1	Evidence for a food-deceptive pollination system using Hylaeus bees in Caladenia
2	hildae (Orchidaceae)
3	
4	Ryan D. Phillips ^{A,B,C,E} and Michael Batley ^D
5	
6	
7	^A Department of Ecology, Environment and Evolution, La Trobe University,
8	Melbourne, Victoria, 3086 Australia.
9	
10	^B Kings Park Science, Department of Biodiversity, Conservation and Attractions,
11	Perth, WA 6005, Australia.
12	
13	^C Ecology and Evolution, Research School of Biology, The Australian National
14	University, Canberra, Australian Capital Territory, Australia.
15	
16	^D Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia.
17	
18	^E Corresponding author. Email: R.Phillips@latrobe.edu.au
19	
20	Running head: Pollination of Caladenia hildae by Hylaeus bees
21	
22	
23	
24	
25	
26	
27	
28 20	
29 20	
30 31	
31 32	
32 33	
55	

- 34 Abstract
- 35

36 Numerous orchid species are pollinated by food deception, where rewardless flowers 37 attract foraging pollinators through the mimicry of other flowers or the use of non-38 specific floral signals. Here we investigate the pollination of Caladenia hildae, a 39 member of a diverse Australian genus containing species pollinated by sexual 40 deception, and species pollinated by food foraging pollinators. Despite eight bee 41 species occurring at the main study site, only food foraging bees of a single species of 42 Hylaeus (Colletidae) were observed to remove and deposit pollen of C. hildae. 43 Spectral reflectance of C. hildae flowers differed from co-flowering rewarding 44 species in terms of both the wavelengths of light reflected, and the pattern of 45 colouration. As such, there was no evidence that C. hildae uses a pollination strategy 46 based on floral mimicry. However, the attraction of only a single bee species at this 47 site suggests that C. hildae may use a deceptive strategy that exploits sensory biases 48 or behaviours of that differ between Hylaeus sp. and the remainder of the bee 49 community. While *Hylaeus* have been recorded visiting orchid flowers in several 50 parts of the world, C. hildae may represent the first documented case of an orchid 51 species specialised on pollination by Hylaeus bees. 52 53 Additional keywords: orchid, pollination, deception, Hylaeus. 54 55 Introduction 56 57 Food deceptive orchids can be broadly categorised into those that attract pollinators 58 via mimicry of the flowers of another plant species (e.g. Nilsson 1983b; Johnson 1994, 2000; Gumbert and Kunze 2001; Peter and Johnson 2008; Jersakova et al. 59 60 2012), and those that use a set of general signals that are of interest to food-foraging 61 pollinators (generalised food deception) (e.g. Ackerman 1981; Nilsson 1983a; Steiner

- 62 *et al.* 1998; Antonelli *et al.* 2009; Peter and Johnson 2013). Orchid species pollinated
- 63 by mimicry of flowers tend to be reliant on one or few pollinator species, likely
- 64 because they often exploit relatively specialised mutualisms between plant and
- 65 pollinator (Johnson and Schieslt 2016). Alternatively, species pollinated by
- 66 generalised food deception typically attract a broader range of pollinator species (e.g.
- 67 Ackerman 1981; Nilsson 1983b; Fritz 1990; Henneresse and Tyteca 2016; Johnson

and Schiestl 2016; but see Peter and Johnson 2013). However, the gullet shaped
flower of some orchids means that only visitors of a particular size may achieve
pollination, even though a range of species are attracted (e.g. Li *et al.* 2008; Reiter *et al.* 2018).

72

73 Caladenia is a diverse Australian genus of terrestrial orchids containing 74 approximately 330 species (Phillips et al. 2009a; Backhouse 2018). There is 75 substantial variation in morphology, colour and floral odour in the genus (Backhouse 76 2018). Many Caladenia species are pollinated by sexual deception of thynnine wasps, 77 particularly those with red-green flowers or aggregations of calli on the labellum 78 (Stoutamire 1983; Phillips et al. 2009b; 2017). Alternatively, the large number of brightly coloured species, which are typically white, cream, yellow or pink, are 79 80 predicted to be primarily pollinated via nectar seeking insects (Stoutamire 1983; 81 Phillips et al. 2009b; Phillips et al. 2011; though see Phillips et al. 2017 and Phillips 82 and Peakall 2018 for some exceptions). Recent work on Caladenia that produce 83 meagre nectar rewards has revealed specialised systems based on a species of 84 thynnine wasp (Reiter et al. 2018, 2019b), a species of colletid bee (Reiter et al. 85 2019a), and a more generalist system with visitation from both Hymenoptera and 86 Diptera (Faast et al. 2009). Pollination by food deception has received comparatively 87 little attention in *Caladenia*, though anecdotal reports from putatively food deceptive 88 species suggest that a range of Hymenoptera, Diptera and Coleoptera are potentially 89 involved (see Phillips et al. 2009b for review; Kuiter 2016). A recent study on 90 Caladenia nobilis, a species with primarily nectarless flowers, revealed that 91 pollination was by a single species of nectar-seeking thynnine wasp (Phillips *et al.* 92 2020).

93

94 Here, we investigate pollination in Caladenia hildae Pescott & Nicholls, a member of 95 Caladenia subgenus Stegostyla. At present very little is known about the pollination 96 biology of this subgenus other than incidental records that suggest that bees in the 97 genera Hylaeus, Exoneura, Lasioglossum, Exoneurella, and Braunsapis are likely to 98 be among the pollinators of at least some species (Bates 1982; Kuiter 2016). There 99 are no records of nectar production in *Caladenia* subgenus *Stegostyla*, or observations 100 of glistening calli, which seems to be indicative of nectar secretion in some other 101 Caladenia (e.g. Reiter et al. 2018). While there are no records of insect visitation to

102	C. hildae, the bright golden colouration (Figure 1), sweet floral odour, and lack of
103	visible nectar suggest that pollination by food deception is the likely strategy. For C.
104	hildae, we addressed three questions: (i) which insect species are involved in
105	pollination? (ii) how specialised is the pollination system? (iii) based on floral traits of
106	co-flowering plants, is there evidence that are pollinators attracted via mimicry of one
107	or more model species?
108	
109	Materials and methods
110	
111	Study species
112	
113	Caladenia hildae is patchily distributed in the southern part of the Australian Alps,
114	primarily at subalpine elevations of 600 – 1400 m a.s.l. (Backhouse 2018). Most
115	populations occur in open forest or woodland, often on drier slopes or ridge tops
116	(Backhouse et al. 2016). Flowering time is variable between populations but occurs
117	between October and December. Plants produce a single scape per flowering season
118	(to 25cm), with one to four flowers (lateral sepals to 15mm in length; Backhouse
119	2018). There is no evidence of self-pollination in C. hildae (Jones 2006).
120	
121	Study site
122	
123	The study was undertaken at two sites in the Alpine National Park, Victoria. The main
124	study site was at a population of Caladenia hildae (voucher RDP 0477; submitted to
125	the National Herbarium of Victoria) adjacent to Limestone Road near Native Dog Flat
126	campground (NDF; 36° 53' 55"S 148° 05' 39" E). A secondary site, where C. hildae
127	has been reported in previous years but was not seen flowering during the study, was
128	also surveyed for pollinators. This site was further west along Limestone Road (LRW;
129	36° 52′ 24″S 148° 03′ 00″E).
130	
131	Pollinator observations
132	
133	Pollinator observations were undertaken on the 18th –21st of November 2016, when
134	C. hildae had just begun to flower at NDF. Attempts to make additional observations
135	in subsequent years were abandoned due to dry conditions leading to low rates of

flowering of *C. hildae*. From an assessment of a 15 x 15 m quadrat in the centre of the population, 25 of 56 flowers were pollinated during the four days of the study period, confirming that pollinators were active at this site. Based on a preliminary assessment of pollinator activity, pollinator observations were undertaken when the temperature was above 18°C and there was no strong wind between the hours of 9:30 am and 4:30 pm Eastern Daylight Savings Time.

142

143 While food-deceptive orchids are generally characterised by low visitation rates, it 144 has recently been shown that pollinators can be attracted via a modification of the 145 pollinator baiting method that has been used with much success for sexually deceptive 146 orchids (Stoutamire 1983; Peakall 1990). In this method picked flowers are moved to 147 a new part of the landscape, leading to the rapid attraction of deceived pollinators. 148 While baiting was initially thought to be ineffective for systems based on food-149 foraging pollinators, increasing the number of flowers and thereby the visual and 150 chemical stimulus appears to lead to a much higher visitation rate (see Reiter et al. 151 2018, 2019, 2020 for examples of species with a meagre nectar reward; see 152 Scaccabarozzi et al. 2018, 2020; Phillips et al. 2020 for species that are food 153 deceptive). Here, we used a bunch of 8 scapes of C. hildae (1-2 flowers per scape) all 154 in the same vial to attract pollinators. A total of 99 6-minute baiting periods were undertaken at the NDF site and 9 baiting periods at the LRW site. For all insects 155 156 attracted to the flower we scored whether they alighted on the flower, where they 157 landed, if they contacted the labellum, if they contacted the column and if they 158 removed or deposited pollinia. Given that many species of Caladenia are pollinated 159 by sexual deception (e.g. Stoutamire 1983; Phillips et al. 2017), close attention was 160 paid to the possibility of pollinators exhibiting sexual behaviour with the flower. 161

162 Identifying the pool of potential pollinators

163

164 Following preliminary evidence that *C. hildae* attracted bees as pollinators, we

165 collected other members of the bee community at the NDF site to test if *C. hildae* was

166 specialised on a subset of the locally available bee species. We focused on NDF

167 because this was the site where we made the greatest number of pollinator

168 observations, allowing for a more accurate comparison of the pool of potential

169 pollinators with the number of actual pollinator species. In addition to collecting bees

170 seen opportunistically during pollinator observations (usually those feeding on 171 Daviesia latifolia; Faboideae), we conducted a 1-hour period of sweep-netting 172 through vegetation and in gaps within the shrub layer to capture species that were less 173 easily observed on food plants. Voucher specimens were deposited in the Australian 174 Museum. 175 176 Floral spectral reflectance of Caladenia hildae and co-flowering plants 177 178 To test if there is any evidence of C. hildae visually mimicking members of the co-179 occurring plant community, we measured the floral spectral reflectance of C. hildae 180 and the four species of rewarding plants also flowering at the NDF site (no additional 181 species were flowering at LRW). For each species, flowers from six different 182 individuals were used. For C. hildae, measurements were taken for the lateral sepal, 183 petal and labellum tip. For Goodenia hederacea Sm. (Goodeniaceae) and Epacris 184 impressa Labill. (Ericaceae), a measurement was made on one the petals, while for 185 Daviesia latifolia R. Br. and Daviesia ulicifolia Andrews (Fabaceae) measurements 186 were made on both the keel and the standard, which have different colours to the 187 human eye. 188 189 Floral colour was quantified by spectrophotometry with an Ocean Optics (Dunedin, 190 FL, USA) USB 4500 spectrometer and a UV-vis 400 fibre optic reflection probe, held 191 at 5 mm from the middle of the surface of the floral tissue at 45°, with an integration 192 time of 50 milliseconds. For each species the average of the reflectance for the six 193 individuals was calculated. Spectral reflectance was analysed using the colour 194 hexagon model of bee vision, which is based on the sensitivities of photoreceptors of 195 the bee Apis mellifera (Chittka 1992; Chittka and Kevan 2005). 196 197 **Results** 198 199 Pollinator observations 200 201 With one exception, all the visitors to C. hildae belonged to an undescribed hylaeine

- 202 bee species in the subgenus *Hylaeus (Prosopisteron)* (Colletidae; Figure 2). No other
- 203 hylaeine bees were observed in the present study, so all references to Hylaeus sp.

refer to this species. Prior to this study, only 16 specimens of the bee had been
identified in museum collections (two in the Australian National Insect Collection,
two in the Queensland Museum, and twelve in the Australian Museum).

207

208 At the NDF site, a total of 41 floral visitors to bait flowers of C. hildae were 209 observed, all of which were *Hylaeus* sp.. Of the specimens captured, six were males, 210 and one was a female. At the LRW site, seven floral visitors to bait flowers of C. 211 hildae were observed, all of which were Hylaeus sp. with the exception of one 212 individual of Melittosmithia sp. (Colletidae). Of the total of 47 responses by Hylaeus 213 sp. to C. hildae, seven individuals (14.9%) landed on the flower, five contacted the 214 labellum and four contacted the column (8.5%). There were two cases of pollinia 215 being removed, and two of pollen deposition. Of the individuals responding to the 216 flowers, 9 were already carrying pollinia of C. hildae, the only Caladenia species 217 flowering at the site. In all cases pollen of C. hildae was deposited on the dorsal side 218 of the thorax. The single male *Melittosmithia* sp. attracted to the flower approached 219 closely but did not land on the flower.

220

221 Rather than flying directly to the flower, visitors often showed some level of zig-222 zagging in flight as they approached. When landing on the flower, Hylaeus sp. tended 223 to move directly to the labellum, though only some moved into the position needed 224 for pollination. Those bees that moved onto the labellum always did so head first. In 225 three instances, individuals moved to multiple flowers during the one visit. At least 226 two individuals appeared to show nectar-seeking behavior on the labellum, but this 227 was not possible to observe once they moved to the base of the column and were 228 obscured from view. None of the bees made any attempt to collect pollen from the 229 flower. Likewise, there was no evidence of the copulatory behaviour or sustained 230 attraction of pollinators seen in sexually deceptive Caladenia (see Phillips et al. 2009; 231 Phillips et al. 2017).

232

233 Identifying the pool of potential pollinators

234

235 Opportunistic collections and sweep-netting yielded at NDF yielded a total of six

- additional species of native bee; Exoneura (Exoneura) robusta, Exoneura
- 237 (Brevineura) sp. (Apidae), Lasioglossum (Chilalictus) brunnesetum, Lasioglossum

238 (Austrevylaeus) sp., Lasioglossum (Parasphecodes) melbournense (Halictidae), and 239 Megachile ordinaria (Megachilidae). In addition, the introduced Apis mellifera 240 (Apidae) was present at the site. While smaller species could not be as readily 241 observed, some individuals of the Lasioglossum and Exoneura species, and A. 242 mellifera, were foraging throughout the period in which pollinator observations were 243 undertaken. However, no species other than *Hylaeus* sp. was observed carrying pollen 244 of C. hildae.

- 245
- 246

Floral spectral reflectance of Caladenia hildae and the co-flowering plants

247

248 The lateral sepals and labellum throat of *C. hildae* were highly reflective (Figure 3) 249 and were in the blue-green sector of the colour hexagon bee vision model (Figure 4). 250 Alternatively, the labellum was very dull and at the centre of the colour hexagon bee 251 vision model, meaning it would be perceived as almost colourless. As such, the 252 labellum tip provides a strong contrast with the remainder of the flower. The tubular 253 flowers of *E. impressa* were highly reflective and in the blue-green sector of the 254 colour hexagon, though were separated from the labellum throat of C. hildae by a 255 Euclidean distance of 0.13, meaning that bees should readily be able to discriminate between the two colours (Dyer & Chittka 2004a,b; Garcia et al. 2017). Unlike C. 256 257 *hildae*, the other flowers at the site all had a pronounced peak in the UV part of the 258 spectrum and were in the UV and UV-green sectors of the colour hexagon.

259

260 Discussion

261

262 Despite the occurrence of a community of at least eight species of native bee at the 263 main study site, only the colletid bee *Hylaeus* sp. was regularly attracted to *C. hildae* 264 and achieved pollination. The bees showed behaviour on the flower consistent with food-foraging behaviour, and there was no evidence of the sexual attraction seen in 265 266 the numerous *Caladenia* pollinated by sexual deception of thynnine wasps (Stoutamire 1983; Phillips et al. 2009b). As such, at this site C. hildae seems to be 267 268 using a food-deception strategy based on *Hylaeus* bees attempting to forage nectar. 269 Despite Hylaeus being a diverse cosmopolitan genus (Michener 2000), and hylaeine 270 species being recorded as visitors to several species of orchids (Bates 1982 271 (Australia); Catling 1983 (North America); Slater and Calder 1988 (Australia);

- 272 Lehnebach and Robertson 2004 (New Zealand); Bänziger et al. 2008 (China);
- Henneresse and Tyteca 2016 (Europe); Kuiter 2016 (Australia); Sugiura 2017
- (Japan)), to our knowledge there are no known pollination strategies in the orchids
- 275 involving specialisation on *Hylaeus*. As such, if *C. hildae* proves to be specialised on
- 276 *Hylaeus* elsewhere in its geographic range, this strategy of pollination primarily by
- 277 *Hylaeus* would be highly unusual among orchids.
- 278

279 Floral spectral reflectance measurements of the plant community that co-flowers with 280 C. hildae provided strong evidence that pollinators are not attracted through visual 281 mimicry. While some of the co-occurring flowers were also zygomorphic, both 282 Daviesia species have the keel-flower floral form, while G. hederacea lacks the 283 heavily modified petal (labellum) of orchids. Further, none of the co-flowering plants 284 had similar floral colouration to C. hildae. In particular, Goodenia and Davesia had 285 pronounced peaks of UV reflectance, which was not the case in C. hildae. In addition 286 to direct comparisons of floral colour, C. hildae also exhibited a different pattern to 287 the other plant species, with the labellum tip, which is colourless in bee vision 288 models, contrasting strongly with the adjacent labellum and tepals. It is possible that 289 the dull colouration of the labellum tip of C. hildae plays a role in luring the pollinator 290 to the labellum, and therefore the reproductive structures, through its pronounced 291 colour contrast with the remainder of the flower.

292

293 While it is possible that observations in other years or at other sites may yield 294 additional pollinator species, *Hylaeus* sp. was the only bee species attracted to C. 295 *hildae* at the main study site despite the presence of eight co-occurring bee species. 296 As such, in this system it appears that specialisation is achieved at the attraction phase, regardless of any secondary filters related to the size and behaviour required 297 298 for pollination. In C. hildae, dietary specialisation by other bees is unlikely to explain 299 avoidance of the orchid as, based on visitation data of these and/or related species, 300 most are believed to be generalist nectar foragers (Hingston 1999; Sugden and Pyke 301 1991; Walker 1995; Michener 2007; Batley 2019). However, some of these bees may 302 be exhibiting floral constancy to the much more floriferous co-occurring rewarding 303 plants (Grant 1950; Waser 1986) or ignoring C. hildae because its small flower may 304 inhibit foraging by larger bees. Interestingly, at the LRW site, one case of visitation to 305 C. hildae was observed by a male Mellittosmithia sp., a very poorly known genus

where there is preliminary evidence for a preference for Fabaceae (Houston 2018, M.
Batley unpublished), supported by the possibility that the carina at the center of the
clypeus is an adaptation for foraging on pea plants.

309

310 It is possible that pollinator attraction in C. hildae is achieved by exploiting visual or 311 chemical cues that *Hylaeus* sp. finds more attractive than other bees, either through 312 innate or learned behaviour (e.g. Dötterl and Vereecken 2010; Milet-Pinheiro et al. 313 2012, 2013; Carvalho et al. 2014). For example, some bees show an innate preference 314 for flowers that are UV absorbing white (Dyer et al. 2016, 2019), as is present on 315 much of the labellum of *C. hildae*. Alternatively, bees may develop preferences through learning to associate particular floral traits with the provision of a food 316 317 reward, though these preferences can extend to flowers without closely matching 318 traits (Gumbert 2000; Dyer and Murphy 2009). In the case of Hylaeus sp., no flower 319 visiting information is associated with the small number of known specimens, but two 320 lines of evidence suggest that it is likely to be a generalist forager. Firstly, Hylaeus sp. 321 has a broad geographic range having been collected in the Blue Mountains and 322 Shoalhaven in NSW, Mount Buffalo and the study site in Victoria, and near Waratah, 323 Tasmania (Houston, 1970; specimen labels in Australian Museum). Furthermore, 324 specimens collected beyond the range of *C. hildae* in the Blue Mountains (NSW) by 325 the late Norman Rodd have collection dates in August, October, November, 326 December, April and May (specimens in the Australian Museum). Activity over such 327 a large part of the year makes it unlikely that *Hylaeus* sp. visits a very limited number 328 of flower species.

329

330 The present study is first systematic investigation of the pollination of a Caladenia 331 outside of the 'spider orchid' clade (subgenera Calonema, Phlebochilus and 332 Drakonorchis). Similarly, detailed studies of the pollination of related genera are 333 mostly lacking, though Peakall (1987) showed that pollination of Cyanicula gemmata 334 occurred through a combination of beetles congregating to mate and bees attempting 335 to forage nectar. Based on incidental records, pollination by nectar foraging 336 Hymenoptera, and to a less extent Diptera and Coleoptera, is likely to be typical for 337 subgenera Stegostyla, Elevatae and Caladenia (Bates 1982; Phillips et al. 2009b; 338 Kuiter 2016), and most other genera in the Caladeniinae (Rogers 1931; Erickson 339 1965; Peakall 1987; Kuiter 2016). However, given the evidence for a specialised

340	pollination system in C. hildae, and the diversity of floral traits evident among
341	putatively food deceptive Caladeniinae, there is likely to be diversity in the
342	pollination niches occupied among these orchids, potentially including other species
343	that exhibit specialisation on one or few pollinator species.
344	
345	Conflicts of interest
346	
347	The authors declare no conflicts of interest.
348	
349	Acknowledgements
350	
351	This study was supported by an ARC Discovery Early Career Research Award to
352	RDP (DE150101720). We would like to thank Tobias Hayashi and Bill Kosky for
353	suggesting suitable study sites, Colin Rowan for providing a photograph of the study
354	species, Noushka Reiter for assistance with fieldwork, and Rod Peakall for comments
355	that improved the final manuscript.
356	
357	References
358	
359	Ackerman JD (1981) Pollination biology of Calypso bulbosa var. occidentalis
360	(Orchidaceae): a food-deception system. Madroño 28, 101-110.
361	
362	Ackerman JD (1986) Mechanisms and evolution of food deceptive pollination
363	systems in orchids. Lindleyana 1, 108–113.
364	
365	Antonelli A, Dahlberg CJ, Carlgren KHI, Appelquist T (2009) Pollination of the
366	Lady's slipper orchid (Cypripedium calceolus) in Scandinavia. Nordic Journal of
367	Botany 27, 1-8.
368	
369	Backhouse G (2018) 'Spider orchids: the genus Caladenia and its relatives in
370	Australia'. (Gary Backhouse: Melbourne).
371	

372	Backhouse G, Kosky B, Rouse D, Tuner J (2016) 'Bush Gems: A Guide to the Wild
373	Orchids of Victoria'. (Gary Backhouse, Bill Kosky, Dean Rouse and James Turner:
374	Melbourne).
375	
376	Banzinger H, Sun H, Luo Y-B (2008) Pollination of wild lady slipper orchids
377	Cypripedium yunnanense and C. flavum (Orchidaceae) in south-west China: why are
378	there no hybrids? Botanical Journal of the Linnnean Society 156, 51-64.
379	
380	Bates R (1982) Observations of pollen vectors on Caladenia congesta R.Br Journal
381	of the Native Orchid Society of South Australia 6, 37–38.
382	
383	Batley M (2019) Flower-visiting records for Australian native bees. figshare.
384	Collection. https://doi.org/10.6084/m9.figshare.c.3521328.v4
385	
386	Briscoe AD, Chittka L (2001) The evolution of colour vision in insects. Annual
387	Review of Entomology 46, 471-510.
388	
389	Carvalho AT, Dötterl S, Schlindwein C (2014) An aromatic volatile attracts
390	oligolectic bee pollinators in an interdependent bee-plant relationship. Journal of
391	<i>Chemical Ecology</i> 40 , 1126–1134.
392	
393	Catling PM (1983) Pollination of northeastern North American Spiranthes
394	(Orchidaceae). Canadian Journal of Botany 61, 1080-1093.
395	
396	Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor
397	excitations as a generalized representation of colour opponency. Journal of
398	Comparative Physiology A 170, 533–543.
399	
400	Chittka L, Kevan PG (2005) Flower colour as advertisement. In: 'Pratical Pollination
401	Biology' (ED. Dafni A, Kevan PG, Husband BC) pp 157-196. (Enviroquest Ltd:
402	Cambridge).
403	
404	Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee-flower
405	interactions: a review and perspectives. Canadian Journal of Zoology 88, 668-697

406	
407	Dyer AG, Chittka L (2004a) Bumblebees (Bombus terrestris) sacrifice foraging speed
408	to solve difficult colour discrimination tasks. Journal of Comparative Physiology A:
409	Neuroethology, Sensory, Neural, and Behavioral Physiology 190 , 759–763.
410	
411	Dyer AG, Chittka L (2004b) Fine colour discrimination requires differential
412	conditioning in bumblebees. Naturwissenschaften 91, 224–227.
413	
414	Dyer AG, Murphy AH (2009) Honeybees choose "incorrect" colors that are similar to
415	target flowers in preference to novel colors. Israel Journal of Plant Sciences 57, 203-
416	210.
417	
418	Dyer AG, Boyd-Gerny S, Shrestha M, Lunau K, Garcia JE, Koethe S, Wong BBM
419	(2016) Innate colour preferences of the Australian native stingless bee Tetragonula
420	carbonaria Sm. Journal of Comparative Physiology A 202, 603–613.
421	
422	Dyer AG, Boyd-Gerny S, Shrestha M, Garcia JE, van der Kooi CJ, Wong BBM
423	(2019) Colour preferences of Tetragonula carbonaria Sm. stingless bees for colour
424	morphs of the Australian native orchid Caladenia carnea. Journal of Comparative
425	<i>Physiology A</i> 205 , 347–361.
426	
427	Erickson R (1965) 'Orchids of the West.' (Paterson Brokenshaw: Perth).
428	
429	Faast R, Farrington L, Facelli JM, Austin AD (2009) Bees and white spiders:
430	unravelling the pollination syndrome of Caladenia rigida (Orchidaceae). Australian
431	<i>Journal of Botany</i> 57 , 315–325.
432	
433	Fritz AL (1990) Deceit pollination of Orchis spitzelii (Orchidaceae) on the island of
434	Gotland in the Baltic: a suboptimal system. Nordic Journal of Botany 9, 577-587.
435	
436	Garcia JE, Spaethe J, Dyer AG (2017) The path to colour discrimination is S-shaped:
437	behavior determines the interpretation of colour models. Journal of Comparative
438	<i>Physiology A</i> 203 , 983-997.
439	

440	Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate
441	preferences and generalization after learning. Behavioral Ecology and Sociobiology
442	48 , 36–43.
443	
444	Gumbert A, Kunze J (2001) Colour similarity to rewarding model plants affects
445	pollination in a food deceptive orchid, Orchis boryi. Biological Journal of the
446	Linnean Society 72, 419–433.
447	
448	Grant V (1950) The flower constancy of bees. Botanical Review 16, 379-398.
449	
450	Henneresse T, Tyteca D (2016) Insect visitors and potential pollinators of Orchis
451	militaris (Orchidaceae) in southern Belgium. Journal of Insect Science 16, 104.
452	
453	Hingston AH (1999) Affinities between southern Tasmanian plants in native bee
454	visitor profiles. Australian Journal of Zoology 47, 361-384.
455	
456	Houston TF (1970) The Systematics and Biology of Australian Hylaeine bees
457	(Hymenoptera: Colletidae) Ph.D. thesis, University of Queensland, Brisbane.
458	
459	Houston TF (2018) 'A Guide to the Native Bees of Australia'. (CSIRO Publishing:
460	Melbourne).
461	
462	Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of
463	deceptive pollination in orchids. <i>Biological Reviews</i> 81, 219–235.
464	
465	Jersáková J, Jürgens A, Šmilauer P, Johnson SD, Johnson M (2012) The evolution of
466	floral mimicry: identifying traits that visually attract pollinators. Functional Ecology
467	26 , 1381–1389.
468	
469	Johnson SD (1994) Evidence for Batesian mimicry in a butterfly-pollinated orchid.
470	Biological Journal of the Linnean Society 53, 91–104.
471	

472	Johnson SD (2000) Batesian mimicry in the non-rewarding orchid Disa pulchra, and
473	its consequences for pollinator behaviour. Biological Journal of the Linnean Society
474	71 , 119–132.
475	
476	Johnson SD, Schiestl FP (2016) 'Floral Mimicry, 1st edn'. (Oxford University Press:
477	Oxford).
478	
479	Jones DL (2006) 'A Complete Guide to Native Orchids of Australia.' (Reed New
480	Holland: Sydney)
481	
482	Kuiter RH (2016) 'Orchid Pollinators of Victoria, 4th Edition'. (Aquatic
483	Photographics: Seaford).
484	
485	Lehnebach CA, Robertson AW (2004) Pollination ecology of four epiphytic orchids
486	of New Zealand. Annals of Botany 93, 773-781.
487	
488	Li P, Luo Y, Bernhardt P, Kou Y, Perner H (2008) Pollination of Cypripedium
489	plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist
490	attractants versus restrictive floral architecture. Plant Biology 10, 220-230.
491	
492	Lunua K, Wacht S, Chittka L (1996) Colour choices of naïve bumble bees and their
493	implications for colour perception. Journal of Comparative Physiology. A, Sensory,
494	Neural, and Behavioural Physiology 178: 477-489.
495	
496	Michener CD (2007) 'The Bees of the World. 2 nd ed'. (John Hopkins University
497	Press: Baltimore).
498	
499	Milet-Pinheiro P, Ayasse M, Schlindwein C, Dobson HEM, Dötterl S (2012) Host
500	location by visual and olfactory floral cues in an oligolectic bee: innate and learned
501	behaviour. Behavioural Ecology 23, 531–538.
502	
503	Milet-Pinheiro P, Ayasse M, Dobson HEM, Schlindwein C, Francke W, Dötterl S
504	(2013) The chemical basis of host-plant recognition in a specialized bee pollinator.
505	Journal of Chemical Ecology 39 , 1347–1360

506	
507	Nilsson LA (1983a) Anthecology of Orchis mascula (Orchidaceae). Nordic Journal
508	of Botany 3 , 157-179.
509	
510	Nilsson LA (1983b). Mimesis of bellflower (Campanula) by the red helleborine
511	orchid Cephalanthera rubra. Nature 305, 799–800.
512	
513	Peakall R (1987) Genetic Systems of Australian Terrestrial Orchids. Unpublished
514	PhD thesis, The University of Western Australia.
515	
516	Peakall R (1990) Responses of male Zaspilothynnus trilobatus Turner wasps to
517	females and the sexually deceptive orchid it pollinates. Functional Ecology 4, 159-
518	167.
519	
520	Peter CI, Johnson SD (2008) Mimics and magnets: the importance of color and
521	ecological facilitation in floral deception. Ecology 89, 209–221.
522	
523	Peter CI, Johnson SD (2013) Generalized food deception: colour signals and efficient
524	pollen transfer in bee-pollinated species of Eulophia (Orchidaceae). Botanical
525	Journal of the Linnean Society 171, 713-729.
526	
527	Phillips RD, Peakall R (2018) Breaking the rules: Discovery of sexual deception in
528	Caladenia abbreviata (Orchidaceae), a species with brightly coloured flowers and a
529	non-insectiform labellum. Australian Journal of Botany 66, 95-100.
530	
531	Phillips RD, Backhouse G, Brown AP, Hopper SD (2009a) Biogeography of
532	Caladenia (Orchidaceae), with special reference to the South-west Australian
533	Floristic Region. Australian Journal of Botany 57, 259–275.
534	
535	Phillips RD, Faast R, Bower CC, Brown GR, Peakall R (2009b) Implications of
536	pollination by food and sexual deception for pollinator specificity, fruit set,
537	population genetics and conservation of Caladenia (Orchidaceae). Australian
538	<i>Journal of Botany</i> 57 , 287–306.
539	

540	Phillips RD, Brown AP, Dixon KW, Hopper SD (2011) Orchid biogeography and
541	factors associated with rarity in a biodiversity hotspot, the Southwest Australian
542	Floristic Region. Journal of Biogeography 38, 487-501.
543	
544	Phillips RD, Peakall R, Dixon KW (2014) The warty and the beguiling – the
545	pollination of kwongan orchids. In: 'Plant life on the sandplains in southwest
546	Australia, a global biodiversity hotspot'. (Ed H. Lambers) pp 181–193. (UWA
547	Publishing: Crawley).
548	
549	Phillips RD, Brown GR, Dixon KW, Hayes C, Linde CC, Peakall R (2017)
550	Evolutionary relationships among pollinators and repeated pollinator sharing in
551	sexually deceptive orchids. Journal of Evolutionary Biology 30, 1674–1691.
552	
553	Phillips RD, Bohman B, Brown GR, Tomlinson S, Peakall R (2020) A specialised
554	pollination system using nectar-seeking thynnine wasps in Caladenia nobilis
555	(Orchidaceae). Plant Biology 22, 157-166.
556	
557	Reiter N, Bohman B, Flematti GR, Phillips RD (2018) Pollination by nectar-foraging
558	thynnine wasps: evidence of a new specialized pollination system for Australian
559	orchids. Botanical Journal of the Linnean Society 188, 327-337.
560	
561	Reiter N, Bohman B, Batley M, Phillips RD (2019) Pollination of an endangered
562	Caladenia species (Orchidaceae) by nectar-foraging behaviour of a widespread
563	species of colletid bee. Botanical Journal of the Linnean Society 189, 83-98.
564	
565	Reiter N, Bohman B, Freestone M, Brown GR, Phillips RD (2020) Pollination by
566	nectar-foraging thynnine wasps in the endangered Caladenia arenaria and Caladenia
567	concolor (Orchidaceae). Australian Journal of Botany 67, 490-500.
568	
569	Rogers RS (1931) Pollination of Caladenia deformis. Transactions and Proceedings
570	of the Royal Society of South Australia 55, 143–146.
571	
572	Scaccabarozzi D, Cozzolino S, Guzzetti L, Galimberti A, Milne L, Dixon KW,
573	Phillips RD (2018) Masquerading as pea plants: behavioural and morphological

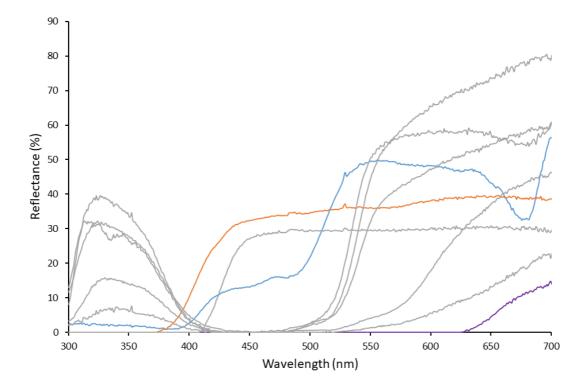

574	evidence for mimicry of multiple models in an Australian orchid. Annals of Botany
575	122 , 1061–1073.
576	
577	Scaccabarozzi D, Guzzetti L, Phillips RD, Milne L, Tommasi N, Cozzolino S, Dixon
578	KW (2020) Ecological factors driving pollination success in an orchid that mimics a
579	range of pea plant species. Botanical Journal of the Linnean Society, in press.
580	
581	Slater AT, Calder DM (1988) The pollination biology of Dendrobium speciosum
582	Smith: a case of false advertising? Australian Journal of Botany 36, 145-158.
583	
584	Steiner KE (1998) The evolution of beetle pollination in a South African orchid.
585	American Journal of Botany 85, 1180–1193.
586	
587	Stoutamire W (1983) Wasp-pollinated species of Caladenia (Orchidaceae) in south-
588	western Australia. Australian Journal of Botany 31, 383-394.
589	
590	Sugden EA, Pyke GH (1991) Effects of honey bees on colonies of Exoneura
591	asimillima an Australian native bee. Australian Journal of Ecology 16, 171-181.
592	
593	Sugiura N (2017) Floral morphology and pollination in Gastrodia elata, a
594	mycoheterotrophic orchid. Plant Species Biology 32, 173-178.
595	
596	Walker K (1995) Revision of the Australian native bee subgenus Lasioglossum
597	(Chilalictus) (Hymenoptera: Halictidae). Memoirs of Museum Victoria 55, 1-214.
598	
599	Waser NM (1986) Floral constancy: definition, cause and measurement. The
600	American Naturalist 127, 593-603.
601	
602	Weston PH, Perkins AJ, Indsto JO, Clements MA (2014) Phylogeny of the
603	Orchidaceae tribe Diurideae and its implication for the evolution of pollination
604	systems. In: Darwin's Orchids: Then and Now (R. Edens-Meier & P. Bernhardt, eds),
605	pp. 91–154. (The University of Chicago Press: Chicago).
606	
607	

Figure 1: *Caladenia hildae*. Photo by Colin Rowan.

- **Figure 2:** A female *Hylaeus (Prosopisteron)* sp. collected carrying pollen of
- *Caladenia hildae* on its scutum. Photo by Michael Batley.

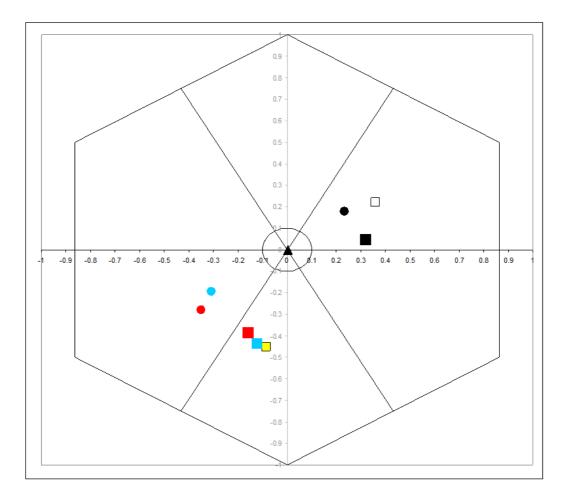


Figure 3: Spectral reflectance curves of floral parts of *Caladenia hildae* compared to

620 the co-flowering plant community. Orange = underside of the labellum of *C. hildae*;

621 blue = lateral sepals of *C. hildae*; purple = tip of labellum of *C. hildae*; grey = other

- 622 members of the plant community.

Figure 4: Mean colour loci for *Caladenia hildae* and co-flowering plant species in the

627 hexagon bee vision model. C. hildae underside of labellum: black circle; C. hildae

628 lateral sepals: black square; C. hildae labellum tip: black triangle; Goodenia

hederacea: yellow square; *Epacris impressa*: white square; *Daviesia latifolia* keel:

630 blue circle; *Daviesia latifola* standard: blue square; *Daviesia ulicifolia* keel: red circle;

Daviesia ulicifola standard: red square.