators will be 25 mm/kV in view of the likelihood of pollution due to the harmattan. The arms for insulator insulation will be made of zinc-plated steel.

The underground cables used for this sub-transmission line will be the VRA standard AAAC XLPE insulation single core 185 mm<sup>2</sup> sheathed cable with aluminium wire armour for underground application. This cable will be laid some 1.2 m below the ground surface.

#### b) Insulation of 34.5 kV Distribution Board (at the Tamale BSP Substation)

One 34.5 kV feeder will be required at the Tamale BSP Substation to feed the new 34.5 kV sub-transmission line heading for the UDS Primary Substation. Because of the absence of a drawing showing the bus structure for the existing some 20 year old 34.5 kV distribution board, it will be impossible to conduct the work to connect the bus of the existing 34.5 kV distribution board and the bus of the new 34.5 kV distribution boards. Because the existing 34.5 kV distribution board installed in the power room of the Tamale BSP Substation does not have an unused reserve feeder, a new 34.5 kV distribution board will be installed next to the existing board. Due to the difficulty to connect the buses of these two distribution boards, a cable link will be established between the existing 34.5 kV distribution board (Buipe/Yapei feeder) and the bus of the new 34.5 kV distribution board. This new 34.5 kV distribution board will be equipped with a UDS Primary Substation feeder and a Buipe/Yapei feeder. The connection of the bus between the two distribution boards will use cable of which the bus current is equivalent to 800 A (36 kV, copper conductor, XLPE insulation single core 240 mm<sup>2</sup>with PVS jacket; two conductors per phase).

The short-time withstand current value for the circuit breakers of the 34.5 kV distribution boards and 34.5 kV distribution equipment will be 25 kA (one second) which is the standard value adopted by Japanese manufacturers based on the relevant JIS and JEC standards. This decision is based on the estimated 3-phase short-circuiting current value of approximately 4.2 kA when the current main transformer (161/34.5/11.5 kV, 20/12.5/12.5 MVA, %Z: 10% (161/34.5/11.5 kV, 33/25/25 MVA, %Z: 10% (161/34.5 kV)) in 2012.

Each distribution feeder of the new 34.5 kV distribution board will be equipped with an automatic reclosing relay so that a circuit breaker is automatically restored at the time of a minor grounding incident to improve the power supply reliability. This new 34.5 kV distribution board will be the compact gas insulation type as the existing power room of the Tamale BSP substation does not have sufficient space for the additional installation of a conventional type distribution board. The power to operate the new 34.5 kV distribution board will be provided from the existing power board (AC 3-phase 4-wire 415/240 V, DC 125 V).

③ Construction of 11.5 kV Distribution Lines (between the connecting points to the existing 11.5 kV distribution lines and the UDS Primary Substation)

New 11.5 kV distribution lines will be constructed for the following three sections from the UDS Primary Substation to each of the existing three 11.5 kV feeders.

- UDS Primary Substation to the UDS feeder: overhead line of some 200 m long
- UDS Primary Substation to the Tolon feeder: overhead line of some 300 m long; underground line of some 400 m long
- UDS Primary Substation to the Cheshegu feeder: overhead line of some 300 m long

In view of preventing damage due to open burning and preserving the urban landscape, steel electric poles will be used for these distribution lines. The height of these poles will be 15 m above ground as the new distribution line will run above the existing 11.5 kV distribution line. The standard span will be 90 m. For overhead sections, a VRA standard AAAC 120 mm<sup>2</sup> cable will be used. Meanwhile, a VRA standard sheathed cable with aluminium conductor XLPE insulation 185 mm<sup>2</sup> single core aluminium strand armoured will be used for underground sections. The underground cable will be buried some 1.2 m below the ground surface.

# 2) Outline Specifications of the Main Equipment

| No. | Item                                    | Specifications                                                      | Qty.  |
|-----|-----------------------------------------|---------------------------------------------------------------------|-------|
| 1   | 34.5/11.5 Transformer                   |                                                                     | 1 set |
|     | 1) Type                                 | Outdoor oil-immersed type with on-load tap                          |       |
|     |                                         | changer                                                             |       |
|     | 2) Rated voltage of primary side        | 34.5 kV                                                             |       |
|     | 3) Rated voltage of secondary side      | 11.5 kV                                                             |       |
|     | 4) Rated capacity                       | 7.5 MVA                                                             |       |
|     | 5) Cooling method                       | ONAN                                                                |       |
|     | 6) Number of phases                     | 3                                                                   |       |
|     | 7) Frequency                            | 50 Hz                                                               |       |
|     | 8) Tap voltage                          | $34.5 \text{ kV} \pm 10\%$                                          |       |
|     | 9) Number of taps                       | 17 taps                                                             |       |
|     | 10) Step voltage                        | 1.25%                                                               |       |
|     | 11) Winding connection and vector       | Primary side: delta                                                 |       |
|     | symbol                                  | Secondary side: star (neutral lead out)                             |       |
|     |                                         | Dyn11                                                               |       |
|     | 12) % Impedance                         | approx. 6%                                                          |       |
|     | 13) Cable cover                         | Elephant type cable duct with base plate                            |       |
| 2   | 34.5 kV Switchgear Cubicle              |                                                                     |       |
|     | 1) Type                                 | Indoor distribution cubicle                                         |       |
|     | 2) Component of switchgear cubicles     |                                                                     |       |
|     | 2.1) Incoming feeder switchgear cubicle |                                                                     |       |
|     | a) Number of boards                     |                                                                     | 1 set |
|     | b) Circuit breaker (CB)                 |                                                                     |       |
|     | - Туре                                  | VCB, drawer type                                                    |       |
|     | - Rated voltage                         | 36 kV                                                               |       |
|     | - Rated current                         | 630 A                                                               |       |
|     | - Rated short-time withstand            | 25 kA (one second)                                                  |       |
|     | current                                 |                                                                     |       |
|     | c) Earthing switch (ES)                 |                                                                     |       |
|     | - Type                                  | Mechanical or electrical interlock with CB                          |       |
|     | 2.2) Transformer Metering Cubicle       |                                                                     |       |
|     | a) Number of cubicle                    |                                                                     | 1 set |
|     | b) Current transformer for metering     |                                                                     |       |
|     | - Current ratio                         | Primary side: 150 – 75 A / Secondary side: 5 A                      |       |
|     | <ul> <li>Accuracy class</li> </ul>      | CL: 0.2                                                             |       |
|     | - Burden                                | 15 VA                                                               |       |
|     | c) Current transformer for protection   |                                                                     |       |
|     | relays                                  |                                                                     |       |
|     | - Current ratio                         | Primary side: 150 – 75 A / Secondary side: 5 A                      |       |
|     | <ul> <li>Accuracy class</li> </ul>      | CL: 5P20                                                            |       |
|     | - Burden                                | 15 VA                                                               |       |
|     | d) Potential transformer                |                                                                     |       |
|     | - Voltage ratio                         | Primary side: $34.5/\sqrt{3}$ kV / Secondary side: $115/\sqrt{3}$ V |       |
|     | <ul> <li>Accuracy class</li> </ul>      | CL: 0.2                                                             |       |
|     | - Burden                                | 25 VA                                                               |       |
|     | e) Metering                             | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                           |       |
|     | f) Protection relays                    | Under-voltage relay, over-current relay, ground                     |       |
|     |                                         | fault over-current relay, percentage differential                   |       |
|     |                                         | relay                                                               |       |

# Table 2-2-2.13Outline Specifications of the Main Equipment<br/>for the UDS Primary Substation

| No. | Item                                                                        | Specifications                                                              | Qty.   |
|-----|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|
| 3   | 11.5 kV Switchgear Cubicles                                                 |                                                                             |        |
|     | 1) Type                                                                     | Indoor distribution board                                                   |        |
|     | 2) Component of Switchgear Cubicles                                         |                                                                             |        |
|     | 2.1) Transformer feeder switchgear                                          |                                                                             |        |
|     | cubicle<br>a) Number of cucicle                                             |                                                                             | 1 get  |
|     | b) Bus bar current                                                          | 800 A                                                                       | 1 set  |
|     | c) Circuit breaker (CB)                                                     | 800 A                                                                       |        |
|     | - Type                                                                      | VCB, drawer type                                                            |        |
|     | - Rated voltage                                                             | 12 kV                                                                       |        |
|     | - Rated current                                                             | 630 A                                                                       |        |
|     | - Rated Short-time withstand                                                | 12.5 kA (one second)                                                        |        |
|     | current                                                                     |                                                                             |        |
|     | d) Earthing switch (ES)                                                     |                                                                             |        |
|     | - Type                                                                      | Mechanical or electrical interlock with CB                                  |        |
|     | e) Current transformer for metering                                         |                                                                             |        |
|     | - Current ratio                                                             | Primary side: 400 – 200 A / Secondary side: 5 A                             |        |
|     | <ul> <li>Accuracy class</li> </ul>                                          | CL: 0.2                                                                     |        |
|     | - Burden                                                                    | 15 VA                                                                       |        |
|     | f) Current transformer for protection                                       |                                                                             |        |
|     | relays                                                                      |                                                                             |        |
|     | - Current ratio                                                             | Primary side: 400 – 200 A / Secondary side: 5 A                             |        |
|     | - Accuracy class                                                            | CL: 5P20                                                                    |        |
|     | - Burden                                                                    | 15 VA                                                                       |        |
|     | g) Potential Transformer                                                    | D                                                                           |        |
|     | - Voltage ratio                                                             | Primary side: $11.5/\sqrt{3}$ kV / Secondary side: $115/\sqrt{3}$ V CL: 0.2 |        |
|     | <ul> <li>Accuracy class</li> <li>Burden</li> </ul>                          | 50 VA                                                                       |        |
|     | h) Metering                                                                 | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                                   |        |
|     | i) Protection relays                                                        | Under-voltage relay, over-voltage relay, ground                             |        |
|     | 1) 1100001011010495                                                         | fault over-current relay, automatic voltage                                 |        |
|     |                                                                             | regulating relays                                                           |        |
|     | 2.2) 11.5 kV Distribution feeder cubicle                                    |                                                                             |        |
|     | a) Number of cubicle                                                        |                                                                             |        |
|     | b) Circuit breaker (CB)                                                     |                                                                             | 3 sets |
|     | - Type                                                                      | VCB, drawer type                                                            |        |
|     | - Rated voltage                                                             | 12 kV                                                                       |        |
|     | - Rated current                                                             | 630 A                                                                       |        |
|     | - Rated Short-time withstand                                                | 12.5 kA (one second)                                                        |        |
|     | current                                                                     |                                                                             |        |
|     | c) Earthing Switch                                                          |                                                                             |        |
|     | - Type                                                                      | Mechanical or electrical interlock with CB                                  |        |
|     | <ul><li>d) Current transformer for metering</li><li>Current ratio</li></ul> | Primary side: 200 100 A / Sacondary side: 5 A                               |        |
|     | - Current ratio<br>- Accuracy class                                         | Primary side: 200 – 100 A / Secondary side: 5 A CL: 0.2                     |        |
|     | - Accuracy class<br>- Burden                                                | 15 VA                                                                       |        |
|     | e) Current transformer for protection                                       |                                                                             |        |
|     | relays                                                                      |                                                                             |        |
|     | - Current ratio                                                             | Primary side: 200 – 100 A /Secondary side: 5A                               |        |
|     | - Accuracy class                                                            | CL: 5P20                                                                    |        |
|     | - Burden                                                                    | 15 VA                                                                       |        |
|     | g) Voltage transformer for instruments                                      |                                                                             |        |
|     | - Voltage ratio                                                             | Primary side: $11.5/\sqrt{3}$ kV / Secondary side: $115/\sqrt{3}$ V         |        |
|     | - Accuracy class                                                            | CL: 0.2                                                                     |        |
|     | - Burden                                                                    | 50 VA                                                                       |        |
|     | f) Metering                                                                 | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                                   |        |
|     | h) Protection relays                                                        | Over-current relay, ground fault over-current                               |        |

| No. | Item                                                                          | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qty.  |
|-----|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     |                                                                               | relay, automatic reclosing relay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     | 2.3) Station transformer feeder                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | switchgear cubicle                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | a) Number of cubicle                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 set |
|     | b) Circuit breaker (CB)                                                       | VCD transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | - Type                                                                        | VCB, drawer type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|     | <ul> <li>Rated voltage</li> <li>Rated current</li> </ul>                      | 12 kV<br>630 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     | - Rated Short-time withstand                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | current                                                                       | 12.5 kA (one second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|     | c) Earthing switch (ES)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | - Type                                                                        | Mechanical or electrical interlock with CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | d) Current transformer for metering                                           | With the second and the second and the second secon |       |
|     | - Current ratio                                                               | Primary side: 10 A / Secondary side: 5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|     | - Accuracy class                                                              | CL: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|     | - Burden                                                                      | 15 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|     | e) Current transformer for protection                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | relays                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | - Current ratio                                                               | Primary side: 10 A / Secondary side: 5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|     | <ul> <li>Accuracy class</li> </ul>                                            | CL: 5P10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|     | - Burden                                                                      | 15 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|     | f) Metering                                                                   | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|     | g) Protection relays                                                          | Over-current relay, ground fault over-current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|     |                                                                               | relay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 4   | Station transformer (STR)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 set |
|     | 1) Type                                                                       | Outdoor oil-immersed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|     | 2) Rated voltage of primary side and tap                                      | 11.5 kV $\pm$ 2.5%, $\pm$ 5% taps (non-voltage tap change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | 3) Rated voltage of secondary side                                            | 433 – 250 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|     | 4) Rated capacity                                                             | 100 kVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|     | 5) Number of phases                                                           | 3<br>50 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | <ul><li>6) Frequency</li><li>7) Winding and vector symbol</li></ul>           | Primary side: delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|     | /) which g and vector symbol                                                  | Secondary side: star (drawn from the neutral point)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|     |                                                                               | Dyn11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|     | 8) % Impedance                                                                | approx. 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | <ul><li>9) Current transformer for protection relays</li></ul>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | - Current ratio                                                               | Primary side: 100 – 50 A / Secondary side: 5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     | <ul> <li>Accuracy class</li> </ul>                                            | CL: 10P10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|     | - Burden                                                                      | 25 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|     | 10) Cable cover                                                               | Elephant type cable duct with baseplate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 5   | LV Service panel                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | 1) Number of panel                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 set |
|     | 2) Type                                                                       | Indoor self-contained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|     | 3) Rated voltage (number of phases and                                        | AC 415/240 V (3-phase 4-wire)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|     | wires)                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|     | 4) Circuit breaker type                                                       | Earth leakage circuit breaker (ELCB), 4 poles,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     | 5) Current transformer for materia                                            | 225 AF/150 AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|     | <ul><li>5) Current transformer for metering</li><li>- Current ratio</li></ul> | Primary side: 200 A / Secondary side: 5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|     | - Current failo<br>- Accuracy class                                           | CL: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|     | - Burden                                                                      | 25 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|     | 6) Metering                                                                   | Ammeter (with changing-over switch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|     | 7) Protection relay                                                           | Ground fault over-current relay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 6   | DC Service panel and battery charger                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| ~   | <ol> <li>Number of panel</li> </ol>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 set |
|     | 2) Type                                                                       | Indoor self-contained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|     | 3) Rated voltage                                                              | DC 125 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |

| No. | Item                                                                                                                                                                                                                            | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qty.   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | 4) Circuit breaker type                                                                                                                                                                                                         | Mold case circuit breaker (MCCB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
|     | 5) Battery charger                                                                                                                                                                                                              | With float charging functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 7   | <ul> <li>Battery</li> <li>1) Type</li> <li>2) Rated voltage (voltage per cell)</li> <li>3) Number of battery cells</li> <li>4) Discharge duration (duration of commercial power outage)</li> <li>5) Battery capacity</li> </ul> | Lead acid sealed type<br>125 V (2 V/cell)<br>63 cells<br>12 hours<br>150 Ah/10 hrs (the battery capacity shall be<br>secured of an outage duration of 12 hours into<br>consideration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 set  |
| 8   | <ul> <li>34.5 kV Disconnecting switch pole</li> <li>1) Quantity</li> <li>2) Type</li> <li>3) Pole mounting equipment <ul> <li>Arrester</li> <li>Circuit breaker</li> </ul> </li> </ul>                                          | Steel pole (x 2), arrester, circuit breaker<br>36 kV, 10 kA, zinc oxide gapless type<br>36 kV, 630 A, 25 kA (one second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 set  |
| 9   | <ol> <li>11.5 kV Disconnecting switch pole</li> <li>Quantity</li> <li>Type</li> <li>Pole mounting equipment         <ul> <li>Arrester</li> <li>Circuit breaker</li> </ul> </li> </ol>                                           | Steel pipe (x 2), arrester, circuit breaker<br>12 kV, 10 kA, zinc oxide gapless type<br>12 kV, 630 A, 12.5 kA (one second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 sets |
| 10  | <ul> <li>36 kV Cable</li> <li>1) Type</li> <li>2) Conductor, insulation, armour and jacket</li> <li>3) Number of cores and conductor size</li> </ul>                                                                            | Armoured cable for direct underground laying<br>Aluminium conductor, XLPE insulation,<br>aluminium strand-armoured power cable with<br>ant-repellent PVC jacket<br>Single core, 185 mm <sup>2</sup> , single cable per phase<br>(from the 34.5 kV disconnecting switch pole to<br>the 34.5 kV distribution board; from the 34.5 kV<br>circuit board to the 34.5 kV side of the<br>transformer)                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 set  |
| 11  | <ol> <li>12 kV Cable</li> <li>1) Type</li> <li>2) Conductor, insulation, armour and jacket</li> <li>3) Number of cores and conductor size</li> </ol>                                                                            | <ul> <li>Armoured cable for direct underground laying<br/>Aluminium conductor, XLPE insulation,<br/>aluminium strand-armoured power cable with<br/>ant-repellent PVC jacket</li> <li>Single core, 185 mm<sup>2</sup>, 3 cables per phase<br/>(from the 11.5 kV side of the transformer to<br/>the 11.5 kV distribution board)</li> <li>Single core, 185 mm<sup>2</sup>, single cable per phase<br/>(from the 11.5 kV distribution board to the<br/>11.5 kV disconnecting switch pole)</li> <li>Single core, 185 mm<sup>2</sup>, single cable per phase<br/>(from the 11.5 kV distribution board to the<br/>11.5 kV disconnecting switch pole)</li> <li>Single core, 185 mm<sup>2</sup>, single cable per phase<br/>(from the 11.5 kV distribution board to the<br/>11.5 kV side of the station transformer)</li> </ul> | 1 set  |

| r + | Item                                  | Specifications                                                      | Qty.   |
|-----|---------------------------------------|---------------------------------------------------------------------|--------|
| 1   | 34.5 kV Sub-transmission line         | *                                                                   | 1 set  |
|     | 1) Electric pole types                |                                                                     |        |
|     | a) 3A (intermediate pole)             | $0^{\circ} \sim 5^{\circ}$                                          |        |
|     | b) 3B (light angle pole)              | $5^{\circ} \sim 20^{\circ}$                                         |        |
|     | c) 3C (medium angle pole)             | $20^{\circ} \sim 60^{\circ}$                                        |        |
|     | d) 3D (heavy angle pole)              | $60^{\circ} \sim 90^{\circ}$                                        |        |
|     | e) 3E (cross pole)                    | 90°                                                                 |        |
|     | f) 3F (section pole)                  |                                                                     |        |
|     | g) 3K (disconnecting switch pole)     |                                                                     |        |
|     | 2) Conductor type                     | AAAC120 $\text{mm}^2$                                               |        |
| 2   | 34.5 kV Switchgear Cubicles in Tamale |                                                                     | 1 set  |
| 2   | BSP                                   |                                                                     | 1 301  |
|     |                                       | Indoor SE6 as inculation                                            |        |
|     | · • • •                               | Indoor SF6 gas-insulation<br>• One for connection with the existing | 3 sets |
|     | 2) Number of cubicle                  |                                                                     | 5 sets |
|     |                                       | distribution board (Buipe/Yapei feeder)                             |        |
|     |                                       | • One for the distribution feeder (Buipe/Yapei feeder)              |        |
|     |                                       | • One for the distribution feeder (UDS feeder)                      |        |
|     | 3) Bus bar current                    | 800 A                                                               |        |
|     | 4) Circuit breaker                    | 36 kV, 800 A, 25 kA (one second)                                    |        |
|     | 5) Metering                           | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                           |        |
|     | 6) Protection relays                  | Over-current relay, ground fault over-current                       |        |
|     |                                       | relay, automatic reclosing relay                                    |        |
|     | 7) Power source for AC control        | To be supplied from the existing low voltage                        |        |
|     |                                       | panel (AC 3-phase 4-wire, 415/240 V)                                |        |
|     | 8) Power source for DC control        | To be supplied from the existing DC panel (DC 125 V)                |        |
|     | 9) Number of cable terminals          | 3 feeders                                                           |        |
|     | ,                                     | • One for connection to the existing distribution                   |        |
|     |                                       | board (new cable: 36 kV, XLPE insulation,                           |        |
|     |                                       | copper conductor, single core, 240 mm <sup>2</sup> , 2              |        |
|     |                                       | cables per phase, ant-repellent PVC jacket)                         |        |
|     |                                       | • One for connection to the Buipe/Yapei feeder                      |        |
|     |                                       | (existing cable: 36 kV, XLPE insulation,                            |        |
|     |                                       | aluminium conductor, single core, 185 mm <sup>2</sup> ,             |        |
|     |                                       |                                                                     |        |
|     |                                       | one cable per phase, aluminium strand                               |        |
|     |                                       | armour, ant-repellent PVC jacket)                                   |        |
|     |                                       | • One for the UDS feeder (new cable: 36 kV,                         |        |
|     |                                       | XLPE insulation, aluminium conductor, single                        |        |
|     |                                       | core, 185 mm <sup>2</sup> , one cable per phase,                    |        |
|     |                                       | aluminium strand armour, ant-repellent PVC                          |        |
|     |                                       | jacket)                                                             |        |
| 3   | 36 kV Cable                           |                                                                     | 1 set  |
|     | 1) Specifications                     | • For connection to the existing distribution                       |        |
|     |                                       | board (new cable: 36 kV, XLPE insulation,                           |        |
|     |                                       | copper conductor, single core, 240 mm <sup>2</sup> , 2              |        |
|     |                                       | cables per phase, ant-repellent PVC jacket)                         |        |
|     |                                       | • For the UDS feeder (new cable: 36 kV, XLPE                        |        |
|     |                                       | insulation, aluminium conductor, single core,                       |        |
|     |                                       | $185 \text{ mm}^2$ , one cable per phase, aluminium                 |        |
| 1 1 |                                       | strand armour, ant-repellent PVC jacket)                            |        |

Table 2-2-2.14Outline Specifications of the Main Equipment for the 34.5 kV Sub-TransmissionLine (from the Tamale BSP Substation to the UDS Primary Substation)

| No. | Item                                     | Specifications                                                                                                                                     | Qty.  |
|-----|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1   | 11.5 kV Distribution line                |                                                                                                                                                    | 1 set |
|     | 1) Electric pole types                   |                                                                                                                                                    |       |
|     | a) 1A (intermediate pole)                | $0^{\circ} \sim 5^{\circ}$                                                                                                                         |       |
|     | b) 1B (light angle pole)                 | $5^{\circ} \sim 20^{\circ}$                                                                                                                        |       |
|     | c) 1C (medium angle pole)                | $20^{\circ} \sim 60^{\circ}$                                                                                                                       |       |
|     | d) 1D (heavy angle pole)                 | $60^{\circ} \sim 90^{\circ}$                                                                                                                       |       |
|     | e) 1E (cross pole)                       | 90°                                                                                                                                                |       |
|     | f) 1F (section pole)                     |                                                                                                                                                    |       |
|     | g) 1H (terminal pole)                    |                                                                                                                                                    |       |
|     | h) 1K (disconnecting switch pole)        | AAAC 120 mm <sup>2</sup>                                                                                                                           |       |
|     | 2) Conductor type                        |                                                                                                                                                    |       |
| 2   | 12 kV Cable                              |                                                                                                                                                    | 1 set |
|     | 1) Type                                  | Armoured cable for direct underground laying                                                                                                       |       |
|     | 2) Conductor, insulation, armour, jacket | Aluminium conductor, XLPE insulation,                                                                                                              |       |
|     |                                          | aluminium strand armour, ant-repellent PVC jacket                                                                                                  |       |
|     | 3) Number of cores, conductor size       | • Single core, 185 mm <sup>2</sup> (from the new 11.5 kV disconnecting switch pole (for the Tolon feeder) to the existing dual-line terminal pole) |       |
|     |                                          | • Single core, 185 mm <sup>2</sup> (from the new 11.5 kV                                                                                           |       |
|     |                                          | disconnecting switch pole (for the Cheshegu                                                                                                        |       |
|     |                                          | feeder) to the existing pole)                                                                                                                      |       |

Table 2-2-2.15Outline Specifications of the Main Equipment for the 11.5 kV Distribution Lines(11.5 kV distribution lines from the UDS Primary Substation)

- (2) Improvement of the Distribution System at the Sunyani Site (Brong-Ahafo Region)
  - 1) Basic Points and Plan Contents
    - ① Construction of the Kotokrom Primary Substation
      - a) Construction Site for the New Substation

The VRA-NED will secure part of the land owned by the military and the new substation will be constructed on a site of some 40 m x 30 m.

b) Installation of Transforming Equipment

One main transformer  $(34.5/11.5 \text{ kV}, 7.5 \text{ MVA}, \text{oil-filled}, \text{self-cooling}, with on-load tap changer}), one station transformer <math>(11.5/0.433 - 0.25 \text{ kV}, 100 \text{ kV}, \text{oil-filled}, \text{self-cooling})$ , one terminal pole for the 34.5 kV sub-transmission line (steel pole with a disconnecting switch and lightning arrester) and three terminal poles for the 11.5 kV distribution lines (steel poles with a disconnecting switch and lightning arrester) will be installed outdoors.

Two 34.5 kV distribution boards, five 11.5 kV distribution boards and a station power supply system (low voltage board and DC power supply unit) will be installed inside the substation building (approximately  $260 \text{ m}^2$ ).

#### c) Main Transforming Equipment

Based on the estimated power demand in 2018, the main transformer to be installed at the new substation will be one transformer with a capacity of 7.5 MVA and an on-load tap changer (voltage adjustment range of 34.5 kV  $\pm$  10%) will be provided. The winding for this transformer will use the delta connection for the 34.5 kV side which is used as the standard connection by the VRA for primary substations and the star connection for the 11.5 kV side (vector symbol: Dyn11). The neutral point will be directly grounded. The impedance will be roughly 6% which is the standard value for transformers of this class.

Both the 34.5 kV and 11.5 kV distribution boards will use air insulation as in the case of the existing transformers. The circuit breakers will be operated from a distribution board and instruments and protection relays will be installed on the distribution board. The circuit breakers will be vacuum circuit breakers and will have a mechanism to allow their drawing out. The short-time withstand current value for the circuit breakers of the 34.5 kV distribution boards and 34.5 kV distribution equipment will be 25 kA (one second) which is the standard value adopted by Japanese manufacturers based on the relevant JIS and JEC standards. This decision is aided by the fact that the short-circuiting current value will be approximately 4.2 kA when the current main transformer (161/34.5/11.5 kV, 20/12.5/12.5 MVA, %Z: 10% (161/34.5 kV)) at the Sunyani BSP Substation replaced by a new transformer (161/34.5/11.5 kV, 33/25/25 MVA, %Z: 10% (161/34.5 kV)) in 2012. The short-time withstand current value for the circuit breakers of the 11.5 kV distribution boards and 11.5 kV distribution equipment will be 12.5 kA (one second) which is the standard value adopted by Japanese manufacturers based on the relevant JIS and JEC standards. This is based on a three phase short-circuiting value of approximately 6.3 kA for the main transformer (34.5/11.5 kV, 7.5 MVA, %Z: 6%) at the Kotokrom Primary Substation. An automatic reclosing relay will be installed for each distribution feeder from a 11.5 kV distribution board so that a circuit breaker will be automatically restored at the time of a minor grounding incident to improve the power supply reliability. The VRA standards will be used as the specifications for the instrument transformers for the 34.5 kV distribution boards and 11.5 kV distribution boards and instrument current transformers (secondary side current value: 5A) and instrument voltage transformers (secondary side voltage: 115/53 V) will be installed.

The station transformer will be an oil-filled type and will be installed outdoors. The capacity of this single transformer will be 100 kVA to operate the transforming equipment and to supply the station power. The primary/secondary voltages of the transformer will use the VRA standard of 11.5 kV/433 – 250 V (zero voltage switching). The neutral point on the secondary side will be directly grounded.

An alkali battery or lead battery may be used as the DC power source. As the cadmium contained in an alkali battery poses a problem for its disposal, a lead battery will be used. The capacity of this battery will be sufficient to cover a power outage lasting 12 hours. The voltage of the DC power source will be 125 V which is the standard voltage adopted by the VRA.

#### d) Auxiliary Electrical Installations

The 36 kV and 12 kV cables to be used at the new substation sites will be aluminium conductor, XLPE insulation, aluminium strand, armoured sheathed power cables in accordance with the VRA standards and will be buried approximately 1.2 m below the ground surface. The low voltage and control cables will be copper conductor cables and will be laid in conduits.

The design grounding resistance at the new substations will be 1 ohm or less based on the relevant VRA standard. As the planned substation site has firm ground, it will be necessary to use grounding mesh and grounding electrodes (grounding poles, a grounding plate and grounding resistance reducer). The grounding wire to be used for the grounding mesh will be stranded bare copper wire. The lightning rod of the substation building will be linked to the grounding mesh of the said substation.

#### e) Substation Building and Auxiliary Facilities

A building (260 m<sup>2</sup>) and auxiliary facilities will be constructed at the Kotokrom Primary Substation Site to house the 34.5 kV distribution board, 11.5 kV distribution board and station power supply system. The earmarked land for the Kotokrom Primary Substation is some 70 m wide (east – west) and 60 m long (north – south) and is large enough to accommodate the planned new substation. The location of the substation building will be determined in view of the planned installation of one terminal pole for the 34.5 kV sub-transmission line and three terminal poles for the 11.5 kV distribution lines. This building is outlined below.

- Building : one single story building
- Structure : RC rigid structure and concrete block walls
- Area : building area of 260  $m^2$  and floor area of 260  $m^2$

The main features of the building and building services and other relevant aspects of its construction plan are described next.

### f) Principal Rooms and Building Services

| Room, etc.               | Area (m <sup>2</sup> ) | Systems/Specifications                                                              |
|--------------------------|------------------------|-------------------------------------------------------------------------------------|
| Distribution Board Room  | 195                    | Lighting, air-condition and ventilation                                             |
| Battery Room             | 15                     | Lighting and ventilation                                                            |
| Staff Office             | 23.5                   | Lighting, air-conditioning and ventilation                                          |
| Spare Parts Storage      | 17.5                   | Lighting and ventilation                                                            |
| Toilet                   | 9                      | Lighting, flush toilet, wash basin and ventilation                                  |
| Exterior                 | -                      | Gravelled premises, concrete parking area and stormwater drainage ditches           |
| Plumbing                 | -                      | Water supply tank, flush toilet, wash basin, septic tank and infiltration basin     |
| Electrical Installations | -                      | Distribution boards, indoor lighting, outdoor lighting, lightning rod and grounding |
| Auxiliary Facility       | -                      | Oil separator for the transformer                                                   |
| Total                    | 260                    |                                                                                     |

 Table 2-2-2.16
 List of the Main Rooms and Building Services for the Substation Building

## g) Specifications of the Principal Structural Bodies

 Table 2-2-2.17
 Specifications of the Principal Structural Bodies

| Structural Body                 | Specifications         |
|---------------------------------|------------------------|
| Foundations                     | RC, spread foundations |
| Floor and plumbing/cabling pits | RC                     |
| Pillars and beams               | RC                     |
| Walls                           | Concrete block masonry |

#### h) Exterior Finishes

Table 2-2-2.18 Exterior Finishes

| Section        | Type of Finish                                                 |  |
|----------------|----------------------------------------------------------------|--|
| Foundations    | Exposed concrete                                               |  |
| External walls | Mortar with a trowel finish and EP finish                      |  |
| Roof           | Aluminium zinc alloy plated steel sheeting with a paint finish |  |

#### i) Interior Finishes

| Area                    | Section     | Type of Finish                                            |
|-------------------------|-------------|-----------------------------------------------------------|
| Distribution Board Room | Floor       | Mortar with trowel finish and non-slip paint finish       |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joists and veneer gypsum board                        |
| Battery Room            | Floor       | Mortar with trowel finish and acid-resistant paint finish |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joists and veneer gypsum board                        |
| Staff Room              | Floor       | Mortar with trowel finish and P tile finish               |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joists and veneer gypsum board                        |
| Spare Parts Storage     | Floor       | Mortar with trowel finish and non-slip paint finish       |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joints and veneer gypsum board                        |
| Toilet                  | Floor       | Ceramic tile finish                                       |
|                         | Wainscoting | Earthenware tile finish                                   |
|                         | Walls       | Mortar with trowel finish and EP finish                   |
|                         | Ceiling     | LGS joints and veneer gypsum board                        |

Table 2-2-2.19 Interior Finishes

The structural plan for the substation is outlined next.

j) Principal Building Structure

The principal structure of the new substation building will be a RC rigid structure with concrete block masonry employed for the walls. As this type of structure is commonly used in Ghana, all of the necessary materials can be easily procured. Its advantages include the existence of many engineers and technicians who are familiar with this type of structure and the building maintenance is easy.

k) Foundations

The geological survey results for the Project sites indicate that there is a  $0 \sim 0.2$  m thick sand gravel layer at the surface of which the allowable bearing capacity is 180 kN/m<sup>2</sup>. Below this is a consolidated laterite layer to a depth of 1.8 m with an allowable bearing capacity of 350 kN/m<sup>2</sup>. As the bearing capacity of the ground is sufficient, spread foundations will be employed.

The plan for the building services is outlined next.

1) Lighting and Power Outlet System

The relevant JIS standard will be used to determine the illuminance for indoor lighting and such lighting will, in principle, be provided by fluorescent lamps. Mercury lamps will be used for outdoor lighting.

m) Air-Conditioning System

An air-conditioning system will be installed in the distribution board room and staff room.

n) Ventilation System

The installation of a ventilation fan in every room will be considered.

o) Fire Extinguishing System

A fire extinguisher (10 kg) will be provided in the distribution board room and battery room for initial fire extinguishing activities.

p) Equipment Foundations

Separate foundations will be constructed to support heavy transforming equipment, etc.

- ② Construction of 34.5 kV Sub-Transmission Line (from the Sunyani BSP Substation to the Kotokrom Primary Substation)
  - a) Construction of 34.5 kV Sub-Transmission Line

To determine the route for the new 34.5 kV sub-transmission line, a route map was firstly prepared using a satellite image map of the area. This was followed by field reconnaissance by a Study Team member accompanied by a VRA-NED engineer to check any obstacles, special natural conditions and other relevant matters. The routes for the underground cable section and overhead cable section were then finalised.

This sub-transmission line will run underground (for approximately 0.5 km) from the 34.5 kV distribution board room of the Sunyani BSP Substation to a new 34.5 kV disconnecting switch pole which will be located 12.5 m away from the central point of the No. 157 pylon for the 161 kV Techiman transmission line situated outside the Sunyani BSP Substation. The overhead line will then run on the wayleave (15 m wide zone on both sides of the line linking the central points of the pylons for the 161 kV Techiman transmission line) up to near the No. 144 pylon, keeping a distance of some 12.5 m from the said line linking the central points of the pylons. It will then turn northwards along the perimeter of the land owned by the military to the new Kotokrom Primary Substation. Dual-line terminal poles instead of intermediate poles will be used at places with many undulations to avoid disengagement of the overhead cables from the insulators. The construction work for the overhead line for the some 400 m long section from the 34.5 kV disconnecting switch pole outside the Sunyani BSP Substation must avoid Wednesdays when a local market is held.

In view of preventing damage due to open burning and preserving the urban landscape, steel electric poles will be used for this sub-transmission line. The height of these poles will be 15 m above ground and the new sub-transmission line will run above the existing 34.5 kV sub-transmission and 11.5 kV distribution lines. The standard span will be 90 m in consideration of the planned cable size, tensile load of the cable and pole strength. The overhead cable will be the VRA standard AAAC 120 mm. The creepage distance for the insulators will be 25 mm/kV in view of the likelihood of pollution due to the harmattan. The arms for insulator insulation will be made of zinc-plated steel.

The underground cables used for this sub-transmission line will be the VRA standard AAAC XLPE insulation single core 185 mm<sup>2</sup> sheathed cable with aluminium wire armour for underground application. This cable will be laid some 1.2 m below the ground surface.

#### b) Insulation of 34.5 kV Distribution Board (at the Sunyani BSP Substation)

One 34.5 kV feeder will be required at the Sunyani BSP Substation to feed the new 34.5 kV sub-transmission line heading for the Kotokrom Primary Substation. Because of the absence of a drawing showing the bus structure for the existing some 20 year old 34.5 kV distribution board as in the case of the Tamale BSP Substation, it will be impossible to conduct the work to connect the bus of the existing 34.5 kV distribution board and the bus of the new 34.5 kV distribution boards. Because the existing 34.5 kV distribution board installed in the power room of the Tamale BSP Substation does not have an unused reserve feeder, a new 34.5 kV distribution board will be installed next to the existing board. Due to the difficulty to connect the buses of these two distribution boards, a cable link will be established between the existing 34.5 kV distribution board (Berekum feeder) and the bus of the new 34.5 kV distribution board. This new 34.5 kV distribution board will be equipped with a Kotokrom Primary Substation feeder and a Berekum feeder. The connection of the bus between the two distribution boards will use cable of which the bus current is equivalent to 800 A (36 kV, copper conductor, XLPE insulation single core 240 mm<sup>2</sup> with PVS jacket; two conductors per phase).

Each distribution feeder of the new 34.5 kV distribution board will be equipped with an automatic reclosing relay so that a circuit breaker is automatically restored at the time of a minor grounding incident to improve the power supply reliability. This new 34.5 kV distribution board will be the compact gas insulation type as the existing power room of the Sunyani BSP substation does not have sufficient space for the additional installation of a conventional type distribution board. The power to operate the new 34.5 kV distribution board will be provided from the existing power board (AC 3-phase 4-wire 415/240 V, DC 125 V).

- ③ Construction of 11.5 kV Distribution Lines (between the connecting points to the existing 11.5 kV distribution lines and the Kotokrom Primary Substation)
  - a) Construction of 11.5 kV Distribution Lines

New 11.5 kV distribution lines will be constructed for the following three sections from the Kotokrom Primary Substation to each of the existing three 11.5 kV feeders.

- Kotokrom Primary Substation to the Hospital feeder: overhead line of some 4,300 m long; underground line of some 30 m long
- Kotokrom Primary Substation to the New Dormaa feeder:
   overhead line of some 600 m long; underground line of some 400 m long
- Kotokrom Primary Substation to the Chiraa feeder: overhead line of some 700 m long; underground line of some 30 m long

In view of preventing damage due to open burning and preserving the urban landscape, steel electric poles will be used for these distribution lines. The height of these poles will be 15 m above ground as the new distribution line will run above the existing 11.5 kV distribution line. The standard span will be 90 m. For overhead sections, a VRA standard AAAC 120 mm<sup>2</sup> cable will be used. Meanwhile, a VRA standard sheathed cable with aluminium conductor XLPE insulation 185 mm<sup>2</sup> single core aluminium strand armoured will be used for underground sections. The underground cable will be buried some 1.2 m below the ground surface.

b) Installation of New Distribution Board (Ring Main Unit)

A new outdoor distribution board (ring main unit) will be installed on the Sunyani Regional Hospital premises to branch out distribution to (i) the existing 11.5 kV distribution line (Feeder No. 27F8B) from the Sunyani BSP Substation to the Sunyani Regional Hospital, (ii) an 11.5 kV distribution line (Feeder No. KTF1B) from the Kotokrom Primary Substation and (iii) the existing RMU in the power room on the said hospital premises. Power supply to the Sunyani Regional Hospital will normally be provided from the Kotokrom Primary Substation. The Sunyani BSP Substation will act as a standby substation and these two substations will not be simultaneously operated as far as power supply to the hospital is concerned.

# 2) Outline Specifications of the Main Equipment

| No. | Item                                    | Specifications                                                      | Qty.  |
|-----|-----------------------------------------|---------------------------------------------------------------------|-------|
| 1   | 34.5/11.5 Transformer                   |                                                                     | 1 set |
|     | 1) Type                                 | Outdoor oil-immersed type with on-load tap                          |       |
|     |                                         | changer                                                             |       |
|     | 2) Rated voltage of primary side        | 34.5 kV                                                             |       |
|     | 3) Rated voltage of secondary side      | 11.5 kV                                                             |       |
|     | 4) Rated capacity                       | 7.5 MVA                                                             |       |
|     | 5) Cooling method                       | ONAN                                                                |       |
|     | 6) Number of phases                     | 3                                                                   |       |
|     | 7) Frequency                            | 50 Hz                                                               |       |
|     | 8) Tap voltage                          | $34.5 \text{ kV} \pm 10\%$                                          |       |
|     | 9) Number of taps                       | 17 taps                                                             |       |
|     | 10) Step voltage                        | 1.25%                                                               |       |
|     | 11) Windings connection and vector      | Primary side: delta                                                 |       |
|     | symbol                                  | Secondary side: star (neutral lead out)                             |       |
|     |                                         | Dyn11                                                               |       |
|     | 12) % Impedance                         | approx. 6%                                                          |       |
|     | 13) Cable cover                         | Elephant type cable duct with base plate                            |       |
| 2   | 34.5 kV Switchgear Cubicle              |                                                                     |       |
|     | 1) Type                                 | Indoor distribution cubicle                                         |       |
|     | 2) Component of Switchgear Cubicles     |                                                                     |       |
|     | 2.1) Incoming feeder switchgear cubicle |                                                                     |       |
|     | a) Number of cubicle                    |                                                                     | 1 set |
|     | b) Circuit breaker (CB)                 |                                                                     |       |
|     | - Type                                  | VCB, drawer type                                                    |       |
|     | - Rated voltage                         | 36 kV                                                               |       |
|     | - Rated current                         | 630 A                                                               |       |
|     | - Rated short-time withstand            | 25 kA (one second)                                                  |       |
|     | current                                 |                                                                     |       |
|     | c) Earthing switch (ES)                 |                                                                     |       |
|     | - Type                                  | Mechanical or electrical interlock with CB                          |       |
|     | 2.2) Transformer metering cubicle       |                                                                     |       |
|     | a) Number of cubicle                    |                                                                     | 1 set |
|     | b) Current transformer for metering     |                                                                     |       |
|     | - Current ratio                         | Primary side: 150 – 75 A/ Secondary side: 5 A                       |       |
|     | <ul> <li>Accuracy class</li> </ul>      | CL: 0.2                                                             |       |
|     | - Burden                                | 15 VA                                                               |       |
|     | c) Current transformer for protection   |                                                                     |       |
|     | relays                                  |                                                                     |       |
|     | - Current ratio                         | Primary side: 150 – 75 A / Secondary side: 5 A                      |       |
|     | <ul> <li>Accuracy class</li> </ul>      | CL: 5P20                                                            |       |
|     | - Burden                                | 15 VA                                                               |       |
|     | d) Potential Transformer                |                                                                     |       |
|     | - Voltage ratio                         | Primary side: $34.5/\sqrt{3}$ kV / Secondary side: $115/\sqrt{3}$ V |       |
|     | <ul> <li>Accuracy class</li> </ul>      | CL: 0.2                                                             |       |
|     | - Burden                                | 25 VA                                                               |       |
|     | e) Metering                             | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                           |       |
|     | f) Protection relays                    | Under-voltage relay, over-current relay, ground                     |       |
|     | -                                       | fault over-current relay, percentage differential                   |       |
|     |                                         | relay                                                               |       |

# Table 2-2-2.20Outline Specifications of the Main Equipmentfor the Kotokrom Primary Substation

| No. | Item                                                                                    | Specifications                                                       | Qty.   |
|-----|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|
| 3   | 11.5 kV Switchgear Cubicles                                                             |                                                                      |        |
|     | 1) Type                                                                                 | Indoor distribution cubicle                                          |        |
|     | 2) Component of Switchgear Cubicles                                                     |                                                                      |        |
|     | 2.1) Transformer feeder switchgear                                                      |                                                                      |        |
|     | cubicle                                                                                 |                                                                      |        |
|     | a) Number of cubicle                                                                    |                                                                      | 1 set  |
|     | b) Bus bar current                                                                      | 800 A                                                                |        |
|     | c) Circuit breaker (CB)                                                                 |                                                                      |        |
|     | - Type                                                                                  | VCB, drawer type                                                     |        |
|     | - Rated voltage                                                                         | 12 kV                                                                |        |
|     | - Rated current                                                                         | 630 A                                                                |        |
|     | - Rated short-time withstand current                                                    | 12.5 kA (one second)                                                 |        |
|     | d) Earthing switch (ES)                                                                 |                                                                      |        |
|     | - Туре                                                                                  | Mechanical or electrical interlock with CB                           |        |
|     | e) Current transformer for metering                                                     |                                                                      |        |
|     | - Current ratio                                                                         | Primary side: 200 – 100 A /Secondary side: 5 A                       |        |
|     | - Accuracy class                                                                        | CL: 0.2                                                              |        |
|     | - Burden                                                                                | 15 VA                                                                |        |
|     | f) Current transformer for protection relays                                            |                                                                      |        |
|     | - Current ratio                                                                         | Primary side: $200 - 100$ A / Secondary side: 5 A                    |        |
|     | <ul> <li>Accuracy class</li> </ul>                                                      | CL: 5P20                                                             |        |
|     | - Burden                                                                                | 15 VA                                                                |        |
|     | g) Potential transformer                                                                |                                                                      |        |
|     | - Voltage ratio                                                                         | Primary side: $11.5/\sqrt{3}$ kV / Secondary side: $11.5/\sqrt{3}$ V |        |
|     | - Accuracy class                                                                        | CL: 0.2                                                              |        |
|     | - Burden                                                                                | 50 VA                                                                |        |
|     | h) Metering                                                                             | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                            |        |
|     | i) Protection relays                                                                    | Under-voltage relay, over-voltage relay, ground                      |        |
|     |                                                                                         | fault over-current relay, automatic voltage                          |        |
|     | 2.2) 11.5 LV Distribution fooder subjets                                                | regulating relays                                                    |        |
|     | <ul><li>2.2) 11.5 kV Distribution feeder cubicle</li><li>a) Number of cubicle</li></ul> |                                                                      |        |
|     |                                                                                         |                                                                      | 3 sets |
|     | b) Circuit breaker (CB)                                                                 | VCB, drawer type                                                     | 5 sets |
|     | - Type<br>- Rated voltage                                                               | 12 kV                                                                |        |
|     | - Rated vonage                                                                          | 630 A                                                                |        |
|     | - Rated Short-time withstand                                                            | 12.5 kA (one second)                                                 |        |
|     | current                                                                                 |                                                                      |        |
|     | c) Earthing Switch                                                                      | Mechanical or electrical interlock with CB                           |        |
|     | - Type<br>d) Current transformer for metering                                           |                                                                      |        |
|     | - Current ratio                                                                         | Primary side: 200 – 100 A / Secondary side: 5 A                      |        |
|     | - Accuracy class                                                                        | CL: 0.2                                                              |        |
|     | - Burden                                                                                | 15 VA                                                                |        |
|     | e) Current transformer for protection                                                   |                                                                      |        |
|     | relays                                                                                  |                                                                      |        |
|     | - Current ratio                                                                         | Primary side: 200 – 100 A / Secondary side: 5A                       |        |
|     | - Accuracy class                                                                        | CL: 5P20                                                             |        |
|     | - Burden                                                                                | 15 VA                                                                |        |
|     | f) Potential transformer                                                                |                                                                      |        |
|     | - Voltage ratio                                                                         | Primary side: $11.5/\sqrt{3}$ kV / Secondary side: $11.5/\sqrt{3}$ V |        |
|     | - Accuracy Class                                                                        | CL: 0.2                                                              |        |
|     | - Burden                                                                                | 50 VA                                                                |        |
|     | g) Metering                                                                             | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)                            |        |
|     | h) Protection relays                                                                    | Over-current relay, ground fault over-current                        |        |
| L   | ing i totoetton totuyo                                                                  | Stor current renay, ground haut over current                         |        |

| No. | Item                                                                                             | Specifications                                                                                      | Qty.  |
|-----|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|
|     |                                                                                                  | relay, automatic reclosing relay                                                                    |       |
|     | <ul><li>2.3) Station transformer feeder switchgear cubicle</li><li>a) Number of boards</li></ul> |                                                                                                     | 1 act |
|     | b) Circuit breaker (CB)                                                                          |                                                                                                     | 1 set |
|     | - Type                                                                                           | VCB, drawer type                                                                                    |       |
|     | - Rated voltage                                                                                  | 12 kV                                                                                               |       |
|     | - Rated current<br>- Rated Short-time withstand                                                  | 630 A<br>12.5 kA (one second)                                                                       |       |
|     | current<br>c) Earthing switch (ES)                                                               | 12.5 KA (one second)                                                                                |       |
|     | - Type<br>d) Current transformer for metering                                                    | Mechanical or electrical interlock with CB                                                          |       |
|     | <ul><li>Current ratio</li><li>Accuracy class</li></ul>                                           | Primary side: 10 A / Secondary side: 5 A                                                            |       |
|     | <ul> <li>Burden</li> <li>Current transformer for protection relays</li> </ul>                    | CL: 1.0<br>15 VA                                                                                    |       |
|     | - Current ratio                                                                                  |                                                                                                     |       |
|     | - Accuracy class<br>- Burden                                                                     | Primary side: 10 A / Secondary side: 5 A<br>CL: 5P10<br>15 VA                                       |       |
|     | <ul><li>f) Instruments</li><li>g) Protection relays</li></ul>                                    | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)<br>Over-current relay, ground fault over-current<br>relay |       |
| 4   | Station transformer (STR)                                                                        |                                                                                                     | 1 set |
|     | 1) Type                                                                                          | Outdoor oil-immersed                                                                                |       |
|     | 2) Rated voltage of primary side and tap                                                         | 11.5 kV $\pm$ 2.5%, $\pm$ 5% taps (non-voltage tap change)                                          |       |
|     | 3) Rated voltage of secondary side                                                               | 433 – 250 V                                                                                         |       |
|     | <ol> <li>A) Rated capacity</li> <li>5) Number of phases</li> </ol>                               | 100 kVA<br>3                                                                                        |       |
|     | 6) Frequency                                                                                     | 50 Hz                                                                                               |       |
|     | 7) Winding connection and vector                                                                 | Primary side: delta                                                                                 |       |
|     | symbol                                                                                           | Secondary side: star (drawn from the neutral point)<br>Dyn11                                        |       |
|     | 8) % Impedance                                                                                   | approx. 5%                                                                                          |       |
|     | <ul> <li>9) Current transformer for protection relays</li> <li>- Current ratio</li> </ul>        | Primary side: 100 – 50 A / Secondary side: 5 A                                                      |       |
|     | - Accuracy class                                                                                 | CL: 10P10                                                                                           |       |
|     | - Burden                                                                                         | 25 VA                                                                                               |       |
|     | 10) Cable cover                                                                                  | Elephant type cable duct with baseplate                                                             |       |
| 5   | LV Service panel                                                                                 |                                                                                                     | 1 - 4 |
|     | <ol> <li>Number of panel</li> <li>Type</li> </ol>                                                | Indoor self-contained                                                                               | 1 set |
|     | 3) Rated voltage (number of phases and                                                           | AC 415/240 V (3-phase 4-wire)                                                                       |       |
|     | wires)                                                                                           | - ····································                                                              |       |
|     | 4) Circuit breaker type                                                                          | Earth leakage circuit breaker (ELCB), 4 poles, 225 AF/150 AT                                        |       |
|     | 5) Current transformer for metering                                                              |                                                                                                     |       |
|     | - Current ratio                                                                                  | Primary side: 200 A / Secondary side: 5 A                                                           |       |
|     | - Class<br>- Burden                                                                              | CL: 1.0<br>25 VA                                                                                    |       |
|     | 6) Metering                                                                                      | Ammeter (with changing-over switch)                                                                 |       |
|     | <ul><li>7) Protection relay</li></ul>                                                            | Ground fault over-current relay                                                                     |       |
| 6   | DC service panel and battery charger                                                             |                                                                                                     |       |
|     | 1) Number of panel                                                                               |                                                                                                     | 1 set |
|     | 2) Type                                                                                          | Indoor self-contained                                                                               |       |

| No. | Item                                                                              | Specifications                                              | Qty.   |
|-----|-----------------------------------------------------------------------------------|-------------------------------------------------------------|--------|
|     | 3) Rated voltage                                                                  | DC 125 V                                                    |        |
|     | 4) Circuit breaker type                                                           | Mold case circuit breaker (MCCB)                            |        |
|     | 5) Battery charger                                                                | With float charging functions                               |        |
| 7   | Battery                                                                           |                                                             | 1 set  |
|     | 1) Type                                                                           | Lead acid sealed type                                       |        |
|     | 2) Rated voltage (voltage per cell)                                               | 125 V (2 V/cell)                                            |        |
|     | 3) Number of battery cells                                                        | 63 cells                                                    |        |
|     | 4) Discharge duration (duration of                                                | 12 hours                                                    |        |
|     | commercial power outage)                                                          |                                                             |        |
|     | 5) Battery capacity                                                               | 150 Ah/10 hrs (the battery capacity shall be                |        |
|     | , <u>, , , , , , , , , , , , , , , , , , </u>                                     | secured of an outage duration of 12 hours into              |        |
|     |                                                                                   | consideration)                                              |        |
| 8   | 34.5 kV Disconnecting switch pole                                                 |                                                             |        |
| -   | 1) Quantity                                                                       |                                                             | 1 set  |
|     | 2) Type                                                                           | Steel pole (x 2), arrester, circuit breaker                 |        |
|     | <ul><li>3) Pole mounting equipment</li></ul>                                      | r ,,,,                                                      |        |
|     | - Arrester                                                                        | 36 kV, 10 kA, zinc oxide gapless type                       |        |
|     | - Circuit breaker                                                                 | 36 kV, 630 A, 25 kA (one second)                            |        |
| 9   | 11.5 kV Disconnecting switch pole                                                 | ,,                                                          |        |
| -   | 1) Quantity                                                                       |                                                             | 3 sets |
|     | 2) Type                                                                           | Steel pipe (x 2), arrester, circuit breaker                 |        |
|     | <ul><li>3) Pole mounting equipment</li></ul>                                      | ······································                      |        |
|     | - Arrester                                                                        | 12 kV, 10 kA, zinc oxide gapless type                       |        |
|     | - Circuit breaker                                                                 | 12 kV, 630 A, 12.5 kA (one second)                          |        |
| 10  | 36 kV Cable                                                                       |                                                             | 1 set  |
|     | 1) Type                                                                           | Armoured cable for direct underground laying                |        |
|     | 2) Conductor, insulation, armour, jacket                                          | Aluminium conductor, XLPE insulation,                       |        |
|     | , , , , , , , , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , _ | aluminium strand-armoured power cable with                  |        |
|     |                                                                                   | ant-repellent PVC jacket                                    |        |
|     | 3) Number of cores, conductor size                                                | Single core, 185 mm <sup>2</sup> , single cable per phase   |        |
|     |                                                                                   | (from the 34.5 kV disconnecting switch pole to              |        |
|     |                                                                                   | the 34.5 kV distribution board; from the 34.5 kV            |        |
|     |                                                                                   | circuit board to the 34.5 kV side of the                    |        |
|     |                                                                                   | transformer)                                                |        |
| 11  | 12 V Cable                                                                        |                                                             | 1 set  |
|     | 1) Type                                                                           | Armoured cable for direct underground laying                |        |
|     | <ul><li>2) Conductor, insulation, armour, jacket</li></ul>                        | Aluminium conductor, XLPE insulation,                       |        |
|     | , , ,,, <b>,</b>                                                                  | aluminium strand-armoured power cable with                  |        |
|     |                                                                                   | ant-repellent PVC jacket                                    |        |
|     | 3) Number of cores, conductor size                                                | • Single core, 185 mm <sup>2</sup> , 3 cables per phase     |        |
|     | , , , , , , , , , , , , , , , , , , , ,                                           | (from the 11.5 kV side of the transformer to                |        |
|     |                                                                                   | the 11.5 kV distribution board)                             |        |
|     |                                                                                   | • Single core, 185 mm <sup>2</sup> , single cable per phase |        |
|     |                                                                                   | (from the 11.5 kV distribution board to the                 |        |
|     |                                                                                   | 11.5 kV disconnecting switch pole)                          |        |
|     |                                                                                   | • Single core, 185 mm <sup>2</sup> , single cable per phase |        |
|     |                                                                                   | (from the 11.5 kV distribution board to the                 |        |
|     |                                                                                   | 11.5 kV side of the station transformer)                    |        |
|     |                                                                                   | 11.3 KV SILE OF THE STATION HANSIONNEL                      |        |

| No. | Item                                   | Specifications                                          | Qty.                     |
|-----|----------------------------------------|---------------------------------------------------------|--------------------------|
| 1   | 34.5 kV Sub-transmission line          | ~p*********                                             | $\frac{\sqrt{1}}{1}$ set |
|     | 1) Electric pole types                 |                                                         |                          |
|     | a) 3A (intermediate pole)              | 0°~ 5°                                                  |                          |
|     | b) 3B (light angle pole)               | $5^{\circ} \sim 20^{\circ}$                             |                          |
|     | c) 3C (medium angle pole)              | $20^{\circ} \sim 60^{\circ}$                            |                          |
|     | d) 3D (heavy angle pole)               | $60^{\circ} \sim 90^{\circ}$                            |                          |
|     | e) 3E (cross pole)                     | 90°                                                     |                          |
|     | f) 3F (section pole)                   |                                                         |                          |
|     | g) 3K (disconnecting switch pole)      |                                                         |                          |
|     | 2) Conductor type                      | AAAC120 mm <sup>2</sup>                                 |                          |
| 2   | 34.5 kV Switchgear Cubicles in Sunyani |                                                         | 1 set                    |
| -   | BSP Substation                         |                                                         | 1 500                    |
|     | 1) Type                                | Indoor SF6 gas-insulation                               |                          |
|     | <ul><li>2) Number of boards</li></ul>  | • One for connection with the existing                  | 3 sets                   |
|     |                                        | distribution board (Berekum feeder)                     | 5 5015                   |
|     |                                        | • One for the distribution feeder (Berekum              |                          |
|     |                                        | feeder)                                                 |                          |
|     |                                        | • One for the distribution feeder (Kotokrom             |                          |
|     |                                        | feeder)                                                 |                          |
|     | 3) Bus bar current                     | 800 A                                                   |                          |
|     | <ul><li>4) Circuit breaker</li></ul>   | 36 kV, 800 A, 25 kA (one second)                        |                          |
|     | 5) Instruments                         | Multimeter (V, A, W, VA, VAR, PF, Hz, WH)               |                          |
|     | 6) Protection relays                   | Over-current relay, ground fault over-current           |                          |
|     | of Theeton relays                      | relay, automatic reclosing relay                        |                          |
|     | 7) Power source for AC control         | To be supplied from the existing low voltage            |                          |
|     |                                        | panel (AC 3-phase 4-wire, 415/240 V)                    |                          |
|     | 8) Power source for DC control         | To be supplied from the existing DC panel (DC           |                          |
|     |                                        | 125 V)                                                  |                          |
|     | 9) Number of cable terminals           | 3 feeders                                               |                          |
|     | y) Number of cable terminals           | • One for connection to the existing distribution       |                          |
|     |                                        | board (new cable: 36 kV, XLPE insulation,               |                          |
|     |                                        | copper conductor, single core, 240 mm <sup>2</sup> , 2  |                          |
|     |                                        |                                                         |                          |
|     |                                        | cables per phase, ant-repellent PVC jacket)             |                          |
|     |                                        | • One for connection to the Berekum feeder              |                          |
|     |                                        | (existing cable: 34.5 kV, XLPE insulation,              |                          |
|     |                                        | aluminium conductor, single core, 185 mm <sup>2</sup> , |                          |
|     |                                        | one cable per phase, aluminium strand                   |                          |
|     |                                        | armour, PVC jacket)                                     |                          |
|     |                                        | • One for the Kotokrom feeder (new cable: 34.5          |                          |
|     |                                        | kV, XLPE insulation, aluminium conductor,               |                          |
|     |                                        | single core, 185 mm <sup>2</sup> , one cable per phase, |                          |
|     | 26126011                               | aluminium strand armour, PVC jacket)                    | 1 .                      |
| 3   | 36 kV Cable                            |                                                         | 1 set                    |
|     | 1) Specifications                      | • For connection to the existing distribution           |                          |
|     |                                        | board (new cable: 36 kV, XLPE insulation,               |                          |
|     |                                        | copper conductor, single core, 240 mm <sup>2</sup> , 2  |                          |
|     |                                        | cables per phase, ant-repellent PVC jacket)             |                          |
|     |                                        | • For the UDS feeder (new cable: 36 kV, XLPE            |                          |
|     |                                        | insulation, aluminium conductor, single core,           |                          |
|     |                                        | 185 mm <sup>2</sup> , one cable per phase, aluminium    |                          |
|     |                                        | strand armour, ant-repellent PVC jacket)                |                          |

Table 2-2-2.21Outline Specifications of the Main Equipment for the 34.5 kV Sub-Transmission Line<br/>(from the Sunyani BSP Substation to the Kotokrom Primary Substation)

| No. | Item                                     | Specifications                                                                             | Qty.  |
|-----|------------------------------------------|--------------------------------------------------------------------------------------------|-------|
| 1   | 11.5 kV Distribution line                |                                                                                            | 1 set |
|     | 1) Electric pole types                   |                                                                                            |       |
|     | a) 1A (intermediate pole)                | 0°~ 5°                                                                                     |       |
|     | b) 1B (light angle pole)                 | $5^{\circ} \sim 20^{\circ}$                                                                |       |
|     | c) 1C (medium angle pole)                | $20^{\circ} \sim 60^{\circ}$                                                               |       |
|     | d) 1D (heavy angle pole)                 | $60^{\circ} \sim 90^{\circ}$                                                               |       |
|     | e) 1E (cross pole)                       | 90°                                                                                        |       |
|     | f) 1F (section pole)                     |                                                                                            |       |
|     | g) 1K (disconnecting switch pole)        |                                                                                            |       |
|     | 2) Conductor type                        | AAAC 120 mm <sup>2</sup>                                                                   |       |
| 2   | 11.5kV (Ring Main Unit)                  |                                                                                            | 1 set |
|     | 1) Type                                  | Outdoor SF6 gas-insulation                                                                 |       |
|     | 2) Number of feeders                     | Power receiving: 2 feeders (with a grounding                                               |       |
|     |                                          | device)                                                                                    |       |
|     |                                          | Power distribution: 1 feeder (with a grounding                                             |       |
|     |                                          | device)                                                                                    |       |
|     | 3) Rated voltage                         | 12 kV                                                                                      |       |
|     | 4) Rated current                         | 630 A                                                                                      |       |
|     | 5) Short-time withstand current          | 12.5 kA (one second)                                                                       |       |
|     | 6) Number of cable terminals             | 3 feeders (12 kV, XLPE insulation, aluminium                                               |       |
|     |                                          | conductor, 3 cores, 185 mm <sup>2</sup> , aluminium strand                                 |       |
|     |                                          | armour, PVC jacket)                                                                        |       |
| 3   | 12 kV Cable                              |                                                                                            | 1 set |
|     | 1) Type                                  | Armoured cable for direct underground laying                                               |       |
|     | 2) Conductor, insulation, armour, jacket | Aluminium conductor, XLPE insulation,                                                      |       |
|     | 2) Number of come and to the start       | aluminium strand armour, ant-repellent PVC jacket                                          |       |
|     | 3) Number of cores, conductor size       | • 3 cores, 185 mm <sup>2</sup> (from the new 11.5 kV                                       |       |
|     |                                          | disconnecting switch pole (Hospital feeder) to the RMU)                                    |       |
|     |                                          | • Single core, 185 mm <sup>2</sup> (from the new 11.5 kV                                   |       |
|     |                                          |                                                                                            |       |
|     |                                          | disconnecting switch pole (for the Chiraa feeder) to the existing dual-line terminal pole) |       |
|     |                                          | • Single core, 185 mm <sup>2</sup> (from the new 11.5 kV                                   |       |
|     |                                          | disconnecting switch pole (for the New                                                     |       |
|     |                                          |                                                                                            |       |
|     |                                          | Dormaa feeder) to the existing dual-line                                                   |       |
|     |                                          | terminal pole)                                                                             |       |

Table 2-2-2.22Outline Specifications of the Main Equipment for the 11.5 kV Distribution Lines(11.5 kV distribution lines from the Kotokrom Primary Substation)

# 2-2-3 Outline Design Drawings

The following outline design drawings have been prepared for the Project.

| Drawing No.  | Drawing Title                                 |
|--------------|-----------------------------------------------|
| Fig. 2-2-3.1 | Tamale 34.5/11.5 kV Network Diagram           |
| Fig. 2-2-3.2 | Single Line Diagram of UDS Primary Substation |
| Fig. 2-2-3.3 | Single Line Diagram of Tamale BSP Substation  |
| Fig. 2-2-3.4 | Layout of UDS Primary Substation              |
| Fig. 2-2-3.5 | Elevational Plan of UDS Primary Substation    |
| Fig. 2-2-3.6 | Sectional Plan of UDS Primary Substation      |
| Fig. 2-2-3.7 | Layout of Tamale BSP Control Room             |
| Fig. 2-2-3.8 | Cable Route of Tamale BSP                     |
| Fig. 2-2-3.9 | Route Map of Tamale Distribution System       |

(1) Improvement of Tamale Distribution System in Northern Region

(2) Improvement of Sunyani Distribution System in Brong-Ahafo Region

| Drawing No.   | Drawing Title                                      |
|---------------|----------------------------------------------------|
| Fig. 2-2-3.10 | Sunyani 34.5/11.5 kV Network Diagram               |
| Fig. 2-2-3.11 | Single Line Diagram of Kotokrom Primary Substation |
| Fig. 2-2-3.12 | Single Line Diagram of Sunyani BSP Substation      |
| Fig. 2-2-3.13 | Layout of Kotokrom Primary Substation              |
| Fig. 2-2-3.14 | Elevational Plan of Kotokrom Primary Substation    |
| Fig. 2-2-3.15 | Sectional Plan of Kotokrom Primary Substation      |
| Fig. 2-2-3.16 | Layout of Sunyani BSP Control Room                 |
| Fig. 2-2-3.17 | Cable Route of Sunyani BSP                         |
| Fig. 2-2-3.18 | Layout of Ring Main Unit                           |
| Fig. 2-2-3.19 | Route Map of Sunyani Distribution System           |

(3) Pole Assembling Drawings for Distribution Line

| Drawing No.   | Drawing Title                                                   |
|---------------|-----------------------------------------------------------------|
| Fig. 2-2-3.20 | 34.5/11.5 kV Intermediate Pole (0 – 5 deg.)                     |
| Fig. 2-2-3.21 | 34.5/11.5 kV Light Angle Pole (5 – 20 deg.)                     |
| Fig. 2-2-3.22 | 34.5/11.5 kV Medium Angle Pole (20 – 60 deg.)                   |
| Fig. 2-2-3.23 | 34.5/11.5 kV Heavy Angle Pole (60 – 90 deg.)                    |
| Fig. 2-2-3.24 | 34.5/11.5 kV Cross Pole (90 deg.)                               |
| Fig. 2-2-3.25 | 34.5/11.5 kV Section Pole                                       |
| Fig. 2-2-3.26 | 34.5/11.5 kV T-off Pole                                         |
| Fig. 2-2-3.27 | 34.5/11.5 kV Terminal Pole                                      |
| Fig. 2-2-3.28 | 34.5/11.5 kV Disconnecting Switch Pole (Horizontal Type)        |
| Fig. 2-2-3.29 | 34.5/11.5 kV Disconnecting Switch Pole (Vertical Dead End Type) |
| Fig. 2-2-3.30 | 34.5/11.5 kV Disconnecting Switch Pole (Vertical Section Type)  |

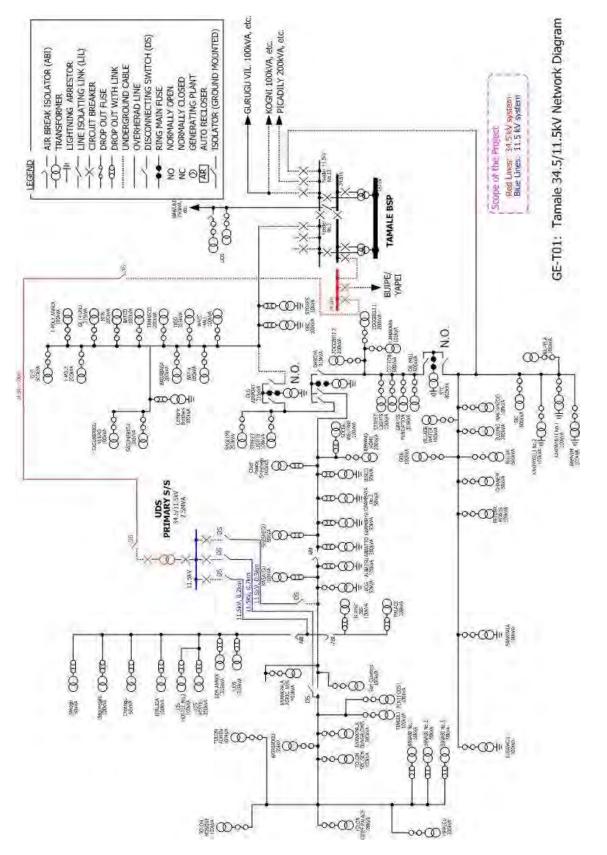



Fig. 2-2-3.1 Tamale 34.5/11.5 kV Network Diagram

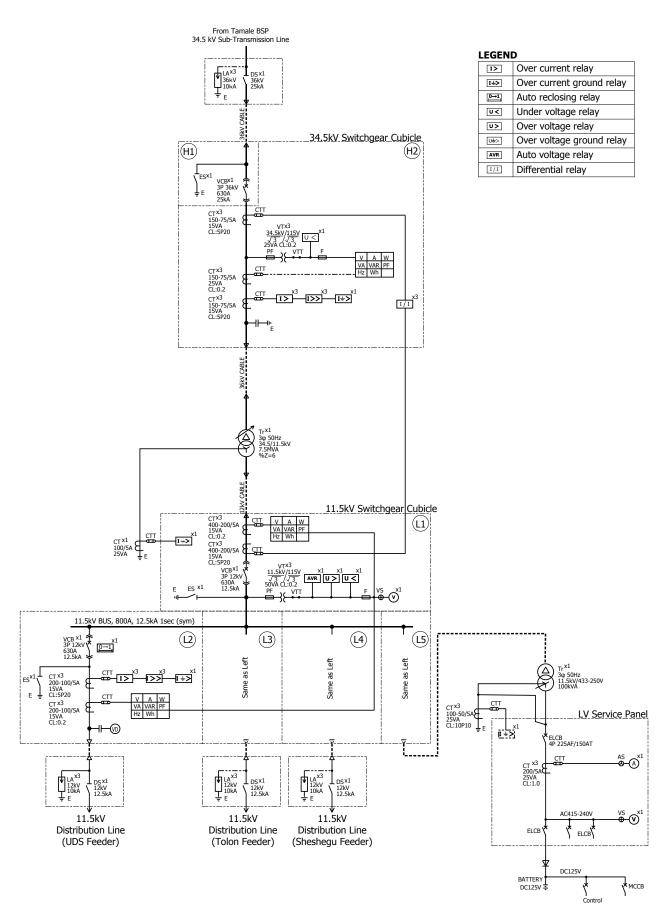



Fig. 2-2-3.2 Single Line Diagram of UDS Primary Substation

| EGEN  | D                         |
|-------|---------------------------|
| (75)  | Over current relay        |
| 1257  | Over current ground relay |
| 04-41 | Auto reclosing relay      |

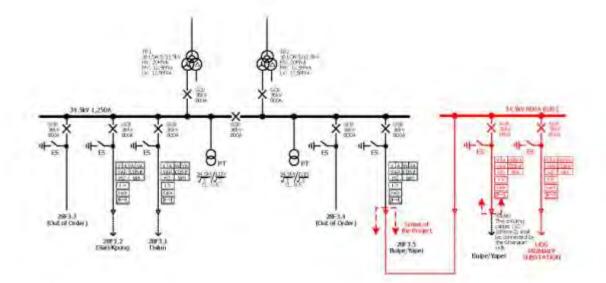



Fig. 2-2-3.3 Single Line Diagram of Tamale BSP Substation

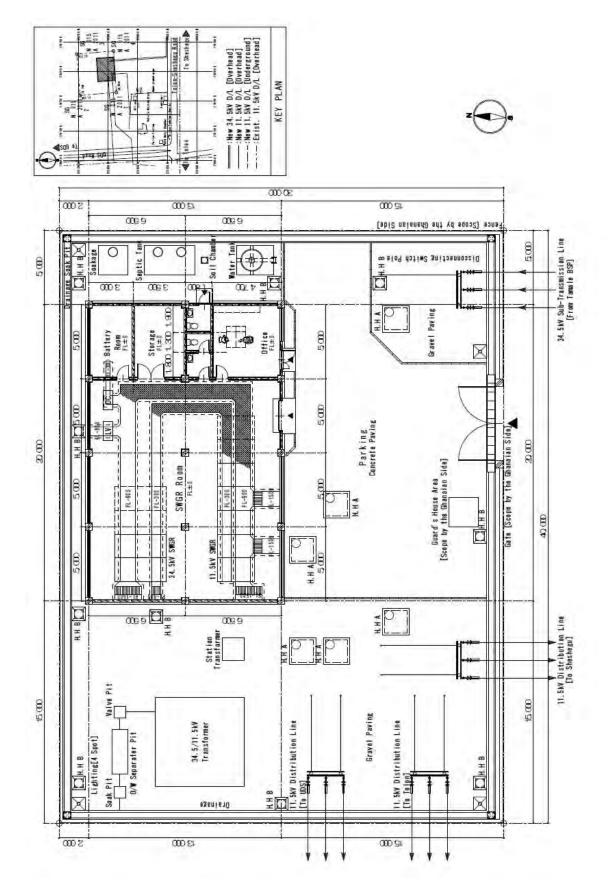



Fig. 2-2-3.4 Layout of UDS Primary Substation

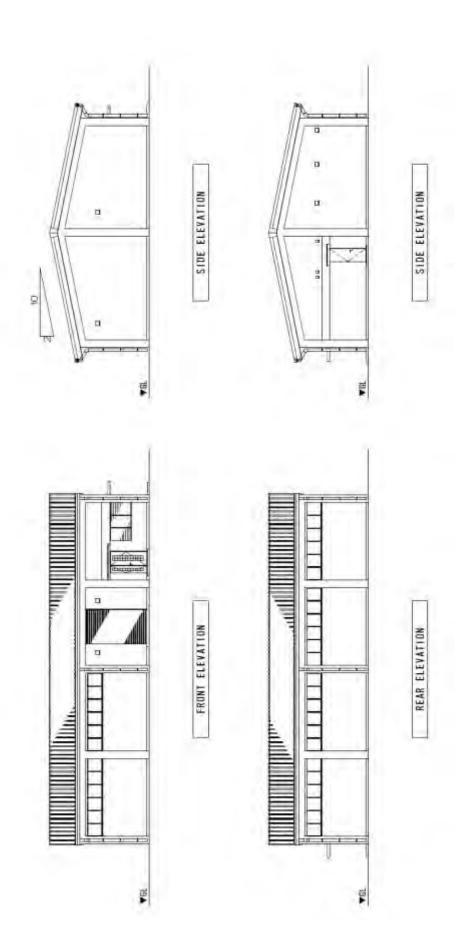



Fig. 2-2-3.5 Elevational Plan of UDS Primary Substation

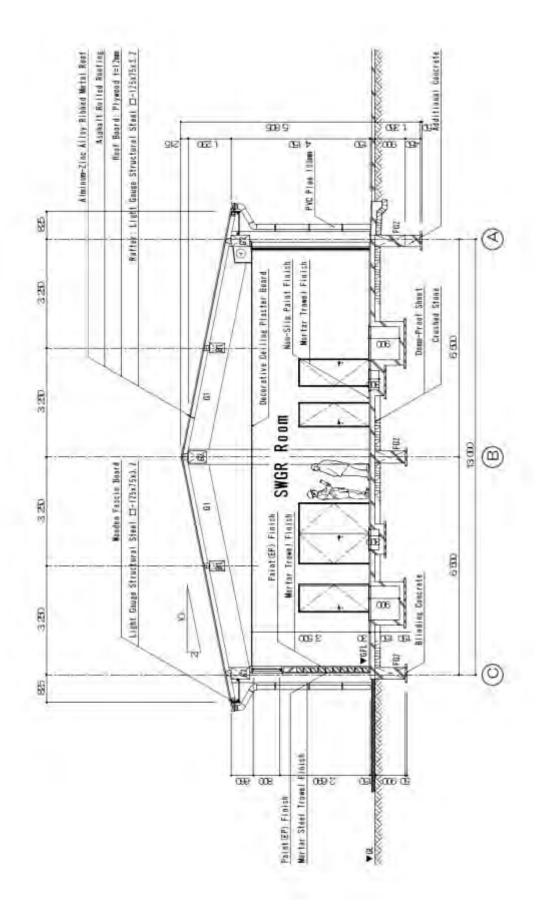



Fig. 2-2-3.6 Sectional Plan of UDS Primary Substation

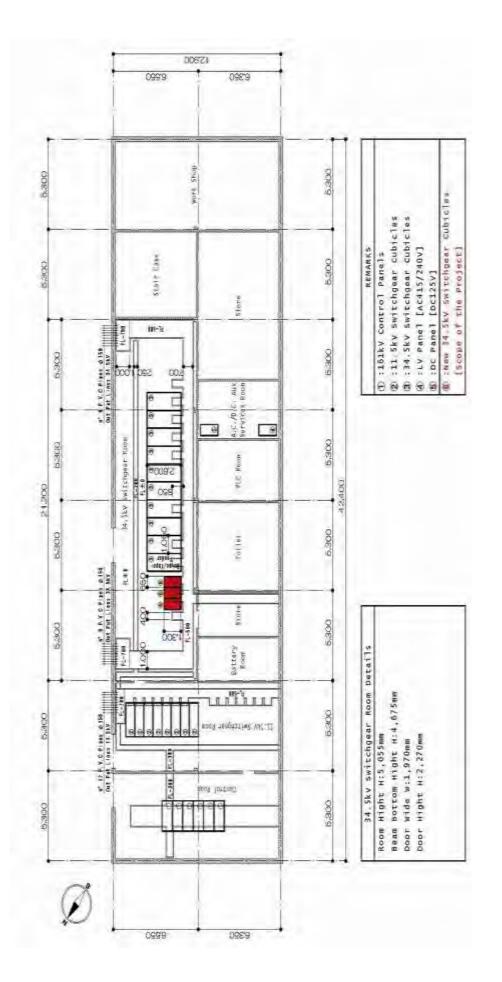



Fig. 2-2-3.7 Layout of Tamale BSP Control Room

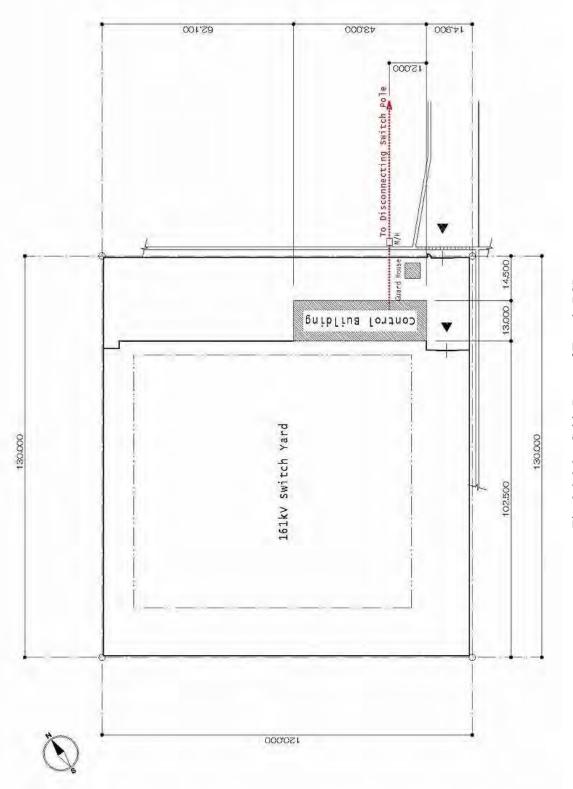
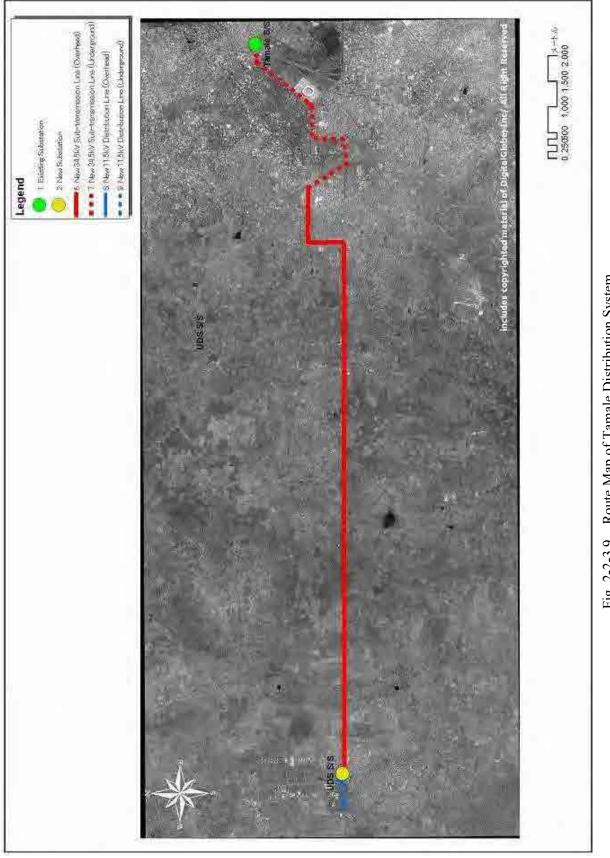
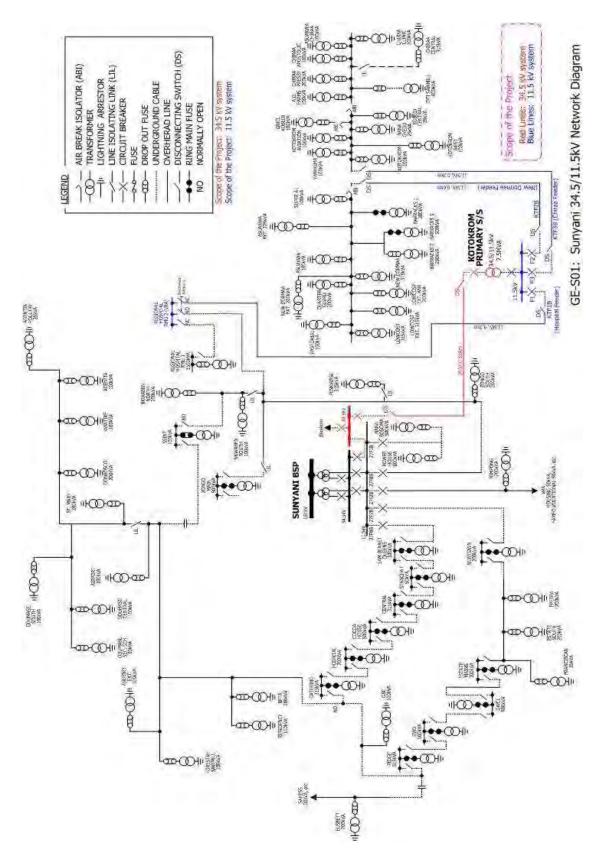
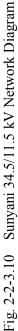






Fig. 2-2-3.8 Cable Route of Tamale BSP







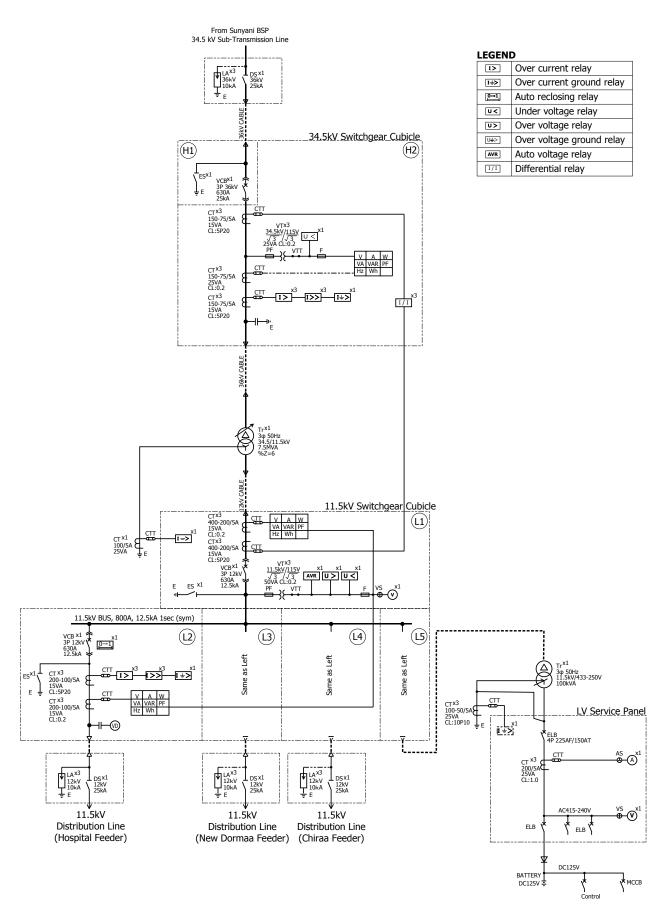



Fig. 2-2-3.11 Single Line Diagram of Kotokrom Primary Substation

| 11    | Over current relay        |
|-------|---------------------------|
| 17237 | Over current ground relay |
| 11-T  | Auto reclosing relay      |

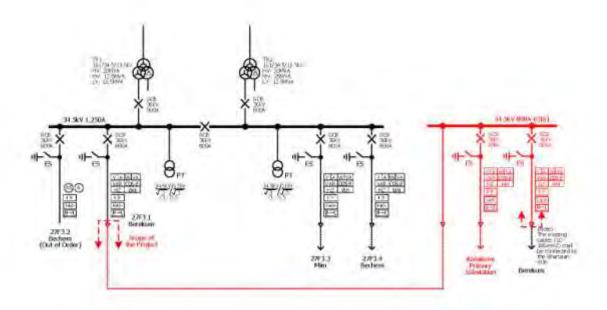



Fig. 2-2-3.12 Single Line Diagram of Sunyani BSP Substation

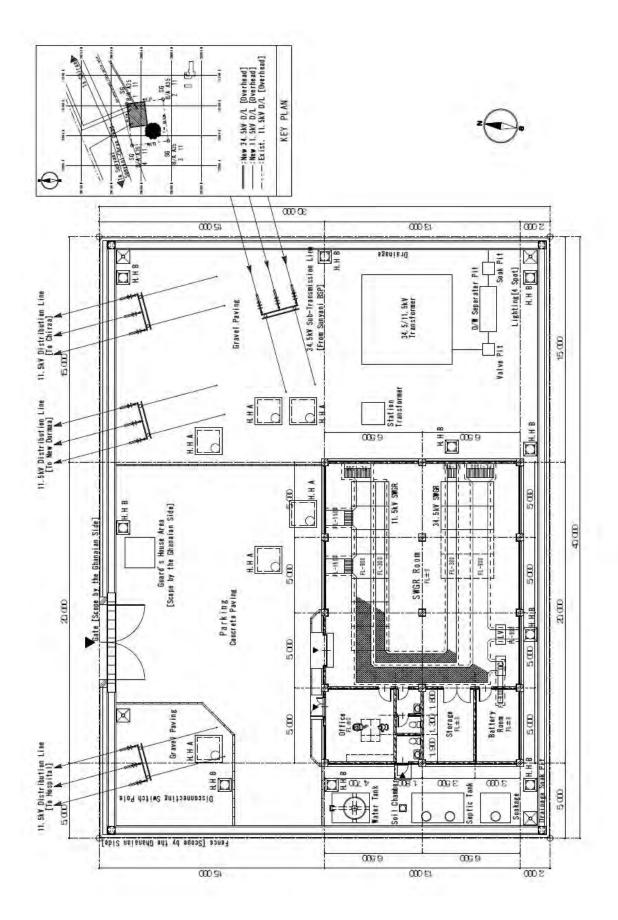



Fig. 2-2-3.13 Layout of Kotokrom Primary Substation

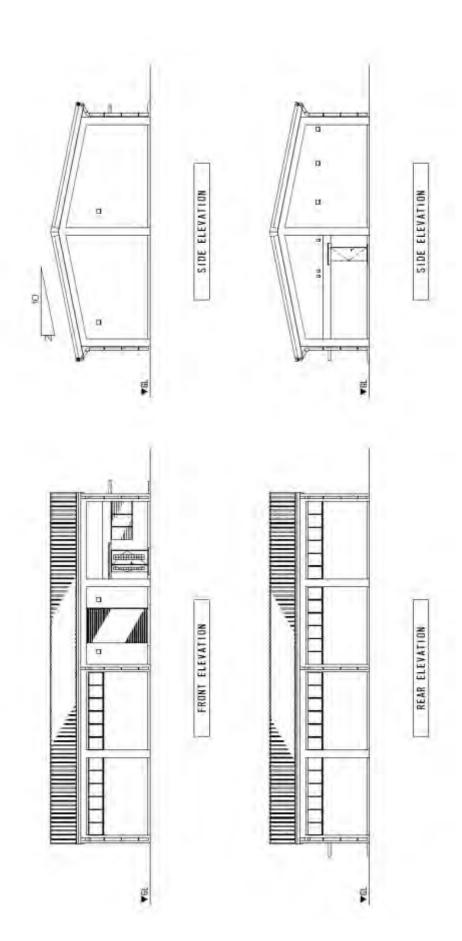



Fig. 2-2-3.14 Elevational Plan of Kotokrom Primary Substation

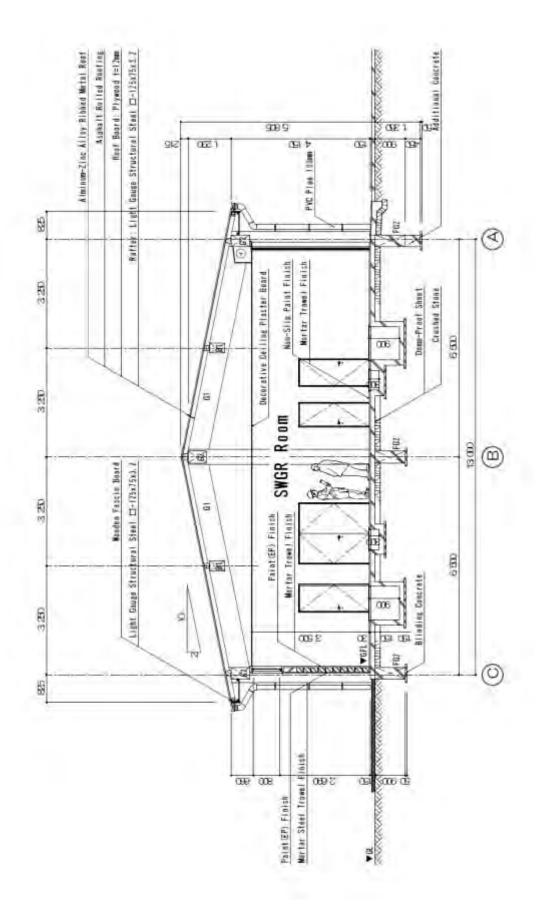



Fig. 2-2-3.15 Sectional Plan of Kotokrom Primary Substation

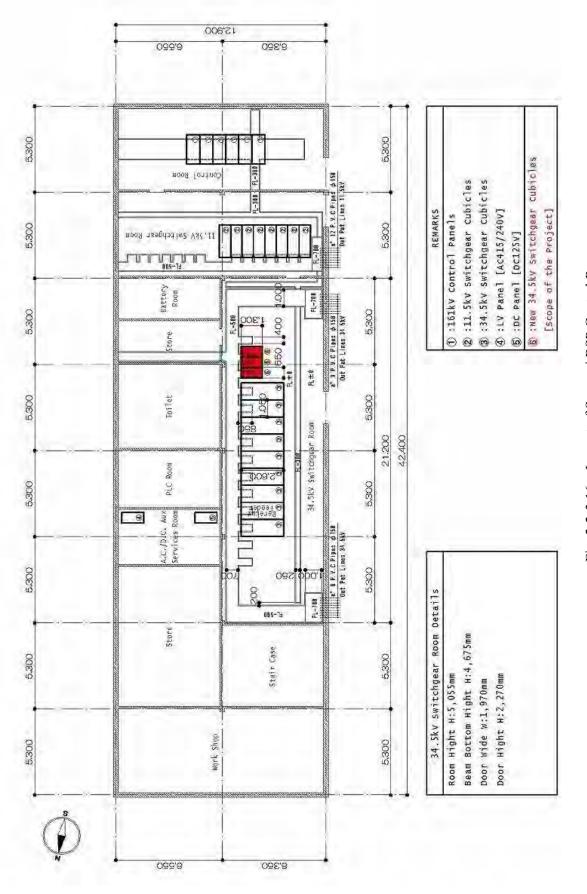



Fig. 2-2-3.16 Layout of Sunyani BSP Control Room

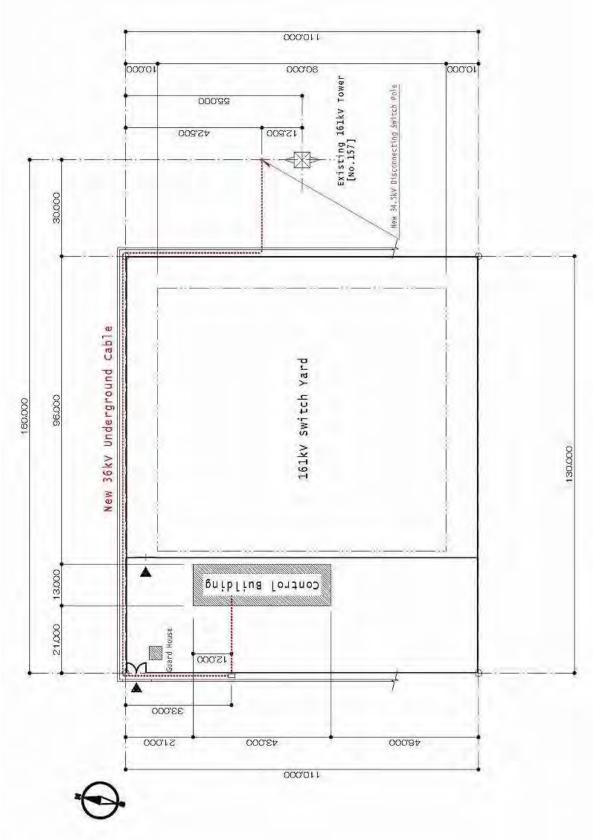



Fig. 2-2-3.17 Cable Route of Sunyani BSP

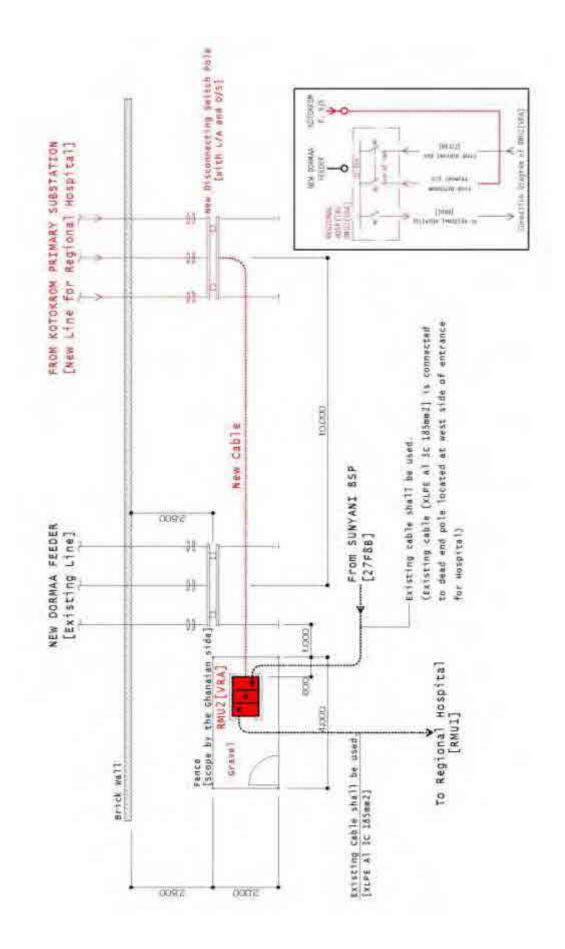
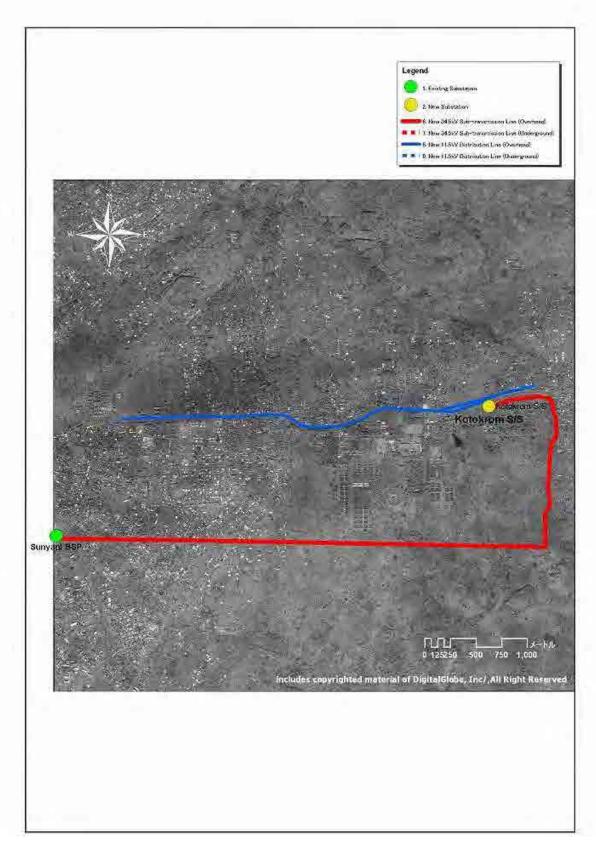
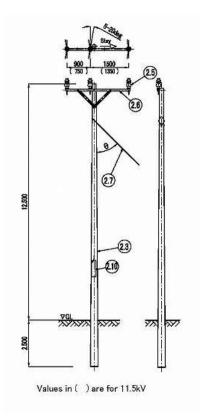



Fig. 2-2-3.18 Layout of Ring Main Unit



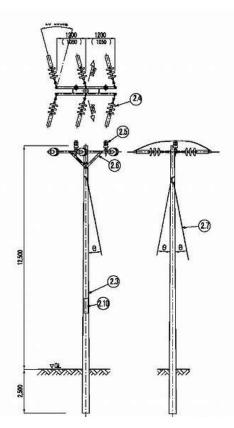



Fig. 2-2-3.19 Route Map of Sunyani Distribution System



| P/NO. | DESCRIPTION                    |                  |   |
|-------|--------------------------------|------------------|---|
| 1.1   | Distribution Transformer (DTr) | 配電用変圧器           | 0 |
| 1.2   | Auto Recloser                  | 自動再開路装置          | 0 |
| 1.3   | Load Isolator                  | 負荷開閉器            | 0 |
| 1.4   | Cutout Switch with Fuse        | ヒューズ付きカットアウトスイッチ | 0 |
| 1.5   | Lightning Arrester             | 避雷器              | 0 |
| 1.6   | Main Distribution Board(MDB)   | 主分電盤             | 0 |
| 2.1   | Conductor (m)                  | 電線 (m)           | 0 |
| 2.2   | Connector                      | コネクター            | 0 |
| 2.3   | Steel Pole (15m)               | 銷管柱 (15m)        | 1 |
| 2.4   | Strain Insulator Set           | 耐張碍子セット          | 0 |
| 2.5   | Pin Insulator set              | ピン碍子セット          | 3 |
| 2.6   | Crossarm set                   | - 腕金セット          | 1 |
| 2.7   | Stay Wire Set                  | 支線セット            | 0 |
| 2.8   | Earth Wire Set                 | 接地線セット           | 0 |
| 2.9   | LV Cabling Materials           | 低圧ケーブル材料         | 0 |
| 2.10  | Plate set                      | プレートセット          | 1 |

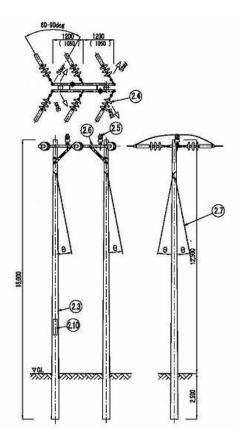
Remarks : Pole Type ``1A'' is for 11.5kV and then type 3A is for 34.5kV.


Fig. 2-2-3.20 34.5/11.5 kV Intermediate Pole (0 – 5 deg.)



| P/NO. | DESCRIPTION                    |                  |   |
|-------|--------------------------------|------------------|---|
| 1.1   | Distribution Transformer (DTr) | 配電用変圧器           | 0 |
| 1.2   | Auto Recloser                  | 自動再閉路装置          | 0 |
| 1.3   | Load Isolator                  | 負荷開閉器            | 0 |
| 1.4   | Cutout Switch with Fuse        | ヒューズ付きカットアウトスイッチ | 0 |
| 1.5   | Lightning Arrester             | 器雷骤              | 0 |
| 1.6   | Main Distribution Board(MDB)   | 主分電盤             | 0 |
| 2.1   | Conductor (m)                  | 電線 (m)           | 0 |
| 2.2   | Connector                      | コネクター            | 0 |
| 2.3   | Steel Pole (15m)               | 鋼管柱 (15m)        | 1 |
| 2.4   | Strain Insulator Set           | 耐張碍子セット          | 0 |
| 2.5   | Pin Insulator set              | ビン碍子セット          | 3 |
| 2.6   | Crossarm set                   | 腕金セット            | 1 |
| 2.7   | Stay Wire Set                  | 支線セット            | 1 |
| 2.8   | Earth Wire Set                 | 接地線セット           | 0 |
| 2.9   | LV Gabling Materials           | 低圧ケーブル材料         | 0 |
| 2.10  | Plate set                      | プレートセット          | 1 |

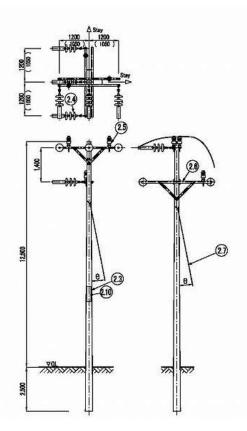
Preferable Stay Angle :  $30^{\circ} \leq \theta \leq 45^{\circ}$ 


Fig. 2-2-3.21 34.5/11.5 kV Light Angle Pole (5 – 20 deg.)



| P/NO.                            | DESCRIPTION                    |                  |   |
|----------------------------------|--------------------------------|------------------|---|
| 1.1                              | Distribution Transformer (DTr) | 配電用変圧器           | 0 |
| 1.2                              | Auto Recloser                  | 自動再閉路装置          | 0 |
| 1.3                              | Load Isolator                  | 負荷開閉器            | 0 |
| 1.4                              | Cutout Switch with Fuse        | ヒューズ付きカットアウトスイッチ | 0 |
| 1.5                              | Lightning Arrester             | 避雷器              | 0 |
| 1.6 Main Distribution Board(MDB) |                                | 主分電盤             |   |
| 2.1                              | Conductor (m)                  | 電線 (m)           | 0 |
| 2.2                              | Connector                      | コネクター            | 0 |
| 2.3                              | Steel Pole (15m)               | 鋼管柱 (15m)        | 1 |
| 2.4                              | Strain Insulator Set           | 耐張碍子セット          | 6 |
| 2.5                              | Pin Insulator set              | ピン碍子セット          | 2 |
| 2.6                              | Crossarm set                   | 焼金セット            | 2 |
| 2.7                              | Stay Wire Set                  | 支線セット            | 2 |
| 2.8                              | Earth Wire Set                 | 接地線セット           | 0 |
| 2.9                              | LV Cabling Materials           | 低圧ケーブル材料         | 0 |
| 2.10                             | Plate set                      | プレートセット          | 1 |

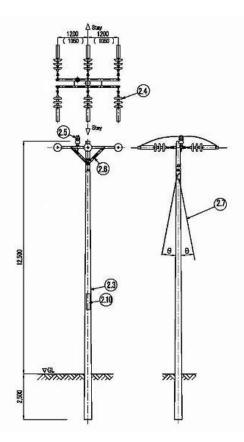
Preferable Stay Angle : 30°  $\leq \theta \leq$  45°


Fig. 2-2-3.22 34.5/11.5 kV Medium Angle Pole (20 – 60 deg.)



| P/NO. | DESCRIPTION                    |                  |   |
|-------|--------------------------------|------------------|---|
| 1.1   | Distribution Transformer (DTr) | 配電用変圧器           | 0 |
| 1.2   | Auto Recloser                  | 自動再閉路装置          | 0 |
| 1.3   | Load Isolator                  | 負荷開閉器            | 0 |
| 1.4   | Cutout Switch with Fuse        | ヒューズ付きカットアウトスイッチ | 0 |
| 1.5   | Lightning Arrester             | 避雷器              | 0 |
| 1.6   | Main Distribution Board(MDB)   | 主分電盤             | 0 |
| 2.1   | Conductor (m)                  | 電線 (m)           | 0 |
| 2.2   | Connector                      | コネクター            | 0 |
| 2.3   | Steel Pole (15m)               | 鋼管柱 (15m)        | 2 |
| 2.4   | Strain Insulator Set           | 耐張碍子セット          | 6 |
| 2.5   | Pin Insulator set              | ビン碍子セット          | 2 |
| 2.6   | Crossarm set                   | 腕金セット            | 2 |
| 2.7   | Stay Wire Set                  | 支線セット            | 4 |
| 2.8   | Earth Wire Set                 | 接地線セット           | 0 |
| 2.9   | LV Cabling Materials           | 低圧ケーブル材料         | 0 |
| 2.10  | Plate set                      | プレートセット          | 1 |

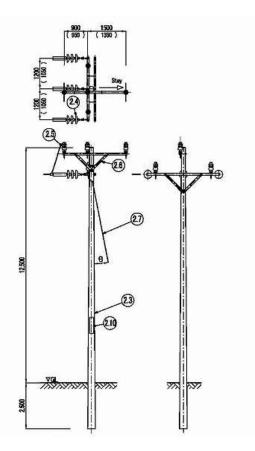
Preferable Stay Angle :  $30^{\circ} \leq \theta \leq 45^{\circ}$ 


Fig. 2-2-3.23 34.5/11.5 kV Heavy Angle Pole (60 – 90 deg.)



| P/NO. | DESCRIPTION                         |                  |   |
|-------|-------------------------------------|------------------|---|
| 1.1   | Distribution Transformer (DTr)      | 配電用変圧器           | 0 |
| 1.2   | Auto Recloser                       | 自動再開路装置          | 0 |
| 1.3   | Load Isolator                       | 負荷開閉器            | 0 |
| 1.4   | Cutout Switch with Fuse             | ヒューズ付きカットアウトスイッチ | 0 |
| 1.5   | Lightning Arrester                  | 避雷器              | 0 |
| 1.6   | 6 Main Distribution Board(MDB) 主分電盤 |                  | 0 |
| 2.1   | Conductor (m)                       | 電線 (m)           | 0 |
| 2.2   | Connector                           | コネクター            | 0 |
| 2.3   | Steel Pole (15m)                    | 鋼管柱 (15m)        | 1 |
| 2.4   | Strain Insulator Set                | 耐張碍子セット          | 6 |
| 2.5   | Pin Insulator set                   | ピン碍子セット          | 3 |
| 2.6   | Crossarm set                        | 婉金セット            | 4 |
| 2.7   | Stay Wire Set                       | 支線セット            | 2 |
| 2.8   | Earth Wire Set                      | 接地線セット           | 0 |
| 2.9   | LV Gabling Materials                | 低圧ケーブル材料         | 0 |
| 2.10  | Plate set                           | プレートセット          | 1 |

Preferable Stay Angle :  $30^{\circ} \leq \theta \leq 45^{\circ}$ 


# Fig. 2-2-3.24 34.5/11.5 kV Cross Pole (90 deg.)



| P/NO. | DESCR                          | IPTION           | QT |
|-------|--------------------------------|------------------|----|
| 1.1   | Distribution Transformer (DTr) | 配電用変圧器           | 0  |
| 1.2   | Auto Recloser                  | 自動再閉路装置          | 0  |
| 1.3   | Load Isolator                  | 負荷開閉器            | 0  |
| 1.4   | Cutout Switch with Fuse        | ヒューズ付きカットアウトスイッチ | 0  |
| 1.5   | Lightning Arrester             | 避雷器              | 0  |
| 1.6   | Main Distribution Board(MDB)   | 主分電盤             | 0  |
| 2.1   | Conductor (m)                  | 電線 (m)           | 0  |
| 2.2   | Connector                      | コネクター            | 0  |
| 2.3   | Steel Pole (15m)               | 鋼管柱 (15m)        | 1  |
| 2.4   | Strain Insulator Set           | 耐張碍子セット          | 6  |
| 2.5   | Pin Insulator set              | ビン碍子セット          | 1  |
| 2.6   | Crossarm set                   | 腕金セット            | 2  |
| 2.7   | Stay Wire Set                  | 支線セット            | 2  |
| 2.8   | Earth Wire Set                 | 接地線セット           | 0  |
| 2.9   | LV Cabling Materials           | 低圧ケーブル材料         | 0  |
| 2.10  | Plate set                      | プレートセット          | 1  |

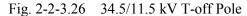

Preferable Stay Angle :  $30^{\circ} \leq \theta \leq 45^{\circ}$ 

Fig. 2-2-3.25 34.5/11.5 kV Section Pole



| P/NO. | DESCRIPTION                    |                  |   |
|-------|--------------------------------|------------------|---|
| 1.1   | Distribution Transformer (DTr) | 配電用変圧器           | 0 |
| 1.2   | Auto Recloser                  | 自動再開路装置          | 0 |
| 1.3   | Load Isolator                  | 負荷開閉器            | 0 |
| 1.4   | Cutout Switch with Fuse        | ヒューズ付きカットアウトスイッチ | 0 |
| 1.5   | Lightning Arrester             | 避雷器              | 0 |
| 1.6   | Main Distribution Board(MDB)   | 主分電盤             | 0 |
| 2.1   | Conductor (m)                  | 電線 (m)           | 0 |
| 2.2   | Connector                      | コネクター            | 0 |
| 2.3   | Steel Pole (15m)               | 銷管柱 (15m)        | 1 |
| 2.4   | Strain Insulator Set           | 耐張碍子セット          | 3 |
| 2.5   | Pin Insulator set              | ビン碍子セット          | 5 |
| 2.6   | Crossarm set                   | 腕金セット            | 3 |
| 2.7   | Stay Wire Set                  | 支線セット            | 1 |
| 2.8   | Earth Wire Set                 | 接地線セット           | 0 |
| 2.9   | LV Cabling Materials           | 低圧ケーブル材料         | 0 |
| 2.10  | Plate set                      | プレートセット          | 1 |

Preferable Stay Angle :  $30^{\circ} \leq \theta \leq 45^{\circ}$ 



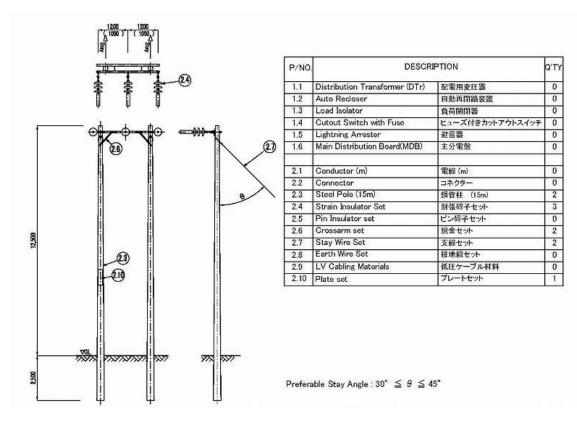
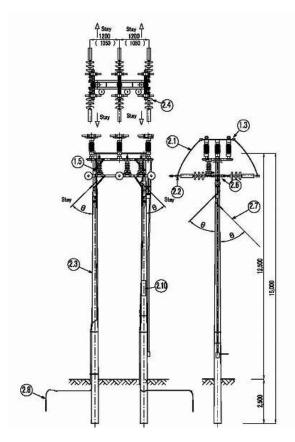




Fig. 2-2-3.27 34.5/11.5 kV Terminal Pole



| P/NO. | DESCRIP                                    | TION             | Q'TI |
|-------|--------------------------------------------|------------------|------|
| 1.1   | Distribution Transformer (DTr)             | 配電用変圧器           | 0    |
| 1.2   | Auto Recloser                              | 自動再開路装置          | 0    |
| 1.3   | Disconnecintg Switch with Operating Device | 断路器(操作装置付)       | 1    |
| 1.4   | Cutout Switch with Fuse                    | ヒューズ付きカットアウトスイッチ | 0    |
| 1.5   | Lightning Arrester                         | 避雷器              | 1    |
| 1.6   | Main Distribution Board(MDB)               | 主分電盤             | 0    |
| 2.1   | Conductor (m)                              | 電線 (m)           | 30   |
| 2.2   | Connector                                  | コネクター            | 3    |
| 2.3   | Steel Pole (15m)                           | 銷管柱 (15m)        | 2    |
| 2.4   | Strain Insulator Set                       | 耐張碍子セット          | 6    |
| 2.5   | Pin Insulator set                          | ビン碍子セット          | 0    |
| 2.6   | Crossarm set                               | 廃金セット            | 2    |
| 2.7   | Stay Wire Set                              | 支線セット            | 4    |
| 2.8   | Earth Wire Set                             | 接地線セット           | 3    |
| 2.9   | LV Cabling Materials                       | 低圧ケーブル材料         | 0    |
| 2.10  | Plate set                                  | プレートセット          | 1    |

Fig. 2-2-3.28 34.5/11.5 kV Disconnecting Switch Pole (Horizontal Type)

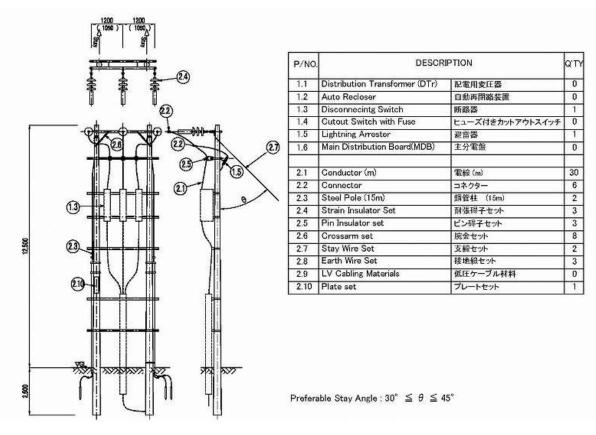



Fig. 2-2-3.29 34.5/11.5 kV Disconnecting Switch Pole (Vertical Dead End Type)

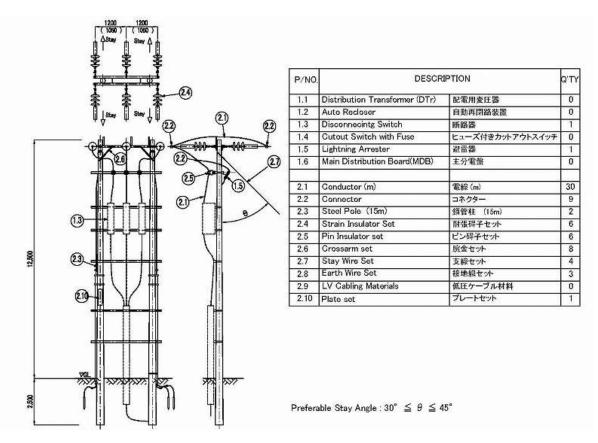



Fig. 2-2-3.30 34.5/11.5 kV Disconnecting Switch Pole (Vertical Section Type)

## 2-2-4 Implementation Plan

#### 2-2-4-1 Implementation Policy

The Project will be implemented within the framework of the grant aid scheme of the Government of Japan. Accordingly, the Project will only be implemented after its approval by the Government of Japan and the formal Exchange of Notes between the Government of Japan and the Government of Ghana. The basic issues and special points for consideration for the implementation of the Project are described below.

#### (1) Project Implementing Body

The organization responsible for the supervision of the project implementation process on the Ghanaian side will be the Ministry of Energy (MOE). The responsibility for the operation and maintenance of the new equipment and systems after the commencement of their operation will fall on the VRA which is the implementing body of the Project. The MOE and VRA must appoint a person to be responsible for the Project so that the Project smoothly progresses through close liaisoning and consultation with the Japanese Consultant and Contractor. The selected person will be required to explain the contents of the Project to staff of the MOE and VRA involved in the Project as well as residents at the Project sites with a view to facilitating their understanding of and cooperation for the Project.

(2) Consultant

In order to procure and install the necessary equipment for the Project, the Japanese Consultant will conclude a consultancy agreement with the VRA and will conduct the detailed design and supervision of the site work for the Project. The Consultant will also prepare the tender documents and will execute the prequalification and tender on behalf of the VRA, i.e. the project implementing body.

(3) Contractor

The Contractor, which will be a Japanese corporation selected by the Ghanaian side by means of open tender in accordance with Japan's grant aid scheme, will conduct the procurement and installation of the new equipment, etc. As it is deemed necessary for the Contractor to provide after-care in terms of the supply of spare parts and the repair of breakdowns in regard to the new equipment, the Contractor must give proper consideration to the establishment of a post-project liaison system.

(4) Necessity to Dispatch Japanese Engineers

Under the Project, the work to construct a substation at two sites will involve civil engineering work, building construction work and transforming system installation work. At the same time, other work will be conducted to construct some 34.4 km long sub-transmission and distribution lines (some 27.5 km in the Tamale area and some 6.9 km in the Sunyani area). As the new substations, sub-transmission lines and distribution lines must be connected to the existing transforming and distribution systems, it will be essential for all of the planned work to be well

coordinated. Given the fact that various types of work will be simultaneously conducted, it will be essential for the Contractor to dispatch site managers who thoroughly understand the requirements of Japan's grant aid scheme and who are capable of providing consistent management of and guidance on schedule control, quality control, work progress control and safety control.

#### 2-2-4-2 Implementation Conditions

(1) Conditions of the Construction Industry in Ghana

As described earlier in 2-2-1-4, there is more than one general construction company and electrical contractor in such large cities as Accra and Kumasi. It is, therefore, possible to procure ordinary workers, transport vehicles and construction machinery in Ghana and to employ a local company for the civil engineering work for the planned sub-transmission and distribution lines under the Project. Nevertheless, the dispatch of Japanese engineers to Ghana will be essential to ensure the scheduled completion date of the Project, quality control and safety control. The bulk volume of overhead cables, underground cables, electric poles and other items to be procured for the Project will also necessitate the presence of Japanese engineers to control their procurement and installation.

(2) Use of Local Materials

It is possible to procure such materials for the foundations as aggregates, cement and reinforcing bars in Ghana even though their quality control and delivery control are required. Many aid projects have, therefore, used locally procured materials. Locally procurable materials will be used as much as possible for the Project, partly for the fostering of local industries. However, the transforming and distribution equipment to be installed under the Project are not manufactured in Ghana and this must be imported from Japan or a third country.

(3) Safety and Security Measures

There are relatively few security problems in Ghana. As each Project site is located in the urban area of a local city, the site access is fairly good, making monitoring easy. One caution relating to the work is that the construction/installation work should not be conducted after sunset. Sufficient measures must also be taken to prevent the theft of equipment and materials and to ensure the safety of the workers at each work site.

(4) Tax Exemption Measures

To obtain the exemption of the equipment and materials to be procured under the Project from taxes (including VAT) in Ghana, the Contractor will, via the VRA, request that the MOE take the necessary measures. The MOE will then request that the Ministry of Finance issue a tax exemption certificate. In response to this request, the Ministry of Finance will issue the said certificate to its Customs Excise and Preventive Service (CEPS). (At the same time, a copy of this certificate will be issued to the MOE and the Contractor.) When the equipment, etc. procured for the Project arrives at a port or airport in Ghana, the contractor will attach a copy of the certificate to the shipping documents for submission to the CEPS. It is important to ensure that

this tax exemption measures is in place in time for the Project to avoid any delay of the implementation of the Project.

## 2-2-4-3 Scope of Works

For the implementation of the Project, the Japanese side will be responsible for the procurement, installation, testing, adjustment and necessary civil engineering work relating to the new 34.5 kV distribution boards at the existing BSP substations, new 34.5/11.5 kV substations, new 34.5 kV sub-transmission lines and new 11.5 kV distribution lines. The Ghanaian side will be responsible for the ground preparation for the new substations, weeding, etc. along the routes of the new sub-transmission and distribution lines and connection of the new lines with the existing distribution lines. Further details of the division of work between the two sides are given in Table 2-2-4.1.

| Na  | Itaan                                                                                                                       | Respons | ible Side | Remarks                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------------------------------------------------------------------------------------------|
| No. | Item                                                                                                                        | Japan   | Ghana     | Remarks                                                                                      |
| 1*  | (1) Securing of the necessary land (for the new substations, 34.5 kV sub-transmission lines and 11.5 kV distribution lines) |         | 0         | Including the land to install a new RMU on the provincial hospital premises                  |
|     | (2) Levelling, preparation, weeding and<br>removal of obstacles at the construction<br>sites                                |         | 0         | Including the temporary removal /relocation of market stalls along the new power line routes |
| 2*  | Erection of perimeter fences and gate at the new substations                                                                |         |           |                                                                                              |
|     | (1) Temporary fencing and gate during the construction work                                                                 | 0       |           |                                                                                              |
|     | (2) Permanent fencing, gate and guardhouse                                                                                  |         | 0         |                                                                                              |
| 3*  | Road work                                                                                                                   |         |           |                                                                                              |
|     | (1) Roads at the project sites                                                                                              | 0       |           |                                                                                              |
|     | (2) Access roads to the project sites                                                                                       |         | 0         |                                                                                              |
| 4*  | Auxiliary work for the new substations                                                                                      |         |           |                                                                                              |
|     | (1) Electrical work                                                                                                         |         |           |                                                                                              |
|     | a) Incoming line                                                                                                            |         | 0         | Including the installation of a circuit breaker and WH meter (only during construct stage)   |
|     | b) Indoor wiring                                                                                                            | 0       |           | ······································                                                       |
|     | (2) Water supply work                                                                                                       |         |           |                                                                                              |
|     | a) Service extension                                                                                                        |         | 0         |                                                                                              |
|     | b) Indoor plumbing and installation of the water tank                                                                       | 0       |           |                                                                                              |
|     | (3) Drainage work                                                                                                           |         |           |                                                                                              |
|     | a) Outside the Project sites                                                                                                |         | 0         |                                                                                              |
|     | b) At the Project sites                                                                                                     | 0       |           |                                                                                              |
|     | (4) Telephone work                                                                                                          |         | 0         | As required                                                                                  |
|     | (5) Furniture                                                                                                               |         | 0         |                                                                                              |
| 5*  | Transportation, customs clearance and taxation regarding equipment, etc.                                                    |         |           |                                                                                              |
|     | (1) Transportation to the port of landing in Ghana                                                                          | 0       |           |                                                                                              |
|     | (2) Tax exemption and customs clearance at the port of landing                                                              |         | 0         |                                                                                              |
|     | (3) Transportation from the port of landing<br>to the Project sites                                                         | 0       |           | Delivery destinations: equipment<br>yards near the Tamale and<br>Sunyani BSP Substations     |
|     | (4) Exemption or payment of VAT on                                                                                          |         | 0         |                                                                                              |

Table 2-2-4.1 Division of Works (Provisional)

| No  | Itom                                                                                                                                                                       | Respons | ible Side | Domostra                                                                                                                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| No. | Item                                                                                                                                                                       | Japan   | Ghana     | Remarks                                                                                                                            |
|     | locally procured materials                                                                                                                                                 |         |           |                                                                                                                                    |
| 6*  | Necessary measures to obtain the following<br>permits<br>- Permit for the installation work<br>- Permit for any entry to restricted areas                                  |         | 0         | These permits must be obtained<br>prior to the implementation of the<br>Project.                                                   |
| 7*  | Proper operation and maintenance of the<br>new facilities and equipment                                                                                                    |         | 0         | Including weeding and the removal of obstacles along the new power line routes                                                     |
| 8*  | Payment of expenses not included in the grant aid                                                                                                                          |         | 0         |                                                                                                                                    |
| 9*  | Payment of the following commissions based on the banking agreement                                                                                                        |         |           |                                                                                                                                    |
|     | (1) A/P-related commission                                                                                                                                                 |         | 0         | approx. ¥10,000 -                                                                                                                  |
|     | (2) Payment-related commission                                                                                                                                             |         | 0         | Some 0.1% of the total project cost                                                                                                |
| 10* | Appropriation and execution of the budget                                                                                                                                  |         | 0         | Some 0.176 of the total project cost                                                                                               |
| 10  | for environmental and social considerations<br>which are essential for project<br>implementation                                                                           |         | 0         |                                                                                                                                    |
| 11  | Securing of the land for temporary yards, fencing and gates                                                                                                                |         | 0         | Use of equipment yards near the<br>Tamale and Sunyani BSP<br>Substations                                                           |
| 12  | Securing of parking sites during the construction work                                                                                                                     |         | 0         |                                                                                                                                    |
| 13  | Site office                                                                                                                                                                | 0       |           | For the Japanese Contractor                                                                                                        |
| 14  | Proper storage and safety control at the temporary equipment yards                                                                                                         | 0       |           |                                                                                                                                    |
| 15  | Securing of the necessary work space and<br>traffic control along the routes of the<br>distribution lines                                                                  |         | 0         |                                                                                                                                    |
| 16  | Relocation of the existing overhead lines and<br>underground cables or pipes and obtaining<br>of the necessary permits (power, telephone,<br>water supply and sewer lines) |         | 0         | As required                                                                                                                        |
| 17  | Obtaining of a permit for the work to lay<br>underground cables across an existing road                                                                                    |         | 0         | As required                                                                                                                        |
| 18  | Securing of places for the disposal of surplus<br>soil and waste water from the construction<br>work                                                                       |         | 0         |                                                                                                                                    |
| 19  | Manufacture and procurement of equipment                                                                                                                                   | 0       |           |                                                                                                                                    |
| 20  | Installation, testing and adjustment of equipment                                                                                                                          | 0       |           | The Ghanaian side will loan the measuring instruments and maintenance tools provided under the Project to the Japanese Contractor. |
| 21  | Work for temporary power outages during the construction period                                                                                                            |         | 0         |                                                                                                                                    |
| 22  | Reconnecting of the existing cabling as part<br>of the work to install an additional 34.5 kV<br>distribution board at the Tamale and Sunyani<br>BSP Substations            |         | 0         | The terminal treatment materials<br>will be provided by the Japanese<br>side                                                       |
| 23  | Remodelling work of the cross arms and reconnection work of the jumper lines at the dual-line terminal pole at the connection point to the 11.5 kV Tolon feeder in Tamale  |         | 0         | Including the materials required for this work                                                                                     |
| 24  | Cabling work at the existing pole at the connection point to the 11.5 kV Cheshegu feeder in Tamale                                                                         |         | 0         | The cables and terminal treatment<br>materials will be provided by the<br>Japanese side.                                           |
| 25  | Final connection to the existing 11.5 kV distribution lines                                                                                                                | -       | 0         |                                                                                                                                    |
| 26  | Procurement of the materials required for the                                                                                                                              | 0       |           |                                                                                                                                    |

| No.  | Item                                                                                                                | Respons | ible Side | Remarks  |
|------|---------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|
| INO. |                                                                                                                     | Japan   | Ghana     | Keinaiks |
|      | above final connection work                                                                                         |         |           |          |
| 27   | Guidance on the operation and maintenance of the procured equipment                                                 | 0       |           |          |
| 28   | Improvement of the low voltage distribution<br>system along the target 11.5 kV distribution<br>lines of the Project |         | 0         |          |
| 29   | Safety and security arrangements for<br>Project-related personnel at the Project sites                              |         | 0         |          |
| 30   | Handling of and compensation for<br>consumers in regard to power outages<br>necessitated by the work                |         | 0         |          |
| 31   | Notification of the outage schedule and<br>safety measures to consumers during the<br>construction period           |         | 0         |          |

Note: O denotes the responsible side for the work in question. Numbered items marked with an asterisk (\*) are included in the M/D.

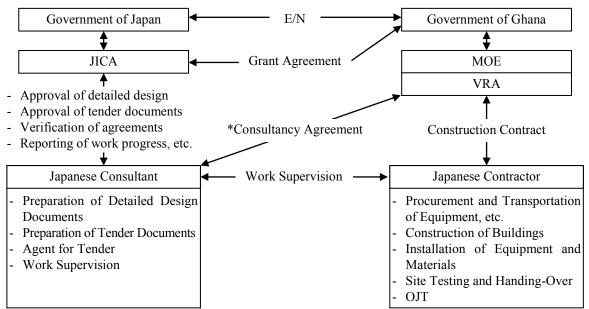
#### 2-2-4-4 Consultant Supervision

The Consultant will organize a project team to be responsible for the detailed design and work supervision in a consistent manner in accordance with Japan's grant aid scheme and the concept and policies of the outline design in order to smoothly proceed with the implementation of the Project. Given the geographical distance of the two Project sites and many connections between the new substations, sub-transmission lines and distribution lines and the existing transforming facilities, it will be essential for the work supervision to be strictly coordinated with the operation of the VRA. For this reason, the Consultant will appoint at least one full-time on-site engineer to supervise the schedule control, quality control, work progress control and safety control at the work supervision stage. The Consultant will also dispatch expert engineers in accordance with the progress of the installation, test running and adjustment and handover testing to supervise the work assigned to the Contractor. Furthermore, the Consultant will arrange for Japanese experts to attend the inspection of the equipment manufactured in Japan or a third country at the manufacturing and pre-shipment stages to prevent any equipment problems after the delivery of the equipment to Ghana.

(1) Supervision Principles

The Consultant will supervise the work progress to ensure punctual completion within the planned period and will supervise and guide the Contractor in order to fulfil the work quality, amount of work and delivery time indicated in the contract without accidents or other problems at the site. The main points to be noted for the supervisory work are described below.

1) Schedule Control


The Consultant will make weekly or monthly comparisons between the actual work progress and the contract schedule submitted by the Contractor at the time of signing the contract for the following items. If the Consultant foresees any delay of the work, he will issue a warning to the Contractor, requesting that the latter submit a remedial plan to ensure the completion of the construction work and equipment delivery within the planned work period. These comparisons will mainly be conducted for the following matters.

- Quantity of the work conducted (including the volume of manufactured equipment by the manufacturers and the civil engineering and building work completed at the Project sites)
- ② Quantity of the equipment and materials delivered (for the transforming and distribution equipment and civil engineering and building work materials)
- ③ Confirmation of the preparations for the temporary work and construction machinery
- ④ Work efficiency and actual number of engineers, technicians and workers at work
- 2) Safety Control

The Consultant will discuss and cooperate with the representative of the Contractor with a view to supervising the on-site construction and installation work to prevent any accidents to workers and third parties during the construction period with due attention paid to the following safety control principles.

- Establishment of safety control rules and appointment of a person responsible for work safety
- ② Prevention of accidents to workers by means of the periodic inspection of the construction machinery
- ③ Introduction of travelling routes for work vehicles and construction machinery, etc. and the thorough enforcement of slow driving on the site
- ④ Enforcement of welfare measures and days-off for workers
- (2) Project Implementation Regime

The project implementation regime, i.e. relationship between the parties involved in the implementation of the Project, including at the work supervision stage, is shown in Fig. 2-2-4.1.



The consultancy agreement and construction agreement must be verified by the JICA.

Fig. 2-2-4.1 Project Implementation Regime

## (3) Work Supervisors

In addition to the procurement and delivery of equipment and materials for the work to expand the existing BSP substations and to construct new substations, 34.5 kV sub-transmission lines and 11.5 kV distribution lines, the Contractor will undertake the associated building and civil engineering work using local construction companies as subcontractors. As the Contractor must make these subcontractors fully aware of and implement the schedule, quality and safety of the work as specified in the agreement, the Contractor will dispatch site supervisors with previous experience of similar work to advise the subcontractors.

In view of the scale and contents of the planned work involving transforming facilities and power lines, it is desirable that the Contractor assign those engineers listed in Table 2-2-4.2 as the minimum full-time on-site supervisors.

| Description          | No. | Work Details                                         | Dispatch Period          |
|----------------------|-----|------------------------------------------------------|--------------------------|
| Site Manager (Local  | 1   | General management of the on-site work,              | Entire construction      |
| Procurement Manager) |     | consultation and coordination with stakeholders,     | period                   |
|                      |     | obtaining of the necessary authorisation, etc., OJT, |                          |
|                      |     | equipment procurement and control, customs           |                          |
|                      |     | clearance, labour management and book-keeping        |                          |
| Inspector No. 1      | 1   | Checking and verification of the shop drawings for   | Drawing checking         |
|                      |     | the distribution equipment and witnessing of the     | and approval period;     |
|                      |     | equipment inspection                                 | equipment testing        |
|                      | 1   |                                                      | period                   |
| Inspector No. 2      | 1   | Checking and verification of the shop drawings for   | Drawing checking         |
|                      |     | the transforming equipment and witnessing of the     | and approval period;     |
|                      |     | equipment inspection                                 | equipment testing period |
| Inspector No. 3      | 1   | Checking and verification of the building drawings   | Drawing checking         |
|                      | 1   | checking and vermeation of the bundling drawings     | and approval period      |
| Assistant Local      | 1   | Assistant site manager (building work) (substation   | Building                 |
| Procurement Manager  |     | building in general) and coordination with local     | construction period      |
| (Building Work)      |     | subcontractors                                       |                          |
| Assistant for Site   | 2   | Assistance for the site manager                      | During the stay of       |
| Manager (Local       |     |                                                      | the on-site site         |
| Employee)            |     |                                                      | manager                  |
| Assistant for Local  | 2   | Assistance for the local procurement manager         | Building                 |
| Procurement Manager  |     | (building work) at the UDS and Kotokrom Primary      | construction period      |
| (Local Employee)     |     | Substation sites                                     |                          |
| Office Boy (Local    | 2   | Miscellaneous work                                   | Entire construction      |
| Employee)            |     |                                                      | period                   |

 Table 2-2-4.2
 Engineers to be Dispatched by the Contractor

## 2-2-4-5 Quality Control Plan

The Consultant will supervise the Contractor in regard to the following items so as to adhere to the quality and progress of the work for the facilities and equipment indicated in the contract documents (technical specifications and detailed design drawings, etc.) If the Consultant believes that the quality or work progress does not meet the requirements, he will demand that the Contractor correct, change or modify the situation.

- ① Checking of the shop drawings and specifications for the equipment
- ② Checking of the factory inspection results for the equipment or attendance at the shop inspection
- ③ Checking of the packaging, transportation and temporary on-site storage methods
- ④ Checking of the working drawings for the equipment and installation manuals
- ⑤ Checking of the test running, adjustment and inspection manuals
- Supervision of the site installation of the equipment and attendance at the test running and inspection
- ⑦ Comparison between the equipment installation and building work drawings and the completed work

#### 2-2-4-6 Equipment Procurement Plan

None of the planned transforming equipment to be procured and installed under the Project is manufactured in Ghana and it will, therefore, be necessary for this equipment to be procured in Japan and/or such European countries as the UK, France, Italy, Denmark or Germany. Although the VRA has recently procured equipment made in India or China, it still places much trust in Japanese and European products. While some European transforming equipment manufacturers have an agent in Ghana, few manufacturers provide an after-service, including a quick response to accident or repair needs and the swift supply of spare parts, for high voltage transforming equipment. This situation must be taken into consideration when deciding the procurement source(s) for the transforming equipment for the Project. The said decision must also take the ease of operation and maintenance of the selected equipment by engineers of the VRA into consideration. One critical point to be considered is that the VRA, which will be responsible for the operation and maintenance of the new facilities and equipment, is familiar with the operation and maintenance of Japanese equipment as the transformers and distribution equipment procured for past Japanese grant aid projects are still soundly operating today. Moreover, the VRA has expressed its trust in the excellent performance of the principal transforming equipment manufactured in Japan and the good after-service provided by Japanese manufacturers. For this reason, the VRA hopes that Japanese equipment will be procured for the Project. No special problems regarding the transportation and installation of heavy equipment are anticipated as a 30 ton class crane and trailer can be leased locally.

Based on the above considerations, the following procurement sources are judged to be appropriate for the equipment and materials to be used under the Project.

(1) Equipment and Materials for Local Procurement

Construction equipment and materials: cement, sand, aggregates for concrete, concrete blocks, bricks, reinforcing bars, timber, petrol, diesel oil, work vehicles, crane, trailer and equipment and materials for temporary structures

- (2) Equipment for Procurement in Japan
  - 1) Transforming Equipment

34.5/11.5 kV transformers, 34.5/11.5 kV distribution boards and others

2) Distribution Materials

Materials for the 34.5/11.5 kV sub-transmission and 11.5 kV distribution lines (steel poles, insulators, cross arms, grounding system and others)

(3) Materials for Third Country Procurement (DAC and/or ASEAN Countries)

Power cables, underground cables, RMU and other transmission/distribution-related products

## 2-2-4-7 Operational Guidance Plan

The basic principle for guidance on the initial operation and maintenance method of the equipment procured under the Project is that instructors dispatched by the equipment manufacturer(s) will provide OJT using the operation and maintenance manuals for the equipment in question. It will be necessary for the VRA to discuss the matter with the Consultant and the Contractor and to select participating engineers for OJT for the smooth implementation of the said guidance. It will be necessary for these selected engineers to spread their newly acquired knowledge and skills through OJT to other technical staff in order to improve the maintenance capability of the VRA. As the testing and adjustment of the transforming and distribution equipment during and after installation will require knowledgeable engineers. The dispatch of Japanese engineers will, therefore, be essential to conduct quality control and schedule control and to provide technical guidance on the new equipment.

#### 2-2-4-8 Soft Component Plan

For the operation and maintenance of the distribution equipment to be procured and installed by the Japanese side under the Project, the VRA possesses the basic technical skills and necessary manpower and no special difficulties are anticipated for the VRA to conduct the maintenance work in question. In the case of the substation equipment, the operation and maintenance techniques can be transferred to the VRA (Project implementing body) through OJT which will include the test operation and adjustment of the equipment and systems during the construction period. Because of this, it is judged that the inclusion of a soft component in the Project is unnecessary.

#### 2-2-4-9 Implementation Schedule

The project implementation schedule shown in Fig. 2-2-4.2 is adopted to comply with the grant aid scheme of the Government of Japan.

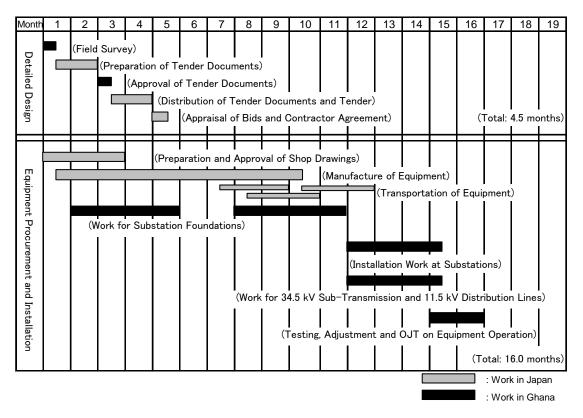



Fig. 2-2-4.2 Project Implementation Schedule

### 2-3 Obligations of the Recipient Country

In addition to the undertakings described in 2-2-4-3 – Scope of Works, the Ghanaian side will be responsible for the matters listed below.

- (1) Provision of the necessary data and information for the Project
- (2) Appointment of local engineers to receive training on operation and maintenance skills regarding the equipment to be installed under the Project and witnessing of the progress of the construction work and quality inspection of the equipment, etc.

#### 2-4 Project Operation Plan

#### 2-4-1 Basic Policy

The appropriate operation and maintenance of the transforming, transmission and distribution equipment and facilities as well as the preservation of their working environment are essential to improve the reliability of power supply to existing and new customers in the areas affected by the new equipment and facilities installed under the Project. The adoption of adequate preventive maintenance for the newly procured and installed equipment and newly constructed facilities aimed at improving their reliability, safety and efficiency is desirable to reduce the number of possible breakdowns. The basic concept of this preventive maintenance for the transforming, transmission and distribution facilities is shown in Fig. 2.4.1-1.

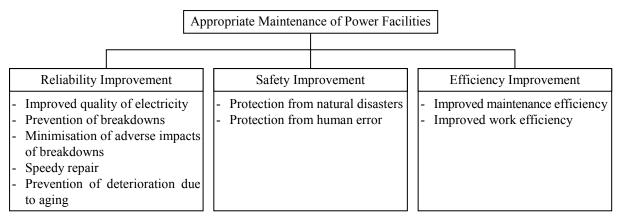



Fig. 2-4-1-1 Basic Concept of the Maintenance of the Transforming, Transmission and Distribution Facilities

The dispatch of engineers by the Japanese Contractor is planned as part of the Project to conduct OJT during the installation and test operation periods on the operation and maintenance of the new transforming, sub-transmission and distribution equipment and systems. With the provision of the necessary spare parts, testing instruments, maintenance tools and O & M manuals by the Japanese side along with proposals for the post-Project operation and maintenance system, the anticipated effects of OJT will be fully realised.

The operation and maintenance of the new equipment and systems (facilities) will be conducted as shown in Table 2.4.1-1 by local offices of the VRA which is based in Tamale. As additional workers will be recruited to match the construction of the new substations of the Project, the organization and manpower of the VRA are expected to be adequate for the management of its power supply business.

| VRA Section               | Scope of Responsibility                                                                                                                                  | Current Strength of<br>Maintenance Staff | Planned Recruitment of<br>Additional Staff                                 |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|
| VRA-NED<br>Head Office    | Overall control of the distribution system<br>in the four northern regions, including<br>the Tamale and Sunyani areas                                    | None                                     | None                                                                       |
| VRA-NED<br>Tamale Office  | <ul> <li>Tamale BSP Substation</li> <li>New UDS Primary Substation</li> <li>34.5 kV sub-transmission and 11.5 kV distribution lines</li> </ul>           | 12                                       | 6<br>(3 operators, 2 guardsmen<br>and 1 cleaner for the new<br>substation) |
| VRA-NED<br>Sunyani Office | <ul> <li>Sunyani BSP Substation</li> <li>New Kotokrom Primary Substation</li> <li>34.5 kV sub-transmission and 11.5<br/>kV distribution lines</li> </ul> | 11                                       | 6<br>(as above)                                                            |

Table 2-4-1.1Post-Project Operation and Maintenance System

## 2-4-2 Regular Check Items

(1) Regular Checking of Transforming Equipment

The standard regular check items for the transforming equipment to be procured and installed under the Project are shown in Table 2-4-2.1. As the table shows, the checking of transforming equipment is classified as (i) "patrolling checking" which is conducted daily using the human senses to check for any abnormal heating, sound or other of the equipment, (ii) "standard checking" to check located sections beyond the daily patrolling checking, including the fastening conditions of bolts, etc. of the equipment and the cleanliness of or damage to the surface of insulated items, etc. and (iii) "detailed checking" to check the proper functioning of the interlocking mechanism between equipment and the accuracy of instruments, etc.

Standard checking is conducted every one or two years while detailed checking is conducted approximately every four years.

The regular replacement of certain parts at the time of either standard checking or detailed checking is desirable based on confirmation of the characteristics as well as frequency of use of such parts. These include the fuses, measuring instruments and relays, etc. installed inside the distribution panels and others which are liable to performance deterioration, including the insulation performance, abrasion of the contact points and changes of the characteristics.

| Subject       | Check Item (Method)                                      | Patrolling | Standard | Detailed |
|---------------|----------------------------------------------------------|------------|----------|----------|
| Subject       | Check Reni (Method)                                      | Checking   | Checking | Checking |
| Equipment     | Switchgear indicator and indication light                | 0          | 0        |          |
| Outlook       | Abnormal sound or odour                                  | 0          | 0        |          |
|               | Thermal discolouration of terminals                      | 0          | 0        |          |
|               | Cracks, damage or staining of bushing and insulator      | 0          | 0        |          |
|               | Rust on casings and frames                               | 0          | 0        |          |
|               | Abnormal temperature (thermometer)                       | 0          | 0        |          |
|               | Fastening of bushing terminals (mechanical check)        | 0          | 0        |          |
| Operating     | Correct indication by various instruments                | 0          | 0        | 0        |
| Apparatus and | Counter indication                                       |            | 0        | 0        |
| Control       | Condensation, rust and damage inside consoles and        |            | 0        | 0        |
| Panels        | panels                                                   |            |          |          |
|               | State of oil supply and cleaning                         |            | 0        | 0        |
|               | Fastening of cable terminals                             | 0          | 0        | 0        |
|               | State of switchgear indication                           |            | 0        | 0        |
|               | Air leakage and oil leakage                              |            | 0        | 0        |
|               | Pressure before and after operation (air pressure, etc.) |            | 0        | 0        |
|               | Working of instruments                                   |            | 0        | 0        |
|               | Rust, deformation and/or damage to springs               | 0          | 0        | 0        |
|               | Abnormality of fastening pins                            |            | 0        | 0        |
|               | Auxiliary switchgear and relays                          |            | 0        | 0        |
|               | DC control power source                                  | 0          |          |          |
| Measurement/  | Measurement of insulation resistance                     |            | 0        | 0        |
| Testing       | Measurement of control resistance                        |            |          | 0        |
|               | Breaker of heater cable                                  |            | 0        | 0        |
|               | Testing of relay function                                |            | 0        | 0        |

 Table 2-4-2.1
 Regular Check Items for Power Equipment

(2) Regular Checking of Sub-Transmission and Distribution Lines

One of the most important services for consumers is the maintenance of sub-transmission and distribution lines by means of the detection of breakdowns and damage through regular patrols and immediate repair. When there is a risk of a grounding incident due to the possible contact of a sub-transmission or distribution line with a tree, the preventive measure of cutting such tree or branch must be taken. The major check items for patrolling checking are listed below.

- ① Cutting of power cables
- ② Damage to insulators
- ③ Contact between power cables and trees
- ④ Damage to electric poles
- ⑤ Tilting of electric poles
- © State of installation and operation, including undesirable oil leakage, of distribution transformer
- ⑦ Conditions of various switches

#### 2-4-3 Spare Parts Procurement Plan

(1) Classification of Spare Parts

The spare parts to be procured under the Project are classified in the following two categories.

| 1 | Standard spare parts      | : spare parts which are required when parts of the equipment are aged or damaged                                                                                                              |
|---|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Emergency spare equipment | : equipment of which the urgent replacement is required at the<br>time of an emergency to prevent the stoppage of the<br>transmission or distribution system due to an equipment<br>breakdown |

(2) Subject Equipment and Systems for the Supply of Spare Parts

The standard spare parts and emergency spare equipment to be procured and provided under the Project will serve the following equipment and systems.

- ① 34.5/11.5 kV substation equipment
- ② 34.5 kV sub-transmission system
- ③ 11.5 kV distribution system
- (3) Selection Criteria by Category
  - 1) Standard Spare Parts

These are parts of which the replacement is regularly required due to their deterioration through routine usage and their quantities will be determined based on the perceived near-term need.

#### 2) Emergency Spare Equipment

This category represents equipment of which damage due to an unforeseeable cause can cripple stable power supply operation as quick on-site repair is quite difficult. The reason for the selection of such equipment in the Project is described below.

- The vacuum circuit breaker protects the power system from abnormal current or voltage associated with lightning impulse, short-circuiting, grounding and switching impulse. Once it breaks down, it must be immediately replaced. The Project sites experience thunderstorms on some 40 ~ 50 days a year (according to Weatherbase, a website run by Canty and Associates LLC), indicating a relatively high occurrence of thunderstorms. When system operation continues during the thunderstorm season without the replacement of broken down protective equipment, a lightning strike could damage the transformers on the system, risking the occurrence of a fire which causes an outage over a wide area. The prevailing condition in Ghana is that the quick repair of broken down equipment on-site is difficult because of the non-existence of a stock of replacement equipment. This situation makes it essential for the Japanese side to procure spare vacuum circuit breakers so that the VRA-NED can quickly replace them to restore the normal power supply.
- ② There are two ways to replace broken down vacuum circuit breakers: (a) replacement of the entire equipment using the emergency spare equipment option and (b) replacement of all affected components, including coils and packings, using the standard spare parts option. As option (b) demands overhauling and testing skills, option (a) should be appropriate for the Project in view of the current technical capability of the VRA-NED.
- (4) Budgetary Appropriation for Spare Parts

The current plan is to procure the minimum range and quantity of spare parts and spare equipment to cover one year's operation of the new equipment and systems. As such, the VRA-NED will be required to appropriate the necessary budget for the purchase of the required spare parts in the second year of operation onwards by the end of the first year of operation.

(5) Testing Instruments and Maintenance Tools

The testing instruments, maintenance tools, spare parts and emergency spare equipment listed in Table 2-4-3.1 will be procured under the Project to ensure the adequate operation and maintenance of the newly installed transformation and distribution equipment and systems. In view of the fact that the operation and maintenance of the new equipment/systems will be conducted by two local VRA-NED offices which are located at a distance of five hours driving, it will be practically impossible for these two offices to share the listed instruments, maintenance tools and other items. Accordingly, the necessary quantity of each item will be procured for each office.

| Item Testing Instruments                                               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tamale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sunyani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bunyum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dil insulation tester                                                  | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cable fault detector (   )                                             | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nstrument calibration tester                                           | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Analogue tester                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Electroscope (AC3 ~ 35 kV)                                             | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Electroscope (AC 600 V)                                                | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Megohm meter (500 V)                                                   | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Megohm meter (1,000 V)                                                 | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DC withstand voltage tester ( $0 \sim 100 \text{ kV}$ )                | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AC withstand voltage tester $(0 \sim 50 \text{ kV})$                   | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Simple grounding resistance tester                                     | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Digital multimeter                                                     | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Clamp-type tester                                                      | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Maintenance Tools                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Compressor (with dies)                                                 | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Crimp tools $(10 \sim 250 \text{ mm}^2)$                               | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cable cutter                                                           | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Electrical work tools                                                  | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lifting for the drawing out of 36 kV and 12 kV circuit breakers        | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Forch for terminal cable treatment                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fruck with aerial bucket (                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Standard Spare Parts                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| For 34.5/11.5 kV transformer                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Gasket                                                                 | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Buchholz relay                                                         | Set*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| For 34.5 kV distribution board                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                        | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u> </u>                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Various fuses                                                          | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 411045 14505                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Various MCCBs                                                          | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Various MCCBs<br>Various protection relays                             | Set Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Various MCCBs<br>Various protection relays<br>Various auxiliary relays | Set<br>Set<br>Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                        | Single phase protection relay tester<br>Instrument calibration tester<br>Analogue tester<br>Phase indicator<br>Electroscope (AC 3 ~ 35 kV)<br>Electroscope (AC 600 V)<br>Megohm meter (1,000 V)<br>OC withstand voltage tester (0 ~ 100 kV)<br>AC withstand voltage tester (0 ~ 50 kV)<br>Simple grounding resistance tester<br>Digital multimeter<br>Clamp-type tester<br>Maintenance Tools<br>Compressor (with dies)<br>Trimp tools (10 ~ 250 mm <sup>2</sup> )<br>Cable cutter<br>Electrical work tools<br>Lifting for the drawing out of 36 kV and 12 kV circuit breakers<br>Forch for terminal cable treatment<br>Fruck with aerial bucket ( )<br>Standard Spare Parts<br>For 34.5/11.5 kV transformer<br>Tasket<br>Buchholz relay<br>Dil temperature gauge<br>Dil level gauge<br>4.5 kV bushing<br>1.5 kV distribution board<br>Various lamps (100%)<br>Various meters<br>Various meters<br>Various woltage transformers for instruments<br>Various lamps (100%)<br>Various lamps (100%)<br>Various lamps (100%)<br>Various lamps (100%) | Single phase protection relay testerSet*nstrument calibration testerSet*halogue testerSet*Phase indicatorSet*Electroscope (AC 3~ 35 kV)Set*Electroscope (AC 600 V)Set*Megohm meter (500 V)Set*Megohm meter (1000 V)Set*OC withstand voltage tester (0~ 100 kV)Set*Megohm meter (1000 V)Set*OC withstand voltage tester (0~ 50 kV)Set*Simple grounding resistance testerSet*Digital multimeterSet*Clamp-type testerSet*Campressor (with dies)Set*Crimp tools (10~ 250 mm²)Set*Cable cutterSet*Cable cutterSet*Cifting for the drawing out of 36 kV and 12 kV circuit breakersSet*Circle for terminal cable treatmentSet*Truck with aerial bucket ()UnitStandard Spare PartsSet*Dil level gaugeSet*Dil level gaugeSet*Or 34.5 kV distribution boardSetVarious fusesSetVarious fusesSetVarious auxiliary relaysSetVarious auxiliary relaysSetVarious auxiliary relaysSetVarious auxiliary relaysSetVarious current transformers for instrumentsSetVarious switchesSetVarious switchesSetVarious lamps (100%)SetVarious lamps (100%)Set | Single phase protection relay testerSet*1nstrument calibration testerSet*1Analogue testerSet*1Phase indicatorSet*1Electroscope (AC 3 $\sim$ 35 kV)Set*1Electroscope (AC 600 V)Set*1Megohm meter (1000 V)Set*1Megohm meter (1000 V)Set*1OC withstand voltage tester (0 $\sim$ 100 kV)Set*1CW withstand voltage tester (0 $\sim$ 50 kV)Set*1DC withstand voltage tester (0 $\sim$ 50 kV)Set*1Digital multimeterSet*1Digital multimeterSet*1Campe-stor (with dies)Set*1Crimp tools (10 $\sim$ 250 mm²)Set*1Camperssor (with dies)Set*1Crimp tools (10 $\sim$ 250 mm²)Set*1Cather and toolsSet*1Crimp tools (10 $\sim$ 250 mm²)Set*1Cather and toolsSet*1Crimp tools (10 $\sim$ 250 mm²)Set*1Crinp tools (10 $\sim$ 250 mm²)Set*1Crinp tools (10 $\sim$ 250 mm²)Set*1Sadard Spare PartsSet*1Forch for terminal cable treatmentSet*1Fruck with aerial bucket ( ))Unit1Standard Spare PartsSet*1Dil temperature gaugeSet*1Dil temperature gaugeSet*1Dil temperature gaugeSet*1Various fusesSet |

Table 2-4-3.1Spare Parts, Testing Instruments and Maintenance Toolsto be Procured under the Project

| NI.  | Item                                         | TT.: 4 | Quantity |         |
|------|----------------------------------------------|--------|----------|---------|
| No.  | Item                                         | Unit   | Tamale   | Sunyani |
| (7)  | Various meters                               | Set    | 1        | 1       |
| (8)  | Various current transformers for instruments | Set    | 1        | 1       |
| (9)  | Various voltage transformers for instruments | Set    | 1        | 1       |
| (10) | Various switches                             | Set    | 1        | 1       |
| 3.4  | For low voltage board                        |        |          |         |
| (1)  | Various lamps (100%)                         | Set    | 1        | 1       |
| (2)  | Various fuses                                | Set    | 1        | 1       |
| (3)  | Various MCCBs                                | Set    | 1        | 1       |
| (4)  | Various meters                               | Set    | 1        | 1       |
| (5)  | Various protection relays                    | Set    | 1        | 1       |
| 3.5  | For DC power system                          |        |          |         |
| (1)  | Various lamps (100%)                         | Set    | 1        | 1       |
| (2)  | Various fuses                                | Set    | 1        | 1       |
| (3)  | Various MCCBs                                | Set    | 1        | 1       |
| (4)  | Various meters                               | Set    | 1        | 1       |
| (5)  | Various control boards                       | Set    | 1        | 1       |
| (6)  | Thyristor                                    | Set    | 1        | 1       |
| (7)  | Silicon dropper                              | Set    | 1        | 1       |
| 3.6  | Terminal cable treatment materials           |        |          |         |
| (1)  | For 36 kV outdoor cable                      | Set*   | 1        | 1       |
| (2)  | For 36 kV indoor cable                       | Set*   | 1        | 1       |
| (3)  | Indoor socket type for 36 kV GIS             | Set*   | 1        | 1       |
| (4)  | For 12 kV outdoor cable                      | Set*   | 1        | 1       |
| (5)  | For 12 kV indoor cable                       | Set*   | 1        | 1       |
| (6)  | Indoor socket type for 12 kV RMU             | Set*   | 1        | 1       |
| 4.   | Emergency Spare Equipment                    |        |          |         |
| (1)  | 36 kV circuit breaker                        | Set*   | 1        | 1       |
| (2)  | 12 kV circuit breaker                        | Set*   | 1        | 1       |

Note: \* means a set of parts, etc. to service three phases.

### 2-5 Project Cost Evaluation

## 2-5-1 Initial Cost Estimation

In the case of the actual implementation of the Project under the grant aid scheme of the Government of Japan, The Ghanaian side is expected to pay the costs of its undertakings as listed below.

Estimated overall cost for the Ghanaian side: 764,400 GHc (= ¥44.17 million)

- $\bigcirc$  Ground levelling and preparation, weeding and removal of 254,000GHc (= \$14.68 million) obstacles at the Project sites
  - Tamale : 122,000GHc
     Sunyani : 132,000GHc
- $\odot$  Construction of permanent fencing and gate at the new 132,000GHc (= $\pm$ 7.63 million) substations

| • | Tamale  |   | 65,000GHc |
|---|---------|---|-----------|
| • | Sunyani | : | 67,000GHc |

| ③ Const                             | ruction of an external access roa                                                                    | ıd          |                                | 69,000GHc        | (=¥3.99 million)                        |
|-------------------------------------|------------------------------------------------------------------------------------------------------|-------------|--------------------------------|------------------|-----------------------------------------|
| • Tan                               | nale :                                                                                               | 51,000G     | Hc                             |                  |                                         |
| • Sun                               | yani :                                                                                               | 18,000G     | Hc                             |                  |                                         |
| <ul><li>④ Auxil<br/>(wate</li></ul> | iary work for new substation r supply and drainage work)                                             |             |                                | 171,000GHc       | (=¥9.88 million)                        |
| • Tan                               | nale :                                                                                               | 87,000G     | Hc                             |                  |                                         |
| • Sun                               | yani :                                                                                               | 84,000G     | Hc                             |                  |                                         |
| ⑤ Opera                             | ation and maintenance of new eq                                                                      | uipment a   | nd systems                     | 103,200GHc       | (=¥5.96 million)                        |
| • Gua                               | erator (1,000 GHc x 12 months x<br>ardsman (500 GHc x 12 months x<br>aner (300 GHc x 12 months x 2 s | x 2 x 2 sit | es = 24,000  GH                | <i>,</i>         |                                         |
| © Paym                              | ent of bank commission based o                                                                       | n banking   |                                | 35,200GHc        | (=¥2.03 million)                        |
| • Pay                               | commission (200GHc)<br>ment commission (35,000GHc)<br>ion Conditions>                                |             |                                |                  |                                         |
| 1                                   | Date of estimation                                                                                   | :           | February, 201                  | 11               |                                         |
| $\bigcirc$                          | Foreign exchange rates                                                                               | :           | US\$ $1 = $ ¥84.               |                  |                                         |
|                                     |                                                                                                      |             | (TTS average                   | e from Aug., 201 | 0 to Jan., 2011)                        |
|                                     |                                                                                                      |             | $1 \text{ GHc} = {{{{}{}{}{}{$ | .80              |                                         |
|                                     |                                                                                                      |             | · •                            | •                | 0 to Jan., 2011)                        |
|                                     |                                                                                                      |             | E1 = ¥112.73                   |                  | 0.4 1 0011)                             |
| 3                                   | Procurement and construction                                                                         | norioda ·   | · –                            | -                | 0 to Jan., 2011)<br>ent procurement and |
| 9                                   |                                                                                                      | perious .   |                                |                  | hown in the project                     |
|                                     |                                                                                                      |             | implementati                   |                  | nown in the project                     |
| 4                                   | Other                                                                                                | :           | *                              |                  | ented in accordance                     |
|                                     |                                                                                                      |             | with the gran<br>Japan         | it aid scheme of | f the Government of                     |
|                                     |                                                                                                      |             | I                              |                  |                                         |

## 2-5-2 Operation and Maintenance Cost

A total of six operators will be assigned to the two new substations (three per substation) to be constructed under the Project, incurring an annual personnel cost of some 72,000 GHc (103,200 GHc a year, including the wages of guardsmen and cleaners). Meanwhile, the new 34.5 kV sub-transmission lines and 11.5 kV distribution lines will be maintained by the existing maintenance staff of the VRA-NED. It will be necessary for the VRA to set aside some 5,000 GHc a year in its budget to maintain the stock of spare parts listed in 2-4-3.1 for the reliable operation of the new substations. As the maintenance and repair budget of the VRA-NED Head Office in 2010 was approximately 2,460,000 GHc, such a small additional expense for the maintenance of the new substations should not pose any financial problem for the VRA.

# CHAPTER 3 PROJECT EVALUATION

#### 3-1 Preconditions

The preconditions for implementation of the Project are describe in follows, such as land acquisition of new sub-transmission lines and substations, the environmental permit for the Project, and etc. There are no particular issues for satisfaction for the preconditions, because the Ghanaian side has experiences of implementation of the Japan's grant aid projects.

- 1) New 34.5/11.5kV substations will be constructed in public areas not in use. The Ghanaian side shall obtain permits for use of these public areas from concerned agencies
- 2) The Ghanaian side is required to obtain permits from the Urban Planning Bureau of the relevant municipal authorities and land owners for the use of the road reserve and boundary zone of the military land along the planned routes of the new 34.5 kV sub-transmission and 11.5 kV distribution lines.
- 3) The Ghanaian side is required to obtain a permit to use the wayleave for the existing 161 kV transmission line to accommodate the new 34.5 kV sub-transmission line from GRIDCo which owns the said 161 kV transmission line.
- 4) The Ghanaian side is required to register the Project with the Environmental Protection Agency (EPA) and to obtain an EP in accordance with the relevant procedure (including the submission of a preliminary environmental report (PER)).

#### 3-2 Necessary Inputs by the Recipient Country

The Ghanaian side must fully meet the following requirements.

- (1) Prior to the Commencement of the Construction Work
  - The Ghanaian side is required to appropriate the necessary budget to cover the Project cost for the Ghanaian side without delay so that the work to be completed by the Ghanaian side before the start of the Japanese work will be duly completed.
  - 2) The Ghanaian side is required to complete the weeding and removal of obstacles along the planned routes of the new 34.5 kV sub-transmission and 11.5 kV distribution lines before the start of the Japanese work.
  - 3) The Ghanaian side is required to consult and coordinate with the Japanese Contractor and local stakeholders whenever necessary to check any impacts on or interference to underground public utility systems (water supply pipes, sewers and broadcasting/telephone

lines) on and around the planned routes of the new 34.5 kV sub-transmission and 11.5 kV distribution lines before the start of the Japanese work.

- 4) The Ghanaian side is required to check any interference between the dual carriageway, which is being planned by the Urban Planning Bureau of the Sunyani Municipal Authority, and the locations of the new electric poles for the 11.5 kV distribution line as soon as the point where this distribution line crosses the said dual carriageway has been finalised. The Ghanaian side is also required to convey the check results to the Japanese side. (It has been confirmed that the planned span of 90 m for the 11.5 kV distribution lines to be newly constructed under the Project is sufficiently wide for the planned width of some 25 m for the dual carriageway in question.)
- (2) During the Construction Work and After the Commencement of Operation
  - 1) In line with the construction schedule for the primary substations, sub-transmission lines and distribution lines for which equipment is procured and installed by the Japanese side, the Ghanaian side is required to fulfil its obligations, including reconnection of the 34.5 kV feeders, connection of the 11.5 kV feeders at their terminals and the planning and execution of power outages. The Ghanaian side is also required to appoint an engineer in charge for each Project site and to facilitate the smooth implementation of the construction work through the preparation and execution of a schedule plan, personnel plan, equipment procurement plan and other relevant plans.
  - 2) The distribution system in the service area of the VRA-NED consists of three modes of power supply: direct supply using a 34.5 kV sub-transmission line from a BSP, supply using an 11.5 kV distribution line and supply from a BSP via a primary substation. There is no uniformity of the power distribution method. One example is the use of different neutral grounding systems even for the same voltage class. Given the prospect of a massive increase of the power demand and the construction of many more primary substations in the coming years, there is a strong need for unification of the system protection methods for each voltage class.
  - 3) The wire connection method used for the transformers at the existing BSPs is different from that used for the transformers of the new primary substations to be constructed under the Project, producing different phase cycles. In view of this, the Ghanaian side is required to completely separate the distribution systems fed by these two types of transformers to prevent their mixing up through strict system control.
  - 4) The service area of the VRA-NED has seen a major increase of the power demand due to an increase of the power consumption per user and an increase of the number of consumers reflecting the economic growth in the area. Accordingly, the amount of electricity sold has been increasing. Nevertheless, the financial performance of the VRA-NED has been declining, recording a growing deficit, indicating that there is a problem in regard to the tariff. Since 2006, the electricity charge has been increased in several stages with the approval of the Public Utilities Regulatory Commission (PURC). Further revision of the

tariff will be required in the coming years to ensure the self-reliant and sustainable development of the power sector in Ghana.

- 5) A range of equipment, etc. to construct substations, sub-transmission lines and distribution lines will be procured under the Project to meet the assumed power demand up to five years from the commencement of their operation. Nevertheless, the Ghanaian side is required to review the estimated power demand from time to time to prepare a plan for the installation of additional distribution transformers and to expand the systems after the completion of the Project together with allocation of the necessary budget.
- 6) To reduce the number of accidents involving distribution cables to ensure a stable power supply, the Ghanaian side is required to conduct regular patrols with a view to preventing damage to the electric poles and cables due to cutting and open burning along the distribution routes by local residents.
- 7) The Ghanaian side is required to swiftly appoint engineers to participate in the OJT under the Project so that these engineers can spread their newly acquired knowledge and skills to other non-participating engineers.
- 8) The Ghanaian side shall undertake the procedures concerned for tax exemption for the materials and equipment for the Project and giving conveniences for persons concerned from Japan

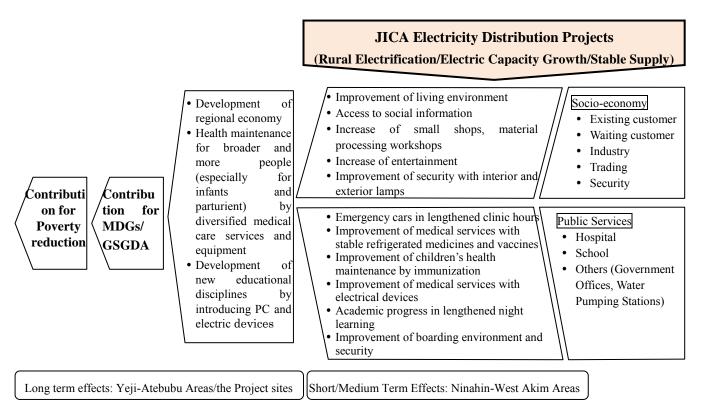
## 3-3 Important Assumptions

The following assumptions are crucial to produce and sustain the expected outputs and effects of the Project.

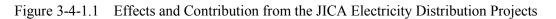
- (1) Regarding the Overall Goal
  - The rural electrification policy of Ghana will not be changed.
  - The politics and economy of Ghana will remain stable.
- (2) Regarding the Project Targets
  - The operation and maintenance of the new equipment and systems will be continually conducted in a proper manner.
  - The collection of the service charge and financial support will continue.
  - The security of the new facilities will be maintained.
- (3) Regarding the Project Outputs
  - The generating facilities will remain fully operational.
  - The operation and maintenance plan will be properly implemented.

• The connection charge and service charge will be borne by consumers (and/or the government).

## 3-4 Project Evaluation


#### 3-4-1 Relevance

The relevance of the Project to the spirit of Japan's grant aid scheme is judged to be strong as it not only contributes to the realisation of the development programme and energy policy of Ghana but also benefits the people of Ghana, including the poor.


#### (1) Benefits

1) Expected effects from the Past-JICA Projects

The project will supply stable and quality electricity for about 114 thousand people (direct beneficiaries) in the Project sites (Tamele and Sunyani). Other 675 thousand people also can be benefited by the Project which will contribute improving stable operations of medical and educational facilities. Moreover, hospitals and schools, the larger existing customers, are also beneficiaries from the Project as they have electricity shortage and instable electricity supply as a whole, and will have the stable and quality electricity supply by the Project. Figure 3-4-1.1 shows the flow of effects from the JICA Electricity Distribution Projects and those contributions for the national policies based on the results of the Study.



Source: JICA Study Team



- 2) Beneficial Effects from the Project
  - ① Synergetic Effect with the Other Projects

As mentioned in Chapter 1, the electricity networks have been actively built with the Self Help Electrification Project (SHEP) and Ghana Energy Development and Access Project (GEDAP). The SHEP is for electrification of rural areas and GEDAP is for improving electrified areas in order to increase operation efficiency and electrification rate. However, the existing electrical problems of core electricity networks are left unsolved. If the SHEP and GEDAP are stimulated without solving the existing problems, blackout, voltage fluctuation and voltage depression, those problems can be amplified. Therefore, improvement of the core electricity networks in the Project can contribute to enhance the effectives from the SHEP and GEDAP, and a synergetic effect can be expected to reinforce an integrated electricity networks. (See Figure 3-4-1.2)

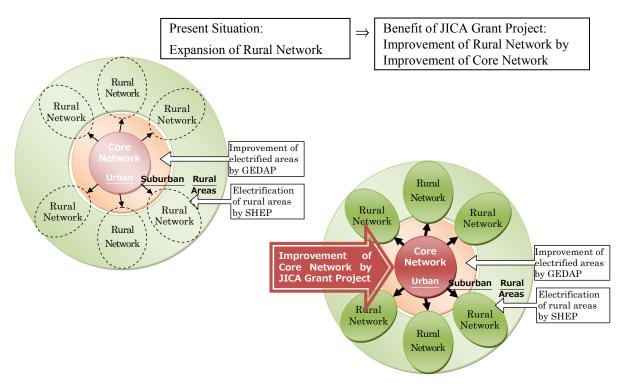



Figure 3-4-1.2 Project Effects from Enhancement of Electricity Networks

#### <sup>(2)</sup> Major Beneficial Effects by Improvement of Electricity Supply in Tamale and Sunyani

The existing problems, blackout, voltage fluctuation and voltage depression, are mainly caused by overload and too long length of feeder lines from substations. Consequently, those problems have increased risks on maintaining and developing socio-economic activities and public services, and of damages on electrical equipment. Those risks will also increase direct risks on household and industry for their living environment, livelihood, business and security. Even if the waiting customers are electrified without solving those existing problems, the same risks can be on them.

Similarly, the direct risks on hospitals and schools have been increased to patients, medical workers, medical equipment, healthcare environment (medical accidents), operation (finance/service expansion), students, teachers, boarding environment and security. Additionally, indirect risks on local communities which owe healthcare services and immunization to hospital's supports will also increase. Figure 3-4-1.3 shows a linkage of the risks by the existing problems of electricity supply.

In the linkage of the risks, the Project will build the primary substations and install the feeder lines to improve the blackout, voltage fluctuation and voltage depression. Then, the Project will decrease the risks on the beneficiaries, the existing customers, waiting customers, students/teachers in schools, patient/medical workers in hospitals and local communities to maintain and develop the socio-economic activities and public services.

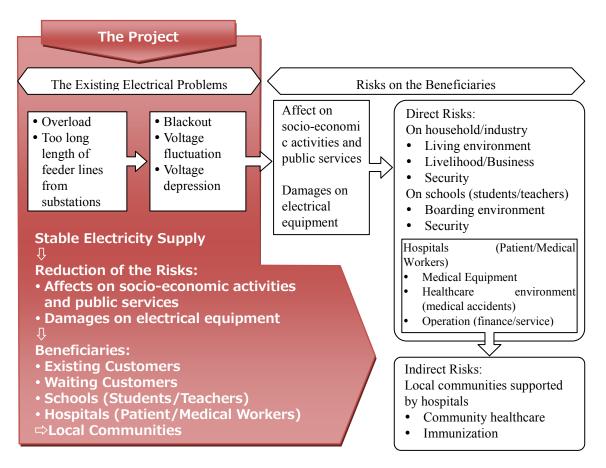



Figure 3-4-1.3 Linkage of the Existing Electrical Problems and Improvement of Risks on the Beneficiaries

(2) Urgency

Outages, voltage fluctuations and significant voltage drops are not unusual at the Project sites, adversely affecting the livelihoods as well as daily lives of local residents, industries, medical services and teaching at schools. At the Sunyani site in particular, there is the Sunyani Regional Hospital which the largest hospital in the north and which serves not only residents of the Brong-Ahafo Region (with a population of 2.26 million) but also those of nearby regions. The unstable power supply means that medical equipment can be rendered useless during operations, endangering the lives of patients. Meanwhile, there is an area at the Tamale site where small cotton factories, small agricultural equipment manufacturing factories and sawmills are concentrated to support agriculture which is the region's principal industry. The unstable power supply at this site too makes it impossible for these factories to maintain stable operation. In the light of these realities, the level of urgency of the Project is very high.

(3) Contribution to the Stable Operation of Public Welfare Facilities

The unstable power supply at the Project sites is badly affecting the operation of such public facilities as hospitals and schools. As described in (2) above, medical care at the Sunyani Regional Hospital, the largest hospital in the north, is frequently interrupted. Other problems caused by the unstable power supply include the stoppage of medical equipment during operations due to voltage drops and the frequent breakdowns of equipment using electricity,

contributing to the significant decline of the hospital's medical services. Local health centres also experience the malfunctioning of refrigerators in which medicines and vaccines are stored, sterilisers and other equipment.

There are a number of educational institutions, including universities, vocational training schools and senior high schools at the Project sites for the education of those who will become major players in Ghana's industries and economy in the coming years. However, the teaching efficiency at these institutions is adversely affected by outages and voltage fluctuations or drops which render computers and other electrical equipment useless at times. Outages at night also affect not only the work of students in dormitories but also the preparation of lessons by teachers.

As the Project will ensure a stable power supply at the Project sites, it will contribute to the operation of medical, educational and other public facilities.

(4) Operation and Maintenance Capability

Since 1989, a number of distribution work involving the voltage class planned under the Project has been conducted in Ghana under a series of five rural electrification projects with Japanese grant aid and also under the SHEP. As the specifications of the transforming and distribution equipment and systems to be procured under the Project are comparable with those of the equipment and systems procured under previous Japanese grant aid projects, the VRA-NED which will be responsible for operation and maintenance has the necessary capability to install, operate and maintain the equipment and systems in question. No special problems are, therefore, anticipated in regard to the implementation of the Project in terms of operation and maintenance.

(5) Contribution of the Project to Development Programmes in Ghana

The stable supply of higher quality power, which will be made possible by the Project, will reduce the risks posed by an unstable power supply to socioeconomic activities and public services for such beneficiaries of power supply as existing consumers, those awaiting connection, patients and staff of medical institutions, students, teachers and all other members of local communities, resulting in the beneficial effects listed below. Further expected contributions include those to the achievement of the MDGs in terms of poverty reduction, lowering of the infant mortality rate and improvement of the health of pregnant women and to "human resources development and improved productivity and employment" which are the priority targets of the GSGDA.

- Benefit for local industries and economy : improved business and operational environment for the self-employed, small factories and workplaces
  - Benefit for the poor : improved learning environment for children, increased opportunities for new means of livelihood, improved living conditions and improved environment for medical services at all levels

| • | Benefit for infants and pregnant women | : | improved environment for medical services at |
|---|----------------------------------------|---|----------------------------------------------|
|   |                                        |   | all levels                                   |

• Benefit for students : improved learning environment at schools

As there is a master plan for the distribution sector in Ghana, addressing such issues as the renewal and expansion of the distribution system and its extension to rural areas, the Project will contribute to the improvement of the distribution system in line with this master plan which was produced by a relevant study (Power Distribution System Master Plan Study for Ghana) by the JICA.

## (6) Consistency with Japanese Assistance Policy for Ghana

In the Japanese assistance policy for Ghana, "Economical Growth with reduction of poverty" was set as one of the most important goals, focused on in Ghana Poverty Reduction Strategy I/II (GPRS I/II). And, "Activation of Rural and Agricultural Area" and "Industrial Development" are set as most important subjects to achieve "Economical Growth with reduction of poverty". In addition, to achieve these subjects, such target as "Agricultural Development", Improvement of Living Level of people in poverty", "Development of Private Sector", and "Capacity Development of Industrial Sector" are described in the Japanese assistance policy for Ghana.

| 「Activation of Rural and Agricultural Area」 | Strategic Program 1 | 「Agricultural Development」                         |
|---------------------------------------------|---------------------|----------------------------------------------------|
|                                             | Strategic Program 2 | 「Improvement of Living Level of people in poverty」 |
|                                             |                     |                                                    |
| 「Industrial Development」                    | Strategic Program 3 | □ Development of Private Sector                    |
|                                             | Strategic Program 4 | Capacity Development of Industrial Sector          |

## 3-4-2 Effectiveness

The following effects are expected as a result of the implementation of the Project.

| (1) | Quantitative Effects | (Size of Population | Directly Benefitting: 114,000) |
|-----|----------------------|---------------------|--------------------------------|
|-----|----------------------|---------------------|--------------------------------|

| Indicator                                       | Reference Value (2010)          | Target Value (2018)                                                                                                                                                                                                                                                   |
|-------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage Drop (%)                                | Tamale : -25%<br>Sunyani : -37% | Tamale : -10% or less<br>Sunyani : -10% or less                                                                                                                                                                                                                       |
| Annual Total of Outage Duration<br>(hours/year) | Tamale : 125<br>Sunyani : 27    | Tamale : 88<br>Sunyani : 19                                                                                                                                                                                                                                           |
| Improvement of Electrification<br>(households)  | Tamale : -<br>Sunyani : -       | <ul> <li>Tamale :</li> <li>➤ Existing Customers: 5,084 households</li> <li>➤ Waiting: 3,916 households</li> <li>➤ Total: 9,000 households <ul> <li>(Approx. 66,600 persons)</li> </ul> </li> <li>Sunyani :</li> <li>➤ Existing Customers: 4,577 households</li> </ul> |

| <ul> <li>Waiting: 4,380 households</li> <li>Total 8,957 households</li> </ul> |
|-------------------------------------------------------------------------------|
| (Approx.47,500 persons)                                                       |

## (2) Qualitative Effects (Size of Population Indirectly Benefitting: 675,000)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Improvement Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project Effects and Degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current Situation and Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Under the Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>&lt; Large-Scale Medical Facility &gt;         <ol> <li>Sunyani is a main local city in which the Sunyani Regional Hospital is located for the treatment of seriously ill inpatients and outpatients from not only Brong-Ahafo Region but also from other nearby regions. There have been incidents where the emergency power generating system at the time of an outage has not properly functioned during an operation, threatening patient safety. The poor power quality (voltage drop or fluctuations) impede efficient medical treatment as precision medical equipment can be badly affected.</li> </ol></li></ul> <li>Sunyani Regional Hospital This hospital is ranked fourth in the country after only the university hospitals in Accra, Kumasi and Tamale. It currently experiences outages some six times a month with a total duration of eight hours. There have been breakdowns of its medical equipment due to voltage fluctuations.</li> | System in Sunyani > Following the master plan for the distribution sector, equipment and materials for the Kotokrom Primary Substation (7.5 MVA), 34.5 kV sub-transmission lines (5 km) and 11.5 kV distribution lines (three feeders) will be procured and installed. Other items to be procured under the Project include such maintenance equipment as a cable failure point detector and aerial platform vehicle and spare parts for distribution equipment.                                            | <ul> <li>The implementation of the Project will improve the quality and supply reliability of power in Sunyani and the resulting avoidance of outages during operations will enable safe medical treatment. The overall medical care conditions for urgent patients and other outpatients from the local area and other regions will be greatly improved. The improved power supply will prevent failures of the X-ray and other important medical equipment and treatment based on accurate data will be consistently provided. Through such improvements, the Project will contribute to the achievement of the MDGs: "lowering of infant mortality" and "improvement of the health of pregnant women".</li> <li>Sunyani Regional Hospital Patients: approx. 20,000/month An exclusive feeder to the hospital will be installed under the Project and the availability of two supply sources will improve the power supply reliability. The normal use of an exclusive line will mean better power quality.</li> </ul> |
| Small Medical Facilities > 2. At health centres and other<br>small medical facilities used<br>by local residents, refrigerators<br>to store medicines and<br>vaccines, sterilisers and other<br>electrical equipment play an<br>important role in medical care.<br>An outage means that such<br>equipment cannot be used as<br>well as a lack of lighting,<br>hampering the medical care<br>provided by these facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < Improvement of the Distribution<br>System in Tamale ><br>Following the master plan for the<br>distribution sector, equipment and<br>materials for the UDS Primary<br>Substation (7.5 MVA), 34.5 kV<br>sub-transmission lines (19 km)<br>and 11.5 kV distribution lines<br>(three feeders) will be procured<br>and installed.<br>Other items to be procured under<br>the Project include such<br>maintenance equipment as a cable<br>failure point detector and aerial<br>platform vehicle and spare parts | The implementation of the Project<br>will improve the power quality<br>and supply reliability, ensuring the<br>proper functioning of refrigerators<br>to store medicines and vaccines,<br>sterilisers and other medical<br>equipment. These improvements<br>will result in assured medical<br>treatment at the facilities and the<br>vaccination of children in<br>communities. As the local patients<br>include many infants and pregnant<br>women, their health will be<br>improved. The proper treatment of<br>patients at night will also be                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Current Situation and Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Improvement Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project Effects and Degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrent Situation and 1 100101115                                                                                                                                                                                                                                                                                                                                                                                                                                               | Under the Project<br>for distribution equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Improvement<br>possible. Through such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt; Improvement of the Distribution<br/>System in Sunyani &gt;</li> <li>Following the master plan for the<br/>distribution sector, equipment and<br/>materials for the Kotokrom<br/>Primary Substation (7.5 MVA),<br/>34.5 kV sub-transmission lines (5<br/>km) and 11.5 kV distribution lines<br/>(three feeders) will be procured<br/>and installed.</li> <li>Other items to be procured under<br/>the Project include such<br/>maintenance equipment as a cable<br/>failure point detector and aerial<br/>platform vehicle and spare parts<br/>for distribution equipment.</li> </ul> | <ul> <li>possible. Thirdigit such improvements, the Project will contribute to the achievement of the MDGs: "lowering of infant mortality" and "improvement of the health of pregnant women".</li> <li>&lt; Improvement of the Distribution System in Tamale &gt;</li> <li>God Cares Community Hospital</li> <li>Tolon Health Center</li> <li>Nyamkpala Health Center Patients: 4,500/month</li> <li><u>The Project will benefit 79 communities (some 75,000 people) in the service areas of these medical facilities.</u></li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < Improvement of the Distribution<br>System in Sunyani ><br>• Chiraa Health Center<br><u>Patients: 1,000/month</u>                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>&lt; Educational Facilities &gt;</li> <li>3. Universities, vocational schools and senior high schools for the education of those who will become major players in future industries and the economy experience poor teaching efficiency as the use of electrical equipment is often prevented by outages or voltage fluctuations or drops. Outages at night also affect not only the work of students in dormitories but also the preparation of lessons by</li> </ul> | As above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Project will enable the steady<br>use of lighting systems, PCs,<br>laboratory equipment and others,<br>vitalising educational activities.<br>The homework of students in the<br>dormitories, etc. at night will not<br>be disrupted by outages,<br>improving their learning<br>efficiency.<br>With these improvements, the<br>Project will contribute to the<br>"achievement of universal primary<br>education", a MDG, and<br>educational activities at higher<br>levels.                                                        |
| teachers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < Improvement of the Distribution<br>System in Tamale ><br>• UDS University<br>• Grich Computer and<br>Secretarial School<br>• Tamale Technical Institute<br>• Bisco Senior High School<br>• Tolon Senior High School<br>• Other primary and junior high<br>schools<br>• Students: approx. 23,000                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>&lt; Improvement of the Distribution<br/>System in Sunyani &gt;</li> <li>Sunyani Nurses' Training<br/>College</li> <li>Catholic Technical Institute</li> <li>Sunyani Business and<br/>Secretarial School</li> <li>Chiraa Senior High School</li> <li>Twene Amanfo Senior High</li> </ul>                                                                                                                                                                                                                                     |

| Current Situation and Problems                                                                                                                                                                                                                                                                                                                                                                                                           | Improvement Measures<br>Under the Project | Project Effects and Degree<br>of Improvement                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | <ul> <li>School</li> <li>Other primary and junior high schools</li> <li>Students: approx. 27,000</li> </ul>                                                                                                                                                       |
| <ul> <li>&lt; Local Industries &gt;</li> <li>4. Local industrial facilities at the<br/>Project sites, including<br/>sawmills, raw cotton factories,<br/>agricultural equipment<br/>manufacturing factories and<br/>corn mills, suffer from a low<br/>level of productivity due to the<br/>malfunctioning of processing<br/>equipment caused by voltage<br/>drops or equipment<br/>breakdowns due to voltage<br/>fluctuations.</li> </ul> | As above                                  | The Project will improve the<br>power supply quality (fewer<br>voltage drops or fluctuations) and<br>the power supply reliability at the<br>Project sites, improving the<br>operating rate of processing<br>equipment and thereby vitalising<br>local industries. |

- (3) Calculation of the Reduction Amount of GHG Emission by the Project
  - 1) Effect of Lower Distribution Loss on CO<sub>2</sub> Reduction

The reduction amount of GHG emission attributable to a lower distribution loss as a result of the Project is calculated in the following manner using the emission factors listed in Table 3-4-2.1.

- ① Calculation of the reduced amount of power loss (GWh/year)
- ② Reduction of power loss (GWh/year) x 3,600 (GJ/GWh) ÷thermal efficiency of power generating system (0.45) = reduction of calorific value (GJ/year)
- ③ Reduced calorific value (GJ/year) x emission constant x 44/12 = reduction amount of CO<sub>2</sub> emission

| Type of Fuel | Unit Calorific Value                    | Emission Factor |
|--------------|-----------------------------------------|-----------------|
| Coal         | 28.9 GJ/t                               | 0.0247 tC/GJ    |
| Crude Oil    | 38.2 GJ/kl                              | 0.0187 tC/GJ    |
| Gas Oil      | 38.2 GJ/kl                              | 0.0187 tC/GJ    |
| Bunker A Oil | 39.1 GJ/kl                              | 0.0189 tC/GJ    |
| Natural Gas  | 40.9 GJ/10 <sup>3</sup> Nm <sup>3</sup> | 0.0139 tC/GJ    |

Table 3-4-2.1 Emission Factor by Type of Fuel

Source: Ministry of the Environment and METI, "Manual for Calculation of GHG Emission Amount and Reporting", June, 2007

As of 2009, the maximum power demand and annual power consumption in Ghana is 1,423 MW and 10,116 GWh respectively. Consequently, the load factor for the power system is 81% (annual power consumption  $\div$  365 days  $\div$  24 hours = maximum power demand). Assuming a similar load factor, the annual power consumption at each Project site is as shown in Table 3-4-2.2.

|         | Maximum Power Demand<br>(MW) | Annual Power Consumption<br>(GWh/year) |
|---------|------------------------------|----------------------------------------|
| Tamale  | 4.233                        | 30.04                                  |
| Sunyani | 3.628                        | 25.74                                  |

Table 3-4-2.2 Annual Power Consumption at Each Project Site

The distribution loss in the service area of the VRA-NED has been around 20% in recent years and the distribution loss at the Project sites has been a similar figure. Assuming improvement of the distribution loss by some 5% through the implementation of the Project, the  $CO_2$  reduction calculation results based on the actual load in 2010 are as shown in Table 3-4-2.3. This calculation uses the process described earlier and also assumes a reduction of the consumption of natural gas which is a fossil fuel used for gas-combined power generation.

Table 3-4-2.3 CO<sub>2</sub> Reduction at the Project Sites

|         | Annual Power Consumption<br>(GWh/year) | Improved Power Loss<br>(GWh/year) | CO <sub>2</sub> Emission Reduction<br>(tons) |
|---------|----------------------------------------|-----------------------------------|----------------------------------------------|
| Tamale  | 30.04                                  | 1.502                             | 512.4                                        |
| Sunyani | 25.74                                  | 1.287                             | 524.8                                        |
| Total   | 55.78                                  | 2.789                             | 1,137.2                                      |

- 2) CO<sub>2</sub> Reduction Effect of New Energy Source for Lighting
  - ① Expenditure Reduction Effect of New Energy Source for Lighting

The monthly lighting expenditure is calculated below for the case where kerosene lamps for lighting are replaced by fluorescent lamps while assuming the continuity of the general living standard.

The interview survey conducted at the target site for improvement of the distribution system in Tamale found that unelectrified local households possess approximately two kerosene lamps and that their monthly fuel expenditure is approximately  $4 \sim 8$  GHc.

The Power Distribution System Master Plan Study for Ghana reported that fluorescent lamps and incandescent lamps are most popularly used by electrified households in Ghana for lighting with average use of nine hours/day. The replacement of kerosene lamps by fluorescent lamps (13 W) will result in a monthly power consumption as follows.

13 W x 2 x 9 hours/day x 30 days/month x 1/1,000 kW/W = 7.020 kWh/month

As the metered electricity charge of the VRA-NED is 0.17 GHc/kWh as of 2010, the consumption of the above amount of electric energy will result in a monthly charge of some 1.2 GHc which is approximately one-fifth of the cost of using two kerosene lamps.

7.02 kWh/month x 0.17 GHc/kWh = 1.193 GHc/month

<sup>②</sup> Effect of Change of Energy Source for Lighting on GHG Reduction

Here, the effect on GHG reduction is calculated assuming that households awaiting connection in Tamale and Sunyani are electrified under the Project and that their kerosene lamps are replaced by fluorescent lamps.

The number of households awaiting connection at the two Project sites is approximately 8,300. Assuming monthly power consumption of 7.020 kWh/month per household for lighting, the annual consumption is approximately 0.7 GWh.

7.02 kWh/month/household x 8,300 x 12 months/year = 699,192 kWh/year = 0.6992 GWh/year

Assuming that this electric energy consumed comes from a gas combined power generation system, the annual emission volume of  $CO_2$  is approximately 290 tons. In the following equation, the thermal efficiency of this generation system and emission factor for natural gas are assumed to be 45% and 0.0139 Ct/GJ respectively.

0.6992 GWh/year x 3,600 GJ/GWh ÷ 0.45 x 0.0139 Ct/GJ x 44/12 CO<sub>2</sub> t/Ct = 285.1 CO<sub>2</sub> t/year

Given the monthly expenditure of  $4 \sim 8$  GHc per household using kerosene lamps to cover the fuel cost, an average monthly expenditure of 6 GHc for fuel is assumed. As of 2010, the unit cost of kerosene in Accra is some 1.5 GHc/litre. The total annual consumption of kerosene by those awaiting connection is approximately 400 kl.

6 GHc/month/household  $\div$  1.5 GHc/l x 12 months/year x 8,300 households x 1/1,000 kl/l = 398.4 kl

The volume of  $CO_2$  emission from the burning of this amount of fossil fuel is approximately 900 tons as calculated below, meaning that the use of electricity as the energy source for lighting reduces the  $CO_2$  emission by some 700 tons a year. For this calculation, the unit calorific value and emission factor of kerosene are assumed to be 36.7 GJ/kl and 0.0139 Ct/GJ respectively.

398.4 kl x 36.7 GJ/kl x 0.0185 Ct/GJ x 44/12  $CO_2$  t/Ct = 991.8  $CO_2$  t/year