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Abstract 

MicroRNAs (miRNAs) are non-coding RNAs of approximately 21 nucleotides that 

negatively regulate gene expression. In plants, many miRNAs target key regulatory 

genes, such as transcription factors, which play critical roles in plant developmental 

processes and stress responses. Underscoring their importance, many of these 

miRNA-target relationships are highly conserved, such as the miR159-MYB regulatory 

module that appears present in all land plants. This regulatory relationship has been 

extensively studied in Arabidopsis. In seeds and flowers, where miR159 activity is 

weak, MYB activity promotes programmed cell death (PCD), facilitating seed 

germination and anther development respectively. Moreover, the generation of a 

loss-of-function mir159 mutant has been shown to result in pleiotropic vegetative 

defects (e.g. curled/rounded leaves and stunted growth), indicating a critical role of 

miR159 in controlling rosette development. However, what the functional role of this 

regulatory module in rosettes remains unknown.   

 

Via transcript analysis, I found that miR159 was strongly and ubiquitously expressed 

throughout the rosette development, where it appeared to constitutively silence MYB 

activity, suggesting the miR159-MYB module is not developmentally responsive. 

However, constant miR159 activity is required for normal rosette growth, as an 

inducible inhibition of miR159 resulted in morphological abnormalities of the rosette. 

This led to the hypothesis that miR159 could be stress responsive, where if repressed 

under a particular condition this would enable MYB expression. However, under what 

environmental condition this occurs remains unclear, because miR159 silencing was 

found to be extremely robust: neither biotic stresses known to inhibit miRNA activity (a 
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virus containing a silencing suppressor), nor a range of abiotic stresses was able to 

inhibit miR159 function sufficiently to activate MYB-related phenotypic defects.  

 

As a complementary approach to gain insights into the function of the MYB33/65 

pathway, an ethyl methanesulfonate (EMS) mutagenesis screen of mir159 suppressor 

was undertaken. Interestingly, a high frequency of mir159 revertants was obtained, in 

which MYB expression was attenuated, suggesting the existence of multiple regulators 

of MYB expression, and that possibly the miR159-MYB module is extensively 

networked. The eventual identification of these repressor alleles may shed light on 

function of the miR159-MYB module in rosettes. 

 

Owing to the fact that most miRNAs belong to multigene families, to which traditional 

loss-of-function approaches cannot be applied due to genetic redundancy, the transgenic 

approach of using miRNA “SPONGEs (SPs)” was explored to determine their ability in 

generating loss-of-function mirna outcomes. SPs are transgenes that harbor multiple 

target sites complementary to miRNAs, leading to their sequestration, an approach that 

has been effective in animal systems, but not tested in plants. Here, ten miRNA SPs 

were designed to target different conserved plant miRNA families. Their efficacies in 

inhibiting the respective miRNAs varied dramatically, where some SPs induced a strong 

loss-of-function outcome, whereas others did not. What underpins this variability is 

unclear; neither SP expression level, the free energy (ΔG) of the miRNA-SP interaction 

or the predicted target accessibility correlated with inhibition efficacies. This likely 

highlights the complexity of miRNA-target interactions and that when a SP cannot 

induce any obvious phenotypic impact, alternative approaches will be required. 
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1.1 Discovery and conservation of plant miRNAs  

1.1.1 Plant miRNA discovery: a new area for investigating plant regulatory systems  

MicroRNAs (miRNAs), categorized as a class of regulatory RNA molecules of 

approximately 21-nucleotides (nts) in length, were first discovered to mediate the 

juvenile-to-adult transition in Caenorhabditis elegans (Lee et al., 1993). Namely, the 

founding members, lin-4 and let-7, were identified to express late in larval development, 

repressing the expression of genes mediating the juvenile traits, and therefore promoting 

adult development (Lee et al., 1993; Reinhart et al., 2000; Pasquinelli and Ruvkun, 

2002). Since then, through intensive small RNA (sRNA) profiling, miRNAs have been 

found to be ubiquitously present in higher eukaryotes (reviewed in Bartel et al., 2004; 

Xiu-JieWang et al., 2004). Their main function is to mediate the repression of gene 

expression, via the down-regulation of target mRNAs through specific base-pairing 

interactions (Pasquinelli and Ruvkun, 2002; Abrahante et al., 2003; Lin et al., 2003). 

Such miRNA-target interactions have been shown to be involved in a broad range of 

biological processes, involving development, senescence, metabolism, disease and 

stress response (Bartel et al., 2004; Voinnet, 2011; Wong et al., 2011), which have 

revolutionized our understanding of gene regulation in eukaryotes.  

 

The field of plant miRNA discovery started from identifying conserved miRNAs that 

were present across a diverse range of angiosperms and often represented by multiple 

loci in sequenced genomes (reviewed by Axtell and Bowman, 2008). Soon after, the 

number of miRNA sequences discovered in various plant species rapidly increased, 

mainly driven by the development of high-throughput sRNA sequencing techniques, as 

well as the completion of whole-genome sequences for more plant species (Nobuta et al., 

2010). Besides that, miRNA microarray analysis, a rapid method for detecting and 
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profiling a large number of miRNAs, had also been successfully applied in Arabidopsis 

thaliana, Oryza sativa, Brassica napus, Solanum lycopersicum, and Medicago 

truncatula (Buhtz et al., 2008; Liu et al., 2008; Meng et al., 2009; Lang et al., 2011; 

Zhou et al., 2012). Meanwhile, based on the finding that plant miRNAs and their targets 

frequently show near-perfect complementarity (Rhoades et al., 2002), the computational 

prediction of miRNA targets by scanning the genomic or cDNA sequences for high 

complementarity to a potential miRNA was also developed (Rhoades et al., 2002). Since 

these in silico predicted targets are required to be validated, predicted miRNA targets 

were experimentally verified via combining a modified 5’-rapid amplification of cDNA 

ends (RACE) with high-throughput deep sequencing and bioinformatic analysis 

(German et al., 2008). This globally verified miRNA-target RNA pairs in Arabidopsis 

thaliana (German et al., 2008), and has now been applied to many other plant species: 

Oryza sativa, Physcomitrella patens, Glycine max and Zea mays (Addo-Quaye et al., 

2009; Li et al., 2010; Song et al., 2011; Zhao et al., 2012). Together, there are 

now >1000 registered plant miRNAs in miRBase (http://www.mirbase.org/), the most 

widely used database for miRNA genomics (Meyers et al., 2008; Ivashuta et al., 2011; 

Meng et al., 2012), and these miRNAs are predicted to regulate hundreds of genes that 

involve diverse aspects of plant biology, such as development (Baker et al., 2005), 

metabolism (Bonnet et al., 2004), hormone signaling (Liu et al., 2007) and biotic and 

abiotic stress responses (Shukla et al., 2008; Kozomara and Griffiths-jones, 2014). As a 

result, this tremendous miRNA-target resource provides a great opportunity to 

understand the miRNA regulatory layer underlying plant development and/or the 

response to a wide range of environmental stimuli and stresses, making the functional 

analysis of these miRNA-target pathways a rapidly growing interest of current plant 

science. 
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1.1.2 Plant miRNA conservation: an indication of the critical roles plant miRNAs 

play in development 

To date, Arabidopsis thaliana has been the most widely used plant for miRNA studies. 

According to the miRBase (Release 21, http://www.mirbase.org/), there are more than 

400 miRNAs that have been predicted and cloned from Arabidopsis. This number 

continues to increase with advances in sRNA deep-sequencing analysis (Rajagopalan et 

al., 2014), identifying a large pool of miRNAs that potentially play many roles in the 

plant. It appears that many miRNAs in Arabidopsis correspond to single young genes 

that have arisen from recent evolutionary processes (Rajagopalan et al., 2006; Fahlgren 

et al., 2007; Fahlgren et al., 2010; Ma et al., 2010), in which miRNAs are thought to be 

frequently spawned and then mostly lost (Fahlgren et al., 2007). Consistent with this, 

most of these young miRNAs are non-conserved, having no identifiable orthologues in 

other plant species (Rajagopalan et al., 2006). Interestingly, a high proportion of these 

non-conserved miRNAs do not have any identifiable target genes, hence they do not 

appear to be in clearly identifiable plant regulatory networks (Axtell, 2008; Fahlgren et 

al., 2007). Furthermore, when Todesco et al. (2010) applied miRNA Target Mimicry to 

knockdown the activities of 71 different Arabidopsis miRNA families, none of the 

recently evolved miRNAs were found to have any impact on plant growth. This 

suggests that either they affect processes other than development (e.g. adaptation to a 

certain abiotic or biotic stress), or potentially have no discernible function at all. Thus, it 

is still unclear whether these recently evolved miRNAs have a relevant biological 

function (Axtell, 2008; Todesco et al., 2010) 

 

In contrast to the single young miRNAs, many other miRNAs belong to families of 

related genes. They appear to be ancient, being present in all land plants with 
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conservation extending even to mosses (> 400 million years; Bartel, 2004; Floyd and 

Bowman 2004; Arazi et al. 2005; Axtell, 2008). For example, Fahlgren et al. (2007) had 

found 22 and 20 Arabidopsis miRNA families being conserved in Poplar and Rice 

respectively, among which several miRNA families (e.g. miR159 and miR390) were 

also identified in mosses (Arazi et al. 2005; Axtell and Bartel, 2005; Li et al., 2011). 

Thereby, these miRNA families appear to have become fixed early on during evolution, 

acquired an indispensable role in plant development (Rajagopalan et al., 2006; Fahlgren 

et al., 2007). Supporting this, at least 21 miRNA families in Arabidopsis, have been 

predicted or demonstrated to target genes encoding transcription factors required in 

specific developmental processes, including organ polarity determination, meristem 

formation, floral patterning, vascular development, lateral root development and 

hormone response (Baulcombe, 2004; Chen, 2005; Mallory and Vaucheret, 2006; Ha et 

al., 2008). The functional analysis of these miRNA-target interactions has underpinned 

the interest in miRNA biology in plants.   

 

1.2 miRNA biogenesis and action  

Such a critical role for miRNAs in plant development was first alluded to from 

mutations in genes encoding the machinery that is required for miRNA biogenesis and 

action (Vaucheret et al., 2004). This includes loss-of-function mutants in genes encoding 

the ribonuclease III DICERLIKE1(DCL1) (i.e. dcl1-7, dcl1-8 and dcl1-9, Schauer et al. 

2002), HUA ENHANCER1(HEN1) (i.e. hen1-1 and hen1-2, Park et al. 2002), HASTY 

(HST, the orthologue of nucleocytoplasmic transport receptor exportin 5) (i.e. hst-1, 

Bollman et al., 2003) and ARGONAUTE1 (AGO1) (e.g. mutants carrying ago1-null or 

hypomorphic alleles, Bohmert et al. 1998; Fagard et al. 2000; Morel et al.2002; 

Vaucheret et al., 2004), all of which displayed pleiotropic developmental defects that 
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partially overlap with each other, highlighting the critical roles plant miRNAs play in 

development (Vaucheret et al., 2004). 

 

Through the extensive analyses of above components, the plant miRNA biogenesis 

pathway has been well characterized. It is commonly accepted that the biogenesis of 

most of the conserved miRNAs are derived from a common pathway. In the nucleus, 

MIRNA genes (MIRs) are mostly transcribed by RNA polymerase II (Kurihara and 

Watanabe, 2004; Lee et al., 2004; Xie et al., 2005), to produce noncoding primary 

MIRNA transcripts (pri-miRNAs) of varying lengths (some extending up to 300 nts; 

Wang et al., 2004). These pri-miRNAs can then form into imperfect hairpin MIRNA 

precursors (pre-miRNA) and are subjected to further DCL1-mediated cleavage, 

generating 20-24 nt miRNA/miRNA* duplexes (Kurihara and Watanabe, 2004; 

Jones-Rhoades et al., 2006). After this nuclear processing, the resulting sRNA duplexes 

are 2’-O methylated at the 3’ end of each strand by HEN1, and exported to the 

cytoplasm, probably via HST (Lund et al. 2004; Park et al., 2005; Yu et al., 2005). 

Finally, in the cytoplasm, the strand of the miRNA duplex that has the 

thermodynamically less stable 5′ end (the mature miRNA) is preferentially loaded into 

the AGO1 of the RNA-induced silencing complex (RISC), where the passenger miRNA 

strand (miRNA*) gets degraded (Hibio et al., 2012). However, the ARGONAUTE 

protein family comprises 10 members in Arabidopsis (Morel et al., 2002), and 

exceptions to the miRNA-AGO1 loading exist, such as AGO7 and AGO10 that show a 

preferential association with miR390 and miR165/166 respectively, achieving specific 

regulatory outcomes regarding plant development (Montgomery et al., 2008; Zhu et al., 

2011). 
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Upon miRNA-AGO1 assembly, the miRNA guides the RISC complex to highly 

complementary mRNA targets, negatively regulating their expression. This was 

demonstrated by the overexpression of MIR precursor transcripts (pre-miRNA) in 

transgenic plants followed by transcript profiling: genes containing motifs of high 

sequence complementary, with perfect central matches (nt positions 10–11 relative to 

the 5’ end of the miRNA sequence) were strongly repressed by a mechanism that 

included miRNA-mediated mRNA cleavage (Schwab et al., 2005; Jones-Rhoades et al., 

2006). Such mRNA cleavage is catalyzed by the ribonucleolytic activity of the plant 

AGO1 protein, opposite nt 10 of the sRNA (Baumberger and Baulcombe 2005; 

Filipowicz, 2005; Kim, 2005), and the cleaved target mRNAs can be detected via 5’ 

RACE analysis (Llave et al., 2002). To date, target mRNA cleavage has been accepted 

as one of the principal modes of plant miRNA action (Llave et al., 2002; Jones-Rhoades 

et al., 2006). Consistent with this, in strong loss-of-function ago1 Arabidopsis mutants, 

target mRNA levels strongly increase (Vaucheret et al., 2004; Baumberger and 

Baulcombe, 2005; Qi et al., 2005).  

 

In addition to the cleavage-based miRNA regulation of target gene expression, 

miRNA-directed translational inhibition also occurs in plants. For example, the 

near-perfect complementarity of miR172 and its binding sequence in target APETALA2 

(AP2) mRNA supports both cleavage-based and translation-based miRNA inhibitory 

mechanisms. For the latter, it was shown that expression of a 35S::AP2 transgene and 

expression of a miR172-resistant AP2 transgene (35S::AP2m1) displayed comparable 

AP2 mRNA levels, however, only the latter plant displayed elevated AP2 protein level, 

indicating the occurrence of translational inhibition on AP2 mRNA mediated by 

miR172 action (Chen, 2004). Then, in a viral-stress experiment, Va ŕallyay et al. (2010) 
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found that the virus-induced elevation of miR168 level was associated with an increased 

AGO1 mRNA level but a reduced AGO1 protein level, indicating a miR168-mediated 

translational inhibition mechanism might also be responsible for AGO1 expression. 

Moreover, by analysing the miRNA action deficient (mad) Arabidopsis mutants, mad1 to 

mad6, translational inhibition by miRNAs was suggested to be widespread in plants 

(Brodersen et al., 2008). Providing supporting biochemical evidence for this, many 

Arabidopsis miRNAs are found on polysomes in association with AGO1, suggesting the 

miRNA-AGO1 is potentially blocking the target mRNA translation (Lanet et al., 2009). 

Thus, many miRNAs may regulate their targets through a combination of 

cleavage-based and translation-based inhibitory mechanisms (Brodersen et al., 2008), 

whose respective prevalence is currently unknown.  

 

 

The reversible nature of translational inhibition has been shown to occur in animal cells 

(Bhattacharyya et al., 2006), and it has been suggested that this mechanism may 

coordinate stress-responsive gene expression, enabling a rapid response and avoid the 

metabolic costs associated with new target mRNA synthesis when the stress dissipates 

(Brodersen et al., 2008). By comparison, miRNA cleavage will likely result in 

irreversible target degradation, and such a mechanism may play crucial roles in plant 

development when transcripts need to be cleared to enable cellular differentiation 

(Vionnet, 2009). Supporting this, several ago1 hypomorphic mutants exhibit 

compromised cleavage activity and consequent developmental defects regarding to 

plant stature, leaf shape, and flower phenotypes (Vaucheret et al., 2004). However, 

whether these ago1 mutants also become hypersensitive to environmental stresses has 

not been addressed. 
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Finally, with respect to the miRNA turnover, several exonucleases have been suggested 

to participate in miRNA degradation, such as SMALL RNA DEGRADING 

NUCLEASE (SDN), a family of 3’ to 5’ exonucleases that have been shown to degrade 

3’ methylated miRNAs in Arabidopsis (Ramachandran and Chen, 2008). Besides this, 

nucleotidyl transferases, such as URT1 and HEN1 SUPPRESSOR1 (HESO1) have been 

found to uridylate AGO1-bound miRNAs in vitro (Allen et al., 2005, Mullen and 

Marzluff, 2008). Hence, it is suggested that AGO1 probably recruits HESO1 and URT1 

to ensure the degradation of damaged or even intact miRNAs that need to be eliminated 

(Mullen and Marzluff, 2008). However, since AGO1 presumably protects both ends of a 

miRNA from degradation by making the ends inaccessible to nucleases (Shen and 

Goodman, 2004), and the activities of HESO1 and URT1 can be completely inhibited 

by 3’methylation on the substrate miRNA (Allen et al., 2005; Qi et al., 2006; Vaucheret 

2006), the degradation mechanism regarding AGO1-loaded 3’ methlylated miRNAs 

remains unclear. For this, the recent discovery that the expression of “Target Mimics” 

leads to the degradation of miRNAs in Arabidopsis may provide a plausible explanation 

(see section 1.4 for details). 

 

1.3 Features of miRNA target genes in plants 

As determined by both bioinformatics prediction and experimental verification, most 

plant miRNA targets are found to carry a single miRNA-complementary motif in the 

coding region with few or no mismatches (Rhoades et al., 2002; Rajewsky and Socci, 

2004; Wang et al., 2004; Schwab et al., 2005). It is distinctly different from the scenario 

in animal systems, where most miRNAs mainly base-pair with their mRNA targets via a 

sequence between 2-8 nucleotides of 5′ ends of miRNAs (Lewis et al., 2005), while the 

additional complementarity is not nesesary, eventhough the interaction between 9-20 
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nucleotides of the miRNA and its targets is also required (Tétreault and De Guire, 2013). 

This difference of complementarity requirement is probably the cause of different 

regulation outcomes, namely a single animal miRNA usually simultaneously inhibit the 

expression of hundreds of different mRNAs (Lim et al., 2005; Selbach et al., 2008; 

Baek et al., 2008), while the target number of a plant miRNA is at least an order of 

magnitude lower (Schwab et al., 2005, Jones-Rhoades et al., 2006; Palatnik et al., 

2007). 

 

In support of the high complementarity between plant miRNAs and their cognate targets, 

Rhoades et al. (2002) performed a conservation analysis of miRNA target sites in two 

distantly related species, Arabidopsis and rice, and found that high complementarity 

between miRNAs and their targets was a conserved feature among different plant 

species. More specifically, the complementarity requirement adopted by most, if not all 

the prediction methods, is that a potential target site carries no more than 3.5 

mismatches (counting G:U pairs as 0.5 mismatches; Jones-Rhoades and Bartel, 2004) to 

the corresponding miRNA (Aukerman and Sakai, 2003; Xie et al., 2003; Achard et al., 

2004; Chen, 2004; Laufs et al., 2004; Vaucheret et al., 2004). Then, Schwab et al. (2005) 

defined the empirical parameters of plant miRNA recognition of target genes via the 

overexpression of different miRNAs in transgenic Arabidopsis, followed by transcript 

profiling. Namely, relative to the 5’ end of the miRNA sequence, most genuine target 

mRNAs have long stretches of perfectly matching nucleotides, with no mismatch at 

positions 10 and 11, no more than one mismatch at positions 2–12, and no more than 

two consecutive mismatches downstream of position 13 (Schwab et al., 2005). These 

findings defined the requirement of high complementarity in plant miRNA-target 

interactions, underpinning the notion of a much narrower and more specific target range 
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in plants than in animals (Schwab et al., 2005; Jones-Rhoades et al., 2006). Additionally, 

Schwab et al. (2005) found that a preferential (low) free energy cost of miRNA-target 

hybridization is required for strong plant miRNA-target interaction, namely at least 72% 

of free energy compared to a perfectly complementary target should be satisfied. 

 

Finally, underscoring the roles plant miRNAs have in regulatory networks, many known 

miRNA targets were predicted and/or experimentally verified as transcription factors, 

which coordinate crucial steps during plant development (Rhoades et al., 2002; 

Jones-Rhoades and Bartel, 2004; Jones-Rhoades et al., 2006; Chen et al., 2010). In 

Arabidopsis, it has been suggested that more than half of the known conserved miRNA 

targets genes encoding transcription factors (TF, Jones-Rhoades et al., 2006), where 

each plant miRNA family targets a single paralogous family of TF genes. For instance, 

targets of miR171 correspond to a small gene family encoding SCARECROW-like 

(SCL) TFs, involved in radial patterning of roots, as well as gibberellin and light 

signaling pathways (Ma et al., 2014); targets of miR396 correspond to a small gene 

family encoding GROWTH REGULATING FACTORs (GRFs) TFs, with a 

demonstrated role in controlling cell proliferation during leaf development 

(Jones-Rhoades et al., 2006; Rodriguez et al., 2010; Wang et al., 2011); targets of 

miR156 correspond to ten members of a gene family encoding SQUAMOSA 

PROMOTER BINDING PROTEIN LIKE (SPL) TFs, while targets of miR172 

correspond to six members of a gene family encoding APETALA2-LIKE (AP2-like) 

TFs. In each case, functional redundancy between members within each TF family has 

been found, with the latter two target families displaying sequential actions in 

controlling the stability of juvenile and adult phases (Wu and Poethig, 2006; Guo et al., 

2008; Wu et al., 2009). More examples can also be found in many good reviews (Chen, 
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2010; Nag and Jack 2010; Xie et al., 2010; Wang et al., 2011). These strongly support 

evolutionary studies that suggest these miRNA-regulated TFs have underpinned land 

plant development (Liu et al., 2014). 

 

1.4 Additional regulatory layers, MIMICs and possible feedback loops 

Plant miRNA-target interactions have been shown to be modulated by subtle regulatory 

mechanisms. For instance, a functional non-coding RNAs with a non-cleavable miRNA 

binding site has been reported by Franco-Zorrilla et al. (2007). The non-protein coding 

gene INDUCED BY PHOSPHATE STARVATION1 (IPS1) contains a motif with high 

sequence complementary to the phosphate (Pi) starvation-induced miR399, but a 3 nt 

mismatched bulge at the miR399 cleavage site prevents the miR399-guided cleavage of 

IPS1 RNA. This results in fine tuning of miR399 levels that impact another target, 

PHO2, which encodes an E2 ubiquitin conjugase–related protein that negatively affects 

shoot Pi content and Pi remobilization, achieving precise control of Pi starvation 

response (Fujii et al., 2005; Aung et al., 2006; Franco-Zorrilla et al., 2007). This 

so-called “Target Mimicry” phenomenon has been further investigated via genome-wide 

computational prediction methods and found to be potentially widespread, at least in 

Arabidopsis and rice (Meng et al., 2012), but currently IPS1 is the only functionally 

determined target mimic. Interestingly, in Arabidopsis transformants expressing various 

artificial target MIMICs the levels of the cognate miRNAs were found to be reduced 

(Todesco et al., 2010; Ivashuta et al., 2011; Wu et al., 2013), suggesting that the 

expression of target MIMICs might lead to miRNA degradation. Further investigation 

by Yan et al. (2012) found that SDN1 and SDN2 were required for the MIMIC-induced 

reduction of miRNA levels. This is in line with the hypothesis that recognition of target 

MIMICs by plant miRISCs might dislodge miRNA 3’ ends from the PAZ domain of the 
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AGO protein, rendering miRNAs susceptible to the 3’truncation, which is mediated 

perhaps by SDN1, resulting in unmethylated miRNAs that are susceptible to 3’ tailing 

by nucleotidyl transferases (e.g. URT1 and HESO1) and their final degredation. (Sanei 

and Chen, 2015). Therefore, it is likely that the widespread “Target Mimicry” 

phenomenon may be attributable to a regulatory layer of miRNA turnover at least in 

some plant species. 

 

In addition, the feedback control of miRNA abundance via the miRNA target expression 

has been brought up. First, it is known that miR162 can regulate the expression of 

DCL1, which is the predominant miRNA Dicer that is required for most plant miRNAs 

(Xie et al., 2003); and that miR168 can regulate the expression of AGO1, which can 

protect and stabilize miRNAs from degradation in plants (Vaucheret et al., 2004; 

Vaucheret et al., 2006; Diederichs and Haber, 2007). Additionally, an MIR gene, 

miR838, has been found to be located in intron 14 of DCL1, which may limit DCL1 

expression, as the processing of DCL1 pre-mRNA to release pre-miR838 probably 

generates truncated transcripts that cannot give rise to DCL1 mRNA and protein 

(Rajagopalan et al., 2006). Together, these findings strongly suggest that the biogenesis 

and fucntion of plant miRNAs are regulated at global levels by miR162-DCL1, 

miR168-AGO1, and possibly the miR838-DCL1 feedback loops. 

 

More than that, complex feedback loops in which a miRNA target gene encodes a 

protein that in turn regulates the abundance of the corresponding miRNA have also been 

found in plants. For instance, miR172 abundance is reduced in the loss-of-function 

double mutant of its corresponding target, TOE1/TOE2 [APETALA2-LIKE (AP2-like) 

transcription factors], while the abundance of miR156 is elevated in transgenic plants 
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overexpressing its target genes, SPL3, SPL4 and SPL5 (Wu et al., 2009). This indicates 

the abundance of some miRNAs are positively correlated to their target proteins, hence 

possible feedback loops may exist, where the miRNAs can regulate the expression of 

target genes, and the target proteins can in turn regulate the abundance of miRNAs. 

Supporting this notion, miR396 abundance was found significantly increased in the 

triple knockout mutant of its target GRF1/GRF2/GRF3 (Hewezi and Baum, 2012). 

Similarly, the abundance of miR167 and miR160 were found to be negatively regulated 

by their respective target ARF8 and ARF17 (AUXIN RESPONSE FACTORs; Gutierrez et 

al., 2009), which suggests the possible negative regulation of miRNA abundance by 

their corresponding targets. Regarding to the importance of these possible feedback 

loops, Martinez et al. (2008) suggest that negative feedback loops buffer small changes 

in the expression of proteins with important regulatory functions. Such a concept may 

also be applicable to these possible miRNA-target feedback loops: namely through the 

feedback loop, a small change of target protein expression can trigger a corresponding 

change of miRNA abundance, adjusting the miRNA-regulation of the target expression, 

so that in turn the target protein is maintained at certain levels for desired biological 

outcome. 

 

1.5 The role of miRNAs in plant development  

As mentioned, since genetic screens for developmental defects identified many proteins 

required for miRNA biogenesis and functions, the role of miRNAs in controlling 

developmental processes has been a focus of plant miRNA biology (Lu and Federoff, 

2000; McConnell et al., 2001; Park, et al., 2002; Schauer et al., 2002; Vaucheret et al., 

2004; Lobbes et al., 2006; Sunkar et al., 2007). To investigate, gain-of-function 

experiments were performed by the overexpression of miRNAs or miRNA-resistant 
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transgenes (Palatnik et al., 2003; Achard et al., 2004; Chen, 2004; Wu et al., 2006; Wu 

et al., 2009; Rodriguez et al., 2010), or the loss-of-function mirna mutants were 

generated (Allen et al., 2007; Sieber et al., 2007; Nag et al., 2009). Such experiments 

resulted in varying developmental abnormalities, and have found that plant miRNAs are 

involved in developmental processes ranging from establishment of meristem identity, 

cell proliferation, to developmental timing and patterning, for which several excellent 

reviews provide a comprehensive description (Bartel, 2004; Dugas and Bartel, 2004; 

Kidner and Martienssen, 2005; Mallory and Vaucheret, 2006; Jones-Rhoades et al., 

2006).  

 

Complementing such functional analysis has been expression analysis. For instance, via 

using the pMIR390b:GUS transgene, the promoter activity of the MIR390b was 

monitored to investigate how miR390 abundance is regulated by auxin in Arabidopsis 

(Yoon et al., 2009). It was found that the GUS signal in the lateral root (LR) primordia 

of pMIR390b:GUS seedlings positively correlated with DR5:GUS expression in the 

DR5:GUS seedlings (DR5, an auxin-responsive synthetic promoter), implying 

expression of the MIR390b gene may correlate with a putative auxin gradient present in 

the LR primordium (Yoon et al., 2009). Hence this miR390 expression pattern supports 

the role of miR390 in lateral root development (Yoon et al., 2009; Marin et al., 2010). In 

other examples, using the lock-nucleic acid (LNA)-based in situ hybridization, 

Arabidopsis miR165/166 was found to accumulate at high levels in the abaxial domain 

and low levels in adaxial domain of cotyledons, and accumulate in the peripheral 

domain of hypocotyls in torpedo and subsequent stages (Liu et al., 2009). This 

observation implied an expression pattern of miR165/166 that supports its role in 

establishing the leaf polarity in Arabidopsis (Nogueira et al., 2006; Liu et al., 2009). 
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Also, LNA-based in situ hybridization of plant miRNAs performed by Válóczi and 

colleagues (2006), revealed the presence of six conserved miRNAs in vascular bundles 

of developing organs, suggesting that miRNAs could be phloem-mobile and hence 

coordinating developmental processes. Taken together, both functional and expression 

analyses help to define the roles of miRNAs in plants. 

 

1.6 The involvement of plant miRNAs in response to stresses 

1.6.1 The involvement of plant miRNAs in response to abiotic stresses 

In addition to development, plant miRNAs are also likely to play roles in stress response, 

given that stresses can alter their expression patterns, and targets of several miRNAs are 

stress-associated genes (reviewed in Sunkar et al., 2007; Sunkar et al., 2012). 

Additionally, functional analysis has found that several plant miRNAs might play vital 

roles in plant resistance to abiotic as well as biotic stresses (Fujii et al., 2005; Aung et 

al., 2006; Sunkar et al., 2006; Kawashima et al., 2011; Maunoury and Vaucheret 2011; 

Li et al., 2012c; Shivaprasad et al., 2012). 

 

Firstly, as previously reviewed by Sunkar et al. (2007), abiotic stress conditions such as 

drought, cold, salinity, high light and heavy metals usually results in the accumulation 

of excess reactive oxygen species (ROS) in plant cells, which requires immediate 

scavenging, a process that is achieved through down-regulated miR398 under oxidative 

stress and consequent expression of its two target superoxide dismutase (CSD1 and 

CSD2) genes (Sunkar et al. 2006). Other examples include miR399 (Fujii et al., 2005; 

Aung et al., 2006; Franco-Zorrilla et al., 2007) and miR395 (Jones-Rhoades and Bartel, 

2004; Kawashima et al., 2011), that have been identified as potent regulators of 

inorganic phosphate and sulfur homeostasis respectively, hence were implicated to be 
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crucial for plant growth under low-nutrient conditions. Nevertheless, the evidence 

suggesting broader miRNA function in stress response continues to increase, such as an 

observation that plants overexpressing miR168a and the loss-of-function ago1 mutant 

displayed hypersensitivity to abscisic acid (ABA) and drought tolerance, hence 

miRNAs were also suggested to play important and conserved roles in signal 

transduction during stress response (Li et al., 2012). Moreover, the recent discovery of 

miR319 induction during cold stress in sugarcane (Thiebaut et al., 2012) and miR408 

induction during drought stress in Medicago truncatula (Trindade et al., 2010), also 

suggests that the role of these miRNAs in these abiotic stresses may be conserved in 

wide range of plant species. However, altered miRNA abundance in response to a stress 

is only the first step in determining whether that miRNA is important for the stress 

response. Functional evidence is required, ideally by demonstrating a loss-of-function 

mirna mutant can display an altered tolerance to the stress. 

 

1.6.2 The involvement of plant miRNAs in response to biotic stresses 

Next, the impact of viral stress on plant miRNA biogenesis/functions has also been 

found, which may suggest the possible involvement of plant miRNAs in response to 

biotic stresses. This is largely based on the discoveries about plant-virus interaction. On 

one hand, the plant RNAi mechanism plays a key role in antiviral defense: the DCL 

proteins generate virus-derived small interfering RNAs (vsiRNAs) upon viral infections, 

these vsiRNA can then direct the silencing of virus RNA through the similar biogenesis 

and action as that of miRNAs (Blevins et al., 2006; Fusaro et al., 2006). Supporting this, 

the AGO1 protein, has been found to bind vsiRNAs, and suggested to mediate cleavage 

of virus RNAs (Zhang et al., 2006); whereas the ago1 mutants are found 

hyper-susceptible to viral infections, such as infections of Cucumber Mosaic Virus 
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(CMV; Morel et al., 2002), and Turnip Crinkle Virus (TCV; Qu et al., 2008). On the 

other hand, to counteract the plant RNAi defence, viruses have evolved viral silencing 

suppressor (VSS) proteins, to obstruct the biogenesis/action of vsiRNAs (Chapman et 

al., 2004; Voinnet, 2005). For example, the coat protein (P38) of TCV can inhibit 

DCL-mediated vsiRNA duplex processing through its RNA binding activity (Ding and 

Voinnet, 2007), and the Polerovirus F-box protein P0 can prevent the assembly of 

vsiRNA-containing RISC complexes and promote degradation of AGO1 effector 

(Bortolamiol et al., 2007; Csorba et al., 2010). Since plant miRNAs and vsiRNAs share 

common biogenesis steps at the cytoplasmic level and both mediate gene silencing 

through AGO1 protein, the VSS activities may inadvertently perturb plant miRNA 

functions. This was supported by the transgenic Arabidopsis overexpressing distinct 

types of VSSs: in many cases, the transgenic plants displayed morphological 

abnormalities resembling defects exhibited by hypomorphic miRNA mutants and 

alterations of miRNA/target levels had been identified in these VSS transgenic plants 

(Mallory et al., 2002; Dunoyer et al., 2004; Chapman et al., 2004; Chellappan et al., 

2005a). However, no strong evidence has shown that the miRNA pathway is important 

for plant antiviral defence, as experiments over-expressing miRNAs or generation of 

loss-of-function mirna mutants have not found any phenotypic/molecular evidence 

suggesting that miRNAs strongly contribute to the antiviral response. Additionally, Jay 

et al. (2011) found that expression of three unrelated VSSs (i.e. Hc-Pro, P19 and P15) 

has comparable, yet modest effects on the mRNA levels of known miRNA targets. In 

contrast, only the up-regulated expression of the AUXIN RESPONSE FACTOR 8 

(ARF8, a target of miR167) was identified a major trigger of the morphological 

abnormalities exhibited by VSS transgenic plants, but whether this is due to the 

VSS-disruption of miR167-mediated regulation of ARF8 is unclear. Therefore, the 
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majority of conserved miRNAs do not appear to have strong contribution to the 

VSS-induced abnormalities  

 

In addition, the antiviral role of the AGO2 protein was recently revealed by the reports 

showing that ago2 mutants are hyper-susceptible to viral infections (Harvey et al., 2011), 

and a Nicotiana benthamiana AGO (NbAGO) with similarity to Arabidopsis AGO2 is 

involved in antiviral defence through direct association with vsiRNAs in the case of 

Tomato Bushy Stunt Virus infection (TBSV; Scholthof et al., 2011). Due to the 

regulation of AGO2 mRNA by miR403-AGO1 repression (Allen et al., 2005), multiple 

layers of AGO1/miRNA contributing to plant antiviral defence mechanism have been 

proposed. AGO1 represents a first layer to target the vsiRNAs, if this layer is overcome 

by viral effectors that can inhibit AGO1 function, a second layer involving AGO2 can 

take place to limit further virus accumulation, because the expression of AGO2 can then 

be released from miR403-AGO1 repression (Harvey et al., 2011). However no solid 

evidence has been shown for this hypothesis, thus to what extent is this conserved 

miR403 involved in the plant antiviral response requires further investigation. Perhaps 

by generating the loss-of-function mir403 Arabidopsis mutant, and analyzing if this 

mutant has enhanced AGO2 expression accompanied with enhanced resistance to 

several viral infections, the above hypothesis can be examined.   

 

Besides viral stresses, bacterial infection may be another biotic stress that can influence 

the biogenesis and/or function of plant miRNAs. As supporting evidence, Navarro et al, 

(2006 & 2008) have found that the bacterial elicitor flg22 could trigger miR393 

induction in Arabidopsis seedlings, and that effectors of Pseudomonas syringae pv. 

tomato (Pst) could suppress the transcriptional activation of some PAMP-responsive 
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miRNAs (i.e. miR393 and miR396) (PAMP: pathogen-associated molecular patterns), 

without affecting PAMP-insensitive miRNAs (e.g. miR166a and miR173). Following 

this, Zhang et al. (2011) performed deep-sequencing profiling on Arabidopsis infected 

by different strains of Pst, and identified more bacterial-responsive miRNA families, the 

targets of which are genes involved in plant hormone biosynthesis and signaling 

pathways, including auxin, abscisic acid, and jasmonic acid pathways. Hence, it has 

been suggested that there were bacterial silencing suppressor (BSS) that can interfere 

miRNA biogenesis and/or function in plants; and plant miRNAs may play a role in 

antibacterial defense. However, it has not been elucidated which step or effector of 

miRNA biogenesis/function does the BSS effect, thus the critical evidence for 

supporting the above suggestion is still missing,  

 

1.7 Approaches for functional analysis of plant miRNAs  

Many of the above hypotheses have been generated via the observation of alterations to 

miRNA abundances in response to particular stresses. However, the functional 

significance of these changes largely remains to be determined, as functional analysis of 

plant miRNAs is still problematic.  

 

To elucidate the biological role of a plant miRNA family, theoretically the generation of 

loss-of-function mirna mutants should be the most precise and ideal approach. However, 

this is complicated by the presence of extensive miRNA redundancy in plants. Plant 

miRNA families frequently contain many related genes that can produce near-identical 

or identical mature miRNA members, many of which have overlapping expression 

domains, resulting in functional redundancy to buffer against the loss of any single 

miRNA locus (Nogueira et al., 2006; Sieber et al., 2007; Yan et al., 2012). Moreover,  
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MIR genes are small in size (Ma et al., 2010; Todesco et al., 2010), making the 

generations of loss-of-function alleles of MIR genes infrequent events, and to date only 

a few loss-of-function mirna mutants have been identified (Aukerman and Sakai, 2003; 

Palatnik et al., 2003; Guo et al., 2005; Kim et al., 2005; Williams et al., 2005; Allen et 

al., 2007; Sieber et al., 2007; Nag et al., 2009; Li et al., 2012). Hence, the generation 

and characterization of genetic mutants may not be easily put into practice. 

 

To circumvent the potential complexity of plant miRNA redundancy, generation of 

gain-of-function mirna mutants (Palatnik et al., 2003) or transgenic plants 

overexpressing miRNAs (Schwab et al., 2005) has been utilized. Such experiments have 

indicated developmental roles for several miRNAs. For example, the generation of 

gain-of-function mutations for miR156, miR159, miR160, miR164, miR172, and 

miR319 lead to defects in vegetative and floral organ development, meristem function 

and flowering, suggesting their potential development roles (reviewed in Jones-Rhoades 

et al. 2006). However, these developmental defects induced by miRNA overexpression 

normally resembles the defects of knockout mutants of major miRNA target genes, 

which generally present the phenotypes that are the opposite of what is seen in plants 

with reduced miRNA activity (Todesco et al., 2010). Thus this approach may not 

accurately define the role of plant miRNAs. 

 

Complementing such approaches is the transgenic method to express miRNA-resistant 

versions of the target gene(s). Here, a number of synonymous mutations are introduced 

into the miRNA binding sites of the target gene, resulting in a gene resistant to miRNA 

regulation, but coding for an identical protein to the wild-type gene. Hence, comparison 

of the miRNA-resistant target version to a wild-type target version will be able to define 
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the importance of miRNA regulation for this target gene. This approach has been widely 

used in functional analysis of the conserved miRNAs in Arabidopsis (Palatnik et al., 

2003; Mallory et al., 2004a; Mallory et al, 2004b; Hunter et al., 2006; Wu et al., 2006; 

Nag et al., 2009; Wu et al., 2009; Hewezi and Baum, 2012), and in several instances the 

miRNA-resistant transgenes have caused morphological defects that are highly similar 

to the corresponding loss-of-function mirna phenotypes (Palatnik et al., 2003; Mallory 

et al., 2004a; Mallory et al., 2004b; Allen et al., 2007; Sieber et al., 2007). 

 

However, this transgenic approach also has shortcomings. For instance, most of the 

conserved miRNAs appear to have multiple target genes that correspond to a single 

paralogous family (reviewed by Li et al., 2014). Such target genes of a miRNA family 

may potentially have similar functions in a particular tissue or biological process. 

Therefore, the expression of a single miRNA-resistant target may not reflect all the 

functions of a particular miRNA family. In addition, this transgenic method may result 

in the high expression, or mis-expression of the miRNA-resistant transgene due to 

position effect (Li and Millar, 2013). This misrepresentation of expression compared to 

the corresponding endogenous target, may lead to an exaggeration of the importance of 

miRNA-mediated target regulation (Li and Millar, 2013). Hence, to what extent the 

phenotypes conferred by expressing a miRNA-resistant target can reflect the functions 

of a plant miRNA family should always be questioned when using this method.  

Perhaps a better approach for the functional analysis of plant miRNAs, is to generate a 

transgene that simultaneously inactivates all members of a plant miRNA family, so as to 

generate a loss-of-function mirna outcome. The generation of so called “miRNA decoys” 

was initially put into practice in plants with the discovery of ‘Target Mimicry’ in 

Arabidopsis (Franco-Zorrilla et al., 2007). Here, the non-protein coding gene IPS1  
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was found to contains a sequence complementary to miR399, but with a central 3 nt 

bulge that is predicted to prevent miR399 cleavage, but rather resulting in the 

sequestration of miR399. Based on this IPS1 gene, the miR399 binding site was altered 

with other 3 nt-bulged miRNA binding sites (MIM) so to sequester many other miRNA 

families and generate loss-of-function mirna phenotypes (termed Target Mimic, Todesco 

et al., 2010). Expression of these Mimic decoys could result in obvious morphological 

defects, demonstrating their potential application in generating loss-of-function mirna 

outcomes. However, since not all these Mimic transgenes could result in detectable 

morphological outcomes (Todesco et al., 2010), their efficacies in inhibiting different 

plant miRNAs should be questioned: whether the failure of a Mimic to confer any 

phenotypic defect is due to its incompetence in inhibiting the miRNA activity, or it is 

because the respective miRNA cannot make discernable contribution to the plant 

morphology? Moreover, some of these Mimic decoys were then demonstrated to confer 

only weak inhibitions of some miRNAs, when compared with a modified “Short 

Tandem Target Mimic” method (STTM; Yan et al., 2012). This STTM is designed to have 

two 3 nt-bulged MIM sites for miRNA sequestration, and linked by an AT-rich spacer 

with an optimal length of 48~88 nts (Yan et al., 2012). As the strong inhibition effects of 

STTM decoys were only demonstrated for three miRNAs in comparison with the 

original Mimic decoys (i.e. miR165/166, miR156/157, miR160; Yan et al., 2012), the 

inhibition effects of STTMs on many other miRNAs requires further investigations.  

 

Taken together, it appeared that Target Mimic and STTM transgenes were designed with 

a similar principle: namely, insert one or two MIM target sites into certain backbones to 

sequester miRNAs from their endogenous targets. This may effectively inhibit the 

activities of some plant miRNA families, but apparently another transgenic method (or 
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miRNA decoy) is required to complement and verify the Mimic inhibitory effect. To 

realize that, in this thesis the miRNA SPONGE (SP), another miRNA decoy developed 

in mammalian cells to carry many targets sites with simple 4 nt linkers (Ebert et al., 

2007, refer to chapter 5 for details), was investigated for its inhibition efficacies against 

different miRNAs in Arabidopsis. By doing this, the questions regarding if the SP 

approach could be widely used to efficiently inhibit different miRNAs in plants, and 

could it be an alternative to the currently used Mimic approaches would be addressed.   

 

1.8 The Arabidopsis miR159-MYB pathway 

1.8.1 miR159 regulation of MYB33/65 in Arabidopsis 

The miR159 family represents one of the most ancient miRNA families, being 

identified as one of only eight highly conserved miRNA families present in all 

embryophytes (Axtell and Bartel, 2005, Axtell and Bowman, 2008; Cuperus et al., 

2011). In Arabidopsis, miR159 is consistently the most abundant miRNAs as 

determined by deep-sequencing analysis (Nakano et al., 2006; Rajagopalan et al., 2006; 

Kasschau et al., 2007). There are three distinct MIR159 genes in Arabidopsis: MIR159a, 

MIR159b, and MIR159c, located in different regions of the genome and generate their 

respective mature 21-nt miR159a, miR159b and miR159c isoforms (Table1.1, Allen et 

al., 2010). As determined by both deep sequencing (Rajagopalan et al., 2006) and 

TaqMan miRNA quantitative assays (Allen et al., 2010), miR159a and miR159b are 

highly expressed compared with miR159c (Backman et al., 2007). Moreover, miR159a 

and miR159b only differ in sequence at one nucleotide, and were demonstrated to 

function redundantly in regulating gene expression, upon the observation that neither 

loss-of-function mir159a nor mir159b single mutants displayed a mutant phenotype, but 
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a mir159ab double mutant displayed pleiotropic development defects, such as 

curled/rounded leaves, stunted growth, and altered apical dominance (Figure 1.1 B, 

Allen et al., 2007). These defects indicated the critical role of miR159a/b in the control 

of plant development. By contrast, miR159c is expressed at an extremely low level, and 

currently no functional role has been identified, even though a comprehensive 

functional analysis on the MIR159c gene has been performed (Allen et al., 2010). 

 

 

 

 

 

 

 

 

 

Figure 1.1: The miR159-MYB module appears as a genetic futile cycle in 

Arabidopsis rosettes. (Figure courtesy of Rob Allen et al., 2007) (A) Sequence 

alignment between miR159a, miR159b and their two redundant targets, MYB33 and 

MYB65. The miR159b is different from miR159a at one nucleotide on the 3’ end (green 

coloured). They redundantly target MYB33 and MYB65 mRNA through near-perfect 

sequence complementarity, the mismatches in target sites of MYBs transcripts are 

marked in red colour. The miR159-cleavage site in MYB mRNAs are indicated by red 

line. (B) Aerial views of rosettes of 5-week-old plants of wild-type, mir159ab double 

mutant, and mir159ab.myb33.myb65 quadruple mutant. 
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Via bioinformatics and overexpression strategies, the Arabidopsis miR159 family has 

been predicted to regulate 20 potential target genes, seven of which belong to the 

GAMYB-like family of transcription factors (Table 1.1, Allen et al., 2010). Supporting 

this, miR159-mediated regulation of five of these GAMYB-like members have been 

validated by 5’-RACE (i.e. MYB33/65/101/120/81) (Allen et al., 2010). However, in a 

loss-of-function mir159ab, the MYB33 and MYB65 were the only two de-regulated 

targets as judged by increases in their mRNA levels (Allen et al., 2007; Alonso-Peral et 

al., 2010). This specificity is likely due to the finding that many of the other targets have 

mutually exclusive transcriptional domains when compared to that of MIR159a 

andMIR159b (Allen et al., 2007; Allen et al., 2010). More specifically, using the 

MIR159a:GUS and MIR159b:GUS reporter genes, the MIR159a and MIR159b were 

found ubiquitously expressed but were absent in anthers (Allen et al., 2007); such an 

expression domain strongly overlaps with the broad transcriptional domain of MYB33 

and MYB65 (Zimmermann et al., 2004; Millar and Gubler, 2005; Zhang et al., 2009), 

whereas the other potential targets were found to be transcribed predominantly in 

anthers/pollens, and hence appeared to be spatially excluded from miR159 regulation 

(Allen et al., 2007; Slotkin et al., 2009; Allen et al., 2010). Additionally, the miR319 

family, another conserved miRNA family closely related in sequence to the miR159 

family, has been identified with the ability to regulate MYB33/MYB65 as well, but due 

to the expression of miR319 being much lower than that of miR159 in vegetative tissues, 

miR319 regulation of the MYB33/65 genes does not make a significant impact on 

MYB33/65 expression (Palatnik et al., 2007). In further support of this specific 

miR159a/b-MYB33/65 regulatory relationship, introducing loss-of-function 

myb33/myb65 alleles in mir159ab resulted in suppression of all mir159ab vegetative 

defects, as illustrated by a quadruple mir159ab/myb33/myb65 mutant (Figure 1.1, Allen 
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et al., 2007). This genetic suppression strongly implies that miR159a/b are functionally 

specific for only two targets in rosette tissues, MYB33 and MYB65.  

 

 

Table 1.1: miR159 targets predicted by bioinformatics, validated by 5'-RACE or 

miR159 over-expression (Table courtesy of Rob Allen et al., 2010). All predicted 

miR159 targets from three different plant bioinformatics programs and verified miR159 

targets from published 5'-RACE and overexpression studies; overexpression describes 

targets shown to have lower RNA levels than wild-type in 35S:MIR159a transgenic 

plants. Mature miR159 members are shown 3'- 5'. Target mismatches with miR159a are 

bold. Bioinformatically identified targets specific for miR159b or miR159c are 

indicated with brackets. Anther/pollen expression data is compiled from Genevestigator 

(Hruz et al., 2008). Not all genes were available on the dataset (shown as n/a). Key: P = 

psRNA target (Zhang et al., 2005), M = miRU (Dai and Zhao, 2011), H = RNAhybM 

(Alves-Junior et al., 2009). R= 5'-RACE; OE = Overexpression, D=degradome. a. 

Gregory et al., 2008; b. Addo-Quaye et al., 2008; c. German et al., 2008; d. Palatnik et 

al., 2003; e. Palatnik et al., 2007; f. Reyers and Chua, 2007; g. Alves-Junior et al., 2009; 

h. Schwab et al., 2005. 
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MiR159 regulates MYB33 and MYB65 mRNAs through AGO1-mediated cleavage of 

their mRNAs (Figure 1.1, A). This is experimentally determined by the detection of 

miR159-specific cleavage products of MYB33 and MYB65 (Palatnik et al., 2003; Allen 

et al., 2010). However, a translational repression mechanism is also in operation based 

on the observation that MYB33 mRNAs can accumulate to high levels, but is not 

translated into protein (Alonso-Peral et al., 2010; Li et al., 2014). With these 

mechanisms, the expression of MYB33 and MYB65 is efficiently and completely 

silenced by miR159a/b in vegetative tissues. This is a notion supported by several lines 

of evidence. First, from genetic analysis, it is estimated that less than 10% of wild-type 

miR159 levels are sufficient to completely silence MYB33 and MYB65 in vegetative 

tissues (Allen et al., 2007; Allen et al., 2010). Secondly, loss-of-function myb33.myb65 

mutant plants display a wild-type phenotype at the vegetative stage, and microarray 

analyses found that the transcriptome of myb33.myb65 was indistinguishable from that 

of wild-type (Alonso-Peral et al., 2010). Together, these data supports the idea that 

miR159 acts as a molecular switch, fully suppressing MYB33/MYB65 expression in 

vegetative tissues, and that MYB expression is silenced everywhere but in seeds and 

anthers (Millar and Gubler, 2005; Alonso-Peral et al., 2010).  

 

1.8.2 The confirmed and proposed functions of the miR159-MYB33/65 pathway 

Recent progress of understanding the role of the miR159-MYB pathway is mostly based 

on the functional analysis of MYB33 and MYB65 in the seeds and anthers. First, an 

loss-of-function myb33.myb65 Arabidopsis double mutant did not display widespread 

developmental defects, but was defective in anthers development, where the tapetum 

failed to undergo programmed cell death (PCD) and degenerate (Figure 1.2 B, Millar 
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and Gubler, 2005; Aya et al., 2009). Additionally, in a myb33.myb65.myb101 triple 

mutant, there was a defect in seed germination, where there was slower vacuolation in  

 

 

Figure 1.2: Evidence supporting a role for MYB33/65 expression in the PCD of the 

tapetum of anthers and the aleurone of seeds in Arabidopsis (Figures courtesy of 

Millar and Gubler, 2005; Alonso-Peral et al., 2010). (A) And (C) reporter gene analysis 

demonstrating the MYB could only be expressed in tissues undergoing PCD. The stained 

cells showed pink fluorescence under dark field optics (Millar and Gubler, 2005; 

Alonso-Peral et al., 2010). (B) and (D) phenotypic analysis showing the deletion of 

MYB expression will lead to compromised cell degeneration in tapetum (Millar and 

Gubler, 2005), and slower vacuolation in aleurone cells (Alonso-Peral et al., 2010), 

which are essential steps of PCD in these tissues. The wild-type plant (Col) is used as a 

control. myb33.myb65: loss-of-function MYB33 and MYB65 double mutant, with a 

T-DNA insertion in each MYB gene. myb33.myb65.myb101: loss-of-function MYB33, 

MYB65 and MYB101 triple mutant, with a T-DNA insertion in every MYB gene. 

MYB101: another GAMYB-like family member highly expressed in seeds. 
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the aleurone cells (Figure 1.2 D), a process which is again PCD-related and is required 

for seed germination in Arabidopsis (Guo and Ho, 2008; Alonso-Peral et al., 2010). 

This PCD-related function of MYB33/65 is consistent with the transcript profiling 

analysis performed on mir159ab (Alonso-Peral et al. 2010). Here, de-regulated 

expression of MYB33 and MYB65 is accompanied with up-regulation of a number of 

genes associated with PCD, including proteinases (e.g. CYSTEINE PROTEINASES, CP 

and CP1), hydrolases (e.g. BETA-XYLOSIDASES, BXL1 and BXL2), and transporters 

(e.g. OLIGOPEPTIDE TRANSPORTER, OPT). Annotated functions of these genes are 

consistent with the degradation and transportation of cellular plant components, 

processes which are associated with PCD (Lee et al., 2004; Li et al., 2006; Lee et al., 

2007). Moreover, this PCD-related function of the GAMYB-like genes appears to be 

conserved, as GAMYB expression has been identified in the aleurone and tapetum of 

barley (Gubler et al., 1995; Murray et al., 2003) and in the anthers of rice (Tsuji et al., 

2006; Aya et al., 2009). In rice, GAMYB is required for PCD in the tapetum, which 

undergoes hypertrophy in the rice gamyb mutant, expanding to occupy the entire locule, 

causing the microspores to degenerate and causing male sterility (Kaneko et al., 2004, 

Aya et al., 2009).   

 

In contrast to seeds and anthers, no clear role is known for the miR159-MYB module in 

vegetative tissues. From a cellular analysis of the mir159ab mutant, in which the 

MYB33/65 genes are strongly expressed, it was found that this MYB activity antagonises 

cell proliferation in rosette tissues (Alonso-Peral et al., 2010), but no evidence of altered 

PCD was detected in the mir159ab rosette. Thus, the question remains: what role is the 

miR159-MYB pathway playing in the rosette tissue?  
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Considering the metabolic cost associated with MYB33/MYB65 transcription and the 

subsequent miR159-guided silencing, it would seem unlikely that the miR159-MYB 

pathway is a futile process in plant rosettes. The abundance of miR159 has been found 

to be positively associated with the plant hormone gibberellin (GA, Achard et al. 2004) 

and abscisic acid (ABA, Reyes and Chua, 2007; Kim et al., 2008), but whether these 

associations have any biological role is not clear (details can be referred to the 

introduction of chapter four). Additionally, the involvement of miR159 activity in a 

control of plant floral transition from the vegetative phase has also been suggested 

(Achard et al., 2004; Tsuji et al., 2006; Li et al., 2013b), but this notion is not well 

supported as there are several conflicting lines of evidence (reviewed by Teotia and 

Tang, 2014, also refer to chapter 6 for detailed discussion). Therefore, what is the role 

of miR159-mediated silencing of MYB expression in plants is still an intriguing 

question that is poorly answered. With this respect, this PhD programme focused on 

performing the functional analysis of miR159-MYB module in Arabidopsis rosettes, and 

this thesis aimed to provide new phenotypic and molecular data, to develop our 

understanding of this module in plant vegetative tissues. 
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Chapter 2 

Materials and Methods 
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2.1 Plant materials 

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used in all experiments and is 

referred to as wild type. The following mutants were described previously and represent 

T-DNA insertional loss-of-function mutants: mir159a (Allen et al., 2007), mir159ab 

(Allen et al., 2007), myb33.myb65 (Millar and Gubler, 2005), ago7-1 (Adenot et al., 

2006) and rdr6-15 (Fahlgren et al., 2006). The rdr6-15 and ago7-1 mutants were kindly 

donated by Iain Searle. All mutants were in the Col-0 background, except the double 

mutant myb33.myb65, which was in a mixed Col-6 (myb33) and Col-0 (myb65-2) 

background (Millar and Gubler, 2005). The transgenic lines MIR159b:GUS and 

mMYB33:GUS were previously generated in the Col-0 background respectively by 

Allen et al. (2007) and Millar and Gubler (2005). The LhG4 enhancer line HET:59a was 

previously generated in the Col background by Rutherford et al. (2005). The 

mir159ab.myb33.myb65 quadruple mutant and the other mir159ab mutants carrying 

different combinations of myb33 and myb65 T-DNA insertional alleles were generated 

by crossing the above double mutants mir159ab and myb33.myb65. The mir159ab.cp1 

triple mutant was generated by crossing the mir159ab double mutant with the T-DNA 

insertional cp1 mutant from the SALK collection (SALK_051510). The genotypes were 

confirmed by PCR genotyping experiments (see section 2.8). 

 

2.2 Plant Growth conditions 

For plant growth, all seeds were sterilized using a vapour-phase method. Seeds were 

placed into a desiccator jar and exposing them to chlorine gas for 3-6 hours, and the 

chlorine gas was generated by mixing 100 mL of commercial bleach with 3 mL of 

concentrated HCl. Sterilized seeds were either sown on soil (Debco Plugger soil mixed 

with Osmocote Extra Mini fertilizer at 3.5 g/L), or on agar plates containing 0.5X MS 
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(Murashige and Skoog, 2.2g/L), and stratified at 4°C overnight in the dark. Seeds were 

then washed once with 70% ethanol followed by three washes with sterilized water and 

then sown on plates. Plants were grown in 21°C growth cabinets under long day (LD) 

photoperiod (16 h light/8 h dark, fluorescent illumination of 150 μmol m
−2

 s
−1

). For the 

purpose of phenotypic verification, the plants were placed in a 21ºC growth chamber 

under short day (SD) photoperiod (8 h light/16 h dark, fluorescent illumination of 150 

µmol/m
2
/sec), to delay flowering and facilitate vegetative development.  

 

For stress treatments, Col, mir159a, mir159ab, mir159ab.myb33.myb65 plants were 

grown side by side in soil, for three weeks in a 21ºC growth chamber (a LD photoperiod 

was applied throughout the treatment if not otherwise specified), and then transferred 

into a 4ºC growth room with constant light at 80~90 μmol m
−2

 s
−1 

(low-temperature 

treatment), or a growth chamber with high temperatures (32°C day/28°C night, 

high-temperature treatment), or a growth chamber with high light intensity (~500 μmol 

m
−2

 s
−1

, high light intensity stress), or provided with ~800 mL tap water per two weeks 

(drought stress). Plant phenotypes were examined every three days, in order to assess 

whether morphological differences could be induced among the plants of different 

genotypes.  

 

2.3 EMS mutagenesis and mir159ab revertant screening 

Approximately 5000 seed of the mir159ab mutant were immersed in 0.025% ethyl 

methanesulfonate (Sigma) overnight with gentle agitation. Approximately 1200 EMS 

treated seeds were planted in soil and grown (LD photoperiod was applied for all screen 

processes), and were then screen for M1 revertants which will have rosettes with larger 

sizes and reduced leaf curl in comparison with the non-mutagenized mir159ab rosette. 
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The M1 plants displaying a mir159ab phenotype were allowed to self-pollinate so to 

generate M2 progenies. For the M2 screen, initially ~30 M2 seeds per M1 line were 

planted in soil and scrutinized for M2 revertants with larger rosette sizes and reduced 

leaf curl. Then, because of the high frequency of mir159ab reversion events, seeds of 15 

M1 lines were grouped into a M2 pool, from which ~1000 M2 plants per pool were 

screened for revertants. This approach maximized the number of mutagenized seeds 

screened, which in turn maximizes the chances of identifying mutants that were 

complete revertants. 

 

2.4 Design of miRNA decoys 

SP transgenes were designed for ten miRNA families: miR159, miR164, miR167, 

miR168, miR169, miR170/171, miR319, miR390, miR396 and miR403. They were 

designed to contain binding sites that are complementary to the respective miRNA, with 

two mismatches at the cleavage site, which are opposite nucleotides 10 and 11 of the 

miRNA. Modifications of these SP transgenes regarding the miRNA binding sites were 

as specified in chapter five (Figure 5.11, Table 5.2and5.3). Every SP is composed 15 

miRNA binding sites, separated by 4 nt DNA spacers of random sequence and contains 

identical primer binding sequences that can be used to measure SP RNA levels by 

quantitative real-time PCR (qRT-PCR). The MIM binding sites of miR159 and miR156 

were also respectively placed into either a TuD or predicted stem-loop backbone as 

specified in chapter five (Figure 5.9). All the sequences of SP, TuD, stem-loop 

transgenes could be referred in the Appendix file 1.  
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2.5 Bioinformatics 

The free energy (ΔG) of each miRNA-target site hybridization was calculated by two 

independent web servers: Mfold web server 

(http://mfold.rna.albany.edu//?q=DINAMelt/Two-state-melting; Zuker, 2003) and 

RNAhybrid web server 

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html, Rehmsmeier et al., 

2004). Secondary structures were predicted by the RNAfold web server 

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). Thermodynamic stabilities were 

illustrated by free energies of the thermodynamic ensemble [ΔG(s)], which were 

calculated by RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).  

 

2.6 Generation of expression vectors 

Dr. Craig Wood from CSIRO kindly provided Gateway compatible entry vectors 

harbouring the viral silencing suppressors (VSS) P0, P19 and V2. All miRNA inhibitor 

sequences were synthesized and cloned into the Gateway donor vector pDONR/Zeo 

(Invitrogen) by GenScript (USA). The VSSs and miRNA inhibitors were sequenced 

with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, USA), to 

verify their integrity. For constitutive gene expression, the transgenes were sub-cloned 

into the Gateway compatible destination vector pMDC32 harboring the Cauliflower 

Mosaic Virus (CaMV) 35S promoter (Curtis and Grossniklaus, 2003), using the 

Gateway LR Clonase II enzyme mix (Invitrogen) according to the manufacturer’s 

instructions. For inducible gene expression, the destination vector pMDC7 contains a 

chimeric transcription activator, XVE, which can efficiently activate the expression of 

gene fused downstream of it, upon induction by 17-β-estradiol (Zuo et al., 2000) was 

adopted for the sub-cloning making use of the same Gateway LR approach described 
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above. For tissue specific expression, the MultiSite Gateway entry vectors: 

pEN-L4-pOP6M2-R1, pEN-L1-S-L2, pEN-R2-F-L3 and destination vector 

pB7m34GW.0 were obtained online at http://www.psb.ugent.be/gateway/ (Karimi et al., 

2007), and the LR reaction containing pDONR/Zeo-SP165/166, pEN-L4-pOp6M2-R1, 

pEN-R2-F-L3 and pB7m34GW.0 was carried out to generate the pOP6-SP expression 

vector; while the LR reaction containing pEN-L1-S-L2, pEN-L4-pOp6M2-R1, 

pEN-R2-F-L3 and pB7m34GW.0 was carried out to generate the pOP6-GUS expression 

vector, following the methods described by Karimi et al. (2007).  

 

The LR reaction mixture was transformed into E. coli Alpha-Select Gold Efficiency 

competent cells (Bioline) by heat shock. After recovery at 37°C for one hour, the 

bacteria were grown overnight at 37°C on Luria Broth (LB) plates containing the 

corresponding selection antibiotics (Invitrogen) (50 µg/mL Kanamycin for selection of 

E. coli transformants of 35S-expression vectors; 50 µg/mL spectinomycin for selection 

of E. coli transformants of XVE-expression vectors or pOP6-expression vectors). Next, 

single E. coli colonies obtained were inoculated into 4 mL of liquid LB medium 

containing the appropriate antibiotics as mentioned for selection. After 18~20 hours 

growth at 37ºC, the plasmids were extracted using AxyPrep
TM 

Plasmid Miniprep Kit 

(Axygen), and the desired expression vectors were screened by diagnostic restriction 

enzyme digestion, for which two restriction endonuclease enzymes were selected to 

digest each plasmid extraction. All restriction enzyme digestion reactions were 

incubated at 37ºC for 1 hour, and then analysed on 1% agarose gels by electrophoresis.   
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2.7 Generation of transgenic Arabidopsis  

All expression vectors were transformed into Agrobacterium tumefaciens strain 

GV3101 by electroporation (Hellens et al., 2000), and incubated on LB plates 

containing Rifamycin (50 µg/mL), Gentamicin (25 µg/mL), and either Kanamycin (50 

µg/mL, for selection of Agrobacterium transformants of 35S-expression vectors) or 

spectinomycin (50 µg/mL, for selection of Agrobacterium transformants of 

XVE-expression vectors or pOP6-expression vectors). All plates were incubated at 28ºC 

for two days until the colonies appeared. Single Agrobacterium colonies obtained were 

then subcultured in a 10 mL liquid LB medium containing the same antibiotics for 

selection. After growth at 28°C overnight, plasmid was extracted from the culture using 

AxyPrep
TM 

Plasmid Miniprep Kit (Axygen), following the protocol provided by the 

manufacturer, but the volume of each reagent used was increased by 50%. The structure 

of the vector was confirmed by performing the diagnostic restriction enzyme digestion 

on the plasmid extracted. Then 1 mL of the remaining culture was inoculated into a 500 

mL liquid LB culture containing again the same antibiotics as mentioned, and incubated 

overnight at 28°C with constant shaking at 220 rpm. Next, Agrobacterium was 

harvested by a 15 min centrifugation at 5,000 r.p.m, and resuspended in 500 mL 

infiltration medium containing 5% sucrose and 0.03% surfactant Silwet L-77 (Clough 

and Bent, 1998), which was Agrobacterium infiltration medium ready for transforming 

the plants. 

 

To prepare Col-0, myb33.myb65, rdr6-15 and HET:59a plants for transformation, they 

were grown in a 21ºC growth chamber with LD photoperiod. The primary flowering 

bolts of all plants were clipped to promote the production of multiple secondary bolts. 

When secondary bolts began to produce flowers, the aerial parts of the plants including 
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rosettes were dipped into the Agrobacterium solution for 30~45 sec, ensuring all the 

floral organs were submerged. Plants were then placed back into the growth chamber 

and covered with a plastic membrane for 24 hours to maintain high humidity. Seeds 

were harvested later and sterilized using a vapour-phase method as described. 

Transformants were selected by growing seeds on agar plates containing 0.5X MS and 

antibiotics for selection (30 μg/mL Hygromycin for Col-0, myb33.myb65 and rdr6-15 

transformants of 35S-transgenes or XVE-transgenes; 30 μg/mL Kanamycin and 25 

μg/mL Basta for HET:59a transformants of pOP6-transgenes). After 7-10 days growth, 

transformants were identified and transplanted onto soil. 

 

2.8 Estradiol induction of XVE-MIM159 transgene  

The primary XVE-MIM159 transgenic plants were germinated on 0.5X MS plates with 

30 μg/mL Hygromycin for seven days in a 21ºC growth chamber with LD photoperiod, 

and then transplanted onto soil. After another two-week growth on the soil, the rosettes 

of XVE-MIM159 transformants were sprayed with either 10 μM 17-β-estradiol (inducer) 

or 10 μM dimethyl sulfoxide (DMSO, solution to dissolve 17-β-estradiol). The 

treatment was done once every three days till the leaf-curling phenotype appeared on the 

estradiol-treated rosettes.  

 

2.9 PCR genotyping and identification of T-DNA Insertional alleles 

The DNA extraction was performed on one to two newly initiated rosette leaves, 

according to the Edward preparation method (Edwards et al., 1991). Then, PCR was 

carried out using Platinum
®
 Taq DNA Polymerase (Invitrogen) in a 20 µL reaction 

volume. 2 µL of Edward prep purified genomic DNA was used for each PCR, with final 

primer concentration at 0.2 µM. PCR conditions used were one cycle of 94°C/ 2 min; 
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30 cycles of 95°C/30 sec, 60°C/30 sec, 72°C/1-2 min; one cycle of 72°C for 5 min. 10 

µL of each PCR reaction was analysed on a 1% agarose gel by electrophoresis.  

 

Amplification using the following pairs of gene-specific primers (Appendix file 2) 

detected the wild-type alleles: 159a-5 and 159b-3 to give an 884 bp fragment (MIR159a 

wild-type allele); 159b-5 and 159b-3 to give a 707 bp fragment (MIR159b wild-type 

allele); MYB33-5 and MYB33-3 to give a 1086 bp fragment (MYB33 wild-type allele); 

MYB65-5 and MYB65-3 give a 1440 bp fragment (MYB65 wild-type allele); CP1-5 and 

CP1-3 to give a 1032 bp fragment (CP1 wild-type allele). To detect the mutant T-DNA 

alleles, gene-specific primers were combined with the T-DNA-specific primers as 

follows: 159a-5 and LB3 to give a 210 bp fragment (mir159a mutant allele); 159b-5 and 

LB3 to give a 530 bp fragment (mir159b mutant allele); MYB33-5 and JL202 to give a 

462 bp fragment (myb33 mutant allele); MYB65-5 and LBb1 to give a 1200 bp 

fragment (myb65 mutant allele); CP1-5 and LBb1 to give a 786 bp fragment (cp1 

mutant allele). 

 

2.10 RNA extraction  

TRIzol
®
 (Invitrogen) was used for RNA extraction of tissues from seedlings or rosettes 

at different growth stages. The extraction procedure was carried out following 

manufacturer’s instructions with some modifications: (1) ~500 mg of plant material per 

1ml Trizol reagent was applied for each extraction; (2) grinding the plant material in 

liquid nitrogen with a mortar and pestle; (3) The chloroform extraction step was done 

twice; (4) RNA precipitation was carried out 24h~48h at -20°C to maximize the 

recovery of small RNAs.  
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2.11 DNase treatment and purification of RNA samples  

The RNA samples were further treated with RQ1 RNase-Free DNase (Promega) to 

eliminate genomic DNA contamination and prepare for qRT-PCR, except those for 

Taqman sRNA assays (see section 2.13). For each sample, 30-50 µg of total RNA was 

treated with 25 μL of RQ1 DNase in a 100 µL reaction volume following the protocol 

provided, with the addition of 2.5 μL of RNaseOut
TM

 Recobinant RNase Inhibitor 

(Invitrogen) to protect the RNA from degradation. The digested samples were purified 

with the Spectrum
IM

 plant Total RNA Kit (Sigma Aldrich) following the kit protocol to 

remove digest DNA fragments. The concentration of each sample was measured using a 

nanodrop spectrophotometer. The quality of purified RNA was then examined by 

denaturing 1 µg sample with RNA loading buffer at 65°C for 5 min, followed by 1% 

agarose gel electrophoresis.  

 

2.12 cDNA synthesis 

cDNA synthesis was carried out using SuperScript
®
 III Reverse Transcriptase 

(Invitrogen) and oligo dT primers according to the manufacturer’s instructions. As a 

modification, for each sample, 250 ng – 2.5 µg of total RNA was prepared with 

nuclease free distilled water in a final volume of 5 µL; and the volume of each reagent 

used was reduced by 50%, so that the half reaction (10 µL reaction volume instead of 20 

µL) was performed. The 10 µL cDNA product was then diluted 50 times in nuclease 

free distilled water and used for subsequent qRT-PCR. 

 

2.13 Quantitative Real-time PCR (qRT-PCR) analysis 

For qRT-PCR, Platinum
®
 Taq DNA Polymerase (Invitrogen) with SYB Green (Sigma) 

and dNTPs (Fisher Biotec) added was used as a master mix. 10 µL of each cDNA 
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sample was added to 9.6 µL of SYB/Taq master mix with 0.4 µL of forward and reverse 

primers at 10 µmol each, for a final reaction volume of 20 µL. All qRT-PCR reactions 

were carried out on a Corbett Rotor-Gene Q real time PCR machine (Qiagen), in 

triplicate under the following cycling conditions: one cycle of 95°C/5 min; 45 cycles of 

95°C/15 sec, 60°C/15 sec, 72°C/20 sec, and the fluorescence was acquired at the 72°C 

step; one melting cycle from 55 ºC to 90 ºC, rising by 1 degree(s) each step, 15 sec for 

the first step, and 5 sec for each step afterward. CYCLOPHILIN (At2g29960) was used 

to normalize mRNA levels using the comparative quantitation program in the 

Rotor-Gene 6 software provided by Qiagen. The value for each gene represents the 

average of triplicate assays (the mean), and the standard deviation was calculated to 

appraise how widely the triplicate results are dispersed from the mean. 

 

2.14 Taqman sRNA assays for mature miRNAs 

For determining the mature miR159 levels, the RNA samples from TRIzol
®

 (Invitrogen) 

extraction were directly subjected to TaqMan MicroRNA Assays (Applied Biosystems) 

following the protocol described by Allen et al. (2010). Different from the above 

qRT-PCR protocol, this assay used 10 ng of each RNA sample to perform the 

retro-transcription, with the use of a TaqMan MicroRNA Reverse Transcription kit 

(Applied Biosystems), and each reaction included the stem-loop RT primers for both the 

miR159a (or mir159b) and the normalization sRNA sno101. Then, each cDNA was 

assayed in triplicate using the Corbett Rotor-Gene 2000 real time PCR machine (Corbett) 

under the cycling conditions described above. The Expression of miR159a (or miR159b) 

were normalized with sno101 using again the comparative quantitation analysis 

program in the Rotor-Gene 6 software (Corbett), and the standard deviation was 

calculated. 
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2.15 GUS staining 

In situ GUS staining was performed on rosette tissues at different growth stages, using 

the method described by Jefferson (1987) with the following modifications: 1) Rosette 

tissues were collected and fixed with 90% acetone for 20 minutes at room temperature, 

followed by a 30min vacuum infiltration with GUS staining buffer 1 (50 mM Na 

phosphate buffer, pH 7.2, 0.2% Triton X-100, 2mM potassium ferricyanide and 2mM 

potassium ferrocyanide). 2) Histochemical reactions were performed by a 30~60 min 

vacuum infiltration with staining buffer 2 (staining buffer 1 plus 2 mM X-gluc, which is 

5-bromo-4-chloro-3-indolyl-β-D-glucuronide), and then an overnight incubation at 

37°C. The staining buffer was removed by successive washes with 20%, 50%, 70% and 

90% ethanol (1h per wash), and the cleared tissues were photographed using either a 

Olympus Dissecting Microscope OLYMPUS SZX2-ILLK (Tokyo, Japan) (for 

10~20-day-old seedlings) or a normal camera and a light box (for older and bigger 

rosettes). 

 

2.16 Trypan blue staining 

This staining was performed basically as described in Van Wees (2008). First, freshly 

harvested leaves were submerged into a 2.5 mg/mL Trypan blue solution and heated in 

boiling water for 1 min, followed by 2 h incubation at room temperature. Next, these 

tissues were incubated in a chloral hydrate solution for 2h at room temperature, 

followed by replacement of the chloral hydrate solution and an overnight incubation at 

room temperature. To detect the dead or dying cells, which is supposed to be stained in 

dark blue, the leaf tissues were covered with 70% glycerol, and observed under the 

bright-field microscopy OLYMPUS SZX2-ILLK (Tokyo, Japan). 
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Chapter 3 

Functional analysis of the miR159-MYB module in the 

Arabidopsis rosette 
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3.1 Introduction 

The miR159 family represents one of the most ancient miRNA families identified not 

only widely in both monocots and dicots (Axtell and Bartel, 2005; Axtell and Bowman, 

2008), but is present in lycopods, and even moss the earliest-branching clade in land 

plants (> 400 million years, Bartel, 2004; Arazi et al. 2005; Li et al., 2011b). Via 

bioinformatic prediction and experimental validation in different species, such as barley 

(Hordeum vulgare), rice (Oryza sativa), Arabidopsis, potato and strawberry, miR159 

has been found to specifically regulate the expression of several GAMYB or 

GAMYB-like genes, which are also ancient (Achard et al. 2004; Tsuji et a., 2006; Allen 

et al., 2007; Csukasi et al., 2012; Yang et al., 2014). As the miR159 binding site in these 

MYBs is highly conserved, despite the considerable evolutionary distance that separates 

these species from their last common ancestor, the miR159-MYB relationship is 

considered to have a long co-evolutionary history (Rhoades et al., 2002; Achard et al. 

2004; Tsuji et al., 2006; Csukasi et al., 2012; Yang et al., 2014). Therefore, it appears 

that the miR159-MYB module is evolutionarily selected to play vital roles in plants.  

 

These GAMYB or GAMYB-like genes encode R2R3 MYB domain transcription factors, 

members of the largest plant transcription factor family (Dubos et al., 2010; Li and Lu, 

2014). As the name indicates, these MYB genes have been implicated in gibberellin (GA) 

signal transduction, which has shown to be the case in anthers and germinating seeds 

(Woodger et al., 2003). However, the role of the miR159-MYB module in plant 

vegetative growth is largely unknown. In this chapter, I aim to first characterize the 

expression patterns of miR159 and the MYB target genes during rosette development in 



62 

 

Arabidopsis thaliana, and then investigate the possible role of miR159-MYB module in 

plant development or response to abiotic/biotic stresses.  

 

In Arabidopsis, miR159 is the most abundant miRNA family (Nakano et al., 2006; 

Kasschau et al., 2007), where the two predominantly expressed miR159 isoforms, 

miR159a and miR159b (miR159a/b, Fahlgren et al., 2007), play redundant roles 

controlling plant growth. The importance of miR159a/b in plant growth is illustrated by 

a loss-of-function mir159ab double mutant that displays pleiotropic developmental 

defects (e.g. curled/rounded leaves, stunted growth and altered apical dominance), 

which are not apparent in either single loss-of-function mir159a or mir159b mutant 

(Allen et al., 2007). Although bioinformatic and molecular analyses have identified 

approximately 20 miR159 target genes in Arabidopsis (Allen et al., 2010), only miR159 

regulation of two GAMYB-like genes, MYB33 and MYB65 (MYB33/65), appear 

functionally relevant, because all development defects in a mir159ab are fully 

suppressed in a mir159ab/myb33/myb65 quadruple mutant (Allen et al., 2007).  

 

One major biological role of the GAMYB-like genes is promoting programmed cell 

death (PCD). This is evidenced by a male sterile phenotype of the rice gamyb, and 

Arabidopsis myb33.myb65 mutants in which the tapetum fails to undergo PCD (Kaneko 

et al., 2004; Millar and Gubler, 2005; Aya et al., 2009). Furthermore, Alonso-Peral et al. 

(2010) found that expression of the GAMYB-like genes in the aleurone of Arabidopsis 

also promoted PCD, as the aleurone vacuolation, a GA-mediated PCD process required 

for seed germination, was impaired in the myb33.myb65.myb101 mutant seeds (MYB101, 

another 5’-RACE verified target of miR159, which is highly expressed in Arabidopsis 
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seeds, Penfield et al., 2006; Allen et al., 2010). Therefore, it appears that in seeds and 

flowers, where miR159 activity is weak, these MYB genes are expressed, regulating 

PCD processes of the tapetum and aleurone to promote anther and seed development 

respectively.  

 

By contrast, in vegetative tissues, where MYB33/65 are transcribed, strong miR159 

activity has been demonstrated to mediate complete silencing of MYB33/65 expression 

(Allen et al., 2007; Alonso-Peral et al., 2010), making the miR159-MYB pathway a 

seemingly genetic futile cycle. By analyzing the mir159ab mutant, Alonso-Peral et al. 

(2010) discovered that though the MYB activity antagonizes cell proliferation in rosette 

tissues, no altered PCD was detected in the rosette of mir159ab. Moreover, by applying 

GA to loss-of-function myb33.myb65 mutant and wild-type Arabidopsis rosettes, the 

MYB33/65 were found not required for GA-induced rosette growth, as myb33.myb65 

and wild-type plants responded to GA similarly in terms of petiole length of rosette 

leaves; also, MYB33/65 mRNA levels failed to change with GA application in wild-type 

plant (Alonso-Peral et al. 2010). Therefore, it is still unclear why plant makes a 

metabolic investment in MYB33/65 transcription only for these transcripts to be fully 

silenced by miR159. This raises the fundamental questions of what role is the 

miR159-MYB module playing in these vegetative tissues, and what, if any, 

developmental or stress-response function is it playing?  

 

To address this, my experiments have focused on answering the following questions:  

a. In what developmental stages/tissues/cells of the rosette is miR159 expressed, 

and in what developmental stages/tissues/cells are MYB33/65 transcribed? 
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b. Are there conditions in which miR159 activity is suppressed, resulting in the 

activation of the MYB33/65 pathway?  

c. What is the biological role of miR159-MYB module in the Arabidopsis rosette? 
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3.2 Results 

3.2.1 Identification of a marker gene for MYB33/65 activity: CP1 transcript level 

tightly correlates with MYB33/65 expression 

To facilitate the functional analysis of the miR159-MYB pathway in the Arabidopsis 

rosette, a marker of the MYB33/65 activity is required. Owing to the difficulty in 

detecting MYB33/65 protein expression by western blotting, the transcript levels of 

MYB33/65 are generally used as an indicator of MYB expression/activity (Naqvi et al., 

2010; Wu et al., 2010; Du et al., 2014). However, it is clear that miR159 can strongly 

suppress translation of MYB33/65 mRNA, and hence MYB33/65 mRNA levels are not 

accurate indicators of their expression (Li et al., 2014a).  

 

Potential downstream genes of MYB33/65 have been reported previously in a 

microarray study that identified genes up-regulated by MYB33/65 expression 

(Alonso-Peral et al., 2010). To determine whether one such MYB33/65 downstream 

candidate gene, CYSTEINE PROTEINASE1 (CP1; At4g36880, Alonso-Peral et al., 

2010), could act as an accurate molecular marker of MYB33/65 expression/activity, it 

was investigated how tightly CP1 mRNA level correlated to MYB33/65 expression. 

This was performed in a set of mir159ab mutants that carry different combinations of 

myb33 and myb65 T-DNA-insertional alleles, and hence different levels of MYB33/65 

expression (Figure 3.1, A). These mutants were isolated by firstly crossing mir159ab 

with myb33.myb65, and then genotyping the self-fertilized third generation progenies 

(F3). By measuring CP1 mRNA levels in these mutants carrying various combinations 

of myb33/myb65 alleles, the feasibility of using CP1 mRNA level as a marker of 

MYB33/65 expression was appraised.  
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Figure 3.1 CP1 transcript level tightly correlates with MYB33/65 expression. (A) 

Representative rosette phenotypes of five-week-old mir159ab plants carrying different 

combinations of heterozygous or homozygous T-DNA insertion myb33/myb65 alleles. 

The F3 progenies were numbered in order as the genotyping was performed, and one 

numbered plant of every confirmed genotype was selected to represent the rosette 

phenotype. (B) qRT-PCR analysis of CP1 and BXL2 mRNAs in five-week-old rosettes 

of different genotypes. The numbers along the x-axis correspond to the numbered plants 

A 
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shown in A. Coloured arrows indicate the impact of MYB33/65 expression on CP1 and 

BXL2 mRNA levels. (C) 3D-column presentation of CP1 mRNA levels, for comparison 

between the molecular and phenotypic impacts (i.e. phenotypes shown in A). (D) and (E) 

Phenotypic and molecular impacts of single wild-type MYB65 allele expression. 

Analysis was done on five-week-old mir159ab.myb33.MYB65/myb65 [myb65 (het)] 

mutants and mir159ab.myb33.myb65/myb65 (quad) mutants. All mRNA levels were 

normalized to that of housekeeping gene CYCLOPHILIN (At2g29960). Error bars 

represent the SD of three technical replicates of this assay.  

 

As predicted, it was found that the number of wild-type MYB33 or MYB65 alleles 

present in the mir159ab background strongly correlated with defect severity of rosette 

morphology; i.e. upwardly curled leaves and reductions in rosette sizes. Even the 

presence of only one wild-type MYB33 allele (Figure 3.1, A, plant 15) or one MYB65 

allele (Figure 3.1, D) could induce mir159ab phenotypic characteristics of upwardly 

curled leaves. More importantly, CP1 mRNA level was tightly correlated to the number 

of wild-type MYB33 and MYB65 alleles. Additionally, this correlation appeared tighter 

than the correlation of another MYB33/65 downstream candidate, BETAXYLOSIDASE2 

(BXL2) (Figure 3.1, B), whose transcript level correlated strongly with the MYB33 allele, 

but less so with the MYB65 allele. 

 

It was worth noting that the wild-type MYB33 allele (Figure 3.1, A, plant 16) triggered 

severer mir159ab rosette defects than the wild-type MYB65 allele (Figure 3.1, A, 

plant14), which indicated that MYB65 has a weaker activity than that of MYB33. To 

determine whether the CP1 mRNA level also reflects this weaker MYB65 activity, CP1 

mRNA levels were compared between the mir159ab.myb33.myb65/MYB65 (carries one 

wild-type MYB65 allele) and the mir159ab.myb33.myb65 (carries no wild-type MYB65 

allele) plants (Figure 3.1, E). In two biological replicates, significantly higher CP1 

mRNA levels were detected in the mir159ab.myb33.myb65/MYB65 plants compared to 

mir159ab.myb33.myb65 plants (Student’s T-test: P < 0.05). This supports the notion 
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that CP1 mRNA levels are a sensitive and reliable indicator of MYB33/65 

expression/activity in rosette tissues. 

 

3.2.2 The miR159-MYB module is constantly and ubiquitously present in 

Arabidopsis rosettes 

To begin the characterisation of miR159-MYB module in Arabidopsis rosettes, two 

time-course experiments were performed to determine in what developmental stages, 

tissues or cells of the rosette are the miR159 and its MYB33/65 target genes expressed 

(Figure 3.2). 

 

First, a qRT-PCR based transcript profiling experiment was performed on wild-type 

Arabidopsis (Col) rosettes over a 63-day time course, to study the levels of mature 

miR159a and miR159b abundance, and the mRNA levels of MYB33, MYB65 and CP1 

during rosette development (Figure 3.2, A). It was found that both miR159a and 

miR159b were expressed strongly throughout rosette development. Both miRNAs had 

similar developmental profiles, increasing approximately two-fold during the first half 

of rosette development and then decreasing slightly. Next, the transcript levels of 

MYB33 and MYB65 were measured in the same samples (Figure 3.2, A). The 

abundances of both transcripts were found to be low. Although fluctuations in their 

abundances were detected, they did not inversely correlate with the miR159 profile, and 

so are likely to be independent of miR159 activity.  

 

To determine whether these MYB33 and MYB65 mRNA levels reflect MYB33/65 

protein expression, the CP1 mRNA level was measured (Figure 3.2, A). Analysis 

showed that in three-day-old seedlings, the CP1 mRNA level was high, which is  
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Figure 3.2 miR159 activity constantly represses MYB33/65 activity throughout 

rosette development. (A) Time-course transcript profiling of miR159-MYB module in 

rosettes. The relative miRNA and mRNA in rosettes were measured every ~10 days 

throughout its development. The miR159 levels were normalized to sno101, a 

constitutively and strongly expressed small RNA (Allen et al., 2010; Alonso-Peral et al., 

2010). The mRNA levels of MYB33, MYB65 and CP1 were normalized to that of 

CYCLOPHILIN. Error bars represent the SD of three technical replicates of this assay. 

(B) Time-course GUS-staining assay for rosettes of MIR159b:GUS and mMYB33:GUS 

transgenic lines. The staining was carried out on ten individual rosettes per time point, 

at ten-day interval during plant growth; the very first and last staining results were 

shown to represent the consistent staining pattern for all the tested time points. 
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consistent with the fact that CP1 is highly expressed in germinating seeds (Alonso-Peral 

et al., 2010). However, other than this time point, CP1 mRNA level constantly stayed 

low throughout rosette development. This suggests MYB33/65 mRNAs are strongly 

silenced by miR159 throughout rosette development, and that the fluctuations in 

MYB33/65 mRNA levels do not reflect changes in MYB33/65 protein expression. 

 

To determine in what rosette tissues and cells MIR159 and its target MYB genes are 

transcribed, a -glucuronidase (GUS)-staining assay was then carried out over a 60-day 

time course, on two transgenic Arabidopsis lines: MIR159b:GUS and mMYB33:GUS. 

The MIR159b:GUS line was constructed by fusing the GUS gene downstream of the 

MIR159b promoter, to visualize the transcriptional domain of MIR159b (Allen et al., 

2007); while the mMYB33:GUS line carries a miR159-resistant version of MYB33, 

which enables visualization of the MYB33 transcriptional domain (Millar and Gubler, 

2005). The rosettes of each line were harvested and stained every ten days.  

 

It was found that the rosettes of both lines could be stained at all the tested time points, 

from young seedling (10-day-old) to the late reproductive (60-day-old) growth phases 

(Figure 3.2, B). Moreover, the staining appeared ubiquitous throughout MIR159b:GUS 

and mMYB33:GUS rosettes. Patches of unstained cells in the older plants were either 

dead in those areas or possibly reflects a leaf staining penetration problem (Schieferstein 

and Loomis, 1956), which did not correspond to a consistent developmental pattern. 

Hence, the result extends the previous GUS-staining observation showing MIR159b and 

MYB33 are co-transcribed (Allen et al., 2007), by demonstrating this co-transcription 

occurs in all cells and developmental stages of the Arabidopsis rosette.  
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Summarizing the data, the overall time-course results revealed the presence of strong 

constitutive expression of miR159 that suppresses the expression of MYB33 and MYB65 

throughout Arabidopsis rosette development.  

 

3.2.3 miR159 is functionally active in the developing rosette 

To test the idea that constant miR159 activity is required for normal rosette 

development, a XVE-MIM159 construct was then generated and transformed into 

Arabidopsis (Col, Figure 3.3, A). The transactivator XVE can be induced by estrogen 

(e.g. 17--estradiol), resulting in transcriptional activation of the downstream transgene 

(Zuo et al., 2000); while the MIM159 carries a non-cleavable miR159 binding site that 

sequestrates and inhibits miR159 (Todesco et al., 2010). Primary XVE-MIM159 

transformants were selected and grown for 21 days so that rosettes were well 

established. These transformants were then treated with either 10 μM 17-β-estradiol 

(inducer) or dimethyl sulfoxide (dissolving solution, control). Two weeks after the 

treatment, leaves to which the 17-β-estradiol was applied had become upwardly curled 

(Figure 3.3, B), consistent with the hyponastic leaf phenotype of mir159ab. Supporting 

this were qRT-PCR analyses that found elevated MYB33, MYB65 and CP1 mRNA 

levels in 17-β-estradiol treated XVE-MIM159 plants (Figure 3.3, C) 

 

Therefore, both the phenotypic and molecular data indicate that miR159 function is 

constantly active in developing rosettes, and perturbation of this function results in 

derepression of MYB33/65 expression accompanied with morphological alterations to 

the rosette. This raises the possibility that the miR159-MYB module may be involved in 

response to environmental stress(es), where inhibition of miR159 activity by a biotic or 
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abiotic stress will activate MYB33/65 expression, inducing the morphological alterations 

accommodating that stress(es). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Morphological and molecular responses induced by inhibiting miR159 

activity during rosette development. (A) Cartoon illustrating the construction of the 

XVE-MIM159 inducible system. G10−90, a constitutive promoter controlling the XVE 

fusion gene (Ishige et al., 1999); XVE, chimeric transcription factor containing the 

DNA-binding domain of LexA, transcription activation domain of VP16 and regulatory 

region of the human estrogen receptor (Zuo et al., 2000); OLexA, eight copies of the LexA 

operator sequence (Zuo et al., 2000); MIM159, DNA sequence complementary to 

miR159, with a central three-nucleotide bulge to obstruct the miR159-mediated 

cleavage of MIM159 transcript (Todesco et al., 2010). Application of 17--estradiol 

promotes the XVE transactivity, leading to the MIM159 transcription, which can 

consequently sequester and inhibit the miR159 function. (B) Application of 

17--estradiol to 21-day-old XVE-MIM159 transformants induced the leaf-curling 

defect (red circled). The representative picture was taken when plants were 35-day-old. 

(C) qRT-PCR of MYB33/65 and CP1 mRNA levels in 35-day-old transformant rosettes 

with different treatments. DMSO: dimethyl sulfoxide, solution to dissolve 

17--estradiol, applied as the control treatment. All mRNA levels were normalized to 

that of CYCLOPHILIN. Error bars represent the SD of three technical replicates of this 

assay. 
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3.2.4 miR159 silencing in rosettes cannot be inhibited by common abiotic stresses  

Recently, the function of miR159 has been implicated in plant response to abiotic 

stresses, such as to heat stress in wheat (Wang et al., 2012), drought stress in potato 

(Yang et al., 2014), based on down-regulation of miR159 levels in these species under 

these respective abiotic stresses. The Arabidopsis response to drought stress has also 

been reported, but with opposing northern blotting data showing increased miR159 

accumulation under tested drought conditions (Reyes and Chua, 2007). Here, prior to 

any further investigation, we searched the GENEVESTIGATOR platform 

(https://www.genevestigator.com/gv/) and Arabidopsis eFP Browser 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi), for growth conditions that may activate 

CP1 transcription, based on the assumption that this gene will be activated as shown 

above if the miR159 activity is compromised under certain stressful conditions. 

However, CP1 mRNA levels were found to remain low under all examined growth 

conditions and stresses. Hence, in Arabidopsis, it appeared that the suggested role of 

miR159 function in plant stress response requires further phenotypic and molecular 

analyses, which will be addressed by following experiment utilizing the 

mir159ab.myb33.myb65 quadruple mutant. 

 

To investigate the effect of a certain stress on the miR159 silencing, the wild-type Col 

and mir159ab.myb33.myb65 quadruple mutant were grown under several conditions [i.e. 

high (32°C day/28°C night) or low (4
o
C) temperatures, high light intensity (~500 μ

mol m
−2

 s
−1

) and drought (~250mL tap water per 1L soil every two weeks)]. Also 

included in the analysis were the loss-of-function mir159a and mir159ab mutants that 

were grown side-by-side for comparison. As miR159 abundance in mir159a is reduced 

to approximately 10% of wild type, but is morphologically indistinguishable from the 
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wild-type Col (Allen et al., 2007; Allen et al., 2010), such a genotype would be 

sensitized to subtle perturbation of miR159 activity which may result in mir159ab-like 

phenotype that may not be manifested in wild-type plants. 

 

None of the tested stress conditions could induce an observable phenotypic difference 

among the Col, mir159a and mir159ab.myb33.myb65 plants, suggesting no strong 

disturbance of miR159 activity in the Col or mir159a plants under these stresses. Since 

the low-temperature stress triggered obvious morphological alterations to the rosettes 

(Figure 3.4, A), further molecular analysis was performed on these plants (Figure 3.4, 

B). qRT-PCR analysis found that although the MYB33/65 mRNA levels in mir159a 

were slightly higher than that of Col (Student’s Test: P < 0.005), the mRNA levels of 

CP1 remained unchanged between Col or mir159a and mir159ab.myb33.myb65 plants 

(Student’s Test: P > 0.05) (Figure 3.4, B). This indicates miR159-mediated silencing of 

MYB33/65 had not been perturbed, which supported the observation that the Col, 

mir159a and mir159ab.myb33.myb65 plants were morphologically indistinguishable 

under cold stress.  

 

From these analyses it appears that miR159 activity in rosettes is generally robust under 

common abiotic stresses, and the activation of MYB expression during these stresses did 

not occur. Therefore, to perturb the miR159 function, a stress that can strongly repress 

plant miRNA pathways may be required.   
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Figure 3.4: Morphological and molecular analysis of low-temperature effect on the 

Arabidopsis miR159-MYB module. (A) Phenotypic comparison of rosettes of Col, 

mir159a, mir159ab and mir159ab.myb33.myb65 plants stressed with low-temperature. 

All plants were grown at 21℃ for three weeks after seed germination, and at 4℃ for 
another eight weeks. Right after that, the rosettes (~75-day-old) of each genotype were 

photographed and harvested. (B) qRT-PCR analysis of MYB33, MYB65 and CP1 

mRNA levels in the above rosettes (5~10 rosettes per genotype were randomly picked 

for analysis). The mRNA levels were normalized to CYCLOPHILIN. Error bars 

represent the SD of three technical replicates of this assay. The symbol * indicates that 

MYB33/65 mRNA levels in mir159a were significantly higher than that of Col 

(Student’s Test: P < 0.005) 
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3.2.5 The constitutive expression of viral silencing suppressor (VSS) proteins 

cannot strongly inhibit miR159 activity in Arabidopsis rosettes  

One potential biotic stress is the expression of viral silencing suppressor (VSS) proteins. 

Viruses have evolved VSS proteins to counteract plant antiviral RNAi, via interfering 

with one or more steps of small RNA (sRNA) biogenesis (Chapman et al., 2004; 

Voinnet, 2005; Li and Ding, 2006; Diaz-Pendon and Ding, 2008). These VSSs include 

P19 and HC-Pro, which bind and sequester sRNA duplexes with high affinity (Reyes 

and Chua, 2007; Stav et al., 2010; Wu et al., 2010); and P0, which targets sRNA 

effector ARGONAUTE1 (AGO1) protein to promote its ubiquitination and subsequent 

degradation (Pazhouhandeh et al., 2006; Bortolamiol et al., 2007; Csorba et al. 2010). In 

this study, P19 and P0 were strongly and constitutively expressed in Arabidopsis to test 

if VSSs can inhibit miR159 activity and trigger mir159ab-related defects.  

 

First of all, the P19 and P0 coding genes were fused downstream of the Cauliflower 

Mosaic Virus (CaMV) 35S promoter to generate 35S-P19 and 35S-P0 transgenes for 

strong, constitutive expression in transgenic Arabidopsis (Col). As a negative control, 

the VSS protein V2 was used, because its activity inhibits SUPPRESSOR OF GENE 

SILENCING3 (SGS3), which is required for siRNA amplification, but not miRNA 

biogenesis or function (Fukunaga and Doudna, 2009). Consistent with this, 35S-V2 

transgenic plants [termed 35S-V2(Col), Figure 3.5, A] displayed no morphological 

abnormalities. Different from that, the 35S-P19 transformants [termed 35S-P19(Col), 

Figure 3.5, A] displayed reduced rosette sizes, indicating that P19 expression inhibits 

the growth of Arabidopsis. However, despite the smaller size, these rosettes displayed 

no obvious morphological abnormality and no obvious leaf-curl phenotype, suggesting 

that 35S-P19 expression could not strongly perturb miR159 activity. 
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Figure 3.5 Constitutive expression of VSS P19 and P0 could not strongly perturb 

the miR159 activity to induce mir159ab relative defects. (A) Different phenotypes 

developed in 28-day-old 35S-V2(Col), 35S-P19(Col) and 35S-P0(Col) primary 

transgenic lines. The wild-type plants (Col) were grown side by side as controls. Each 

plant has been generated by an individual primary transformation event and thereby 

together these multiple lines should represent a range of expression levels of respective 

silencing suppressors. (B) The representative classification of symptom severities 

among 35S-P0 transgenic plants. Class I: wild-type-looking group; Class II: 

intermediate group that has mild reduction in rosette size and partially curled leaves; 

Class III: further reduction in rosettes and all leaves curled group; Class IV: most severe 
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group that has stunted tiny rosettes and all leaves curled. (C) qRT-PCR analysis of 

relative mRNA levels in every classified 35S-P0(Col) group. (D) Comparison of P0 

mRNA levels between 35S-P0(Col) and 35S-P0(myb33.myb65) with the same classified 

phenotypes. The RNA samples were extracted from 26-day-old plants, Col and 

myb33.myb65 were used as control. The mRNA levels of P0 were normalized to that of 

a housekeeping gene UBIQUITIN (At4g05320), while those of MYB and CP1 were 

normalized to that of CYCLOPHILIN. Error bars represent the SD of three technical 

replicates of this assay. 

 

By contrast, 35S-P0 transgenic plants [termed 35S-P0(Col), Figure 3.5, A] developed 

severe morphological abnormalities, which were characterized by reduced sizes in 

rosettes and curled leaves. These abnormalities appeared similar to that of mir159ab 

rosettes and thus were further investigated. First, the 35S-P0(Col) transgenic plants 

were grouped into four classes, based on the severity of rosette defects (Figure 3.5, B). 

Next, the P0 transcript level was measured in each class, and found to strongly correlate 

with the severity of morphological abnormalities (Figure 3.5, C), suggesting the 

P0-induced phenotypes are dose-dependent. To determine whether these phenotypes 

were potentially due to miR159 inhibition, MYB33 and MYB65 transcript levels were 

measured by qRT-PCR. With the exception of Class I (wild-type looking phenotype), 

mild increases (1-3 fold) of MYB33 and MYB65 transcript levels were observed in all 

other 35S-P0 classes, and positively correlated with the abnormality severity and the P0 

transcript level (Figure 3.5, C). This data suggested that P0 expression inhibited miR159 

activity in a dose-dependent manner, leading to the corresponding de-regulation of 

MYB33/65. However, although increase in CP1 mRNA level was observed to positively 

correlate with both the P0 and MYB33/65 transcript levels (Figure 3.5, C), even in the 

group with the most severe abnormalities, the fold change of CP1 mRNA level was 

much lower than that observed in mir159ab (~40 fold up-regulation; Alonso-Peral et al., 

2010). This suggests that perturbation of miR159 by P0 expression is mild, and 
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de-regulation of MYB33/65 may not be strongly impacting the phenotype of the 

35S-P0(Col) plants. 

 

To investigate this possibility, the 35S-P0 transgene was transformed into a 

loss-of-function myb33.myb65 T-DNA mutant (Millar and Gubler, 2005). Next, the 

35S-P0(myb33.myb65) transformants were selected and grown alongside 35S-P0(Col) 

transformants in order to carry out morphological and molecular comparisons. The 

35S-P0(myb33.myb65) transformants developed similar phenotypes to those of 

35S-P0(Col) transformants, which could be grouped into the same phenotypic classes 

(class I, II, III and IV as shown in Figure 3.5, B). Moreover, qRT-PCR data 

demonstrated that, the P0 transcript levels were similar in similar 35S-P0(Col) and 

35S-P0(myb33,myb65) phenotypic classes (Figure 3.5, D). This finding indicated that 

the similar P0 expression levels triggered the similar phenotypic defects in both Col and 

myb33.myb65 plants. Hence, these P0-induced phenotypes must be largely MYB33 and 

MYB65 independent, and not related to the mild increase of MYB33 and MYB65 mRNA 

levels in 35S-P0(Col). This agreed with the weak induction of CP1 as discussed above 

(Figure 3.5, C). Therefore, together these data imply that P0 expression is unable to 

perturb miR159 function to an extent that results in a strong activation of the MYB33/65 

pathway with a detectable MYB-related rosette defect.  

 

3.2.6 TuMV infection does not strongly perturb miR159 function in Arabidopsis 

rosettes  

The failure of the VSSs to strongly inhibit miR159 function may relate to expression 

levels of the VSSs, which can be very high during viral infection (Scholthof et al., 1995, 

Scholthof et al., 1999). Thus, to further investigate the possibility of perturbing miR159 
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function with a biotic stress, Arabidopsis was infected with the dicot-infecting Turnip 

Mosaic Virus (TuMV) that contains the VSS HC-Pro (HELPER 

COMPONENT-PROTEINASE) protein, which also sequesters sRNA duplexes, and 

causes dose-dependent viral symptoms correlated with HC-Pro expression (Bazzini et 

al., 2007; Shiboleth et al., 2007).   

 

TuMV inoculations were made by infecting two leaves of 21-day-old wild-type (Col) 

plants. Three weeks post inoculation, the infected rosettes developed symptoms 

including upwardly-folded and twisted leaves, exaggerated serrations of leaf edges, and 

accelerated senescence of the older leaves (Figure 3.6, A). To explore the impact of 

TuMV infection on miR159-MYB pathway, transcript levels of TuMV, MYB33/65 and 

CP1 were analysed in the TuMV-infected Col rosettes by qRT-PCR (Figure 3.6, B). 

The results showed that compared with uninfected plants (mock control, inoculated with 

Na2PO4 buffer, Figure 3.6), MYB33/65 mRNA levels were higher in the TuMV-infected 

plants (MYB33: increased 2-3 fold; MYB65: increased 5-9 fold); and moreover the 

MYB33/65 mRNA increases strongly correlated with the transcript level of TuMV 

(Figure 3.6, B). Since the higher TuMV transcription indicates higher expression of 

HC-Pro protein, this strong correlation between TuMV and MYB33/65 transcript levels 

supports that the disrupting effect of HC-Pro expression on miR159 activity is likely 

dose dependent. Consistent with their possible de-regulation, CP1 mRNA level was also 

increased (4-10 fold) in these infected rosettes. However, the increases in CP1 mRNA 

level were not strictly correlated with that of MYB33/MYB65 or TuMV transcript levels 

(Figure 3.6, B).  
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Figure 3.6 TuMV infection perturbed miR159 activity in Arabidopsis rosettes. (A) 

TuMV infection induced clear symptoms on 56-day-old rosettes. 35-day-old plants were 

inoculated with either Na2PO4 (buffer to prepare TuMV solution, mock) or TuMV 

solution. Representative photos were taken after another three-week incubation 

(short-day 8h light/16h dark, 21
o
C). (B) qRT-PCR analysis of relative mRNA 

accumulations in rosettes with TuMV-symptoms. RNA samples were extracted from 

individual rosette with control or TuMV-induced phenotypes as presented in (A), 

control: rosettes of mock plants. All mRNA levels were normalized to CYCLOPHILIN. 

Error bars represent the SD of three technical replicates of this assay. (C) Analysis of 

mature miR159 levels in TuMV-infected rosettes. miRNA Taqman assays were 

performed on the same RNA samples used in (B). The miR159 levels were normalized 

to sno101. Error bars represent the SD of three technical replicates of this assay.  
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Finally, the abundance of mature miR159a/b were measured in the TuMV-infected 

rosettes by Taqman microRNA Assays (Applied Biosystems), and found to accumulate 

to higher levels in TuMV-infected rosettes (Figure 3.6, C). As the VSS HC-Pro 

sequestrates sRNA duplexes, this increase of miR159 steady-state level might reflect an 

accumulation of inactivated form of miR159 (Reyes and Chua, 2007), and hence could 

be seen as being consistent with the possible de-regulation of MYB33/65 in the above 

analysis. Thus, taken together, these data suggest that viral infection can perturb 

miR159 activity, leading to activation of the MYB33/65 pathway. 

 

3.2.7 TuMV infection at lower temperature does not enhance inhibition of miR159 

function  

There is evidence that low temperature inhibits the plant RNAi defence against viral 

infections (Szittya et al., 2003; Chellappan et al., 2005b; Várallyay et al., 2010). In 

Arabidopsis, it has also been observed that at 15℃ (instead of 21℃) the activity of 

siRNA-mediated RNA silencing is attenuated (Szittya et al., 2003), which may facilitate 

a viral infection. Therefore, it was examined whether incubation of the TuMV infection 

at a lower temperature can perturb miR159-mediated silencing even further. 

Accordingly, the viral infection was modified by growing the TuMV-infected plants for 

seven days at lower temperature (15℃), following two weeks of post-inoculation at the 

standard temperature (21℃ ). Again, the infected plants displayed typical TuMV 

symptoms at varying severity levels, which could be classified as mild or severe with 

respect to the rosette size (Figure 3.7, A). qRT-PCR analysis found that TuMV RNA 

accumulated to higher levels in the rosettes classified with severe symptoms (Figure 3.7, 

B). However, this RNA level is comparable to the level which had been achieved in  
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Figure 3.7 Low-temperature incubation does not strongly enhance TuMV infection 

or inhibition of miR159. (A) Representative classification of symptom severities 

among TuMV-infected rosettes. (B) Molecular analysis of relative mRNA levels in 

rosettes with classified symptoms. 29-day-old rosettes were inoculated with either 

TuMV or Na2PO4 solution (mock control), and put back into the growth chamber of 21℃ 

for 14 days (8h light/16h dark), then were grown under 15℃ for the last week (8h 

light/16h dark). mRNA levels were normalized to that of CYCLOPHILIN. Error bars 

represent the SD of three technical replicates of this assay. 
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TuMV infected rosettes under standard conditions (21℃, Figure 3.6, B). Additionally, 

the fold changes of MYB33 and CP1 mRNA levels were no greater than those induced 

by previous infections carried out under standard conditions. Thus, both the 

morphological and molecular data indicated that the TuMV infection triggered similar 

inhibitions of miR159 function under different growth temperatures. This suggests that 

the impact of TuMV infection on the miR159-MYB pathway is not stronger under a 

favourable cold-temperature condition. 

 

3.2.8 Other miRNA pathways are possibly strongly disturbed by TuMV infection  

To assess the impact of TuMV infection on other miRNA systems, the mRNA levels of 

canonical miRNA targets: PHABULOSA (PHB; miR165/166 target), CUP-SHAPED 

COTYLEDON 1 (CUC1; miR164 target), AUXIN RESPONSE FACTOR 4 (ARF4; 

miR390 target) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4; miR319 

target), were measured by qRT-PCR. Interestingly, the mRNA levels of PHB, CUC1 

and ARF4 were found to increase approximately 8-15 folds in the same rosette samples 

showing severe TuMV defects (Figure 3.7, B). These were higher fold-increases than 

that of MYB33 (~2.5 fold, Figure 3.7, B), suggesting stronger inhibitions of the 

corresponding miRNAs. Conversely, TCP4 mRNA level showed a mild increase (~2 

fold) similar to that of MYB33, which is likely due to the low expression and activity of 

miR319 in the rosette tissue (Warthmann et al., 2008; Neg et al., 2009), where 

inhibition of miR319 would not result in a drastic up-regulation of TCP4. Therefore, 

these data together suggested that in comparison with miR159, other miRNA pathways 

(e.g. miR164, miR165 and miR390) might be more responsive to the TuMV infection 

and contribute stronger to the observed symptoms. 
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3.2.9 MYB33/65 does not strongly impact TuMV viral symptoms  

It was worth noting that the increase of CP1 mRNA level in TuMV-infected rosettes 

was comparable to that in the rosettes of 17-β-estradiol treated XVE-MIM159 

transformants (Figure 3.3, C). This may indicate similar biological/morphological 

outcome, where XVE-MIM159 transformants developed mild curliness on a few 

well-established leaves (Figure 3.3, B). Thereby, to address the possible involvement of 

this MYB de-regulation in the manifestation of TuMV pathogenesis and symptoms, a 

comparison of TuMV-infected Col and myb33.myb65 plants was performed (Figure 3.8). 

Both TuMV-infected Col and myb33.myb65 plants developed similar abnormal leaves 

and rosettes that appeared indistinguishable from one another [Figure 3.8, (1) and (2)]. 

Considering the expression of MYB33/65 promotes PCD in the tapetum of anthers and 

aleurone cells of seeds (Millar and Gubler, 2005; Alonso-Peral et al., 2010), trypan blue 

staining was performed on TuMV infected leaves to detect whether viral infection could 

accelerate the cell death process in TuMV-infected Col but not in TuMV-infected 

myb33.myb65, as the latter plant will not express the MYB33/65. However, the results 

revealed that the dead cells on TuMV-infected Col leaves were only detectable in trace 

amounts, and did not appear different from that of TuMV-infected myb33.myb65 leaves 

[Figure 3.8, (3)]. Therefore, no evidence of enhanced PCD in TuMV-infected Col 

rosettes could be found, which supports the observation that there were no obvious 

differences in the symptoms that developed in TuMV-infected Col and myb33.myb65 

plants. Taken together, the suggestion can be made that the expression of MYB33/65 

does not strongly contribute to rosette morphological defects induced by TuMV 

infection. 
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Figure 3.8 MYB33/65 does not strongly impact TuMV viral symptoms. (1) 

Morphological comparison between TuMV-infected Col and myb33.myb65 rosettes of 

42-day-old (21-day-post infection). Plants applied with Na2PO4 are the mock controls; 

(2) A close-up of their leaves with same developmental age. (3) Comparison of 

trypan-blue staining patterns on these leaves. Red arrows indicate the dead or dying 

cells stained by trypan-blue in dark blue. Similar trace amount of stained cells were 

detected on both TuMV-infected Col and myb33.myb65 leaves.  
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3.3 Discussion  

3.3.1 MYB33 and MYB65 are co-regulators with different efficacies in regulating 

rosette morphology 

In this study, mir159ab mutants were generated with homozygous or heterozygous 

combinations of myb33 and myb65 alleles (Figure 3.1), and a strict correlation was 

observed between MYB alleles and mir159ab rosette defects – the reductions of rosette 

size and leaf hyponasty. In addition, either one or two alleles of MYB33 induced more 

severe rosette defects than either one or two alleles of MYB65 respectively, indicating 

that endogenous MYB33 expression could play a stronger role in the rosette tissue than 

MYB65. This might also explain why the BXL2 transcription is more tightly correlated 

to MYB33 alleles as shown in Figure 3.1. Thus, one suggestion that can be drawn from 

these data is MYB33 and MYB65 have similar functional roles in rosette, but with 

different efficacies, where MYB33 appears to be stronger.  

 

3.3.2 miR159-medidated silencing of MYB33/65 is constitutive, ubiquitous and 

functionally active during rosette development 

It is suggested that the MYB33/65 expression promotes PCD processes during the anther 

and seed development (Kaneko et al., 2004; Millar and Gubler, 2005; Aya et al., 2009; 

Alonso-Peral et al., 2010). It is also reported that the regulation of TCP transcription 

factors by miR319 family, which is highly related to miR159 in sequence (Li et al., 

2011b), negatively regulates leaf growth and positively regulates leaf senescence 

(Schommer et al., 2008). With these facts in mind, one may hypothesize that the 

miR159-MYB pathway in rosette tissues can mediate some PCD-related process during 

rosette development, such as senescence. If this is the case, the miR159-mediated 
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silencing of MYB expression maybe assumed to facilitate rosette development by 

having a specific spatial and temporal expression pattern. This would then be similar to 

other plant miRNAs that are known to control rosette development (e.g. miR164, 

miR319, miR396, miR156 and miR172), in which they regulate their targets in specific 

spatiotemporal manners (Sieber et al., 2007; Poethig, 2009; Wu et al., 2009; Wang et al., 

2011b; Schommer et al., 2012). 

 

However, via the time-course transcript profiling and GUS-staining assays, it was 

revealed that miR159 is strongly and constitutively expressed throughout rosette 

development, which resulted in constant silencing of MYB33/65 expression. More 

specifically, the constitutive staining pattern of MIR159b:GUS rosettes uncovered the 

constitutive transcription of MIR159 throughout rosette development (Figure 3.2); and 

the constant high levels of mature miR159a/b detected by time-course qRT-PCR 

supported their constant strong expression (Figure 3.2). Though the abundance of 

mature miR159b was relatively variable, with the lowest level appearing in ten-day-old 

rosettes (Figure 3.2), it would not influence the complete inhibition of MYB33/65 

expression in rosettes. This is based on the genetic and molecular evidence that 

Arabidopsis miR159 is made in great excess to silence MYB expression (Rajagopalan 

et al., 2006; Fahlgren et al., 2007); and the predominant forms miR159a and miR159b 

function redundantly, where either isoform can efficiently silence the MYB33/65 

expression to biologically insignificant levels (Allen et al., 2007). Moreover, the CP1 

mRNA levels remained low throughout rosette development, strongly supporting the 

notion that MYB33/65 expression is constitutively silenced in rosettes. Consequently, 

one may conclude that at no developmental time point does MYB33/65 expression 

occur in rosettes. Additionally, it was observed that all rosette cells of MIR159b:GUS 
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plants, at all the tested time points, expressed GUS activity (Figure 3.2). This indicates 

that miR159 expression is ubiquitous both spatially and temporally throughout rosette 

development, and so is unlikely to make a contribution to cell differentiation of the 

rosette tissue. Therefore, in sharp contrast to other miRNAs that control developmental 

processes, the miR159-mediated silencing of MYB expression does not facilitate normal 

rosette growth or development, at least under normal laboratory growth condition.  

 

Next, via an inducible expression of the XVE-MIM159 transgene it was proved that the 

MYB33/65 had an impact on rosette morphology only when miR159 function was 

strongly inhibited. This suggests that the constant miR159 activity is functionally active 

in regulating the rosette morphology. Thus as an alternative hypothesis, the 

miR159-MYB module may be responsive to some environmental stimuli (e.g. 

biotic/abiotic stress), which if is able to inhibit miR159 activity, the de-regulation of 

MYB33/65 expression will be resulted and a functional outcome will be manifested in 

rosettes. Therefore, finding the stimuli that can inhibit the miR159 activity was the next 

direction for finding the role of miR159-MYB module in the rosette tissue.  

 

3.3.3 The miR159-MYB pathway does not strongly contribute to plant symptoms 

induced by VSS expression or viral infection   

Over 30 VSS proteins have been discovered from both RNA and DNA viruses (Li and 

Ding, 2006), and have been well known for their activities in sequestration of RNA 

intermediates produced during siRNA/miRNA biogenesis (Lakatos et al., 2006; Ding 

and Voinnet, 2007). For instance, VSS protein P19 of Tomato Bushy Stunt Virus binds 

to short (19–21 nt) siRNA/miRNA duplexes in a 1:1 stoichiometric ratio (Stav et al., 
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2010), and VSS protein HC-Pro of TuMV also sequestrates the siRNA/miRNA 

duplexes (Wu et al., 2010). Besides that, some VSS proteins inhibit functions of 

essential RNAi factors, such as the VSS protein P0 that promotes the ubiquitination and 

subsequent degradation of AGO1 protein (Pazhouhandeh et al., 2006; Bortolamiol et al., 

2007; Csorba et al. 2010), and present in several viruses (e.g. Beet Western Yellows 

Virus, Sugarcane Yellow Leaf Virus and Cereal Yellow Dwarf Virus) (Pazhouhandeh et 

al., 2006; Bortolamiol et al., 2007; Mangwende et al., 2009). Therefore, by 

overexpressing the VSS proteins, P19 and P0, the abundance of active miRNAs and 

AGO1 protein complexes should be reduced respectively, triggering a general 

perturbation of plant miRNA pathways.  

 

Previous studies reported that P0 expression could perturb miR159 function in 

Arabidopsis rosettes. Bortolamiol et al. (2007) generated XVE-P0 transgenic 

Arabidopsis plants, which displayed an increase in MYB65 mRNA levels upon 

induction of P0 expression. Additionally, Csorba et al. (2010) demonstrated that the 

P0-mediated destabilization of AGO1 protein could cause the accumulation of miR159 

in an AGO1-free fraction, indicating that the assembly of effective miR159-AGO1 

complexes was impeded by P0 activity. However, in this thesis, it was found that even 

in the transgenic plants with the most severe P0-symptoms, the CP1 up-regulation was 

markedly milder in comparison with that of mir159ab (Figure 3.5). Moreover, similar 

P0 expression levels in 35S-P0(Col) and 35S-P0(myb33myb65) plants triggered 

identical symptoms, indicating that the up-regulated expression of MYB33/65 in 

35S-P0(Col) was not enhancing or alleviating the P0-induced symptoms. Therefore, this 

study strongly suggests that if P0 expression is perturbing miR159-mediated silencing 
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of MYB expression in rosettes, this perturbation was probably mild and insufficient to 

activate the MYB pathway to make a discernable contribution to P0-induced symptoms.  

      

This was further supported by the TuMV infection experiment, where the VSS HC-Pro 

protein of TuMV perturbs the miRNA biogenesis via binding with the sRNA duplexes 

(Bazzini et al., 2007; Shiboleth et al., 2007). Although TuMV infection resulted in 

symptoms on rosettes similar to that of mir159ab defects (i.e. reduced rosette size and 

increased leaf curl), TuMV induced defects in Col and myb33.myb65 plants were 

phenotypically indistinguishable (Figure 3.8), despite the up-regulation of MYB33/65 

expression and the increased CP1 mRNA levels in Col (Figure 3.6 and 3.7). This again 

suggests that the perturbation of miR159 activity by VSS-mediated sequestration of 

sRNA duplexes is not sufficient to be causative of TuMV symptoms.  

 

Regarding previous evidence suggesting perturbation of miR159 function by VSS 

expression or virus infection (Chellappan et al 2005a; Reyes and Chua, 2007; Ho et al., 

2010; Ohshima et al., 2010; Naqvi et al., 2010; Du et al., 2014), the phenotypic and 

molecular comparison between VSS-transgenic/virus-infected Col and myb33.myb65 

mutants have rarely been made. Results from this thesis imply that if a thorough 

conclusion on biological importance of miR159 perturbation is to be made, such a 

comparison is required. Recently, Du et al. (2014) reported a possible causative role of 

miR159 in disease symptoms induced by a Cucumber Mosaic Virus (i.e. Fny-CMV), as 

they compared the Fny-CMV infected Col and myb33.myb65, showing phenotypic 

evidence that the infected Col plants displayed more deformation of the upper, young 

systemically infected leaves. Based on this, they concluded that miR159 contributes to 



92 

 

Fny-CMV induced symptoms (Du et al. 2014). However, molecular analysis to verify 

the phenotypic analysis, by measuring MYB and CP1 mRNA levels would have 

supported such claims, especially since viral infection is complex that displays a wide 

variability in symptoms.  

 

3.3.4 miR159 appears less sensitive than other miRNAs to viral infection 

As VSS proteins interfere with common effectors/biogenesis steps of miRNA pathways, 

these pathways will all be equally effected (Chapman et al., 2004; Voinnet, 2005; 

Dunoyer and Voinnet, 2005; Díaz-Pendón and Ding, 2008). However, given that 

miR159 is one of the most abundant miRNAs in the rosette tissue, which can efficiently 

inhibit MYB expression even at low levels (Rajagopalan et al., 2006; Allen et al., 2007), 

it is reasonable to consider that miR159 is less sensitive to VSS activity than many less 

abundant miRNAs. This is supported by the observation that the function of several 

other miRNA appeared to be more strongly inhibited under the same TuMV infection 

(i.e. miR164, miR165, miR390, Figure 3.7), suggesting differences in sensitivities of 

miRNAs to viral infection. This, as well as the suggestion that many relatively lowly 

expressed miRNAs can be essential for plant growth of which strong inhibitions would 

result in plant lethality (Schommer et al., 2012), may imply that the cell may die before 

miR159 can be strongly inhibited.    

 

However, the possibility cannot be excluded that there is a VSS that preferentially 

perturbs miR159 function, like the identified viral impact on miR168 accumulation 

(Várallyay et al., 2010). In addition, the complexity of viral pathogenesis should not be 

ignored since it is usually accompanied with multifactorial stresses (e.g. combined 
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drought, heat and viral stress) in the natural environment. These additional stresses may 

considerably influence the plant-virus interaction (Prasch and Sonnewald, 2013), and 

possibly miR159 function to result in a morphological outcome. Considering these 

possibilities, it can only be cautiously concluded that the miR159 silencing of MYB 

expression is extremely robust in Arabidopsis rosettes and is unlikely to be perturbed by 

viral stress under laboratory condition. Whether there are other stresses that can strongly 

perturb the miR159 activity to induce a morphological effect still requires more in-depth 

research.  
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Figure 3.9: Summary diagram of functional analysis of miR159-MYB module in 

Arabidopsis rosette. During rosette development under normal growth condition, the 

miR159 mediates constitutive silencing of MYB33/65 expression, as indicated by the 

constantly low CP1 transcription. The viral infection (TuMV) and VSS expression that 

induce a reduction of either active miRNA or AGO1 abundance, can perturb the 

function of sensitive miRNAs (e.g. miR165) and trigger the rosette symptoms. However, 

these viral impacts on miR159 activity appeared mild, likely due to miR159 is less 

sensitive to the same viral stress. Considering the great abundance and efficiency of 

miR159 in rosette tissue, it is hypothesized that the perturbation of other less abundant 

miRNAs may be sufficient to trigger a cell death before the miR159 activity being 

strongly perturbed. This points out the next research focus, that is if there is any 

stress(es) that can specifically and strongly perturb the miR159 activity, to trigger the 

corresponding biological response (i.e. rosette defects and CP1 up-regulation)
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Chapter 4 

An EMS-based mir159ab revertant screening identified an 

unusually high frequency of mutations impacting MYB33/65 

expression  
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4.1 Introduction 

It has been known that the number of genes targeted by a plant miRNA is at least an order 

of magnitude lower than that targeted by an animal miRNA, which is perhaps due to the 

high complementarity requirement for a plant miRNA-target interaction (Schwab et al., 

2005, Jones-Rhoades et al., 2006; Palatnik et al., 2007). More than that, as defined by 

loss-of-function genetic analysis, the number of targets that are subjected to functionally 

relevant plant miRNA regulation appears even smaller than the number of plant miRNA 

targets predicted by complementarity-based bioinformatic programs, which may reflect the 

existence of other regulatory constrain(s) for modulating the plant miRNA-target 

relationship (e.g. target mRNA accessibility, or specific RNA-binding protein; reviewed by 

Li et al., 2014). For instance, most conserved plant miRNAs only appear to regulate a few 

target genes that correspond to a single paralogous family, and these miRNA-target 

relationships are usually evolutionarily conserved (Li et al., 2014). Therefore, to gain 

insight into the functions of these plant miRNAs, analysing the roles of their specific 

targets may help to elucidate the pathways these miRNAs are involved in and their 

functional roles.  

 

As one of the most conserved plant miRNA modules, miR159-mediated regulation has 

been found to be restricted to a family of genes encoding GAMYB or GAMYB-like 

transcription factors that share a highly conserved miR159-binding site (Rhoades et al., 

2002; Achard et al., 2004; Millar and Gubler, 2005; Tsuji et al., 2006). In Arabidopsis, two 

GAMYB-like genes, MYB33 and MYB65 have been identified as the major functionally 

relevant targets of miR159, since not only the widespread de-regulation of these two MYBs 

was detected in most tissues of a loss-of-function mir159 mutant (i.e. mir159ab, miR159a 

and miR159b are the two most abundant forms in Arabidopsis as found by deep sequencing, 
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Fahlgren et al., 2007), but also all the developmental defects of mir159ab were suppressed 

in a mir159ab.myb33.myb65 quadruple mutant (Allen et al., 2007). However, the functional 

reason behind why these MYB target genes are strongly transcribed in rosette tissues, only 

to be then fully silenced by miR159 is unknown.   

 

To address this, elucidating the role of MYB33 and MYB65 in rosettes can be the first step. 

The GAMYB transcription factor has been implicated in gibberellin (GA) signal 

transduction in cereal aleurone, as its expression is positively regulated by GA (Gubler et 

al., 1995; Gubler et al., 2002; Zentella et al., 2002; Woodger et al., 2003). However, in 

Arabidopsis, there have been conflicting reports regarding miR159-MYB involvement in 

GA signal transduction. At first, Achard et al. (2004) have reported that GA enhances both 

miR159 abundance and MYB33 transcript level, which appeared important for modulating 

floral development. By contrast, Alonso-Peral et al. (2010) reported that miR159 

abundance and MYB33 and MYB65 mRNA levels all remain unchanged after GA 

application, suggesting this module is not involved in GA-mediated processes for rosette 

development or for mediating the floral transition. Similarly, Reyes and Chua (2007) could 

not detect any GA-response of MYB33 and miR159 RNA levels during seed germination. 

Instead, the phytohormone abscisic acid (ABA), with antagonistic roles to GA, was shown 

to induce miR159 abundance during seed germination. Therefore, whether the Arabidopsis 

miR159-MYB module interacts with GA and/or ABA signaling pathway remains unclear. 

Besides that, a miR159-miR167-miR319 regulatory circuit has recently been reported, 

where the miR159-MYB and miR319-TCP nodes coordinate to regulate the miR167-ARF 

node, responsible for several checkpoints in floral organ maturation (Rubio-Somoza and 

Weigel, 2013). However, it has also been found that the miR319 is predominantly 

expressed in floral organs, but not leaves (Warthmann et al., 2008; Neg et al., 2009). Thus, 
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the possibility of miR159-MYB module interacting with miR319 or other miRNA module(s) 

in rosettes is tempting but requires supporting evidence. 

 

As a straightforward approach analysing the role(s) of MYB33/65, Alonso-Peral et al. (2010) 

performed a transcriptomic comparison between shoot apex regions (SAR) of 

loss-of-function mir159ab and wild-type Arabidopsis. This has found 121 up-regulated 

genes in mir159ab SARs, which were potentially downstream of MYB33/65. Many of these 

genes were annotated hydrolases and proteases, agreeing with the suggested MYB function 

in promoting programmed cell death (PCD) in seeds and flowers (Millar and Gubler, 2005; 

Alonso-Peral et al., 2010). However, no experiment has verified the causative nature of 

these genes with regards to the morphological defects of the mir159ab rosettes. In addition, 

no enhanced PCD has been identified in the mir159ab rosette tissue. Thereby, it is still 

unknown can the gene(s) downstream of MYB33/65 determine the mir159ab rosette 

morphology.  

 

Here, to address above possibilities and investigate the role of MYB33/65 in rosettes, the 

commonly used ethyl methanesulfonate (EMS) mutagenesis in Arabidopsis (Kim et al., 

2006; Uchida et al., 2011) was applied on mir159ab seeds, aiming to identify mir159ab 

revertants in a bid to identify the causative gene(s)/pathway(s) mediating MYB33/65 

activity (Figure 4.1, A). The EMS mutagen can induce chemical modification of 

nucleotides, resulting primarily in C/G to T/A substitutions and hence the nonbiased 

irreversible mutations in plant genome (McCallum et al., 2000; Henikoff and Comai, 

2003). In Arabidopsis, the EMS-induced mutations are randomly distributed throughout 

the genome, which generate either loss- or gain-of-function mutants owing to alterations 

of certain amino acids in the proteins (Kim et al., 2006). Therefore, via screening for  
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Figure 4.1 Illustration of EMS-based mir159ab revertant screening. A: Layout of 

EMS treatment and revertant screening. B and C: Hypothesized outcomes. In the 

mir159ab mutant, expression of miR159a/b has been knocked out, resulting in 

up-regulation of MYB33/65 and consequent stunted rosettes with hyponastic leaves. Via 

the EMS treatment, both loss-of-function (green coloured) and gain-of-function 

mutations (orange coloured) can be introduced into genes. If the mutated gene involve 

in a pathway upstream of MYBs (e.g. enhancer or repressor) and causes down-regulation 

of MYB33/65 expression (B); or downstream of MYB33/65 that mediates MYB activity 

(C), it will induce a revertant rosette phenotype, namely increased size and less 

hyponasty. Up-arrow: up-regulation; dotted line: potential outcome. 
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EMS-mutant with a morphological suppression of mir159ab defects, the genes either 

upstream or downstream of MYB33/65 expression/activity are expected to be identified 

(Figure 4.1, B and C). Hence, the characterization of such revertants may provide 

materials that will assist in identifying the pathways and processes the MYB33/65 genes 

play in rosette tissues. Identifying the causative mutation(s) in these revertant mapping 

population via advanced deep-sequencing methods (Austin et al., 2011; Lindner et al., 

2012), and elucidating these identified gene(s) should be the next steps to reveal the 

miR159-MYB function in rosettes. 
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4.2 Results 

4.2.1 A mir159ab.cp1 triple mutant does not suppress the mir159ab phenotype  

Since the CYSTEINE PROTEINASE 1 (CP1) is the most up-regulated gene in mir159ab 

(Alonso-Peral et al., 2010), and it may be an important protease promoting PCD (Lee et al., 

2004; Li et al. 2006), a mir159ab.cp1 triple mutant was generated to investigate whether 

CP1 is a causative gene mediating mir159ab rosette defects. First, a cp1 T-DNA insertional 

mutant was obtained from the SALK collection (SALK_051510). Verified by sequencing 

using left border primer of the T-DNA insertion (i.e. LBb1, refer to appendix file 2 for 

primer sequence), the position of the T-DNA insertion site was located to the third intron, 

16 bp downstream of exon 3 of CP1 gene (Figure 4.2, A). As a partial CP1 protein can still 

be made, it was critical to assess to what extent the CP1 transcription was disrupted by the 

T-DNA insertion via qRT-PCR analysis.  

 

The triple mutant mir159ab.cp1 was generated by crossing mir159ab with the above cp1 

mutant. A homozygous mir159ab.cp1 triple mutant was identified via genotyping (Figure 

4.2, B), and progenies of this mir159ab.cp1 line were then grown side by side with 

mir159ab and wild-type Col plants to determine the impact of introducing the cp1 mutation. 

Based on qRT-PCR analysis, the CP1 mRNA was in great abundance in the original 

mir159ab mutant, but reduced to an undetectable level in the mir159ab.cp1 mutant, which 

is even lower than that in the wild-type Col (Figure 4.2, C). This indicates the severely 

disrupted CP1 transcription in the mir159ab.cp1 mutant, but the limitation of this qRT-PCR 

result should be acknowledged that the qRT-PCR primer pair is designed around the 

3’downstream region of CP1 (Figure 4.2, A), which cannot tell if the upstream mRNA 

potion can be made, hence qRT-PCR analysis using other CP1 primer pairs upstream of the 

T-DNA insertion site may be required to address this concern.    
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Figure 4.2 Generation and analysis of a mir159ab.cp1 triple mutant. (A) Illustration 

of the location of T-DNA insertion in a cp1 mutant allele (SALK_051510). CP1-F and 

CP1-R primers were designed around the 3’ downstream region of CP1 to perform 

qRT-PCR analysis. (B) Identification of mir159ab.cp1 triple mutant via PCR 

genotyping. The F2 progenies of a mir159ab × cp1 cross, were genotyped for 

T-DNA-insertional alleles of MIR159a, MIR159b and CP1. Genomic DNA samples 

extracted from Col and mir159ab were used as controls. The identified homozygous 

mir159ab.cp1 triple mutant was marked in red box (i.e. Plant No. 2). DNA bands 

present on top panel of gels indicate relative wild-type alleles, while those on the 

bottom panel of gels indicate corresponding T-DNA inserted alleles. (C) Analysis of 

MYB33 and CP1 mRNA levels in the mir159ab.cp1 triple mutant and control plants. For 

every genotype, RNA samples were extracted from five rosettes of four-week-old plants. 

All mRNA levels were normalized with CYCLOPHILIN (At2g29960). Measurements 

are the average of three technical replicates. Error bars represent the SD.  
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In a phenotypic comparison, mir159ab.cp1 had a leaf-curl phenotype indistinguishable 

from that of mir159ab (Figure 4.3, A). Moreover, as determined using a Lemna Tec 

Scanalyzer (Figure 4.3, B), there is no significant difference between mir159ab and 

mir159ab.cp1 plants in the phenotypic trait of rosette compactness (Student's T-Test: P = 

0.44182); though the rosette size of mir159ab.cp1 was slightly bigger than that of mir159ab 

(Student's T-Test: P = 0.04611), the rosette of Col is more than 10 fold bigger than both of 

these mutants, suggesting the decreased CP1 mRNA level cannot induce a major recovery 

of the mir159ab rosette size. Therefore, the results indicate that the up-regulated CP1 

mRNA in mir159ab is not the absolute cause of the leaf-curling phenotype. 
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Figure 4.3: Morphological analysis of the mir159ab.cp1 triple mutant. (A) Aerial 

view of four-week-old rosettes of wild-type (Col-0), mir159ab and mir159ab.cp1 plants. 

The close up comparison of mir159ab and mi159ab.cp1 rosettes is shown in the bottom 

panel. (B) Statistical analysis of rosette compactness and size of wild-type (Col-0), 

mir159ab and mir159ab.cp1 plants. Plants were grown under long-day condition (16h 

light/8h dark, 21°C) for four weeks. Measurements are the average of five biological 

replicates. Error bars represent the SEM. The symbol * indicates the significant 

deference of rosette size between mir159ab.cp1 and mir159ab plants (Student's T-Test: 

P = 0.04611). 
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4.2.2 Identification of mir159ab suppressor alleles via EMS mutagenesis  

To identify potential gene(s) mediating the function of miR159-MYB pathway in 

Arabidopsis rosettes, an ethyl methanesulfonate (EMS)-based mir159ab revertant 

screen was performed as shown in Figure 4.1 A. Here, ~5000 mir159ab seeds were 

treated with a 0.025% EMS solution, and approximately 1200 EMS treated seeds were 

planted in soil, which theoretically should result in a saturation mutagenesis of one 

mutation for every 100 bp of Arabidopsis genome (~ 120,000,000 bp), assuming the 

EMS treatment will generate ~1000 mutations in one Arabidopsis plant (Colbert et al., 

2001; Bevan et al., 2001). EMS-mutagenized mir159ab seeds (M1) were then planted in 

soil, followed by screening for revertants which will have rosettes with larger sizes and 

reduced leaf curl. 

 

Among ~1200 EMS-mutagenized mir159ab lines (M1), rosettes of two lines appeared 

larger and less hyponastic than the parent mir159ab (Figure 4.4). As the EMS induced 

mutations should be heterozygous in this M1 generation (Henikoff and Comai, 2003), 

M1 plants displaying partially revertant phenotypes would be predicted to carry 

dominant mutations. These M1 plants were allowed to self-fertilize and seeds (M2) 

were collected and sown. Resulting plants were screened, and the phenotypic reversions 

could still be observed in respective M2 generation, confirming that the mutations were 

inherited to the M2 generation (data not shown).  
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Figure 4.4: Two M1 plants developed larger and less hyponastic rosettes than 

mir159ab. The plants were photographed to show the obvious phenotypic difference 

between the revertant candidate and the other mir159ab-like M1 plants, which is likely 

due to a putatively dominant mutation in the revertant plant. 

Revertant ? 
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4.2.3 Many semi-revertant lines were identified in the M2 progenies of other M1 

lines 

As the EMS-mutagenized seeds result in M1 chimeric plants, which then produce the 

heterozygous or homozygous M2 progenies (Henikoff and Comai, 2003), more 

revertants were expected to be identified in the M2 generation. Initially, the seeds of M1 

mutants were individually harvested and approximately 30 M2 seeds per M1 line were 

planted in soil. Surprisingly, of 117 individual M1 lines, 45 produced M2 plants that had 

clear revertant phenotypes (Table 4.1). This observation indicates an extremely high 

revertant frequency, where greater than one third of M1 lines could produce progenies 

that appeared partially reverted (termed semi-revertant), which may indicate the 

MYB33/65 are extensively networked with many other genes and/or have many 

downstream effectors that mediate the mir159ab defects. Alternatively, it is also a 

likelihood of mir159ab defects being easily masked by many unrelated EMS-mutations 

that promote the rosette growth. Therefore, the identified phenotypic reversions of 

mir159ab defects require to be further examined by molecular analysis (see section 

4.2.5 for details). 

 

Moreover, a comparison between the number of M2s displaying revertant phenotypes 

and the number of M2s displaying mir159ab phenotype, found that at least nine M1 

lines have more M2s of revertant phenotypes than the mir159ab phenotype (Table 4.1, 

indicated by red boxes). These observations suggest two possibilities: first, in one such 

M1 line, there are multiple recessive mutations that could induce suppression of 

mir159ab defects, so that they segregate in the M2 generation and result in revertant 

phenotypes when they become in homozygous status. Second, mutations in some of 

these M1 lines are possibly dominant, so that the M2 segregation ratios of these M1 
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lines are greater than the 1:3 Mendelian ratio for a recessive mutation causing reversion 

of mir159ab rosette defects. To clarify the situation, genetic analysis investigating if the 

nature of a causative mutation in a revertant is recessive or dominant should be 

performed (see section 4.2.6 for details). 

 

Table 4.1: Summary of the M2 revertant screen for 117 individual M1 lines. M1 

lines are termed RS1-124 (courtesy of Rob Allen). RS1 and RS2 are the putative 

dominant mutations identified from M1 revertant screening. Seeds of RS83-89 lines are 

not available and not screened. Identified M2 revertant populations are highlighted in 

green. Among them, there are several lines present majorly the revertant phenotypes 

(red boxed), which may indicate a dominant trait of the respective mutations. 

 

 

 



109 

 

Due to the high frequency of mir159ab revertants, seeds of every 15 M1 lines were 

grouped into a M2 pool, and a total 70 M2 pools were set up, from which screening was 

performed on ~1000 M2 plants per pool. In this way, the following screen was aimed to 

maximize the number of mutagenized seeds screened, which in turn maximizes the 

chances of identifying revertants that most closely or even fully resemble a wild-type 

(Col) rosette appearance. 

 

In early development, all the M2 plants developed mir159ab-like rosettes, but after two 

to three-weeks growth, many of the mutant rosettes appeared larger than mir159ab, and 

their younger leaves were less curled. Noticeably, some of the M2 plants even 

developed rosettes larger than that of wild-type, and had extended periods of vegetative 

growth (Figure 4.5). Since the delayed transition from vegetative phase to reproductive 

phase could result in increased sizes of rosettes and numerous leaves (Ding et al., 2013), 

it is possible that the prolonged-vegetative-growth phenotypes triggered by 

EMS-mutations had overwritten the mir159ab phenotype. Thus, to avoid the 

ambiguities introduced by additional mutation phenotypes, the screening of M2 pools 

focused on searching for rosettes that closely resemble wild-type, within a normal 

period of vegetative growth (4~5 week under long-day growth condition). 
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Figure 4.5: M2 mutants identified with extended vegetative growth. All plants were 

grown under long-day condition (16h light/ 8h dark, 21°C). Photos of mir159ab, 

wild-type Col and M2 mutant (1) were taken when plants were 40-day-old. The photo 

of M2 mutant (2) was taken when it was 80-day-old.  
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By a series of phenotypic comparisons, a large number of revertants were identified 

from the M2 pools. In most pools, there were multiple revertants which could be 

potential siblings, thus only one to two revertants were kept from each pool if the 

revertants displayed similar phenotype (i.e. rosette size and leaf hyponasty). In total, 

104 M2 revertants were identified (Figure 4.6). These revertants all developed larger 

rosettes with leaves less curled in comparison to mir159ab of the same age, but none of 

the M2 revertants were completely wild-type in appearance. Therefore, only 

semi-revertants were identified from this screen. Additionally, this ruled out the 

possibility of these revertants had arisen via wild-type pollen contamination, as 

mir159ab-like traits are only observed when both the mir159a and mir159b 

loss-of-function alleles are homozygous (Allen et al., 2007).   
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Figure 4.6: Identified M2 plants developing semi-revertant phenotypes. 
Five-week-old plants are shown and compared to parental mir159ab (left panel). 

Rosettes of 104 M2 revertants were larger and developed leaves with reduced curl. 

Revertants were assigned a number based on the order in which they were identified. 

The pools from which these revertants were identified are recorded in the table on the 

right side. The revertants chosen for further phenotypic and molecular analysis were 

indicated with red-coloured numbers in the table.   
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Figure 4.6 (continued): Identified M2 plants developing semi-revertant 

phenotypes. 
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4.2.4 Phenotypic analysis of M3 progenies from self-fertilized M2 revertants 

To investigate whether these mutations are in a homozygous or heterozygous state, ~20 

M3 self-fertilized seeds of 33 M2 revertants were randomly selected for further 

phenotypic and molecular analysis (indicated by the red-coloured numbers in Figure 4.6, 

and the M2s of RS1, RS2, RS8, RS107 shown in Table 4.1).   

 

After four-week growth, most of the M3 progenies developed revertant phenotypes 

consistent with their corresponding M2 parents (Figure 4.7), confirming that the 

revertant phenotypes were heritable. Some additional phenotypes were occasionally 

observed in some M3 plants (e.g. tiny but not curled leaves and short petioles, as shown 

in Figure 4.7, line 17 and line 42). These possibly resulted from unrelated segregating 

mutations. In some instances, the revertant phenotypes were not segregating in the M3 

progenies (Figure 4.7, e.g. line55 and 60), suggesting the causative mutations were in 

homozygous status in the selected M2 and M3 generations. In other instances, the 

revertant phenotypes segregated in the M3 progenies of a few M2 lines (Figure 4.7, e.g. 

line 73 and 76), suggesting a likelihood of each causative mutation in a heterozygous 

state in respective parental M2 lines. These suggestions are only made upon phenotypic 

observation, which requires further genetic analysis as addressed in section 4.2.6.   
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Figure 4.7: Phenotypic verification of M3 revertant progenies. M2 revertant lines 

were self-fertilized to generate M3 progeny populations, 33 of which were randomly 

selected for this phenotypic and following molecular analysis. For every line, ~20 M3 

seeds were sowed alongside the control plants mir159ab and Col. The merged Figure is 

a representative of the segregation status for each M3 population. Every observation 

was confirmed by a parallel repeat, except for the line 67 which is partially sterile, 

generating a few seeds of low viability.  



116 

 

4.2.5 Expression of both MYB33 and MYB65 were attenuated in most of the M3 

revertant populations  

To investigate if the causative mutation is a component of: 1) a pathway upstream of 

MYB33/65 expression; or 2) a pathway downstream that does not influence the 

MYB33/65 expression but mediate their function, transcript levels of both MYB33 and 

MYB65 in above M3 populations were analysed. Intriguingly, in comparison with the 

mir159ab parent, both MYB33 and MYB65 transcript levels were reduced in all revertant 

rosettes of all these M3 populations (Figure 4.8, A). Moreover, in revertant rosettes of 

every M3 population, the CP1 mRNA level was also found lower than that of mir159ab 

(Figure 4.8, B), supporting the expression/activity of MYB33/65 was compromised in all 

these lines. Additionally, the observation that mRNA levels of MYB33, MYB65 and CP1 

in these M3 lines were higher than those in wild-type Col, was consistent with these 

lines being semi-revertants. Note that the M3 line 34 illustrated an intriguing 

observation that MYB33 and MYB65 mRNAs were reduced to undetectable levels 

(Figure 4.8, A), but the plant is not a full revertant in wild-type appearance. Considering 

our unpublished data showing there are other MYBs that are paralogous to MYB33/65 

and can cause leaf-curl phenotype, it is possible that the mutation in revertant line 34 

activated the expression of other MYB(s) when the expression of MYB33/65 were 

inhibited. Taken together, the reductions of both MYB33 and MYB65 mRNA levels 

supported the phenotypical revertant identification, and moreover indicated the 

causative mutations being in genes that regulate MYB33/65 expression, which so would 

be considered upstream of MYB33/65. An exception to this was presented by M3 line 69, 

in which only the MYB33 mRNA level was reduced, whereas the MYB65 mRNA level 

remained unchanged to that of mir159ab (Student  
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Figure 4.8: Molecular analysis of MYB33/MYB65 and CP1 mRNA levels in M3 

revertants. (A) MYB33 and/or MYB65 mRNA levels reduced in the M3 revertant 

populations. (B) CP1 mRNA levels reduced in the M3 revertant populations. RNA 

samples were harvested from four-week-old rosettes showing revertant phenotypes, and 

quantified for relative mRNAs by qRT-PCR. mir159ab and Col were used as 

unmutagenized controls. Quantifications were normalized to that of CYCLOPHILIN, 

then to the value of the mir159ab plants, which was arbitrarily fixed to 100%. Error bars 

represent standard deviation of three technical replicates of qRT-PCR analysis. Results 

were verified by two biological replicates. Pink/blue coloured blocks indicate reduction 

pattern discrepancies between MYBs and CP1 mRNA levels. 
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T-test: P = 0.33). Whether it was due to a mutation on the promotor of MYB33 gene that 

resulted in a reduction of MYB33 transcription requires further investigation. 

 

Generally, CP1 mRNA level strongly correlated with MYB33/65 mRNA levels in most 

M3 populations. However, there were some exceptions. First, some M3 populations had 

relatively high MYB33/65 mRNA levels but relatively low CP1 mRNA levels [Figure 

4.8, Lines 68-73, 75 and 8(RS)]. A plausible explantation for this is that the translation 

of MYB protein might be arrested in these mutants, leading to the downregulation of the 

CP1 transcription. Conversely, some other M3 populations had relatively low 

MYB33/65 mRNA levels but relatively high CP1 mRNA levels [Figure 4.8, line 62, 

1(RS) and 2(RS)]. An explanation for this could be some repressor-operator mutation(s) 

that resulted in the release of the CP1 transcription. In addition, we should also 

acknowledge the possibility that some unknown regulatory factor(s) might exsit and 

was mutated to intervene in the MYB33/65 activation of CP1 transcription. Overall, to 

clarify the relationship between MYB33/65 expression and CP1 transcription in the 

mutant background, all these possibilities should be cautiously discussed once these 

causative mutations are identified. 

  

4.2.6 Genetic analysis suggests the dominant nature of these causative mutations in 

many M3 revertants 

As mentioned in section 4.2.4, some of the M2 revertants may carry dominant 

mutations, because the phenotypic segregation ratio of them are apparently higher than 

a 1:3 Mendelian ratio for a recessive mutation causing reversion of mir159ab rosette 

defects (Table 4.1, red boxed). This is intriguing with regard to the expectation that the 
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revertants mutations identified in the M2 generation should be predominantly recessive, 

if they were not apparent in the M1 generation. To gain deeper insights, further genetic 

analysis was performed by backcrossing individual M3 revertant from every 

self-fertilized M2 to the unmutagenized mir159ab parent. And the assumption was 

made that if the causative mutations of M3 revertants inherited from the M2s are 

recessive, the progenies (BC1) resulted from M3 X mir159ab backcrossing should have 

the causative alleles in heterozygous state and display mir159ab phenotype. However, 

the phenotypic analysis showed that most of the BC1 progenies developed consistent 

semi-revertant phenotypes after four-week growth, arguing against this assumption 

(Figure 4.9, A).  

 

Next, to analyse if the inheritance mode of these BC1s’ revertant mutations agree with a 

dominant segregation ratio (Table 4.2), the BC1 plants were self-fertilized to generate 

the BC2 progeny populations. As shown in every BC2 population (Figure 4.9, B-H), the 

parental mir159ab phenotype reoccurred in some, but not all progeny plants. This 

verified the causative mutations in the parent BC1s were heterozygous and hence could 

segregate in the BC2 generation. Moreover, via the chi-square test (Table 4.3), it was 

found that the segregation ratios of these BC2 populations followed the Mendel's laws, 

namely a 1:3 ratio of mir159ab to revertant phenotypes presents in most of the BC2 

generations. These ratios support the dominant nature of these mutations in respective 

M3 revertant plants, in terms of mediating the suppression of mir159ab phenotype. An 

exception to this is the BC2s produced by the crossing event of RS1 M3 X mir159ab, 

which displayed a segregation ratio (~3:5) greater than 1:3. This is likely due to the M2 

of RS1 carries the dominant mutation in a heterozygous status (Table 4.2), thus is still 

consistent with the dominant trait of this mutation in the RS1 revertant. 
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Taken together, what has been identified is extremely unusual. Firstly, the 

EMS-mutagenized mir159ab plants developed the phenotypic suppression of mir159ab 

rosette defects at a remarkably high frequency; secondly, the genetic and molecular 

characterization of at least 30 of these revertant mutants revealed that many of these 

causative mutations are dominant and are able to mediate the expression of MYB33/65. 

Hence, our results suggest that miR159-MYB33/65 module is likely extensively 

networked, and elucidation of these genes that cause reversions may shed light on the 

role miR159 plays in plants. 



121 

 

Table 4.2 Expected genetic and phenotypic inheritance modes of revertant 

mutations upon backcrossing of M3s with mir159ab. The phenotypes of 

backcrossing-resulted progenies are categorised into two groups: ab: mir159ab 

phenotype; revert: reversion of mir159ab phenotype. The segregation ratios of 

phenotypes are suggested based on the genotypes indicated in the brackets: A: dominant 

mutation; a: respective wild-type allele. 
 

 
If a dominant mutation of 

M2 is at homozygous 

status : 

If a dominant mutation of 

 M2 is at heterozygous status 

Backcross 

(BC) 

 

M3(AA) X mir159ab(aa) 

 

mir159ab(aa) X M3(Aa) 

 

M3(AA) X mir159ab(aa) 

BC1 

phenotyp

e 

revert (Aa) 
revert (Aa) : mir159ab (aa) 

1:1 

revert (Aa) 

BC2 

phenotyp

e 

ab(aa):revert (AA): 

revert(Aa) 

1:1:2 

ab(aa):revert (AA): 

revert(Aa) 

5:1:2 

ab(aa):revert (AA): 

revert(Aa) 

1:1:2 

BC2 

segregati-

on ratio 

ab:revert 

1:3 

ab:revert 

>1:3 

2:1 



122 

 

 

Figure 4.8: Backcrossing of M3 revertants to mir159ab suggests many causative 

mutations are not recessive. (A) Four-week-old BC1s developed revertant phenotypes. 

Pollen of mir159ab was applied to fertilize the ovary of M3 revertants; the resulting 

BC1 generation was grown alongside mir159ab (white boxed) for phenotypic 

comparison. (B-H) mir159ab phenotype reoccurred in the four-week-old BC2s. BC2 
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generation were respectively produced by self-pollinated BC1s, each tray presents a 

BC2 population coming from one backcrossing event. ab: mir159ab parent; plant line 

numbers indicate which M3s were used for backcrossing. 

 

 

Table 4.3 Segregation ratio test of BC2 from self-fertilized BC1 of mir159ab X M3 

revertant. ab: mir159ab parent; plant line numbers indicate which M3s were used for 

backcrossing. The segregation ratio was tested by using the Chi-square statistic: 

𝜒2 = ∑
(𝑜𝑖+𝑒𝑖)

2

𝑒𝑖

2
𝑖=1 , here 𝑜𝑖 is the observed number and 𝑒𝑖 is the expected number. The 

symbol * indicates that the result was significantly different from the Mendelian 

segregation ratio at the significant level 0.05. For example, for the crossing event of ab 

X line22 M3, there were 𝑜1 = 18 mir159ab-like and 𝑜2= 45 revertant-like BC2’s, if the 

segregation followed the Mendelian law, there should be 𝑒1  = (18+51) ×  
1

4
 

mir159ab-like BC2’s and 𝑒2 = (18+51) × 
3

4
 revertant-like BC2’s, then 𝜒2= 0.0435 

which follows a 𝜒2 distribution with one degree of freedom, and the p-value is p 

(𝜒2 > 0.0435) = 0.8348. This large p-value does not indicate that the segregation 

significantly differ from the Mendelian segregation at the significant level 0.05. 

 

 

 

 

 BC2 Phenotype Segregation  

Crossing mir159ab-like Revert-like Ratio(ab:revert) 𝜒2 p-value 

ab X line22 18 51 1:3 0.0435 0.8348 

ab X lineRS1 27 46 >1:3 5.5936 0.01803* 

ab X line58 31 65 1:3 2.7222 0.09896 

ab X line75 16 46 1:3 0.0215 0.8834 

ab X line51 23 47 1:3 2.3048 0.129 

ab X lineRS2 17 40 1:3 0.7076 0.4002 

ab X lineRS8 22 46 1:3 1.9608 0.1614 

ab X line55 7 34 1:3 1.374 0.2411 
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4.3 Discussion    

4.3.1 Many EMS-induced dominant mutations suppress mir159ab rosette defects  

Two M1 plants displayed revertant phenotypes, likely due to dominant mutations based 

on the heterozygous status of EMS-induced mutations in the M1 generation (Sasaki et 

al., 2012). Then, as determined by DNA sequencings (data not shown), both MYB33 and 

MYB65 sequences were found not to be mutated in these mutants (courtesy of Rob 

Allen), raising the possibility that other dominant mutations are mediating MYB 

function.  

 

In the M2 generation, a high-frequency phenotypic reversion of mir159ab rosette 

defects was observed. The MYB33 and MYB65 mRNA levels were decreased in all the 

tested revertants, implying that the mutations were in genes related to MYB33/65 

expression. The observations that the heterozygous BC1 progenies generated by 

crossing eight M3s individually with the mir159ab plants all displayed revertant 

phenotypes, and the BC2s derived from every self-fertilized BC1 all displayed 

segregation ratio supporting the dominant trait of these mutations, indicated the 

dominant nature of these causative mutations. Theoretically, these dominant mutants 

could have been detected in the M1 generation, but they were not observable during the 

M1 screening. A hypothesized reason for this could be the “dilution effect” of 

Arabidopsis embryonic shoot apical meristem, namely the effect of phenotypic 

suppression in one mutant cell among 8–9 meristematic initial cells can be easily 

masked by more abundant unaffected initial cells that also generate leaf organs in the 

later development stage (Furner and Pumfrey, 1992; Irish and Sussex, 1992) 
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Interestingly, the phenotypic reversions were observed at unusual high frequency. In the 

M1 screening, two revertants out of 1200 mir159ab plants were identified (0.17%), 

which agrees with the expected M1 mutation frequency of ~10
-2

 to 10
-3

 (Kovalchuk et 

al., 2000; Van der Auwera et al., 2008). However, more than one third of the M2 

populations displayed revertant phenotypes, a much higher frequency than the expected 

for M2 EMS mutations (~0.1% of the M2 population; Yi and Richards 2009). Such a 

high reversion frequency may suggest the existence of many genes intervening in the 

MYB33/65 expression, and hence the miR159-MYB33/65 module may be hypothesized 

to be extensively networked in the rosettes. Additionally, the phenomenon of unusual 

high EMS revertant frequencies have been observed by Yi and Richards (2008, 2009) 

and Sasaki et al. (2012) respectively, when they were studying the EMS-induced 

phenotypic suppression of two other Arabidopsis mutants, bal (displaying dwarf stature 

and curled leaves) and dms4-1(displaying dwarf stature, pale and serrated leaves, and 

abnormal phyllotaxy). In both cases, the localized hypermutations correlated to specific 

causative genes (SNC1 in the bal; DMS4 in the dms4-1) were identified, and hence the 

enhanced mutagenesis of a few specific genes in these Arabidopsis mutants was 

suggested to be a reason of high frequencies of these phenotypic reversion events (Yi 

and Richards, 2009; Sasaki et al., 2012). Moreover, since the SNC1 and DMS4 genes 

were found not the general targets of enhanced mutagenesis in the wild-type or 

wild-type-appearing plants, their hypermutation phenomena identified in respective bal 

and dms4-1 mutant backgrounds raised the possibility that the parental mutant 

backgrounds displaying morphological defects can provide a selection advantage for 

cells carrying a phenotypic-recovering mutation within the meristematic tissues, as 

proposed by Comai and Cartwright (2005). This may also increase the chance for 

specific mutations being enriched in the progeny population. With these regards, 
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findings in this study may be rationalised by an alternative scenario: some causative 

genes that can mediate MYB expression/function (other than miR159) have been 

hypermutated via the EMS treatment, so that mir159ab phenotype is reverted much 

more frequently. Moreover, owing to the cells carrying causative mutations could 

partially re-establish a wild-type phenotype, they might have the selective advantage to 

outcompete the other cells in the meristematic region, resulting in more frequent 

recovery of mir159ab defects in the self-fertilized M2 generation than expected. 

 

4.3.2 EMS-mutations are found upstream of MYB33/65 expression, but not 

downstream of their activity 

As one of the most conserved plant miRNA, miR159-MYB module has been extensively 

studied (Palatnik et al., 2007; Alonso-Peral, 2010; Li and Millar, 2013; Rubio-Somoza 

et al., 2013). However, currently no evidence reported connects MYB expression with 

any other genes in Arabidopsis rosettes. This is perhaps due to the great miR159 

abundance and its efficient silencing of MYB expression (Fahlgren et al., 2007; Allen et 

al., 2010). Here, by EMS revertant screening of mir159ab, an unexpected large number 

of semi-revertants were identified. Consistently, both the MYB33 and MYB65 

steady-state mRNA levels were reduced in almost every tested revertant population 

(Figure 4.8). These data support the tightly correlated redundant relationship of these 

two GAMYB members in the rosette tissue, and moreover it implied these revertant 

mutations should lie in genes upstream of MYB33/65, which could be unknown 

transcription factors regulating MYB33/65 expression, agreeing with one of our 

expectations illustrated in Figure 4.1, B.  
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These results may be associated with the possibility that the miR159-MYB module is 

being phytohormonally regulated. For instance, during seed germination ABA has been 

found to influence the miR159 regulation of MYB33 and MYB101 via two potent 

regulators of ABA responses, the transcription factors ABI3 and ABI5 (Reyes and Chua, 

2007). Supporting this, the disrupted balance of miR159/MYB abundance was indeed 

observed during the seed germination of an ABA-treated Arabidopsis mutant, abh1 

(ABA hypersensitive 1, Kim et al., 2008). Additionally, GA, with antagonistic roles to 

ABA, has also been shown to modulate miR159 levels during anther development 

(Achard et al., 2004), as well as induce the expression of GAMYB or GAMYB-like genes 

(Gubler et al., 2002; Woodger et al., 2003; Aya et al., 2009). It is hence a plausible 

scenario that under the loss-of-function mir159ab background, the EMS-induced 

mutation on relevant phytohormonal regulator(s), could regulate the MYB33/65 

expression in the rosette tissue. This may be important for inducing a MYB-related 

biological effect in rosettes, contributing to the phytohormonal signaling response when 

miR159 silencing is compromised under certain growth condition(s) or by certain 

stimuli. Besides that, some of these EMS-induced mutations might pinpoint causal 

genes of other regulatory network(s) that could coordinate the miR159 regulation of 

MYB33/65 expression. Since the connection between the miR159-MYB pathway and a 

phytohormonal or other regulatory network(s) has never been strongly suggested in 

rosettes (as discussed in the introduction section), any insights into these possibilities 

will enrich our understanding of the role of miR159-MYB module in this tissue. 

Additionally, we should not ignore the possibility that among upstream factors 

modulating MYB33/65 expression, one could be the activation of MIR159c. To test this, 

we can compare the mature miR159c level in each revertant with that in the mir159ab 

plant.  
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Noticeably, there is no EMS-mutant being identified downstream of MYB33/65 activity. 

This implied the possibility that if there are downstream gene(s) that can mediate the 

MYB33/65 function, the number of them is probably much smaller than the number of 

upstream genes regulating MYB33/65 expression. Hence the EMS mutagenesis 

performed in this study might not be sufficient for screening out the causal gene(s) 

downstream of MYB33/65. However, the other possibility cannot be ignored: rare 

downstream genes can independently determine the MYB33/65 activity, instead they 

may coordinate with each other or function redundantly in mediating the rosette 

morphology, thus cannot be isolated via the EMS mutagenesis approach. If the latter 

possibility is real, it also provides the alternative explanation for the finding that CP1 

expression is not a major contributor to the mir159ab phenotype, by suggesting the 

likelihood of other genes being acting redundantly to the CP1 activity. 

 

4.3.3 Selection of mapping populations and identification of causative mutations 

are the next critical steps 

Certainly, the EMS-revertants will provide critical materials for analysing the 

MYB33/65 role in rosettes, but the large number of revertant candidates raised the 

question about how to select the proper candidates for next step of mapping. 

Considering some gene(s) may be hypermutated or belong to paralogous family and 

function similarly, the selection can be aimed to search for revertants carrying mutations 

in different loci. To this end, the practice of crossing the M3 revertants with each other 

to generate progenies for an allelism test could be performed, as the working model 

suggested by Daszkowska-Golec et al. (2013). In this way, we may gain more insight of 

the relationship among these mutations, and narrow down the number of mapping 
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populations by selecting the revertant candidates carrying mutations in different loci. 

Additionally, crossing independent mutants to one another may result in a progeny 

phenotype closer to wild-type. 

 

With respect to the dominant nature of the causative mutations in many revertants, the 

SNP-Ratio mapping scheme suggested by Heike et al. (2012) may be adopted to 

identify the mutations: namely another two rounds of backcrossing should be performed. 

Starting from crossing M3s respectively back to unmutagenized mir159ab parents, BC1 

generations carrying heterozygous mutants will be produced. These heterozygous BC1 

can then be crossed back again to the mir159ab parents to generates the new BC1-1 

population. By selecting only revertant individuals in the F1 generation derived from 

self-fertilized BC1-1s, the causative mutation is supposed to be enriched with a 1:1 

segregation ratio in the pool of F1 revertants, whereas any non-causative mutation will 

segregate with a ratio of 1:3 (refer to Heike et al., 2012 for details). This allows the 

following SOLiD sequencing, SNP calling, and SNP/non-SNP ratio calculation, by 

which the causative mutations should be distinguished from the non-causative ones 

(Heike et al., 2012). Again, since both the high reversion frequency of mir159ab defect 

and the dominant nature of mutations in many examined revertants are extremely 

unusual phenomena, any results obtained from candidate selection and sequencing 

methods should be cautiously discussed in the future, to make clear suggestions about 

how extensively is the miR159-MYB networked in the rosette tissue, and moreover what 

is the function of it. 
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Chapter 5 

Application and efficacy analysis of miRNA SPs for 

inhibiting miRNA functions in Arabidopsis 
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5.1 Introduction 

Plant miRNAs are important gene regulators for maintaining a proper embryonic, 

vegetative and floral development (Mallory and Vaucheret, 2006; Jones-Rhoades et al., 

2006). This is because many plant miRNAs have been verified to negatively regulate a 

set of functionally related targets, which are primarily comprised of gene encoding 

transcription factors (Chen, 2005), such as the AUXIN RESPONSE FACTORs regulated 

by miR167 or miR390 (Allen et al., 2005; Wu et al., 2006), the NAC-LIKE 

TRANSCRIPTION FACTORs regulated by miR164 (Rhoades et al., 2002; Laufs et al., 

2004), and the GROWTH-REGULATING FACTORs regulated by miR396 

(Jones-Rhoades and Bartel, 2004; Wang et al., 2011b). Additionally, they also mediate 

the regulation of other genes encoding regulatory factors, such as the ARGONAUTE 1 

and ARGONAUTE 2 regulated by miR168 and miR403 respectively, which play roles in 

miRNA metabolism (Allen et al., 2005); and the PHOSPHATE 2 regulated by miR399, 

which plays a role in the maintenance of phosphate homeostasis (Allen et al., 2005; 

Chiou et al., 2006). In addition, a number of these miRNA-target relationships are 

strongly conserved, present in most land plants (Jones-Rhoades et al., 2006; Li et al., 

2011b; Jones-Rhoades, 2012), which also emphasizes the important role of 

miRNA-mediated gene expression in plant regulatory systems. However, functions of 

many conserved plant miRNAs remain unclear.  

 

As a prerequisite for functional analysis of these plant miRNAs, a best approach is to 

generate loss-of-function mirna outcomes. To this end, the mutagenesis approaches, 

such as T-DNA-insertional method or EMS, have been used to generate loss-of-function 

mirna mutants. However, currently only a few such mutants have been isolated (e.g. 
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mir159a/b, Allen et al., 2007; mir164a/b/c, Sieber et al., 2007; mir319a, Nag et al., 

2009), because mutagenizing these MIRNA genes and identifying the single 

mutagenized mirna mutant can be difficult. First, many MIRNA genes are small or 

medium sized, hence they are less likely to be mutated by a T-DNA insert or other 

mutagen than many bigger-sized protein-coding genes (Ma et al., 2010; Todesco et al., 

2010). Second, the plant miRNA families frequently contain many genes that can 

produce mature miRNA members near-identical or identical in sequence, such as the 

Arabidopsis miR169 family consisting of at least 14 members deriving from 14 

genomic loci. These miRNA family members are likely to have overlapping expression 

domains, and may function redundantly to buffer against the loss of any single miRNA 

locus (Nogueira et al., 2006; Sieber et al., 2007; Yan et al., 2012). Therefore, all 

members of a miRNA family may need to be simultaneously knocked out to generate a 

loss-of-function mirna outcome. Due to this, even if a single mutant for every MIRNA 

locus could be isolated, it would be extremely time-consuming to obtain a 

loss-of-function mirna mutant carrying mutations in all the MIRNA loci of a miRNA 

family.  

 

For this reason, the transgenic expression of miRNA decoy in a bid to generate 

loss-of-function mirna outcomes has become a focus. MiRNA decoys are transgenes 

designed to carry target sites highly complementary to particular miRNA families, so 

that transcripts of decoys can act by competing for miRNA binding, sequestrating the 

miRNA family of interest from their endogenous targets, (Todesco et al., 2010, Ivashuta 

et al., 2011, Yan et al., 2012; Reichel et al., 2015). Since the specificity of a miRNA 

decoy is mainly determined by the degree of its complementarity to the miRNA, it 

should be able to target all members of a miRNA family and overcome problems of 
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functional redundancy among these miRNA family members (Reichel et al., 2015). 

They have been explored for inhibiting miRNAs’ activities in mammalian system. Such 

as the transgene Tough Decoy (TuD), which deposits two complementary target sites 

into an optimised DNA backbone that provides the secondary structure accessible for a 

miRNA binding (Haraguchi et al., 2009; Haraguchi et al., 2012); and the miRNA 

SPONGES (SPs), which carries many target sites complementary to a miRNA of 

interest, either in a non-protein coding DNA sequence or in the 3’ UTR of a reporter 

gene, to increase the opportunity for a miRNA binding to the SP transcripts (Ebert et al., 

2007). Both methods achieved effective miRNA inhibitions and are applied in 

functional analysis of mammalian miRNAs.  

 

In plants, the decoy transgenes constructed for miRNA inhibition are known as “Target 

Mimic” and “Short Tandem Target Mimic” (STTM) (Todesco et al., 2010; Yan et al., 

2012). Similar to the TuD method, these Mimic transgenes are designed to position one 

or two miRNA target sites within certain DNA backbones. Both of them realized 

efficient inhibition of several miRNAs in Arabidopsis. Supporting this is a collection of 

phenotypic defects observed for Target Mimic and STTM transformants, such as the 

reduced leaf initiation rates of MIM156 plants, serrated leaves of MIM160 plants, 

twisted and downwardly rolled leaves of MIM167 plants, and loss of leaf asymmetry 

displayed by STTM165/166 plants (Todesco et al., 2010; Yan et al., 2012). However, 

also found by Todesco et al. (2010), out of 71 analysed miRNA families, inhibiting the 

function of only 14 with Target Mimic method led to morphological abnormalities. 

Moreover, some of these Target Mimic transgenes were demonstrated to be weak 

miRNA decoys, when their inhibition effects were compared with that of the modified 

Mimic method “STTM” (Yan et al., 2012). Thus it is intriguing to investigate if there is 
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an alternative inhibition method to verify and complement these Mimic methods (we 

considered STTM as a modified version of the Target Mimic method, hereby the name 

Mimic is used to collectively describe these two methods in following sections, if not 

otherwise specified). With this respect, the application of miRNA SP method, namely 

constructing the transgene carrying as many as 15 target sites complimentary to a 

miRNA of interest, was explored to inhibit miRNAs’ activities in Arabidopsis in this 

study, and the factors that may influence the inhibition efficacy of a plant miRNA SP 

were also analysed. 
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5.2 Results 

5.2.1 Construction of miRNA SPs against ten conserved plant miRNAs. 

To investigate whether the miRNA SPs can be widely applied for analysing the function 

of plant miRNAs, ten SP constructs were designed against ten plant miRNAs, with the 

same principles designing the animal miRNA SPs (Figure 5.1, A). The selected ten 

miRNAs are conserved miRNAs identified in many species including Arabidopsis, and 

most of these miRNAs have been suggested to play roles in plant development (Figure 

5.1, B). Their respective targets have been verified by a series of previous studies, but 

the miRNA biological functions for some of them have not been verified by a 

loss-of-function approach. If the SP constructs can efficiently inhibit the activities of 

these miRNAs, this may provide a useful method for their functional analysis.   

 

 



136 

 

  

Figure 5.1: Construction of plant miRNA SPs. (A) Diagram of the SP construction. 

Exemplified by SP164, every SP consists of fifteen target sites (blue blocked), with a 

4nt-linker between each neighbouring target sites (orange coloured). Two 22nt “primer” 

sequences are sandwiched in around the 3’end, to facilitate qRT-PCR analysis (green 

coloured). The sequence of target site is fully complementary to the miRNA of interest, 

with 2 nt central mismatches (red coloured) against the position 10 and 11 of the 

miRNA (from the 5’ end), while the linker sequences were randomly picked if not 

specified. (B) Cartoon illustrating functions of the ten conserved miRNAs indicated in 

Arabidopsis. 
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5.2.2 Plant miRNA SPs have various inhibition efficacies  

To constitutively express the SP transgenes, they were fused downstream of the 

constitutive Cauliflower Mosaic Virus (CaMV) 35S promoter, and transformed into  

wild-type Arabidopsis (Col-0). 45~60 primary transformants (T1) of each SP were 

planted and phenotypic analysis was performed when they were four-week-old (Figure 

5.2, courtesy of Marlene Reichel for constructing the SP165/166). To assess the 

inhibitory effects of these SPs, the “inhibition efficacy” was defined based on the 

percentage of the primary transformants displaying abnormal developmental 

phenotypes. 

 

5.2.2.1 The expression of SP165/166 and SP159 induced rosette defects with high 

efficacies 

First, 49 out of 57 (inhibition efficacy: 86%) SP165/166 transformants generated 

rosettes with either trumpet-shaped leaves (severe morphological abnormalities) or 

adaxialized organs (mild morphological abnormalities) (Figure 5.2). This observation is 

in agreement with previous studies inhibiting miR165/166 function, which shows the 

disruption of the miR165/166 activity resulting in leaves of adaxial characters around 

their circumference (Kidner and Martienssen, 2004; Mallory et al., 2004a; Todesco et al. 

2010). Moreover, the severity of rosette abnormality present on SP165/166 

transformants resembles the inhibition outcome using the modified Mimic method 

“STTM” (Yan et al., 2012), whereas the SP method shows even higher efficacy (detailed 

comparisons refer to our recent paper: Reichel et al., 2015). 
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Figure 5.2: Eleven 35S-SP transgenes induced rosette morphological abnormalities 

at varying efficacies. The abnormalities are classified as “severe”, if the rosettes are 

smaller in size, and the leaf blades are fully folded (SP165/166), fully curled (SP159), 

obviously narrow (SP390) or ruffled (SP168). While the other similar but milder 

abnormalities are classified as “mild”. The serrated leaf of SP164 transformants is a 

marginal phenotype observed in a few plants, and so be considered as “mild”. The 

embedded fractional number indicates the proportions of the primary transformants (T1) 

falling into the classified phenotype group (e.g. 35/57, among 57 transformants 

analysed, 35 plants developed the phenotype illustrated in the picture). For every 

transgene, 45~60 primary transformants (T1) were grown under long-day condition 

(16h light/8h dark, 21
o
C), and photographed at four-week-old. The phenotypic results 

were also verified by growing plants under short-day condition (8h light/16h dark, 

21
o
C).  
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Next, 36 out of 56 (inhibition efficacy: 65%) SP159 primary transformants generated 

rosettes with reduced rosette size and either fully curled leaves (severe morphological 

abnormalities) or partially curled leaves (mild morphological abnormalities) (Figure 

5.2). These phenotypes also resembled the developmental defects displayed by 

loss-of-function mir159ab mutant (Allen et al., 2007). Therefore, these data indicated 

that both SP165 and SP159 could induce characteristic loss-of-function mirna defects, 

suggesting they could respectively inhibit the functions of these two plant miRNAs, and 

moreover with high inhibition efficiencies. 

 

5.2.2.2 The expression of SP390 induced ago7-like phenotype with a moderate 

efficacy   

Interestingly, more than half of the SP390 transformants developed narrow and pointing 

leaves. This phenotype has not been shown by other miRNA inhibition methods, but 

resembles the descriptions for the leaves of gain-of-function plants expressing 

miR390-resistent target AUXIN RESPONSE FACTOR 3 (ARF3, Fahlgren et al., 2006); 

and the loss-of-function ago7 mutant (Montgomery et al., 2008), with the respect that 

the protein ARGONAUTE7 (AGO7) is the specific co-operator of miR390 

(Montgomery et al., 2008; Endo et al., 2013). The observation that 29 out of 50 (58%) 

SP390 primary transformants displaying narrow and pointing leaves indicated that 

SP390 had a good inhibition efficacy.  

 

However, when the SP390 transformants were grown alongside the loss-of-function 

ago7 mutant (ago7-1), the leaf defect developed on SP390 plants were found obviously 

milder than that of ago7 mutant, because the latter plants appeared narrower and more 
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elongated, and despite the symptom of SP390 transformant intensified with the rosette 

growth, it would not be as severe as that of ago7-1 (Figure 5.3). Thus, it is possible that 

the SP390 may not strongly inhibit miR390 function in most of the transgenic plants. In 

supporting of this, among SP390 transformants with narrow-pointing leaves, only few 

plants appeared much smaller in rosette size and more compacted in leaf form 

(classified as "severe morphological abnormalities" in Figure 5.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Phenotypic analysis of SP390. Primary transformants of SP390 is 

compared with Col and ago7-1 plants under long-day condition (16h light/8h dark, 

21
o
C). Plants are photographed at four-week-old (top panel) and five-week-old (bottom 

panel) to show the development of SP390 defect. 
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Furthermore, to investigate if the narrow-pointing leaf trait of SP390 transformants 

could be stably inherited, the seeds (T2) of self-fertilized T1 transformants were 

harvested, and further phenotypic and molecular analyses were done on T2 

transformants. Here, the T2 transformants developed phenotypes that segregated: 

rosettes with wild-type like leaves and rosettes with narrow-pointing leaves (these 

phenotypes resembled the T1 phenotypes, data not shown). In  rosettes with the 

narrow-pointing leaves, the target genes of miR390, ARF3 and ARF4 (AUXIN 

RESPONSE FACTORs targeted by TAS3 ta-siRNAs, which are produced by 

miR390-AGO7 mediated cleavage; Adenot et al., 2006; Montgomery et al., 2008), were 

detected to be up-regulated by qRT-PCR analysis (Figure 5.4). This verified that the 

miR390 function was perturbed in the T2 transformants of SP390. 

 

In summary, the data indicates that SP390 expression inhibits miR390 function, 

resulting in the formation of narrow-pointing leaves, which resembles that of the 

loss-of-function ago7 mutant. However, the SP390 phenotype was not as strong as 

ago7-1, and the inhibition efficacy (58%) was lower than that of SP165/166 and SP159.  
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Figure 5.4: qRT-PCR analysis of ARF3 and ARF4 transcript levels in the rosettes 

of the progenies of the primary transformants (T2). The RNA samples were 

extracted from classified individual rosettes of 5-week-old. The phenotypic 

classifications are indicated in the brackets, wt-like: wild-type phenotype. Col rosettes 

were used as wild-type control for phenotypic and molecular comparison. Two rosettes 

of each phenotype were used to appraise the variation of RNA levels in each phenotypic 

class. All mRNA levels were normalized to that of housekeeping gene CYCLOPHILIN 

(At2g29960). The Measurements are the average of three technical replicates with error 

bars representing the SD.   
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5.2.2.3 The expression of SP164 and SP168 induced mild rosette defects with low 

efficacies  

Next, SP164 and SP168 were found to induce developmental abnormalities but with 

much lower efficacies. For SP164 transformants, serration occurred around the leaf 

circumference (Figure 5.2), which is similar to what has been observed in MIM164 

plants (Todesco et al., 2010) or the loss-of-function mir164abc triple mutant (Sieber et 

al., 2007). However, the frequency of this phenotype in SP164 primary transformants 

was low, that is only four of 42 SP164 T1 plants displayed the serration defect (less than 

10%), which illustrated the low inhibitory efficacy of SP164. Additionally, the floral 

defects observed in a loss-of-function mir164abc triple mutant (Sieber et al., 2007), 

which includes unfused carpels, an increased number of petals and sepals, was not 

apparent in SP164 transformants. This suggests that SP164 did not completely inhibit 

miR164 function. For SP168, a number of transformants developed ruffled and less 

compacted rosette leaves (Figure 5.2). Again the efficacy appeared weak, as only 12 out 

of 52 (23%) primary transformants displayed this phenotype. Interestingly, this 

phenotype has not been observed in a mir168a loss-of-function mutant under normal 

growth condition (Vaucheret, 2009), indicating there may be a further redundancy with 

miR168b.  

 

To verify inhibitory effects of SPs displaying low efficacies, transcript levels of relative 

target genes were measured (Figure 5.5). Consistent with the developmental changes in 

SP164 transformants, these plants had higher transcript levels of target CUC1/CUC2 

(CUP-SHAPED COTYLEDON) than that of Col control (Figure 5.5, C-D), implying 

these genes had been de-regulated. Likewise, in SP168 transformants, there was an 
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increase of target AGO1 transcript level, suggesting the de-regulation of AGO1 (Figure 

5.5, E). Therefore, these data support the notion of the inhibitory capability of SP164 

and SP168, even though they appeared less efficient in inducing phenotypic defects.  

 

To my knowledge, the AGO1 protein is the major effector of most miRNAs and TAS3 

ta-siRNA functions, and usually the homeostasis of the AGO1 protein and mRNA is 

well maintained via several fine-tuned adjustments, to ensure a proper balance of other 

miRNAs and their targets abundance (Vaucheret et al., 2006; Mallory and Vaucheret, 

2009; Vaucheret, 2009). It is thus intriguing to analyse if the de-regulation of AGO1 in 

SP168 transformants can influence other miRNA-target pathways. To investigate, 

mRNA levels of CUC1 (target of miR164) and ARF3 (target of TAS3 ta-siRNAs) were 

further qRT-PCR quantified. The result showed that the CUC1 and ARF3 mRNAs in 

SP168 transformants increased ~6 and ~1.6 fold respectively (Figure 5.5, G and F), 

which is comparable to the mRNA fold change of CUC1 in SP164 transformants (~7.5 

fold, Figure 5.5, C) and ARF3 in SP390 transformants (~1.7 fold, Figure 5.5, A). Thus 

the results suggested the SP168 could strongly inhibit the function of miR168 to cause 

perturbations of other miRNA and TAS3 ta-siRNA pathways. This perturbation of other 

miRNA pathway may also help to explain the observed defect of SP168 rosettes. 

  



145 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Molecular analysis of relative targets in Col transformants of SP390, 

SP164 and SP168. (A-B) mRNA levels of ARF3 and ARF4 in SP390 transformants. 

(C-D) mRNA levels of CUC1 and CUC2 in SP164 transformants. (E-G) mRNA levels 

of AGO1, ARF3 and CUC1 in SP168 transformants. For each SP construct, the RNA 

samples were extracted from approximate 120 seedlings of the corresponding primary 

transformants (T1), at 12-day-old. All mRNA levels were normalized with 

CYCLOPHILIN. Measurements are the average of three technical replicates with error 

bars representing the SD. 
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5.2.2.4 Many SPs failed to induce predicted morphological defects   

Lastly, expression of six SPs failed to result in any detectable abnormalities (i.e. SP169, 

SP170/171, SP396, SP167, SP319 and SP403), despite inhibitions of three of these 

miRNA pathways (miR169, miR170/171, miR396) are predicted to result in 

developmental abnormalities (Todesco et al., 2010; Rodriguez et al., 2012), while the 

inhibitions of two other miRNA pathways (miR167 and miR319) are predicted to 

trigger floral defects (Wu et al., 2006; Nag et al., 2009). Therefore, the data suggest that 

not all SPs have strong efficacies to inhibit the miRNAs they are targeting.  

 

5.2.3 The steady-state RNA levels of SPs did not correlate with their inhibition 

efficacies  

To investigate why the SPs displayed different inhibition efficacies, the potential factors 

that may influence the SP-miRNA interaction were carefully scrutinized. First, it was 

investigated if the SP inhibition efficacies have a correlation to the RNA levels of 

different SPs, by qRT-RCR analysis of each SP in their respective T1 transformants. It 

was found that, though all SPs were under the control of 35S promoter, the RNA levels 

of different SPs varied significantly, by even more than an order of magnitude (Figure 

5.6). More importantly, the RNA levels did not correlate with their inhibition efficacy. 

For instance, the abundance of SP159 was low despite it having a relatively strong 

efficacy. By comparison, some of the highly abundant SPs, such as SP164 and SP319, 

had low or no inhibition efficacies. This indicates that the steady-state RNA levels of the 

SPs are not strictly indicative of efficacies. However, the question remained, that is for 

SPs with lowly abundant RNA levels, such as SP170/171, SP396 and SP403, in which 
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predicted developmental abnormalities did not arise, can increasing their abundance 

increase their inhibitory effects? 

 

Figure 5.6: Quantification of SP transcripts in 12-day-old seedlings of Col 

transformants (Col+35S-SPs). For every SP construct, the RNA sample was extracted 

from 70~90 seedlings of the corresponding primary transformants (T1), when the plants 

were 12-day-old. All SP RNA levels were normalized with CYCLOPHILIN. 

Measurements are the average of three technical replicates with error bars representing 

the SD.  
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5.2.4 Increased SP RNA levels in rdr6 did not enhance the SP inhibition efficacies 

SPs are composed of repetitive sequences, which raise the possibility that the plant 

RNAi transitivity pathway is triggered to silence these SP transgenes (Axtell et al., 

2006). To examine this possibility, SP transgenes that resulted in only low steady-state 

SP RNA levels, were transformed into a RNAi-transitivity-defective mutant, rdr6 

(RNA-DEPENDENT POLYMERASE 6, Peragine et al., 2004). Additionally, SP319 

(highly expressed, ineffective SP) and SP159 (lowly expressed, high efficacy) were also 

transformed into rdr6 for comparison.  

 

For each SP, the transcript levels were compared between the rdr6 and Col primary 

transformants (Figure 5.7, A). As shown, in the rdr6 background, the RNA levels of 

SP319, SP170/171 and SP159 increased significantly, ~2.5, ~3 and ~9 fold respectively, 

while the RNA levels of SP396 and SP403 were similar between Col and rdr6. 

Therefore, it appeared that the plant RNAi transitivity pathway can impact the 

abundance of some SP transcripts, but there must be other unknown factors impacting 

SP transcript abundance as well. Then, the phenotypic analysis was performed on the 

rdr6 transformants of SP159, SP319 and SP170/171, to see if their inhibition efficacies 

were enhanced accordingly with the increases in their RNA abundance (Figure 5.7, B). 

However, similar to Col transformants, no obvious developmental defects were 

observed in rdr6 transformants of either SP319 or SP170/171, except the 

narrow-pointing leaves of rdr6 background.  
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Figure 5.7: Different SP transcript levels in Col and rdr6 transformants induced 

similar rosette phenotypes. (A) Comparison of SP RNA levels between Col and rdr6 

transformants. RNA samples were prepared from 50~70 seedlings of 12-day-old T1 

transformants of each SP construct. All SP RNA levels were normalized with 

CYCLOPHILIN. Measurements are the average of three technical replicates with error 

bars representing the SD. (B) The aerial view of five-week-old rdr6 transformants of 

SP170/171, SP396 and SP319. (C) Phenotypic comparison of four-week-old Col and 

rdr6 transformants of SP159.  
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In contrast, the rdr6 transformants of SP159 developed mir159ab-like leaf-curl 

phenotype, at high frequency. Thus the respective Col and rdr6 transformants of SP159 

were then grown side by side, to compare the SP inhibition efficacies under different 

backgrounds (Figure 5.7, C). The results showed that, first, the severity of leaf-curl 

phenotypes were similar for both transformants; then moreover, the frequencies of 

leaf-curl events were also similar for both transformants: according to the observation, 

40 out of 59 rdr6 transformants displayed the leaf-curl phenotype (67.7%), while 35 out 

of 54 Col transformants also developed the similar phenotype (64.8%). Hence, the data 

revealed that even though the SP159 transcript level was approximately nine folds 

higher in rdr6 than in Col background, the SP inhibition efficacy was not evidently 

enhanced in rdr6, which indicated that the maximum inhibition efficacy of SP159 might 

already be achieved in Col background. Addtionally, Li et al. (2005) have demonstrated 

that the miR159 level in leaves of rdr6 mutant Arabidopsis did not differ from that in 

wild-type plants, hence the abundance of miR159 does not appear to be affected by the 

rdr6 background. Taken together, these data supported the above finding that SP RNA 

abundance is not a strong factor determining SP efficacy.  

 

5.2.5 No correlation between predicted RNA secondary structure and SP efficacy 

Then, the alternative possibility was investigated: if the sequence context surrounding 

or within the miRNA-binding sites (target sites in SPs) could influence the miRNA-SP 

interaction, by affecting SP accessibility for a miRNA binding (Lone et al., 2007; Gu et 

al., 2012). First of all, the secondary structures of all eleven SPs were predicted using 

the RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi), which turned  

A 
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Figure 5.8: Bioinformatically predicted secondary structures of eleven SPs. The 

structures were statistically predicted using the RNAfold web server (ViennaRNA Web 

Services: http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi), coloured scale bars indicate 

base-pair probabilities; SPs with good inhibition efficacies were red circled. 
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out to vary from case to case (Figure 5.8). To simply classify, the sponges were assigned 

into two groups with regard to the overall structure similarity. Group one has the 

sponges predominantly composed of long stems, either a single stem or with branches 

(Figure 5.8, group 1.1 and 1.2). Group two has the sponges predominantly composed of 

loops (Figure 5.8, group 2). Then, it was found that the predicted structures of SPs with 

good inhibition efficacies varied drastically, which could be allocated into all classified 

groups, such as the efficient SP165/166 is predicted to have a long single stem, 

appearing similar to the predicted structure of SP319, while the latter is the inefficient 

SP. Also, both the SP159 and SP168 are predicted to carry multiple loops, suggesting 

their target sites is likely readily exposed, and hence is likely highly accessible to the 

respective miRNA binding (Lone et al., 2007; Li et al., 2012a; Gu et al., 2012), but the 

inhibition efficacy of SP168 (23%) was found much lower than that of SP159 (65%). 

Therefore, according to the RNA folding analysis, there is no preferential secondary 

structure predicted to associate with a good SP inhibition efficacy. 

 

5.2.6 Optimizing the predicted accessibility of target sites did not increase the SP 

inhibition efficacy 

Target site accessibility represents the difficulty of opening miRNA target region (target 

site) for its binding with a miRNA (Gu et al., 2012). To test whether the target site 

accessibility can influence the SP inhibition efficacy, experiments were designed to alter 

the accessibility of the SP target sites, and check if the SP inhibition efficacy can be 

changed. Owing to the complexity of analysing accessibilities of 15 target sites in one 

SP, I chose to focus on the relationship between the accessibility of single target site and 

its inhibition efficacy. Since the MIM159 and MIM156 transgenes utilizing a single 
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target site have been shown to effectively inhibit miR159 and miR156 activities 

respectively (Franco-Zorrilla et al., 2007; Todesco et al., 2010), the MIM159 and 

MIM156 target sites were chosen. 

 

Previous analysis has shown that, to make the plant miRNA target site more accessible, 

not only the target site is less structured than the flanking region (Li et al., 2012a), but 

also synonymous codons are often utilized in flanking regions, to making the region less 

structured and easier to open (Gu et al., 2012). Thereby, the accessibility optimization 

was attempted by placing the target site in a completely unpaired loop region of a 

“stem-loop” transgene (termed Loop159 and Loop156, Figure 5.9). To compare, the 

target site was alternatively placed into the tightly-paired stem region of a “stem-loop” 

transgene (termed Stem159 and Stem156, Figure 5.9). To maximise the chance that these 

structures will form in vivo, I aimed to design these constructs with high base-pairing 

probability; and to minimise the chance of these constructs being cleaved by 

DICER-cleavage activity (Song et al., 2010), the predicted long stem region of each 

construct was interrupted with two small stem-loop branches (Figure 5.9). Also, for 

these transgenes, both the GC content and the thermodynamic stability (ΔG(s), Figure 

5.9), which had been suggested might influence the accessibility and the inhibition 

effect (Gu et al., 2012; Yan et al., 2012), were kept as close as possible for Loop159 and 

Stem159, and for Loop156 and Stem156.  

For comparison, the target sites were placed into the backbone of “TuD” miRNA decoy, 

which had been chosen to achieve efficient miRNA inhibition in mammalian cells 

(Haraguchi et al., 2009), and hence is supposed to provide flanking structural features 

that make the target site easily accessible (termed TuD159 and TuD156, Figure 5.9). 
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Figure 5.9: Construction of miR159/miR156 target sites into TuD backbone and 

stem-loop backbone. The secondary structures were predicted by the RNAfold web 

server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). The dashed blue curved arrow 

represents the miRNA-binding site (5'-3'). The thermodynamic stability was illustrated 

by the free energy of the thermodynamic ensemble [ΔG(s)]. Colour bars indicate the 

base-pairing probability. 
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Next, the respective transformants were generated to assess the inhibition efficacies of 

these six constructs. For every construct, ~100 primary transformants were obtained and 

their phenotypes were scored. In contrast to the expression of MIM159 that induces 

mir159ab-like phenotypes (Todesco et al., 2010), or expression of MIM156 that 

promotes early flowering, with reduced number and size of rosette leaves 

(Franco-Zorrilla et al., 2007; Todesco et al., 2010), only TuD159 transformants 

developed mir159ab-like phenotypes, at a low frequency (25%, Figure 5.10, A). Neither 

the Loop159 nor the Loop156 could effectively inhibit the respective miR159 and 

miR156 activities to result in a morphological defect, even though the MIM159 and 

MIM156 target sites in these transgenes were predicted to be highly accessible. 

Moreover, the low inhibition efficacy of TuD159 and ineffective TuD156 indicated that 

the TuD backbone cannot guarantee efficient miRNA inhibition in plants either.    

 

For each primary transformant population (T1), mRNA levels of the relative miRNA 

targets were measured by qRT-PCR analysis (Figure 5.10, B). The results showed that 

the expression of TuD159 could result in the de-regulation of MYB33/65 and CP1 

transcript levels, confirming the TuD159 can inhibit miR159 function to a certain extent. 

However, this inhibition was weak as gauged by MYBs and CP1 mRNA levels in 

mir159ab (Figure 5.10, B). For the Loop159 and Stem159 transformants, mRNA levels 

of MYB and CP1 were slightly higher (Student’s T-Test: P < 0.05), suggesting they 

might be weakly inhibiting miR159 activity, but since these plants were similar to 

wild-type in appearance, these inhibitions were not phenotypically significant. Similarly, 

the SPL3 mRNA level (target of miR156) was not strongly de-regulated in TuD156, 

Loop156 and Stem156 transformants (Figure 5.10, B), consistent with these constructs 

being incompetent in inhibiting miR156 function. Therefore, it appeared that neither  
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Figure 5.10 Phenotypic and molecular analyses of T1 transformants of TuD/Loop/Stem-156/159. 

(A) Expression of TuD159 induces leaf-curl phenotype in four-week-old T1 

transformants. Top panel: Aerial view of four-week-old Col transformants of 

TuD/Loop/Stem-156/159; bottom panel: close-up of the TuD159 transformants. The 

embedded number indicates the proportion of T1 transformants falling into the 

classified group. (B) qRT-PCR analysis of relative mRNA levels in these T1 

transformants. RNA samples were extracted from 70~100 T1 rosettes of 12-day-old. All 

mRNA levels were normalized with CYCLOPHILIN. Measurements are the average of 

three technical replicates with error bars representing the SD.   
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utilizing the “TuD” backbone with assumed good target site accessibility, nor designing 

an artificial construct in which the miRNA target site is predicted to be highly accessible, 

could result in an efficient miRNA inhibition in Arabidopsis. 

 

5.2.7 Modified target sites with favourable free energy for miRNA hybridization 

could not change the SP inhibition efficacy 

A third possible reason for poor SP efficacy is that the SP transcript is still cleaved by 

the target miRNA, and hence is unable to efficiently sequester the miRNA (Ivashuta et 

al., 2011). Supporting this, Li et al. (2014a) has recently reported the robust cleavage 

activity of miR159, where a miR159-MYB target duplex with two central mismatches 

can still result in cleavage of the target. Based on this, SPs were modified in an attempt 

to circumvent this possibility, by introducing extra unpaired nucleotides in the central 

region of the miRNA-SP duplex region. More specifically, two central mismatches of 

the SP target site (termed 2M; Figure 5.11, A) were introduced with an additional one 

nucleotide bulge (termed 2M+1B, Figure 5.11, B), to further obstruct the 

miRNA-mediated target cleavage. This was compared to a MIM binding site, where 

there are no central mismatches, but only an unpaired 3 nt bulge (termed 3B; Figure 

5.11, C) (Franco-Zorrilla et al., 2007). Owing to both SP390 and SP164 were proved 

effective miRNA decoys displaying moderate or low inhibition efficacies, the 

modifications were made on these two SPs, to test if the modified target sites could 

enhance the SP inhibition efficacies. 
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Figure 5.11: Modification of the sponge target site with central unpaired 

nucleotides. The SP164 were taken as an example. (A) The original target site carrying 

2nt central mismatches [termed SP164(2M)]. (B) Modified target site carrying 2nt 

central mismatches plus an additional 1nt bulge [termed SP164(2M+1B)]. (C) Modified 

target sites carrying a 3 nt central bulge [termed SP164(3B)]. Red-coloured sequences 

indicate the original mismatches; blue coloured sequences indicate the newly introduced 

bulges.  
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Additionally, the free energy (ΔG) of miRNA-target hybridization was calculated for all 

these SP target sites. As shown in Table 5.1 and 5.2, the ΔG of all target site versions 

satisfied the energetic requirement for a strong miRNA-target interaction (at least 72% 

compare to the perfect match; Schwab et al., 2005). Among them, the 3B target site has 

the strongest ΔG, whereas the 2M+1B target site had the weakest. This difference may 

help to analyse whether ΔG of miRNA-target hybridization was a factor influencing the 

SP inhibition efficacy.  

   

 

Table 5.1: Energetic analysis of miR164a interaction with SP164 target sites. Red 

coloured sequences indicate the central mismatches (uppercase) and bulges (lowercase). 

For each miRNA-target site hybridization, the free energy (ΔG) was calculated by two 

independent web servers: Mfold web server 

(http://mfold.rna.albany.edu//?q=DINAMelt/Two-state-melting) and RNAhybrid web server 

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html). The ΔG of 

miRNA-perfect match is calculated, to assess the percentage for ΔG of each miRNA-target 

site compared to it. The base pairings listed on the right column were predicted by 

RNAhybrid web server (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html). 
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Table 5.2: Energetic analysis of miR390a interaction with SP390 target sites. Red 

coloured sequences indicate the central mismatches (uppercase) and bulges (lowercase). 

For each miRNA-target site hybridization, the free energy (ΔG) was calculated by two 

independent web servers: Mfold web server 

(http://mfold.rna.albany.edu//?q=DINAMelt/Two-state-melting) and RNAhybrid web server 

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html). The ΔG of 

miRNA-perfect match is calculated, to assess the percentage for ΔG of each miRNA-target 

site compared to it. The base pairings listed on the right column were predicted by 

RNAhybrid web server (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html). 
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~200 Primary transformants per transgene were obtained and compared for SP164(2M), 

SP164(2M+1B) and SP164(3B). Likewise, ~200 primary transformants per transgene 

were obtained and compared for SP390(2M), SP390(2M+1B) and SP390(3B). All SPs 

induced similar defects at similar frequencies and severities. For the SPs targeting 

miR164, approximately 10% of primary transformants had defects; whereas for the SPs 

targeting miR390, approximately 55% of primary transformants had defects. 

 

To complement these observations, the transcript levels of the target genes of miR390 

and miR164 were measured by qRT-PCR (Figure 5.12). The data revealed that all SPs 

resulted in similar de-regulation of their respective target genes. First, in all three SP390 

transformant populations (T1), the ARF3/4 mRNA levels were increased by 1-1.5 fold 

(ANOVA test, ARF3: P = 0.008455; ARF4: P = 0.001188), supporting the notion that all 

three SP390 versions have similar inhibition effects. Likewise, CUC mRNA levels 

increased by either 3-4 fold (CUC1, ANOVA test: P= 0.01025) or 1.5-2 fold (CUC2, 

ANOVA test: P= 0.04268) in transformants of all three SP164 versions, supporting the 

notion that all three SP164 versions also have similar inhibition efficacies. Together, the 

data suggests that modifying the target sites within SPs did not have a drastic impact on 

their efficacies, and also that strengthening the ΔG of miRNA-target hybridization does 

not guarantee an enhanced inhibition efficacy (refer to the comparison between the 3B 

and 2M+1B target site versions).   
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Figure 5.12: Molecular analysis of different SP390s and SP164s transformants. For 

every construct, the RNA samples were extracted from ~100 12-day-old T1 

transformants. All mRNA levels were normalized with CYCLOPHILIN. Measurements 

are the average of three technical replicates with error bars representing the SD. 
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5.2.8 Generation of LhG4/pOP6-SPs system to inhibit miRNA function in a 

tissue/cell specific manner (this work has been published in Reichel et al., 2015) 

In plants, many miRNAs are functioning in specific spatial and temporal manners, in 

order to achieve precise target gene regulation for required developmental outcomes, 

namely regulating specific tissue or even cell development (Válóczi et al., 2006; Wu et 

al., 2009, Wong et al., 2011). Therefore, inhibiting miRNA in a tissue/temporal-specific 

manner may reveal the specific developmental role that a miRNA play. To this end, an 

LhG4/pOP6 transactivation system was utilized to investigate this possibility (Figure 

5.13, A). 

 

5.2.8.1 Generation of the LhG4/pOP6-SPs system  

This system is composed of two components (Figure 5.13, A). First, a transactivator 

LhG4, which has been incorporated into an enhancer trap line, becomes under control of 

an endogenous promoter resulting in a very precise tissue/temporal expression pattern 

(Rutherford et al., 2005). Secondly, a pOP6-SP transgene to be transformed into this 

enhancer trap line, where the LhG4 transactivator can bind onto the pOP6 promoter and 

activate expression of its downstream gene(s). To generate the pOP6-SP expression 

clones, a multisite gateway method was utilized: The SPs were synthesized with the 

attL1 and attL2 flanks, so that they could be recombined with the attL4-pOP6-attR1, the 

attR2-GFP-attL3 entry clones, and the attR3-ccdb-attR4 destination clone, via a single 

LR reaction, to form the pOP6-SP-GFP expression clones (Figure 5.13, C; Karimi et al., 

2007).   
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Figure 5.13: Construction of LhG4/POP6-SP transactivation system. (A) Cartoon 

depicting LhG4/POP6-based transactivation of sponge expression. When LhG4 is fused 

downstream of a tissue specific promoter or enhancer, it will be expressed in the 

corresponding tissue where it can activate the pOP6 promoter and hence the SP 

expression. (B) The Arabidopsis enhancer traps verified by GUS-staining of pOP6-GUS 

transgene (Rutherford et al., 2005). Tested LhG4 lines in this study were brown circled 

(C) Preparation of pOP6-SP-GFP clone via a MultiSite LR reaction. The entry vector 3 

was designed to carry the SP sequence with the attL1 and attL2 sites in order as shown. 

The other three are commercial vectors carrying the attR3-ccdb-attR4 (vector 1), the 

attL1-pOP6-attL2 (vector 2) and the attR2-GFP-attL3 (vector 4) fragments respectively 

(http://gateway.psb.ugent.be/vector/show/pEN-R2-F-L3/search/index/), so that the 

compatible attL and attR sites (indicated by the same number) can be recombined in the 

predefined orientation via a single LR clonase reaction, to form the pOP6-SP-GFP 

expression clone (Karimi et al., 2007) 
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5.2.8.2 Using SP165/166 to inhibit miR165/166 activity in a tissue specific manner 

To test if the LhG4/pOP6-SP system can inhibit miRNAs in a tissue specific manner, 

the SP165/166 was utilized, as this SP gave a very characteristic phenotype (Figure 5.2). 

The miR165 have been suggested to play essential roles in the establishment of leaf 

polarity and the development of the shoot apical meristem (SAM), by accumulating in 

the abaxial domain of developing leaf primordia, but being sequestered by the AGO10 

protein in the SAM area (Zhu et al., 2011; Zhang and Zhang 2012). Thereby, what 

developmental defects can be triggered by inhibiting miR165/166 function in the SAM 

and relative leaf areas are intriguing but unknown. To investigate, the enhancer LhG4 

line, termed HET:59a, that activates the expression of pOP6-GUS predominantly in the 

SAM and midrib of the leaves was utilized (indicated in Figure 5.13, B, Rutherford et 

al., 2005).  

 

Primary HET:59a transformants of pOP6-SP165/166-GFP and pOP6-GUS-GFP were 

generated [termed pOP6-SP165/166-GFP(HET:59a) and pOP6-GUS-GFP(HET:59a)], 

they were then grown side by side for comparison. First of all, to verify the expression 

pattern, the GFP fluorescence was checked under the microscopy, but no signals could 

be detected. However, when the Histochemical GUS staining was performed along the 

growth of the pOP6-GUS-GFP(HET:59a), the expression of GUS was found restricted 

around the SAM area for approximately two-week during early vegetative growth 

(Figure 5.14, A), and then gradually penetrated into the midrib of the developing leaves 

when the plant became older (Figure 5.14, B). Thus, the GUS staining results indicated 

that the pOP6-transgene constructs were able to deliver the expected expression pattern.  
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Figure 5.14: Expression of pOP6-SP165 transgene induced phenotypic 

abnormalities in LhG4 enhancer trap line: HET:59a. (A-B) Histochemical GUS 

staining of 17-day-old seedlings and 40-day-old rosettes of pOP6-GUS-GFP (HET:59a) 

control plants. (C-D) Phenotypic comparison of 5-week-old pOP6-GUS-GFP(HET:59a) 

(wild-type) and pOP6-SP165/166(HET:59a) plants. (E-F) Close-ups of defects in leaves 

and floral organs of 5-week-old pOP6-SP165/166 (HET:59a) transformants. Yellow 

arrow indicates the GUS-stained region. Red arrow indicates the identified defect. 
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Next, phenotypes of the pOP6-SP165/166-GFP(HET:59a) were recorded along with the 

plant growth. It turned out that the expression of pOP6-SP165/166-GFP induced 

obvious phenotypic defects, in approximately one third of the HET:59a transformants, 

which were consistently presented on the leave midrib and SAM tissues (Figure 5.14, 

C-F). Interestingly, unlike the 35S-SP165/166 induced trump-shaped leaves, the 

pOP6-SP165/166-GFP(HET:59a) displayed an aberrant outgrowth of adaxial-like tissue 

on the abaxial side of the leaf midrib, with trichomes growing on them (figure 5.14, E). 

This illustrated the specific effect of inhibiting the miR165 function in the leaf midrib. 

Meanwhile the pOP6-SP165/166-GFP(HET:59a) also developed ‘fasciated’ florescence 

meristems with flowers crowded around the proximal area, which was likely due to the 

inhibition of miR165 function in “SAM” area, as indicated by the GUS-staining in the 

SAM of the pOP6-GUS-GFP(HET:59a) line (Figure 5.14, A and B).  

 

In summary, the pOP6-SP165/166-GFP could be conveniently generated via the 

multisite gateway method, and be utilized to inhibit the miR165/166 function in specific 

tissues upon transformation into the LhG4 enhancer trap lines (Rutherford et al., 2005). 

This may provide a simple approach to realize the tissue or even cell specific miRNA 

inhibition, with the utilization of effective SP or Mimic transgenes. As a minor 

modification, the GFP gene could be removed from the pOP6 constructs, as the GFP 

signal may not be strong enough to be detected. 
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5.3 Discussion 

5.3.1 Inhibition efficacy assessment revealed significantly varying SP inhibitory 

effects for different plant miRNAs 

Though the “miRNA sponge” is well known as an efficient miRNA decoy for inhibiting 

animal miRNA activities (Ebert et al., 2007), rare research has shown its capability in 

inhibiting plant miRNAs. In this study, ten miRNA SPs were allocated to ten conserved 

plant miRNAs, and the inhibition efficacy (the percentage of the miRNA-decoy-induced 

phenotype) was defined for quantitatively assessing the SP inhibitory effect in 

Arabidopsis. With this efficacy assessment, it was found that the efficiencies of SPs in 

inhibiting different plant miRNAs remarkably varied. More specifically, based on 

previous methods that indicated loss-of-function mirna outcomes (i.e. transgenic 

expression of miRNA-resistant target transgene, transgenic expression of miRNA Mimic 

decoy, and generation of mirna mutant), the expected loss-of-function mirna phenotypes 

for examined ten miRNAs were summarised (Table 5.3). It is clear to see that the 

defects induced by some SPs agreed with the expectations (i.e. SP159, SP390, SP168, 

SP164), which supports the inhibition activities of plant miRNA SPs. However, via 

inhibition efficacy assessment it was found that efficacies of different SPs varied 

drastically, from 10% to 65% (Table 5.3), even if SPs that did not induce observable 

defects were excluded. An explanation to this could be that some miRNA(s) play 

important role(s) in plant development (e.g. miR168), the inhibition of which would 

result in a substantial loss of plant viability. Thus, for transformants of SPs targeting 

these miRNAs, only plants showing mild or no inhibition of miRNA activities could be 

recovered, resulting in seemingly reduced SP efficacies. However, this possibility 

would not explain the low efficacies of several SPs, such as SP164 and SP319, since the 

corresponding mir164abc and mir319a knockout mutants have been obtained and 
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developed distinct viable phenotypic defects (Sieber et al., 2007; Nag et al., 2009).. 

Therefore, it is likely that there may be other factors that influence miRNA-SP 

interactions. Finding these factors may be the key to modify SPs into more effective 

versions so that they can be widely applied for inhibiting miRNA activities in plants.  

 

 

Table 5.3: Summary of the expected and observed loss-of-function mirna 

phenotypes for ten examined miRNAs. The expected phenotypes were summarized 

from previous miRNA functional analyses performed in Arabidopsis using established 

methods: (1) miRNA-resistant target transgene; (2) miRNA Mimic decoy; (3) mirna 

mutant (the mutant is specified in brackets). The observed phenotype meeting the 

corresponding expectation is illustrated by a percentage of the primary transformants 

displaying this expected phenotype (efficacy). “N” indicates no obvious morphological 

abnormality could be observed.  
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5.3.2 Using SP390 and SP168 to inhibit the miR390 and miR168 respectively 

Inhibiting miR390 and miR168 activities via SP method induced distinct morphological 

defects (Figure 5.2), which had not been reported by using current Mimic methods 

(Todesco et al., 2010; Yan et al., 2012). Thus, the SP390 and SP168 may be used as the 

alternative miRNA decoys for functional analyses of miR390 and miR168 respectively. 

First, unlike the other miRNAs, the miR390-mediated gene regulation is majorly 

implemented through its incorporation into AGO7 protein, instead of AGO1 

(Montgomery et al., 2008; Endo et al., 2013). The questions could be raised as whether 

the miR390 activity and function are exclusively implemented through AGO7 and 

whether AGO7 only implement miR390 activity and function, considering other 

miRNAs can be incorporated into AGO7 as well (Montgomery et al., 2008) and a 

certain amount of miR390 could be loaded into other AGO proteins (Mi et al., 2008). To 

date, studies of the gain-of-function ARF3/ARF4 transgenic plants (the targets of 

ta-siRNAs derived from miR390-mediated cleavage of TAS3 transcript, Adenot et al., 

2006) have suggested roles of the miR390-AGO7 association in developmental timing 

and patterning (Hunter et al., 2006; Fahlgren et al., 2006). However, these data cannot 

precisely illustrate the contribution of miR390 activity in plant phase change process; 

on account of that ARF targets are also under the control of other protein regulators, 

termed ASYMMETRIC LEAVES (i.e. AS1 and AS2, Iwasaki et al., 2013). To 

circumvent this complexity in functionally analyzing the miR390, the miRNA decoy 

that can effectively inhibit miR390 activity is required. In this study, more than half of 

the SP390 transformants developed narrow and pointing leaves, which is similar to the 

rosette defect of ago7 mutants, but appeared milder (Figure 5.3). Thus the resulted 

phenotypic defect supports SP390 to be such a miRNA decoy. For investigating the 

possibility of functional discrepancy between miR390-mediated and AGO7-mediated 
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gene expression, the transformation of SP390 into the ago7-1 mutant may be performed 

to examine if severer or additional morphological defect(s) could be revealed.   

 

Then, the expression of SP168 inhibited the miR168 function, resulting in an increase of 

the AGO1 mRNA level, accompanied with ruffled and less compacted rosette leaves. 

This morphological defect might be explained by the combinational effects of 

up-regulated targets of multiple miRNAs and TAS3 ta-siRNA, as indicated by the 

increases of ARF3 and CUC1 mRNA levels in the SP168 transformants (Figure 5.5). 

However, this defect has not been observed for growing a loss-of-function mir168a 

single mutant under normal condition (Vaucheret, 2009), which may be due to a further 

redundancy with miR168b. Thus prior to applying SP168 for any functional analysis of 

miR168, the SP168-induced defect required to be justified, perhaps by generating a 

mir168ab double mutant with Col background. 

 

5.3.3 The RNA level of a miRNA SP with high inhibition efficacy is not necessarily 

high 

To find out why the SPs displayed varying inhibition efficacies, factors that might 

influence the miRNA-SP interaction were carefully scrutinized. To start with, it was 

investigated if the SP RNA level is one of the influential factors. Interestingly, the 

qRT-PCR analysis suggested that even under the control of the same 35S promoter, the 

steady-state RNA levels of different SPs varied significantly (Figure 5.6). Moreover, the 

SP159 displaying high inhibition efficacy was found in a relatively low abundance 

whereas high abundance of some other SPs, such as SP164 and SP319, did not make 

them efficient miRNA decoys. These results illustrated that the SP inhibition efficacy is 
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not strongly correlated to its abundance. Then, the transformation of 35S-SP159 into a 

rdr6-15 mutant, where the RNA level of SP159 was increased approximately nine folds 

than that in Col background, did not significantly enhance the inhibition efficacy of 

SP159 (Figure 5.7). This further suggested the SP with good efficacy is not necessarily 

highly expressed, and it appears that the expression threshold for a SP to effectively 

inhibit a miRNA may not be very high, thus once this threshold was satisfied, enhancing 

SP expression further could not enhance the SP inhibition efficacy. 

 

5.3.4 Correlation between the SP inhibition efficacy and target site accessibility 

could not be found via bioinformatics-based RNA secondary structural analysis 

Structural and sequence features surrounding/within the SP target sites may affect SP 

target sites accessibility for miRNA binding and thus influence miRNA-SP interaction 

(Kertesz et al., 2007; Lone et al., 2007). In this study, analysis was performed to 

investigate if there is a correlation between the SP inhibition efficacy and target sit 

accessibility. This was mainly based on bioinformatic prediction of RNA secondary 

structures, using the RNAfold web server 

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). First, a brief comparison of the 

RNAfold-predicted secondary structures of all eleven SPs (including the SP165/166, 

Figure 5.8) did not identify any preferential structural feature that was associated with 

the SPs displaying good inhibition efficacies. Then, to optimize the target site 

accessibility, maximizing the openness of the target region for miRNA binding was 

attempted. Namely, the MIM159 and MIM156 target sites were placed respectively into 

an unpaired loop structure of the transgene (i.e. Loop159 and Loop156, Figure 5.9), so 

that these target sites are supposed to be readily accessible for miRNA binding (Li et al., 
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2012a; Gu et al., 2012). However these optimized transgene constructs turned out to be 

ineffective in inhibiting miRNA activities, which induced similar inhibition outcomes to 

the transgenes embedding target site in a predicted tightly-paired stem region. Therefore, 

the data suggest that target sites that current bioinformatics predicts to have highly 

accessible secondary structures may not be able to enhance the inhibition efficacy of a 

decoy transgene. In addition, the low inhibition efficacy of TuD159 and ineffective 

TuD156 outcomes indicate that the optimized TuD backbone of mammalian miRNA 

decoy cannot guarantee the efficient miRNA inhibition in plant system either.   

 

It is worth noting that these structures are predicted by the RNAfold web server. They 

may have high base-pairing probability according to the bioinformatic prediction 

method (i.e. Loop159, stem159, Loop156 and stem156); however, whether they can 

form as predicted in vivo is questionable. A possible explanation is that some 

RNA-binding proteins and or/RISC components may modulate the target accessibility 

in vivo altering their secondary structure (Long et al. 2007). Therefore, it would be good 

to have a method that can examine the transgene RNA structure in vivo, for which the in 

vivo DMS assay may be utilized (Kwok et al., 2013), to further address the relationship 

between the structural feature of a SP decoy and its inhibition efficacy. 

 

5.3.5 Alteration of central sequences in the SP target site cannot strongly influence 

the SP inhibition efficacy 

According to Li et al (2014a), at least some plant miRNAs can mediate the cleavage of 

their complementary targets that have 2-nt central mismatches against the miRNA. This 

raises the likelihood that some SP inhibitory effect might be compromised by the 
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efficient plant-miRNA-cleavage activity, given that all SPs carry target sites with 2-nt 

central mismatches against their corresponding miRNAs. As a modification, the SP 

target sites were either introduced with an additional 1 nt-central bulge, or a 3 nt-central 

bulge, aiming to further obstruct the miRNA cleavage. However, the modified SP 

versions produced similar phenotypic and molecular outcomes to the original ones. 

These results suggest that SP inhibition efficacy cannot be simply changed by an 

alteration of the central area of the target sites. 

 

Note that the 3 nt-bulged target site had the most favourable ΔG for miRNA-target site 

interaction (Table 5.1 and 5.2). This may help to explain a previous observation: when a 

2 nt-mismatched miRNA decoy was compared with a 3 nt-bulged miRNA decoy, the 

latter was found to deliver stronger inhibition effect on the miR171 function (Ivashuta et 

al., 2011). However, the ΔG did not seem to be a clear factor that is indicative of the SP 

inhibition efficacy in this study, as similar phenotypic and molecular inhibition 

outcomes were found for SP164(3B) and SP164(2M), and also for SP390(3B) and 

SP390(2M). According to these data, one may conclude that once the energetic 

threshold for miRNA-target site interaction is satisfied (72% compare to the perfect 

match; Schwab et al., 2005), a more favourable (i.e. lower) ΔG cannot strongly enhance 

the SP inhibition efficacy. Taken together, a slight change of the central-cleavage region 

of a target site may not strongly influence the overall SP inhibition efficacy when many 

target sites are arranged in tandem into a SP construct. 

 

To sum up, when applied to plant miRNAs, the SPs induced significantly varying 

inhibition efficacies. SP inhibitory effects were robust, altering a general parameter 
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influencing the miRNA-target interaction would not strongly influence the SP inhibition 

outcome. Future discovery of novel effectors that specifically influence a plant miRNA 

activity may help to address the different miRNA inhibition outcomes. With respect to 

the observation that expression of miRNA decoys could lead to the degradation of their 

target miRNAs, and the severity of phenotypic effect induced by a SP appeared 

negatively correlated with the corresponding miRNA steady-state level (Yan et al., 2012; 

Reichel et al., 2015), it is not clear if the different degradation rates of miRNAs is a 

cause, or just the consequence of different SP efficacies, which deserves attention. We 

should also acknowledge the possibility that some miRNAs may not play any essential 

role in regulating plant morphology and hence inhibiting their activity may not result in 

any strong morphological defects (Flynt and Lai, 2008). This may explain the failure of 

the SP and previously studied Mimics methods in inducing any observable defect when 

they were used to inhibit some miRNAs in Arabidopsis (also see chapter 6 for detailed 

discussion). To test this possibility, perhaps the steady-state miRNA level could be 

measured in transformants of SPs that failed to induce any phenotypic defect, to assess 

the availability of the respective miRNA. A hypothesis for this is that if the expression 

of a SP could induce the degradation of the cognate miRNA without affecting the plant 

phenotype, it may suggest the incompetence of this miRNA in inducing any 

morphological defect. Finally, as a suggestion for future research, the inhibition 

efficacies of SPs drastically varied from miRNA to miRNA, and recently no transgenic 

method can be used as “magic bullet” for effective inhibition of all plant miRNAs, 

hence these miRNA decoys should be used cautiously and analysed case by case. 
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Figure 5.16: Summary diagram of exploring the SP method to inhibit Arabidopsis 

miRNAs. When applied to inhibit 11 conserved plant miRNAs, the SPs presented 

varying inhibition efficacies, some of them showed high (e.g. SP159 and SP165/166) or 

moderate (e.g. SP390 and SP168) inhibition efficacies, which could be used to generate 

the LhG4/pOP6-SPs for functional analyses of the corresponding miRNAs in a tissue 

specific manner, as their functions have been suggested to promote varying tissue 

developments. While some other SPs showed low or undetectable inhibition efficacies, 

for which the potential influential factors were investigated, however none of these 

factors could strongly influence the SP inhibition efficacies, thus these SPs may not be 

used to do the functional studies of relative miRNAs.   
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Chapter 6 

General Discussion 
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6.1 CP1 can act as a molecular marker that facilitates the estimation of MYB33/65 

protein expression in Arabidopsis rosettes  

Previously, a microarray-based transcriptomic comparison between mir159ab and 

wild-type Col plants has identified CYSTEINE PROTEINASE1 (CP1) as the most 

up-regulated gene in the mir159ab mutant (Alonso-Peral et al., 2010). Consistently, the 

CP1 transcript level increased when MYB33 expression was de-regulated in a mMYB33 

transgenic Arabidopsis (mMYB33 carries the MYB33 coding region with synonymous 

mutations of the miR159 binding site and become resistant to miR159 silencing; 

Palatnik et al., 2003; Alonso-Peral et al., 2010). Thus, CP1 was considered a gene 

downstream of MYB33 and MYB65. Supporting this is bioinformatic analysis that 

predicts six MYB or MYB-related binding sites in the promoter region of the CP1 gene 

(http://Arabidopsis.med.ohio-state.edu/). Additionally, proteinases are associated with 

programmed cell death (PCD) processes during the later stages of seed germination 

(reviewed in Fath et al., 2000), raising the possibility that MYB33/65 promotes 

PCD-related processes during seed germination via activation of CP1 (Alonso-Peral et 

al., 2010). This evidence may support the notion that CP1 is a major MYB33/65 

downstream gene and causative of mir159ab phenotypic defects. However, in this study, 

the generation of a loss-of-function mir159ab.cp1 triple mutant failed to suppress any 

phenotypic defects of the mir159ab rosette (Chapter 4). This indicates that CP1 is not 

the sole causative gene of the mir159ab phenotype in the rosette, however, the 

possibility of other genes being functionally redundant to CP1 in contributing to the 

mir159ab phenotype cannot be excluded.   

 

By generating mir159ab mutants that carry different combinations of MYB33 and 

MYB65 wild-type alleles, the CP1 transcript level was found to positively correlate with 
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MYB33 and MYB65 expression and also the severity of MYB33/65-induced rosette 

defects (Chapter 3). This suggests a tight correlation between CP1 transcription and 

MYB33/65 expression/activity, implying it can be used as a reliable molecular marker 

indicating MYB expression levels in rosettes. In terms of measuring MYB33/65 protein, 

this provides the best alternative to western blot analysis, where no reliable antibody 

against MYB33 or MYB65 has been generated. Such measurements are important in 

assessing the MYB33/65 protein levels, as the existence of miR159-mediated 

translational inhibition of these MYB transcripts implies measuring MYB33/65 mRNA 

levels give little to no indication of MYB protein levels (Li et al., 2014a).  

 

The application of the CP1 molecular maker of MYB33/65 is indeed critical to 

complement the phenotypic observations reminiscent of mir159ab defects. This is 

because the leaf-curl phenotype is a common rosette defect which is not necessarily 

derived from MYB33/65 activity, as illustrated by the expression of VSSs in Chapter 4, 

and thus the molecular verification of the MYB expression is required. However, we 

should note that the tight CP1 regulation by MYB33/65 was only demonstrated in 

rosettes, whether it can faithfully reflect the MYB activity in other tissues requires 

further investigation. For instance, in Arabidopsis seeds and anthers, where the miR159 

activity is weak, MYB33/65 are expressed playing important roles in promoting PCD of 

seed aleurone and anther tapetum (Millar and Gubler, 2005; Alonso-Peral et al., 2010). 

Hence, the use of CP1 as a molecular marker of MYB expression may also be important 

here.  
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6.2 The uniqueness of miR159-MYB module in rosettes: miR159 is constitutively 

expressed to confer robust silencing of MYB33/65 expression  

Using the Arabidopsis system, a developmental time-course found that strong miR159 

activity mediates constitutive and ubiquitous silencing of MYB33/65 expression 

throughout rosette development (Chapter 3). This is in sharp contrast to other miRNA 

families that are involved in rosette development (e.g. miR165/166, miR396, miR156 

and miR172), on account of that those miRNAs all regulate their respective targets in 

specific spatiotemporal manners, to enable correct rosette development (Zhu et al., 2011; 

Poethig, 2009; Wu et al., 2009; Wang et al., 2011b). Thus, the uniqueness of 

miR159-mediated silencing of MYB33/65 expression in rosettes suggests that it is 

unlikely to play an essential role in promoting rosette development under normal 

growth condition.  

 

Then, further analysis revealed that the miR159-MYB module is functionally active in 

rosettes, in terms of regulating the rosette morphology. This is because disrupting 

miR159 function in an inducible manner resulted in activation of MYB33/65 expression 

and the leaf-curl defect of rosettes (Chapter 3). It raised the possibility that the 

constitutive silencing of MYB33/65 can be perturbed by the inhibition of miR159 

function during rosette development, leading to altered rosette morphology. Such 

circumstances may occur in response to an environmental stress(es), in which miR159 

function is attenuated, leading to MYB33/65 expression and possibly contributing to the 

plant response against the environmental stress(es). Interestingly, miR159 can inhibit 

MYB expression at the translational level (Li et al., 2014), hence miR159-mediated MYB 

inhibition may be reversible, offering the flexibility for a quick target mRNA 

reactivation (Flynt and Lai, 2008), enabling a rapid plant response to an abrupt and 
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temporal stress. Therefore, investigating which stress(es) can repress miR159 activity, 

enabling the activation of MYB33/65 pathway is critical for elucidating the possible 

functional role of this module in the rosette. 

 

However, as mentioned in Chapter 3, a search using the GENEVESTIGATOR platform 

(https://www.genevestigator.com/gv/) and Arabidopsis eFP Browser 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi), found that the CP1 transcription remains 

low under all the investigated growth conditions, suggesting that miR159 cannot be 

strongly perturbed by a common environmental stress. Highlighting this, the attempts of 

using a variety of abiotic stresses or even viral infection, the latter of which should 

generally perturb miRNA biogenesis and function, failed to strongly perturb 

miR159-mediated silencing in rosettes (Chapter 3). These experiments imply that 

miR159 mediated silencing of MYB33/65 to be extremely robust. It may be possible that 

to strongly perturb miR159-mediated silencing in rosettes, a stress that specifically 

interacts with miR159 is required. Although the existence of such environmental stress 

has not been discovered in this study, Alonso-Peral et al. (2012) has found that the 

efficient miR159 silencing of MYB33/65 in rosettes did not occur in the seeds of 

Arabidopsis, namely miR159 appeared to have a very weak silencing efficacy in seeds, 

which raises the possibility of an unknown mechanism/factor regulating miR159 

efficacy. This mechanism is apparently inactive in rosette tissue under normal growth 

condition, but whether it can be induced to repress the miR159 activity by 

environmental stress may address the above possibility and hence deserves further 

investigation. Additionally, the recent finding that some genetic programs are 

specifically activated when multiple stresses were applied to the plant simultaneously 

(Prasch and Sonnewald 2013), raises the possibility that strong perturbation of miR159 
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activity may only occur in the response to the simultaneous application of multiple 

stresses. Since the simultaneous abiotic and biotic stresses frequently occur in nature, it 

is possible that multiple simultaneous stresses have a synergistic impact regarding the 

perturbation of miR159 activity. 

 

6.3 Is the miR159-MYB module extensively networked in Arabidopsis rosettes? 

Recently, the miR159-MYB module has been reported in a floral regulatory network 

(Rubio-Somoza and Weigel, 2013). Here, the miR159-MYB and miR319-TCP nodes 

coordinate to regulate the miR167-ARF node in flower tissue, which is critical for floral 

organ maturation (Rubio-Somoza and Weigel, 2013). However, whether this network is 

important in rosettes is unclear, as under what conditions the MYB target genes are 

expressed in rosettes is unknown as shown by this thesis, and miR319 is very lowly 

expressed in rosette tissues (Warthmann et al., 2008; Neg et al., 2009). Additionally, a 

role for the miR159-MYB pathway in GA signaling has also been suggested (Achard et 

al., 2004), but uncertainty remains, as neither Reyes and Chua (2007) nor Alonso-Peral 

et al. (2010) could detect any change of miR159 abundance or MYB transcript levels 

upon GA application during seedling germination or rosette development respectively. 

Therefore, whether and how is the miR159-MYB module networked with other 

pathways in rosettes are still largely unknown and remain to be clarified.  

 

Here, via an EMS-based mir159ab revertant screen, the repressors of the mir159ab 

rosette defects were identified at an extremely high frequency, and molecular analysis 

revealed that many EMS-mutants have attenuated MYB33/65 transcription. Considering 

that EMS treatment primarily results in loss-of-function mutations, the MYB33/65 genes 

are potentially downstream of many transcription factors that promote MYB33/65 
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transcription, and once EMS-mutated they would result in reductions of MYB33/65 

transcription. However, an alternative possibility that may argue against the existence of 

factors promoting MYB transcription should not be ignored, that is MYB33/65 may only 

be strongly transcribed in specific rosette cells, thus a “dilution effect” of MYB 

transcription may be resulted whenever an EMS-mutation can induce an increase of 

rosette size (revertant phenotype): namely the transcription of MYB33/65 in specific 

cells might remain unchanged, but the expanded rosette tissue surrounding these cells 

would make the MYB mRNA levels seemingly reduced when the whole EMS-mutant 

rosette was analysed. This concern comes from the previous observation that the 

stronger expression of a mMYB33:GUS transgene was detected in and around the shoot 

meristem region and on the proximal periphery of young developing leaves (Millar and 

Gubler, 2005). However, in contrast, my time-course of GUS-staining found no such 

difference (Chapter 3), suggesting the previous observation may be due to position 

effects of the transgene or the staining quality regarding the penetration of the GUS 

staining buffer. To clarify the uncertainty, the quantitative GUS staining assay (Jefferson, 

1987) may be performed on finely sectioned mMYB33-GUS leaves of multiple 

mMYB33-GUS lines, to assess the MYB transcription level in different leaf areas.     

 

6.4 Other potential roles of miR159 silencing in rosette tissues 

6.4.1 A role for miR159 in controlling floral transition from the vegetative phase? 

Previously, overexpression of miR159 in the Landsberg erecta ecotype of Arabidopsis 

had been found to delay short-day (SD) photoperiod flowering time (Achard et al., 

2004). This agreed with the findings that overexpression of miR159 in rice (Oryza 

sativa cv. Nipponbare) caused a delayed head formation (Tsuji et al., 2006) and 

overexpression of miR159 in Gloxinia (Sinningia speciosa, an ornamental plant) also 
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caused delayed flowering (Li et al., 2013). These data support a role of miR159 in 

controlling the floral transition from the vegetative phase.  

 

However, overexpressing miR159 in Arabidopsis Columbia did not affect flowering 

time, which was possibly due to the difference in ecotypes (Schwab et al., 2005; Teotia 

and Tang, 2014). Additionally, the mechanism regarding whether the miR159 control of 

flowering time is mediated through MYB pathway is not well established (excellent 

review provided by Teotia and Tang, 2014). Although miR159 overexpression resulted 

in down-regulation of target MYBs in flowers of Arabidopsis and rice (Achard et al., 

2004; Tsuji et al., 2006), neither the generation of a myb33.myb65 mutant in 

Arabidopsis nor a gamyb mutant in rice affected the plant flowering time under the 

tested growth conditions (Kaneko et al., 2004; Alonso-Peral et al., 2010; Teotia and 

Tang, 2014). Hence, the role and mechanism of the miR159-MYB module in controlling 

flowering time remains unclear.  

 

6.4.2 miR159 does not appear to act as a backup to prevent leaky transcription of 

other MYB target genes  

Another possible role of miR159 in rosettes is to serve as a backup to transcriptional 

control, repressing any leaky transcription of other MYB target genes. This is owing to 

the fact that besides MYB33 and MYB65, bioinformatics has predicted five more 

GAMYB-like genes that can be regulated by miR159 (i.e. MYB81, MYB97, MYB101, 

MYB104, MYB120, Reinhart et al., 2002), and miR159-mediated cleavage of MYB81, 

MYB101 and MYB120 mRNAs have been experimentally verified by 5’RACE (Palatnik 

et al., 2007; Reyes and Chua, 2007; Allen et al., 2010). Though these MYB genes are 

transcribed predominantly in anthers and pollens where the transcription of miR159a/b 
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appears absent (Allen et al., 2007; Slotkin et al., 2009), the expression of 

miRNA-resistant versions of these MYBs, such as mMYB101 and mMYB120, were 

found to result in rosette defects resembling that of mir159ab (i.e. dwarfed rosettes with 

upwardly curled leaves, Allan et al., 2010; Li and Millar, 2013). It is likely that 

MYB101 and MYB120 are operating via the same pathway as MYB33/65, as CP1 is 

strongly up-regulated in miR159-resistant mMYB101 and mMYB120 transformants (Li 

and Millar, 2013; unpublished data from our lab). Therefore, since the expression of 

these anther/pollen expressed MYB genes can lead to deleterious rosette growth, it is 

possible that they have retained their miR159 binding site in order to prevent them from 

being expressed in rosettes, which may occur under stress conditions that result in leaky 

transcription.  

 

To address this possibility, the mir159ab.myb33.myb65 quadruple mutant was subjected 

to a number of stresses; if leaky anther/pollen MYB expression occurs in the rosette, 

phenotypic characteristic of mir159ab-like rosette defects (e.g. upwardly curled leaves) 

should become apparent with a concomitant increase in CP1 mRNA levels. However, 

under the stress conditions examined in this study (e.g. high or low temperature, high 

light and drought), the CP1 mRNA level remained unchanged in the 

mir159ab.myb33.myb65 quadruple mutant and no morphological/growth difference 

could be detected between the quadruple mutant and wild-type Col plant (Chapter 3). 

This suggests that the leaky transcription of MYB genes in the rosettes is not induced by 

these common stresses. Therefore, these experiments do not support a role for miR159 

acting as a backup to prevent expression of these anther/pollen-MYB genes in the 

rosettes, but it does not rule out that other stresses or combinations of stresses could 

induce such a scenario.  
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Figure 6.1: Summary diagram of the findings and possibilities regarding the role of 

the miR159-MYB module in plants. (See text for explanation) 
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6.5 Inhibiting plant miRNA function through miRNA decoys 

It is well known that plant miRNA-target relationships rely on their high 

complementarity (Schwab et al. 2005), thus SP transgenes designed to carry highly 

complementary miRNA target site(s) would be predicted to be highly competitive 

against endogenous miRNA target sites. Moreover, the transcription of these SP 

transgenes is driven by the CaMV 35S promoter, which is likely to be much stronger 

than the promoters of many endogenous target genes that encode transcription factors. 

Hence, these SP transgenes would be expected to easily outcompete the endogenous 

targets for interacting with the respective miRNA, resulting in strong miRNA inhibition. 

However, this study revealed that SP transgenes inhibited different Arabidopsis miRNA 

activities with different efficacies (Chapter 5). These data suggest that different 

miRNAs have variable sensitivities to SP transgenes.  

 

Explanations for the varying miRNA sensitivities to the SPs may lie in the factor(s) that 

can specifically influence a miRNA-target interaction in plants. There could be many 

possible factors impacting miRNA-target interaction. First, specific nucleotide 

mismatches between a miRNA and its endogenous target site may favour their 

interaction, over a SP-miRNA interaction. Evidence for such a possibility comes from 

the finding for human Argonaute2-mediated miRNA-target interactions (De et al., 2013), 

where the highly complementary target RNAs have been demonstrated to accelerate the 

release of miRNAs from Argonaute2 by several orders of magnitude, while the 

introduction of specific mismatches between the miRNA 3’ end and the target sites can 

attenuate this releasing process, enhancing the miRNA-target interaction in AGO2. 

According to this, it may also be hypothesized that instead of efficiently sequestering 

the Arabidopsis miRNAs, the highly complementary SP transgenes are promoting the 
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release of miRNAs from Arabidopsis AGO1, which may in turn be recycled for 

regulation of the endogenous targets that carry the required mismatches. Supporting this, 

using the plant system (dual-luciferase based sensor system in Nicotiana benthamiana, 

Liu et al., 2014), it was found that miRNA binding sites with a few mismatches to the 3’ 

end of the miRNA are often equally or more effective than miRNA binding site with full 

complementarity to the miRNA, in term of the efficacy of miRNA-mediated silencing. 

Therefore, target-miRNA mismatches could be a factor influencing SP efficacy and 

deserves an attention.  

 

Alternatively, different miRNA may have different tolerances to central mismatches 

between miRNA-SP pairs, so that some miRNAs may be able to cleave the SP 

transcripts, enabling miRNA-RISC recycling, while other miRNAs may be unable to 

cleave the SP transcripts and become sequestered. As a precedent for this, Li et al 

(2014a) has found that miR159 can mediate cleavage of target sites with 2 nt central 

mismatches. However, it is worth noting that the SP159 with 2 nt central mismatches 

worked comparatively well regarding the inhibition of miR159 function, lowering the 

likelihood of this possibility. As a third possibility, RNA binding proteins may exist to 

bind to a specific secondary structure of an endogenous target and facilitate miRNA 

recognition of that target (Flynt and Lai, 2008), but the artificially designed SP 

transgenes do not contain this secondary structure, resulting in them being inefficient 

miRNA decoys. No doubt, more possibilities can be enumerated, and the point is that 

plant miRNA-target interactions appeared complex, perturbations of which through 

these SP transgenes still have many uncertainties. Moreover, based on the analyses in 

Chapter 5, it appeared that the inhibition efficacy of a SP cannot be changed by a simple 

alteration of its structural or sequence property. These illustrate the limitation of 



189 

 

applying SP transgenes in generating loss-of-function mirna outcomes in plants, and 

whether a SP can be applied for a miRNA inhibition should be analysed case by case 

cautiously. 

 

To complement the transgenic miRNA decoy method, the expression of 

miRNA-resistant target transgenes may be the choice of many studies. This method has 

been widely used to analyse the function of many plant miRNAs (Garcia, 2008), such as 

a miR164-resistant CUC2 transgene that defined the role of miR164 in the development 

of leaf margins (Nikovics et al., 2006); a miR396-resistant GRF9 transgene that found 

the role of miR396 in establishment of leaf polarity (Wang et al., 2011). However, it is 

worth noting that some miRNA-target relationships may not have discernible 

morphological consequences, even though they are beneficial for plant growth (Flynt 

and Lai, 2008). In such instances, the utility of miRNA-resistant targets may still trigger 

phenotypic defects that exaggerate the importance of miRNA-mediated silencing. This 

is due to the transgenic method being accompanied with transgene position effects, 

which can lead to a range of expression levels of miRNA-resistant transgenes, even 

when the transgene is transcribed under its endogenous promoter (Li and Millar, 2013). 

In contrast, the failure of the corresponding miRNA decoy expression to induce any 

discernible phenotypic defect may actually reflect that the miRNA is not involved in 

plant morphogenesis (Zhao et al., 2007; Garcia, 2008; Todesco et al., 2010). Therefore, 

if a miRNA decoy failed to generate an obvious developmental defect, and expression 

of the corresponding miRNA-resistant target transgene did result in a developmental 

defect, both results should be taken into careful considerations. If the data obtained from 

expression of miRNA-resistant target suggested a role the miRNA plays in either 

developmental or stress response, perhaps a useful follow up analysis is to transform the 
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miRNA decoy into plants that have a sensitized genetic background[e.g. some relative 

mutants that can easily manifest a relevant developmental defect, such as transforming 

the SP396 into leaf polarity mutants asymmetric leaves1 (as1)], or subjecting the 

miRNA decoy transformants under relative environmental stresses for functional 

validation. 

  

6.6 Conclusions  

Based on their conservation, many plant miRNA-target relationships are under strong 

evolutionary pressure, where the relationship has been finely modulated to play specific 

and essential roles in plant development. However, our knowledge of how these 

miRNAs are incorporated into plant regulatory networks is still very limited. Illustrated 

by this thesis, through the molecular and functional analyses of miR159-MYB module in 

the Arabidopsis rosette, the miR159-mediated silencing of MYB33/65 expression was 

found constitutive, ubiquitous and functionally active during rosette growth. In addition, 

miR159-mediated silencing of MYB33/65 in the rosette appeared extremely robust; 

under no examined conditions could this silencing be perturbed. Finally, the pathway 

appeared extensively networked in rosettes based on the large number of mir159ab 

revertants recovered in a suppression screen. These intriguing findings have increased 

our understanding of this module in rosettes, but raises further questions about its 

functional role. Finding the answer could be very difficult, as all attempts to disrupt the 

miR159 function in rosettes did not result in an obvious morphological outcome. 

Hopefully, in near future, elucidating the mutations identified in the EMS-based 

mir159ab revertant screen will provide more information of the miR159-MYB role in 

rosettes. Likewise, by using the methods (e.g. CP1 marker) and mutants (e.g. 

mir159ab.myb33.myb65) described in this thesis, the relative functional analysis could 
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be greatly facilitated. Last but not least, via exploiting miRNA SPs for inhibiting 

miRNA functions in Arabidopsis, many broader questions in relation to how the 

miRNA-target interactions are modulated in plants have also been raised. Identifying 

these modulating factors by modifying the miRNA decoys into versions resembling 

different structural/sequence features of miRNA endogenous targets, may be an 

approach to address these questions and hence should be considered for further 

investigation.  
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Appendix 

 

File 1: Sequences of miRNA inhibitors (Black: target site, Red: central mismatch, 

Purple: flank, Green: primer sequence. The free energies of the thermodynamic 

ensemble [ΔG(s)], were calculated by RNAfold web server 

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi), to indicate thermodynamic stabilities.) 

SP159:  

TAGAGCTCCCCACAATCCAAAAGTCTAGAGCTCCCCACAATCCAAAGACT 

TAGAGCTCCCCACAATCCAAACTAGAAGAGCTCCCCACAATCCAAATCGA 

TAGAGCTCCCCACAATCCAAAACGTTAGAGCTCCCCACAATCCAAACGTA 

TAGAGCTCCCCACAATCCAAAGCATAAGAGCTCCCCACAATCCAAATACG 

TAGAGCTCCCCACAATCCAAAATAGTAGAGCTCCCCACAATCCAAAAGGC 

TAGAGCTCCCCACAATCCAAACGTGAAGAGCTCCCCACAATCCAAA 

ACCACTTTGTACAAGAATGCTGTGTATAGAGCTCCCCACAATCCAAAGCCA 

TAGAGCTCCCCACAATCCAAAACTATAGAGCTCCCCACAATCCAAA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -84.98 kcal/mol. 

 

 

SP164:  

TGCACGTGCCGAGCTTCTCCAAGTCTGCACGTGCCGAGCTTCTCCAGACT 

TGCACGTGCCGAGCTTCTCCACTAGTGCACGTGCCGAGCTTCTCCATCGA 

CGCACGTGCCGAGCTTCTCCAACGTTGCACGTGCCGAGCTTCTCCACGTA 

TGCACGTGCCGAGCTTCTCCA GCATTGCACGTGCCGAGCTTCTCCATACG 

TGCACGTGCCGAGCTTCTCCA ATAGTGCACGTGCCGAGCTTCTCCAAGGC 

TGCACGTGCCGAGCTTCTCCACGTGTGCACGTGCCGAGCTTCTCCA 

ACCACTTTGTACAAGAATGCTGTGTATGCACGTGCCGAGCTTCTCCAGCCA 

TGCACGTGCCGAGCTTCTCCAACTATGCACGTGCCGAGCTTCTCCA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -156.00 kcal/mol. 
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SP167:  

TAGATCATGCAAGCAGCTTCAAGTCTAGATCATGCAAGCAGCTTCAGACC 

TAGATCATGCAAGCAGCTTCACTACTAGATCATGCAAGCAGCTTCATCGC 

CCAGATCATGCAAGCAGCTTCAACGCTAGATCATGCAAGCAGCTTCACGTC 

TAGATCATGCAAGCAGCTTCAGCACTAGATCATGCAAGCAGCTTCATACC 

TAGATCATGCAAGCAGCTTCAATACCCAGATCATGCAAGCAGCTTCAAGGC 

TAGATCATGCAAGCAGCTTCACGTCTAGATCATGCAAGCAGCTTCA 

ACCACTTTGTACAAGAATGCTGTGTCTAGATCATGCAAGCAGCTTCAGCCC 

TAGATCATGCAAGCAGCTTCAACTCCCAGATCATGCAAGCAGCTTCA 

TTGACTCAGCTTAGCATCTTGT 

Linker: XXXC 

The free energy of the thermodynamic ensemble [ΔG(s)] is -116.35 kcal/mol. 

 

 

SP168:  

GTTCCCGACCTAAACCAAGCGAAGTCGTTCCCGACCTAAACCAAGCGAGACT 

GTTCCCGACCTAAACCAAGCGACTAGGTTCCCGACCTAAACCAAGCGATCGA 

GTTCCCGACCTAAACCAAGCGAACGTGTTCCCGACCTAAACCAAGCGACGTA 

GTTCCCGACCTAAACCAAGCGAGCATGTTCCCGACCTAAACCAAGCGATACG 

GTTCCCGACCTAAACCAAGCGAATAGGTTCCCGACCTAAACCAAGCGAAGGC 

GTTCCCGACCTAAACCAAGCGACGTGGTTCCCGACCTAAACCAAGCGA 

ACCACTTTGTACAAGAATGCTGTGTAGTTCCCGACCTAAACCAAGCGAGCCA 

GTTCCCGACCTAAACCAAGCGAACTAGTTCCCGACCTAAACCAAGCGA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -76.05 kcal/mol. 
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SP169:  

TCGGCAAGTCTGCCTTGGCTGTGTCTCGGCAAGTCTGCCTTGGCTGTACT 

TCGGCAAGTCTGCCTTGGCTGTTAGTCGGCAAGTCTGCCTTGGCTGTCGA 

TCGGCAAGTCTGCCTTGGCTGTCGTTCGGCAAGTCTGCCTTGGCTGTGTA 

TCGGCAAGTCTGCCTTGGCTGTCATTCGGCAAGTCTGCCTTGGCTGTACG 

CCGGCAAGTCTGCCTTGGCTGTTGACGGCAAGTCGAACTTGGCTCATGGA 

CGGCAAGTCGAACTTGGCTCATGTGCAGGCAAGTCTGCCTTGGCTA 

ACCACTTTGTACAAGAATGCTGTGTACAGGCAAGTCTGCCTTGGCTATCCA 

CAGGCAAGTCTGCCTTGGCTATCTACAGGCAAGTCTGCCTTGGCTA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -162.62 kcal/mol. 

 

 

SP170/171:  

GATATTGACAATGCTCAATCAAATGGATATTGACAATGCTCAATCAGATG 

GATATTGACAATGCTCAATCACATGGATATTGACAATGCTCAATCATATG 

GATATTGGCGATGCTCAATCAAATGGATATTGGCGATGCTCAATCACATG 

GATATTGGCGATGCTCAATCAGATGGATATTGGCGATGCTCAATCATATG 

GATATTGGCGATGCTCAATCAAATGGATATTGGCGATGCTCAATCAAATG 

GATATTGGCGATGCTCAATCACATGGATATTGGCGATGCTCAATCA 

ACCACTTTGTACAAGAATGCTGTGTACGTGATATTGAAACGGCTCAAGATA 

CGTGATATTGAAACGGCTCAAGATGGATATTGGCGATGCTCAATCA 

TTGACTCAGCTTAGCATCTTGT 

Linker: XATG or GATX  

The free energy of the thermodynamic ensemble [ΔG(s)] is -102.44 kcal/mol. 
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SP319:  

AGGGAGTTCCGGTCAGTCCAGTGTCAGGGAGTTCCGGTCAGTCCAGTACT 

AAGGAGTTCCGGTCAGTCCAGTTAGAGGGAGTTCCGGTCAGTCCAGTCGA 

AGGGAGTTCCGGTCAGTCCAGTCGTAAGGAGTTCCGGTCAGTCCAGTGTA 

AGGGAGTTCCGGTCAGTCCAGTCATAGGGAGTTCCGGTCAGTCCAGTACG 

AAGGAGTTCCGGTCAGTCCAGTTAGAGGGAGTTCCGGTCAGTCCAGTGGC 

AGGGAGTTCCGGTCAGTCCAGTGTGAAGGAGTTCCGGTCAGTCCAG 

ACCACTTTGTACAAGAATGCTGTGTA AGGGAGTTCCGGTCAGTCCAGTCCA 

AGGGAGTTCCGGTCAGTCCAGTCTAAAGGAGTTCCGGTCAGTCCAG 

TTGACTCAGCTTAGCATCTTGT 

Linker: TXXX 

The free energy of the thermodynamic ensemble [ΔG(s)] is -136.00 kcal/mol. 

 

 

SP390:  

GGCGCTATCCGGCCTGAGCTTAGTCGGCGCTATCCTATCTGAGCTTGACT 

GGCGCTATCCGGCCTGAGCTTCTAGGGCGCTATCCTATCTGAGCTTTCGA 

GGCGCTATCCGGCCTGAGCTTACGTGGCGCTATCCTATCTGAGCTTCGTA 

GGCGCTATCCGGCCTGAGCTTGCATGGCGCTATCCTATCTGAGCTTTACG 

GGCGCTATCCGGCCTGAGCTTATAGGGCGCTATCCTATCTGAGCTTAGGC 

GGCGCTATCCGGCCTGAGCTTCGTGGGCGCTATCCTATCTGAGCTT 

ACCACTTTGTACAAGAATGCTGTGTAGGCGCTATCCGGCCTGAGCTTGCCA     

GGCGCTATCCTATCTGAGCTTACTAGGCGCTATCCGGCCTGAGCTT 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -157.99 kcal/mol. 
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SP396:  

CAGTTCAAGATTGCTGTGGAAAGTCAAGTTCAAGATTGCTGTGGAAGACT 

CAGTTCAAGATTGCTGTGGAACTAGAAGTTCAAGATTGCTGTGGAATCGA 

CAGTTCAAGATTGCTGTGGAAACGTAAGTTCAAGATTGCTGTGGAACGTA 

CAGTTCAAGATTGCTGTGGAAGCATAAGTTCAAGATTGCTGTGGAATACG 

CAGTTCAAGATTGCTGTGGAAATAGAAGTTCAAGATTGCTGTGGAAAGGC 

CAGTTCAAGATTGCTGTGGAACGTGAAGTTCAAGATTGCTGTGGAA 

ACCACTTTGTACAAGAATGCTGTGTACAGTTCAAGATTGCTGTGGAAGCCA 

AAGTTCAAGATTGCTGTGGAAACTACAGTTCAAGATTGCTGTGGAA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -108.91 kcal/mol. 

 

 

SP403:  

CGAGTTTGTGAATGAATCTAAAGTCCGAGTTTGTGAATGAATCTAAGACT 

CGAGTTTGTGAATGAATCTAACTAGCGAGTTTGTGAATGAATCTAATCGA 

CGAGTTTGTGAATGAATCTAAACGTCGAGTTTGTGAATGAATCTAACGTA 

CGAGTTTGTGAATGAATCTAAGCATCGAGTTTGTGAATGAATCTAATACG 

CGAGTTTGTGAATGAATCTAAATAGCGAGTTTGTGAATGAATCTAAAGGC 

CGAGTTTGTGAATGAATCTAACGTGCGAGTTTGTGAATGAATCTAA 

ACCACTTTGTACAAGAATGCTGTGTACGAGTTTGTGAATGAATCTAAGCCA 

CGAGTTTGTGAATGAATCTAAACTACGAGTTTGTGAATGAATCTAA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -83.21 kcal/mol. 
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SP164 (2M+1B): 

TGCACGTGCCGAAGCTTCTCCAAGTCTGCACGTGCCGAAGCTTCTCCAGACT 

TGCACGTGCCGAAGCTTCTCCACTAGTGCACGTGCCGAAGCTTCTCCATCGA 

CGCACGTGCCGAAGCTTCTCCAACGTTGCACGTGCCGAAGCTTCTCCACGTA 

TGCACGTGCCGAAGCTTCTCCAGCATTGCACGTGCCGAAGCTTCTCCATACG 

TGCACGTGCCGAAGCTTCTCCAATAGTGCACGTGCCGAAGCTTCTCCAAGGC 

TGCACGTGCCGAAGCTTCTCCACGTGTGCACGTGCCGAAGCTTCTCCA 

ACCACTTTGTACAAGAATGCTGTGTATGCACGTGCCGAAGCTTCTCCAGCCA 

TGCACGTGCCGAAGCTTCTCCAACTATGCACGTGCCGAAGCTTCTCCA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -179.41 kcal/mol 

 

 

 

SP164(3B): 

TGCACGTGCCCCTATGCTTCTCCAAGTCTGCACGTGCCCCTATGCTTCTCCAGACT 

TGCACGTGCCCCTATGCTTCTCCACTAGTGCACGTGCCCCTATGCTTCTCCATCGA 

CGCACGTGCCCCTATGCTTCTCCAACGTTGCACGTGCCCCTATGCTTCTCCACGTA 

TGCACGTGCCCCTATGCTTCTCCAGCATTGCACGTGCCCCTATGCTTCTCCATACG 

TGCACGTGCCCCTATGCTTCTCCAATAGTGCACGTGCCCCTATGCTTCTCCAAGGC 

TGCACGTGCCCCTATGCTTCTCCACGTGTGCACGTGCCCCTATGCTTCTCCA 

ACCACTTTGTACAAGAATGCTGTGTATGCACGTGCCCCTATGCTTCTCCAGCCA 

TGCACGTGCCCCTATGCTTCTCCAACTATGCACGTGCCCCTATGCTTCTCCA 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -139.58 kcal/mol. 
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SP390(2M+1B): 

GGCGCTATCCGAGCCTGAGCTTAGTCGGCGCTATCCGAGCCTGAGCTTGACT 

GGCGCTATCCGAGCCTGAGCTTCTAGGGCGCTATCCGAGCCTGAGCTTTCGA 

GGCGCTATCCGAGCCTGAGCTTACGTGGCGCTATCCGAGCCTGAGCTTCGTA 

GGCGCTATCCGAGCCTGAGCTTGCATGGCGCTATCCGAGCCTGAGCTTTACG 

GGCGCTATCCGAGCCTGAGCTTATAGGGCGCTATCCGAGCCTGAGCTTAGGC 

GGCGCTATCCGAGCCTGAGCTTCGTGGGCGCTATCCGAGCCTGAGCTT 

ACCACTTTGTACAAGAATGCTGTGTAGGCGCTATCCGAGCCTGAGCTTGCCA 

GGCGCTATCCGAGCCTGAGCTTACTAGGCGCTATCCGAGCCTGAGCTT 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -177.93 kcal/mol. 

 

 

 

SP390(3B): 

GGCGCTATCCCCTATCCTGAGCTTAGTCGGCGCTATCCCCTATCCTGAGCTTGACT 

GGCGCTATCCCCTATCCTGAGCTTCTAGGGCGCTATCCCCTATCCTGAGCTTTCGA 

GGCGCTATCCCCTATCCTGAGCTTACGTGGCGCTATCCCCTATCCTGAGCTTCGTA 

GGCGCTATCCCCTATCCTGAGCTTGCATGGCGCTATCCCCTATCCTGAGCTTTACG 

GGCGCTATCCCCTATCCTGAGCTTATAGGGCGCTATCCCCTATCCTGAGCTTAGGC 

GGCGCTATCCCCTATCCTGAGCTTCGTGGGCGCTATCCCCTATCCTGAGCTT 

ACCACTTTGTACAAGAATGCTGTGTAGGCGCTATCCCCTATCCTGAGCTTGCCA 

GGCGCTATCCCCTATCCTGAGCTTACTAGGCGCTATCCCCTATCCTGAGCTT 

TTGACTCAGCTTAGCATCTTGT 

Linker: Random 

The free energy of the thermodynamic ensemble [ΔG(s)] is -132.85 kcal/mol. 
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TuD159: 

GACGGCGCTAGGATCATCAACTAGAGCTCCCTTATTCAATCCAAACAAGTATTCTGGTCA

CAGAATACAACTAGAGCTCCCTTATTCAATCCAAACAAGATGATCCTAGCGCCGTC 

The free energy of the thermodynamic ensemble [ΔG(s)] is -48.82 kcal/mol 

 

Loop159: 

CCTATCGTCAGATAGCATGATTATTCCCGCATACTCAATACATCCCTTTATCACACCTTCGC

CACCCAATAATCCTAGAGCTCCCTTATTCAATCCAAATACTTCCCACCACTTGGTGTGATA

AAGGCACCCCGTTGGGTGGATGTATTGAGTATGCGCACCCCGTTGGGTGGGAATAATCAT

GG                                                                                                                              

The free energy of the thermodynamic ensemble [ΔG(s)] is -80.34 kcal/mol 

 

Stem159: 

CCTATCGTCAGATAGCATTAGAGCTCCCTTATTCAATCCAAATCCCTTTATCACACCTTCGC

CACCCAATAATCCAGTTTAATCCCAGTCACTATCACATACTTCCCACCACTTGGTGTGATA

AAGGCACCCCGTTGGGTGGATTTGGATTGAATAAGCACCCCGTTGGGTGGGAGCTCTAAT

GG                                                                                                                               

The free energy of the thermodynamic ensemble [ΔG(s)] is -80.53 kcal/mol 

 

TuD156: 

GACGGCGCTAGGATCATCAACGTGCTCACTCCTATCTTCTGTCACAAGTATTCTGGTCACA

GAATACAACGTGCTCACTCCTATCTTCTGTCACAAGATGATCCTAGCGCCGTC 

The free energy of the thermodynamic ensemble [ΔG(s)] is -49.61 kcal/mol 

 

Loop156: 

CCTATCGTCAGATAGCATTACAGTGCGCTTACTTTCTCTCCACCTCGTAGCCTCCCCCAAC

CCTTCCTATCTCCGTGCTCACTCCTATCTTCTGTCAACCCCTTCTCAATCCGGGAGGCTAC

GAGCACCCCGTTGGGTGGTGGAGAGAAAGTAAGCACCCCGTTGGGTGCGCACTGTAATG

G  

The free energy of the thermodynamic ensemble [ΔG(s)] is -88.43 kcal/mol 

 

Stem156: 

CCTATCGTCAGATAGCATGTGCTCACTCCTATCTTCTGTCAACCCCTTCTCAGGCCCCCAT

TCCTACCCTATCCTTCAGCGCGTATACTTTCTCTCCACTCCATCTACTCCCGGCCTGAGAA

GGGCACCCCGTTGGGTGGTTGACAGAAGATAGCACCCCGTTGGGTGGAGTGAGCACATG

G 

The free energy of the thermodynamic ensemble [ΔG(s)] is -89.80 kcal/mol 



225 

 

File 2: Primer table  

 

 

 

 

 

 

 


