PROTO-OCEANIC REFLEXES IN WOLEAIAN

Anthony F. Tawerilmang and Ho-min Sohn

1. GENERAL

Woleaian (WOL) is a nuclear Micronesian (MC) language spoken by some l,400 inhabitants of the atolls of Woleai, Eauripik, Faccaulap, Elato, Lamotrek, and Ifaluk, all located in the Yap District of the Trust Territory of the Pacific Islands. The language used for comparison with Proto-Oceanic (POC) in this paper is the dialect of woleai Atoll where Tawerilmang came from. ${ }^{1}$ POC is the name given to the reconstructed language that comprises what have been traditionally known as the MC, Polynesian, and Melanesian groups, as over against the Indonesian or Western Austronesian. The few sets of POC reconstructions then available (which had generally not included data from MC languages) are collected with slight modifications in Grace 1969, to make a total of 698 POC lexical items. ${ }^{2}$

The aim of this paper is to describe the pattern of phonological evolution from POC to wOL through a comparison of the two sets of vocabulary. It is hoped that the findings presented in this paper will contribute to a larger and more significant undertaking: MC comparative linguistics. This hope is particularly strong in that WOL has been found to be a language which retains POC forms faithfully and consistently in terms of both the number of obvious cognates (see Appendix) and sound (especially vowel) reflexes.

2. METHODOLOGY

Since our main concern is the historical development of the phonological structure of $W O L$, it is imperative at the outset to draw the line between synchronic and diachronic aspects of woL phonology. Needless to say, all rules are historical products in their origin, i.e. added in the course of time. However, addition of certain rules results in the restructuring of the underlying representations of lexical items, while addition of others has nothing to do with restructuring. Let us call the former type of rules diachronic and the latter, synchronic. For instance, the vowel a is obligatorily raised to e between two high vowels in WOL. Addition of this rule in the grammar of wol has not yet been accompanied by any restructuring of relevant lexical items in underlying representations. Thus, the appearance of the alternation between

Byron W. Bender, ed. Studies in Micronesian Linguistics, l71-199.
Pacific Linguistics, C-80, 1984.
© Anthony F. Tawerilmang and Ho-min Sohn
sila- and sile- in silasE our (incl.) mother and silei my mother has not caused the underlying form sila mother to be changed. On the other hand, the change of $P O C * t$ to WOL s, as in POC *tina mother vs. WOL sila, has certainly resulted in restructuring of the underlying representation of relevant lexical items (e.g. *tina > sila). Therefore, POC *t $>$ WOL s is a diachronic rule.

Suppose we directly compare POC *tina and WOL sile- mother, as in the form silei my mother, ignoring the existing synchronic alternation between a and e in WOL. We would have to describe the development as *tina $>$ sila $>$ sile. This description would overlook the important fact that sila and sile are automatic alternants produced by a general rule of a-raising which currently applies to all forms that meet the given environment (cf. Sohn 1972 and Bender 1973). This rule, which has no exceptions, has nothing to do with the meanings of the lexical items involved, and may be presumed to be internalised by contemporary speakers of WOL. The change $\% \mathrm{t}>\mathrm{s}$, however, is neither exceptionless nor is it internalised by contemporary speakers. It may once have been a synchronic rule, but is now quite foreign to the native speaker, who does normally not even know of its existence.

Currently, there are two opposing views concerning the occurrence of restructuring. In transformational generative grammar as represented by Chomsky and Halle (1968), it seems that a rule remains synchronic as long as surface forms are derivable predictably from underlying representations even by means of powerful abstract devices. Restructuring is allowed only when no predictability is possible. In natural generative phonology, on the other hand, restructuring occurs much sooner, i.e., immediately upon the addition of a new phonological rule (e.g. Hooper 1974:12l). This claim of the natural generativists is an integral part of their theoretical framework, which also includes the general abolishment of rule ordering, establishment of only one level of phonological representation, and adherence to the strong naturalness condition. ${ }^{3}$

Our concept of restructuring falls somewhere between these two extremes. We will not postulate any abstract devices, inasmuch as we believe that such devices are mostly far from the psychological reality of the native speaker. However, we will recognise the existence and importance of deep and surface levels of phonological representation. We will also admit a certain amount of ordering in phonological rules, not only to attain greater simplicity in the statement of the conditions associated with rules but to achieve greater generality in the statement of phonological processes. Let us take an example.

In WOL, we have a productive process called dissimilation, which, operating from right to left, raises a to e before a low vowel (Sohn 1975:31-32). ${ }^{4}$ Thus, we have the following alternations.

$\left\{\begin{array}{l}{[\text { temai }]} \\ {[\text { tamemamI }]}\end{array}\right.$
moon moon of
my father
our (excl.) father

In the natural generative framework, which admits only one level of phonological representation, the underlying stem of moon would be either merame or marema, and that of father either tema or tame. However, there is no way to predict one form from the other. Both forms in each set are derivable only from a third which is never realised on the surface, i.e. marama for moon and tama for father. If, in this situation, we were to consider both surface forms in each set as lexical representations, we would miss an important phonological
generalisation (i.e. the dissimilation process) which is purely phonological and applies without exception. Moreover, to the linguistically unsophisticated native speaker of WOL, the formal difference between meramE and marema (in maremalI), for example, is not recognised, because it comes about entirely automatically, just as in allophonic alternation. We consider an allophonic variation to be a synchronic alternation. Then, there is no reason why we should not also consider purely phonological alternations such as this dissimilation process to be synchronic facts. Both phenomena are governed by the native speaker's unconscious, meaning-disregarding linguistic habits. Insofar as the native speaker of WOL recognises the two forms meramE and marema as one, it would be unreasonable to treat the dissimilation process as a historical (or diachronic) rule.

A natural corollary of considering it to be a synchronic rule is that we have to admit the existence of two levels of phonological representation. A basic premise of this paper, therefore, is that diachronic rules apply to POC forms and derive the corresponding wol base forms, which are reconstructable from purely phonological alternations, while synchronic rules apply to wol base forms to derive the corresponding surface forms. In other words, diachronic rules deal with the patterns of restructuring, while synchronic rules deal with the patterns of currently automatic sound alternations. Based on this premise, we draw a distinction between those processes which are partly or wholly dead and those which are completely active in purely phonological environments. If a certain phonological change were suspended prematurely or were in progress through lexical diffusion, we would consider it to be a diachronic fact, since restructuring in our sense of the term is involved in either case.

Let us go back to our examples. In order to obtain the surface forms from the reconstructed base forms marama, marama-li, tama-i, and tama-mami, we must have three general synchronic rules: prejunctural raising of a to e, dissimilation, and devoicing of the final post-consonantal simple vowel.
pre-junctural raising
dissimilation
devoicing

[meramE] [maremalI] [temai] [tamemamI]

One significant ordering to be imposed on the above rules is that prejunctural raising must apply before dissimilation because the latter requires a surface low vowel (e.g. [a]) as its environment. On the other hand, devoicing does not have to be ordered in relation to the other two rules.

One may naturally ask, then, how we should treat WOL pairs like b ($=$ [bw]) and $p w$, š and c, r and c, x and k, and l and n. The members of each pair are in complementary distribution in native vocabulary, in that the first occurs only as a single consonant and the second only as a geminate. Besides, when two of the first members of a given pair meet at a morpheme boundary, they are automatically replaced by the corresponding second member, as in $x x \rightarrow k k$. For instance, notice the alternation between xaŋi to eat it and kkekkaŋi to be eating $i t$. The only feature that differentiates x from k is [continuant]. If we take only native vocabulary into account, x and k are certainly allophonic variants. A flood of recent borrowings (especially from Japanese), however, have caused the WOL system to develop simple $\mathrm{pw}, \mathrm{c}, \mathrm{k}$, and n which contrast with the corresponding double or fricative ones. Moreover, some neighbouring languages retain $\mathrm{pw}, \mathrm{c}, \mathrm{k}$, and n where wOL has $b, s / r, x$, and 1 , respectively, which fact
makes the native speaker sensitive to the phonetic differences between, for example, x and k. Based on these observations, we will regard the development of $b, s ̌, r, x$, and l as historical (or diachronic) facts, while the fortition of for example $x x \rightarrow k k$ is regarded as a synchronic process.

Another thorny problem concerns the treatment of semivowels. $i=w$ and $\dot{x y}$ have been reconstructed as phonemes in POC, as in *awan mouth and jyaŋo yellow. In WOL, w and y are inserted before syllable-initial vowels in an entirely predictable way (see SR l below). In many cases, therefore, it is difficult to tell whether a given semivowel in a wol form is inherited or has been synchronically epenthesised. However, in the case of ya:wE mouth, it is easy to tell that the w is an inherited one even without the evidence of POC *awan, because w is never inserted between unrounded vowels. In the case of yapoyap0 yellow, on the other hand, one might want to set up aŋo-aŋo as the base form, because y is inserted in the environment \# a anyway. To this word correspond two POC forms, *aŋoaro and *yaŋo, both meaning yellow, which might suggest either yaŋо-уаŋо or аŋо-аŋо as the WOL base form. Some morphophonemic alternations involving the word in question and others, however, lead us to choose yaro-yaŋo. Compare the pairs in (3a) and those in (3b).
(3)

```
a. \(\left\{\begin{array}{l}\text { yaŋoyan0 } \\ \text { xeyaŋoyaŋo }\end{array}\right.\)
\{yateffasE
\{xeyateffesa
\{yarusa:sa
'xeyarusa:sa:1i
\(\left\{\begin{array}{l}\text { yannenrawE } \\ \text { xeyaŋnenŋewa }\end{array}\right.\)
\(\left\{\begin{array}{l}\text { yanneŋrawE } \\ \text { xeyaŋneŋnewa }\end{array}\right.\)
\{yanekuwE
    xeyanekuwa
b. \(\left\{\begin{array}{l}\text { yalI } \\ \text { xa:li }\end{array}\right.\)
\(\left\{\begin{array}{l}y a r E \\ x a: r a\end{array}\right.\)
\(\left\{\begin{array}{l}\text { yaxiyexI } \\ \text { xa: xiyexi }\end{array}\right.\)
    \{yafe
    Yyefa:fE
    \(\left\{\begin{array}{l}\text { yall }\end{array}\right.\)
        ruwa: II
```

yelzow
make it yellow
beardless
shave him completely
reddish
make it bloody
sloppy
make him do things sloppily
mischievous
make him mischievous
to fly
make it fly
to get through
make it get through
to think
to plan
to swim
to swim vigorously
thin piece
two thin pieces

Notice that in (3a) y is retained after the causative prefix $x a-$ (xebefore a by dissimilation), whereas in (3b) y does not show up after the same prefix. Further, notice in (3b) that y does not occur in the second member of a reduplicated form (e.g. yefa:fE) and after a numeral (e.g. ruwa:lI). What this means is that the y 's in (3a) and those in (3b) differ in historicity. The former are already fossilised, either through inheritance from POC or through later development, while the latter are synchronically epenthesised in the given environments. The WOL base form of yellow should, therefore, be yaŋo-ya jo, and not aŋo-aŋo.

A similar phenomenon is observed with w. For instance, w is epenthetic in wolv:10 to flip and wo:r0 fence, in that the former may be derived from ola-ola (cf. wolati flip $i t$) and the latter from oro-oro. The above observation leads us to distinguish base-form semivowels which are inherited or historically developed from surface ones which are epenthesised through synchronic processes.

3. SYNCHRONIC PHONOLOGICAL PROCESSES

WOL has the following phonological inventory in the native vocabulary. Notice that many sounds are limited to single or double occurrence. This is viewed as largely due to phonological diffusion through linguistic contact with neighbouring languages, and to the internal pressures to maintain structural symmetry (Sohn et al:1976).
(4) Consonants

P		t			(doubly)	k (doubly) x (singly)	
				š	(singly)		
pw	(doubly)	s			(singly)		
b (singly)							
			(singly)				
m			(doubly)			\square	

Vowels
i u u
e әə (long) o
a วว (long)

Semivowels
$y \quad w$
The major synchronic rules (SR's) operative in wol are listed below, with relevant examples. Rule ordering is specified where applicable.

SR 1 (semivowel insertion)

$$
\varnothing \rightarrow\left\{\begin{array}{lll}
y & /\left\{\begin{array}{l}
\# \\
\overline{\mathrm{~V} r} r \\
\mathrm{v}
\end{array}\right. \\
w & \left\{\begin{array}{l}
\#, \quad \mathrm{Vr} \\
\mathrm{Vr} \mathrm{v}
\end{array}\right\}
\end{array}\right.
$$

(Vr $=$ rounded vowel; $\overline{\mathrm{V}} r=$ unrounded vowel)
Condition: A semivowel is not inserted before a high vowel (i, \downarrow, or u) or between two identical simple vowels.
(The semivowel y is inserted before a word-initial unrounded vowel or between an unrounded vowel and any vowel. The semivowel w is inserted before a word-initial rounded vowel or between a rounded vowel and any vowel.)

Examples

```
alusu -> yalúsu -> yalusU (by SR 7) ghost
ama }->\mathrm{ yama }->\mathrm{ yame (by SR 3) }->\mathrm{ ya:mE (by SR's 7 & 8) office
afi }->\mathrm{ yafi }->\mathrm{ ya:fI (by SR's 7 & 8)
ate }->\mathrm{ yate }->\mathrm{ ya:tE (by SR's 7 & 8)
weriai }->\mathrm{ weriyai }->\mathrm{ weriyei (by SR 5)
ia }->\mathrm{ iya }->\mathrm{ iye (by SR 3) }->\mathrm{ i:yE (by SR's 7 & 8)
liia -> liiya -> li:yE (by SR's 3 & 7)
olo }->\mathrm{ wolo- (by SR 1)
laloa }->\mathrm{ lalowa }->\mathrm{ lalowE (by SR's 3 & 7) yesterday
falua }->\mathrm{ faluwa }->\mathrm{ faluwE (by SR's 3 & 7) island
xasuúa }->\mathrm{ xasưuwa }->\mathrm{ wasu:wE (by SR's 3 & 7)
uaa }->\mathrm{ uwaa }->\mathrm{ uwa (by SR 7)
fire
chin
weriai }->\mathrm{ weriyai }->\mathrm{ weriyei (by SR 5) see me
he
kiZ2 him
build it
fruit
```

SR 2 (a rounding)

$$
a \rightarrow 0 /\left\{\begin{array}{c}
0 \\
0 \\
u
\end{array}\right\} \quad \mathrm{C}
$$

(The simple word-final vowel a is rounded to o after a back rounded vowel followed by a simple or double consonant).
(6) Examples

bunna \rightarrow bunno \rightarrow bunn0 (by SR 7)	heart
sSoona \rightarrow ssoojo \rightarrow sSo:ク0 (by SR 7)	anger
xotכうta \rightarrow xotכวto \rightarrow xotכ:t0 (by SR 7)	

When, instead of a consonant, a semivowel occurs between a rounded vowel and a, SR 2 does not apply, as in paxowa \rightarrow paxowE shark (by SR's 3 and 7).

SR 3 (prejunctural a raising: applies after SR's 1 and 2)

$$
a \rightarrow \mathrm{e} /\left\{\begin{array}{l}
\mathrm{C} \\
\mathrm{G}
\end{array}\right\} \ldots
$$

(The simple vowel a is raised to e between a consonant or a semivowel ($G=$ glide) and a word boundary).
(7) Examples

$$
\begin{aligned}
& \text { ita\# } \rightarrow \text { ite } \rightarrow \text { i:tE (by SR's } 7 \& 8 \text {) } \\
& \text { afara\# } \rightarrow \text { yafare (by SR's } 1 \& 3) \rightarrow \text { yefarE (by SR's } 4 \& 7) \text { shoulder } \\
& \text { mwara\#mwarali\# } \rightarrow \text { mwaremwarali } \rightarrow \text { mwaremwerali (by SR's } 4 \& 7 \text {) } \\
&
\end{aligned}
$$

SR 4 (dissimilatory a raising: applies after SR 3)

$$
a \rightarrow e / \quad(c) \quad\left\{\begin{array}{l}
a \\
\infty
\end{array}\right\}
$$

Condition: This rule applies from right to left.
(The simple vowel a is raised to e before a low vowel, i.e., a or 2).
(8) Examples

```
matamami -> matemami -> matemamI (by SR 7) our (excl.) eyes
matai }->\mathrm{ metai my eyes
xammata }->\mathrm{ xammate (by SR 3) }->\mathrm{ xemmate }->\mathrm{ xemmatE (by SR 7)
                                    bailer
xat\supsetolaa }->\mathrm{ xetכวlaa }->\mathrm{ xetכ:la (SR 7) make it bloom
```



```
                                    erase it
```

SR 5 (assimilatory a raising)
$a \rightarrow e / V h(C)$ \qquad (C) Vh

Condition: This rule applies across word boundaries.
(The simple vowel a is raised to e between high vowels, whether or not a simple or double consonant intervenes.)
(9) Examples

```
maŋi\#mani \(\rightarrow\) manimeni \(\rightarrow\) manimenI (SR 7) \(\quad\) to think
itai \(\rightarrow\) itei my name
paad\#šalu \(\rightarrow\) paaúšelu \(\rightarrow\) paaušelU (SR 7)
water provisions
```

An allophonic process relevant to S^{\prime} 's 3-5 is that e is pronounced with the lips rounded (i.e. [ə]) before or after \dot{u}, as illustrated in (10). However, simple [ə] is not a separate phoneme in WOL.
(10) (a) before $山$
surface form pronunciation
lexU [lox山] make it tight
mmwed
ited
faufeu
[mmwod]
[itəul]
[faufad]
pronunciation
surface form
yadtE
xu:sE
pa: UselU
SR 6 (i assimilation)

$$
i \rightarrow\left\{\begin{array}{lll}
u / & \mathbf{u} & (C) \\
u / u & (C)
\end{array}\right\} \#
$$

(The word-final vowel i is completely assimilated to the preceding \dot{d} or u whether a consonant intervenes or not.)
(11) Examples
alusuli \rightarrow yalusuli $($ by $\operatorname{SR} 1) \rightarrow$ yalusulu \rightarrow yalusulU $($ by $\operatorname{SR} 7) \rightarrow$ ghost of
my finger
xattui \rightarrow xattuu \rightarrow xattu (by SR 7)
(by SR 7)
clothes of

SR 7 (vowel devoicing and shortening)

$$
\mathrm{V}_{\mathrm{L}} \rightarrow\left\{\begin{array}{lc}
\text { devoiced } / & \left\{\begin{array}{c}
\mathrm{C} \\
\mathrm{G}
\end{array}\right\} \ldots \# \# \\
\emptyset & / \mathrm{V}_{\llcorner } \ldots \# \#
\end{array}\right\}
$$

(A simple vowel following a consonant or a semivowel ($G=$ glide) is devoiced before a phrase boundary; a long (geminate) vowel is shortened before a phrase boundary.)

Examples
imwa \rightarrow imwe (by SR 3) \rightarrow imwE \rightarrow i:mwE (by SR 8) house
iiaa \rightarrow iiyaa (by SR 1) \rightarrow i:ya where?
iraa \rightarrow ira
branch
SR 8 (vowel lengthening)
(V. = voiceless vowel).

Condition: This rule applies only to a noun.
(In a form which consists of only two simple vowels, with one or two simple consonants or semivowels ($G=$ glide), the first vowel is lengthened.)
(13) Examples

fau \rightarrow fa:山	stone
afi \rightarrow yafI (by SR's l\& 7) \rightarrow ya:fI	fire
lamwo lamw0 (by SR 7) \rightarrow la:mw0	lagoon
ia \rightarrow iya (by SR 1) \rightarrow iyE (by SR's 3\& 7) $\rightarrow i: y E$	he

SR 9 (fortition)

$$
\left[\begin{array}{c}
b \\
x \\
\left\{\begin{array}{c}
r \\
v \\
s \\
1
\end{array}\right] \\
a
\end{array}\right]\left[\begin{array}{c}
p p w \\
k k \\
c c \\
n n
\end{array}\right]
$$

(When doubled, the fricative b, x, r, and š are plosivised, and the flap 1 is nasalised.)
Examples
bbubbuutoxo \rightarrow bbubbuutox0 (by SR 7) \rightarrow ppwuppwu:tox0 to be coming (cf. bu:tog0 to come)
xxaxxatapaa \rightarrow xxexxatepa (by SR's $4 \& 7$) \rightarrow kkekkatepa to be touching it (cf. xettapE to touch)
rrorro \rightarrow rrorr0 (by $S R 7$) \rightarrow ccocc0 to decorate (cf. rosi decorate $i t$)
rraxo \rightarrow rrax0 (by SR 7) \rightarrow ccax0 to hug (cf. raxomi hug $i t$)
Ššaššalưa \rightarrow ššeššalưuw (by SR's $1,3,4, \& 7$) \rightarrow cceccalu:wE (cf. ša:lU water) to fill it with water

```
llutu -> llutU (by SR 7) P nnutU to be jumping
    (cf. lutl to jump)
```

4. DIACHRONIC RULES

The POC phonemic system as reconstructable from Grace 1969 is as follows: (15) POC Consonants:

p	t		k
mp	nt		nk
DP			
	d		
	nd		
	s		
	ns		
	nj		
		R	
	1	r	
m	n		\bigcirc
${ }^{\text {Jm }}$			

POC Vowels:

| i | u |
| :---: | :---: | :---: |
| e | 0 |

POC Semivowels:
y w
The following diachronic rules (DR's) show the development from POC forms to wol base forms. The wol forms cited are, therefore, all base forms. Ordered rules are marked as such. Unlike synchronic rules, DR's have certain exceptions which may be regarded either as having undergone idiosyncratic changes or as later borrowings from neighbouring languages.

DR 1 (final-consonant apocope)

$$
{ }^{*} \mathrm{C}>\varnothing / \ldots
$$

All word-final POC consonants were dropped and no reflexes are found unless protected by a suffix of a certain kind (and hence non-final in the suffixed form).
(16) Examples

*p *ma?udi(p) > madru	alive
*?atop > aso	thatch
*tani(t) > lani	sky
*masaki(t) > mataxi	sick, pain
*rjkinit > xili-	to pinch, pluck

\%k	*manu(k) > malu
*?	*daRa(?) > ccaa
	*muta ${ }^{\text {(}}$) > (m)mwuta
*s	*manipi(s) > malifi
*R	*matudu (R) > masurú
*m	*inu(m) > uld
	*ndanum > šalu
	*onom > olo
$\therefore \mathrm{n}$	*?atun > asu
* 0	*away > awa

bird, animal
blood
to vomit
thin
to sleep
to drink but ulumii drink it
fresh water
six
bonito
mouth
Notice that ulumii drink it retains the final *m of *inu(m) because it is followed by an object suffix. This verb belongs to the class of so-called thematic-stem transitive verbs (Sohn 1975:125-127), in that it retains the thematic consonant $-m$ only before a suffix (cf. ulu to drink). ${ }^{5}$

DR 2 (u centralisation)
$\therefore u>d /$ if not preceded or followed by a POC bilabial consonant
(17)

Examples

\therefore ? $\mathrm{tan}^{\text {a }}$	$>$ asu
*ndanu (m)	> šald
*dua	> rúa-
*kku	$>$ kku
*kuRita	> xúsa
*kutu	> xusd
*mataku(t)	$>$ mataxu
*matudu(R)	> masurú
*natu	> lau
*panua	$>$ falua
*pitu?u	$>$ fusu
*Ru?a	$>$ ua
*sau (?)	$>$ tad-
*susu	$>$ tutu
\therefore \% una (p)	$>$ ula
*? uda (0)	> úra

bonito
fresh water
two
nail, toe
octopus
louse
afraid
to sleep
child
land, island
star
neck
to pull out
breast
fish scale, body hair
Zobster

DR 2 does not apply when *u occurs in the neighbourhood of a POC bilabial consonant, as illustrated in (18).
(18) Examples

*lumu	$>$ lumwu	seaweed, moss
*-mu	$>$-mwu	your (singular)
*muta (?)	$>$ (m) mwuta	to vomit
*namu (k)	$>$ lamwu	mosquito
*pua(?)	$>$ uaa	fruit
*mpua	$>$ bbua	(betel)-nut
D. *puko	$>$ uxo	net
*puna	$>$ una	ridge pole
*mputo	$>$ buso	navel
*putu	$>$ utu	tree sp. Barringtonia
*tampu	$>$ tabu	taboo
*tumpu (?)	$>$ subu	to be born
*?umu	$>$ umwu	earth oven

As we see in＊putu＞utu，DR 2 does not apply to＊u when it follows another u which is not subject to DR 2．Similarly，the second isu remains unchanged in＊napulu（？）＞gaulu ten．＊puti（D．＊punti）＞wisi banana might be construed as an exception to（18）．However，wisi may be viewed as having been derived through usi＞wisi where u is diphthongised due to the following i．A question－ able exception is＊tau man，person＞tau practitioner where the meanings of the two words are only remotely related．

Due to the operation of DR 2，the WOL phonemic system has seen the split of $P O C * u$ into u and d ，thus resulting in the system of six simple vowels．

In addition to the regular shift of ψ_{u} to d as shown in $D R 2$ ，there are some high vowel alternations conditioned by neighbouring vowels．One such alternation is represented in DR 3，which applies fairly widely．

DR 3 （i centralisation：applies after DR 2）

$$
* i>u / \ldots \quad(C) d
$$

（19）

$$
\begin{aligned}
& \text { D *anitu > anitu (by DR 2) > andtu > alusu (by DR's } 7 \text { \& l4) } \\
& \text { *iku > ikú (by DR 2) > úku > uxú (by DR 9) } \\
& \text { *inu (m) > inú (by DR's } 1 \text { \& 2) > undu > ul山 (by DR 14) } \\
& \text { *pitu?u > pitu?u (by DR 2) > putul?u > fusul (by DR's 4, 5, \& 7) }{ }^{6} \\
& \text { star }
\end{aligned}
$$

One exception is $\dot{*}$ pitu $>$ fisi seven，which may have been changed in order to avoid homophony with fusu star．The shift＊？uluya＞iluna pillow is a case of change in a direction opposite to DR 3，in that the first $\% \mathrm{u}$ changed to i （probably by way of \dot{d} ）in dissimilation from the second \dot{d} ．Some other forms which show irregular high vowel reflexes include $: k u l i(t)>x i l i s k i n$ ，bark where＊u（＞u）changed to i before i，and＊ma？udi（p）＞maúru alive and＊tuki $>$ suxu to pound where $* i$ changed to \dot{d} in assimilation to the preceding \dot{d} ．Still other correspondences show mutual assimilation between a POC high vowel and a neighbouring non－high vowel，as illustrated in（20）．Notice that if there is an intervening POC consonant，the assimilation occurs only when the consonant is deleted by rules to be specified later．

（20）	$\left.\begin{array}{l} \text { *au } \\ \text { *aou } \end{array}\right\} \text { əə }$	＊pa？u	＞	fəə	to tie
		＊ndau（n）	＞	ร้əə	leaf
		＊paRu	＞	（xili－）fəə	hibiscus
		＊pa？oRu	＞	ffəə	new
	＊eu＞$>$	＊seu	＞	tつコ	rake
	＊ai＞e（e）	＊mai	＞	me	and，with
		＊sa？it	＞	tee－tee	to bind

The above changes are not entirely regular because，for instance，we have ＊patu＞fad stone，＊sapu＞tad to pull out，and＊？aRus＞adta current，where ＊au did not change to əə but followed the regular shift given in DR 2．Also， along with＊seu＞tכコ，we have＊kesu＞xul back of head where＊e was completely assimilated to the following \dot{d} ．One might be able to use some kind of rule ordering in the deletion of the consonants involved（e．g．＊？，$* \mathrm{t}$ ，$* \mathrm{p}, * \mathrm{R}$ ，$* \mathrm{~s}$ ） to provide an account of the vowel changes．In view of the lack of supporting data，however，such a proposal does not seem particularly attractive．In any case，the fusion of vowels added two new long vowel phonemes $\partial ⿰$ and $\partial 0$ to the WOL phonemic system．Remember that these long vowels do not have corresponding short counterparts．

DR 4 (glottal stop deletion)
\therefore ? $>\emptyset$
The POC glottal stop $*$? has been completely lost in all positions. Deletion of word-final *? has already been accounted for by DR l. In (2l) are given examples of deletion of initial and medial *?
(21)

initial:	*?apaRa	$>$	afara		shoulder
	*?aro-?opa	>	arofa-		love, like, miss
	*?ate	>	ase		liver
	*?atop	$>$	aso		thatch
	*?uda($)^{\text {) }}$	>	úra		Zobster
	*?umu	$>$	umwu		earth oven
medial:	*pa?u	$>$	fəə		to tie
	*da?a(n)	>	raa		branch
	*Ru?a	$>$	ua		neck
	*ma-?anu	to	be afloat	> maalu	flood
	*ma?udi (p)	>	mauru		alive
	*pitu?u	>	fusu		star
	*sa?it		tee-tee		to bind
	\therefore ̇tupu(d)		suu		to stand up

DR 5 (p weakening: applies after DR 2)

$$
\therefore p> \begin{cases}\emptyset /-\quad * u, * o \\ f / & \text { elsewhere }\end{cases}
$$

POC *p has been lost before a POC back vowel, whereas it has shifted to f in all other positions, as illustrated in (22).
(22) *p > \quad

*mapo	> mจว	to heal
*napo	> 100	wave, surf
„pua (?)	$>$ uaa	fruit
D. *puko	$>$ uxo	net
D. *puna	$>$ una	ridgepole
D. *punti	> wiši	banana
*sapu	$>$ tau-	to pull out
*ıapulu(?)	> gaulu	ten
* $\mathrm{p}>\mathrm{f}$		
*?apaRa	> afara	shoulder
*api	$>\mathrm{afi}$	fire
*?aro-?opa	$>$ arofa-	love, like, miss
'tmanipi (s)	> malifi	thin
*pada	> faša	pandanus
*pai-	$>\mathrm{fa}-$	(reciprocal prefix)
*pale	> fale	house
*panua	> falua	island, land
*papine	> faifile	woman
*patu	$>\mathrm{fad}$	stone
*pitu	$>\mathrm{fisi}$	seven
*tipi	> sifi	girdle, skirt

One exception to DR 5 is observed in *tupa $>$ supa fish poison and *Ripa > repa to go close, where $* p$ is reflected as p. In view of the abundance of reliable examples supporting $D R$, the exception may be ascribed to one of the following: (a) the POC forms may be reconstructed with *mp rather than *p; (b) they are not real correspondences; (c) the POC forms were introduced in wOL as borrowings after DR 5 was no longer active; or (d) the shift *p > fopped prematurely before *a. If the last statement was actually the case, we would have to change DR 5 to DR 5'.

DR 5' $\quad * p=\left\{\begin{array}{lll}\varnothing & / & * u, * o \\ p & / & \text { *a (only in certain words) } \\ f & / & \text { elsewhere }\end{array}\right.$
In *pili(?) > ffili to select and *kapi(t) > xaffii seize it, *p is reflected as ff . The transitive counterpart of ffili is filii select $i t$, which explains the former correspondence. The latter, however, has no explanation at present.

In *nsipo > tiwe downward and *tapu > tawii conch, deletion of *p is followed by an irregular diphthongisation of the following vowel, i.e. *o $>$ we and *u > wii, respectively.

DR 6 (bilabial denasalisation)

$$
* m p, * g p> \begin{cases}b / / & * u, * o \\ p / \text { elsewhere }\end{cases}
$$

POC *mp and *gp seem to have been merged, and then denasalised in wol to b (by way of pw) before a back (or rounded) vowel, and to p elsewhere. However, a strong case cannot be made for the two POC consonants, because there is only one correspondence available in which *ŋp occurs, as shown in (23).

$$
\begin{align*}
& \left\{\begin{array}{c}
* m p \\
* m p
\end{array}\right\}>b \tag{23}\\
& \begin{array}{lll}
\text { *mpo- } & >\text { boo } & \text { smelZ } \\
\text { *mpua } & >\text { bbua } & \text { (betel)-nut }
\end{array} \\
& \text { *mpule }>\text { bulo white sheZZ, cowry } \\
& \text { *mputo > buso navel } \\
& \text { *tampu }>\text { tabu taboo } \\
& \text { *tumpu(?) > subu to be born } \\
& \text { *ŋponi > boŋi night } \\
& \text { *mp > p } \\
& \text { *mpampa }(\mathrm{n}) \text { > paapa board, plank } \\
& \text { *mpaya > paa bait, worm } \\
& \text { D. *tampi }>\text { tapiya bowz }
\end{align*}
$$

Notice in the shift *mpua > bbua that *mp is reflected as bb for reasons not statable at the moment.

DR 7 (t weakening)

$$
* \mathrm{t}>\left\{\begin{array}{l}
\mathrm{t} / \mathrm{*a} \\
\emptyset / \overline{\text { elsewhere }}
\end{array}\right.
$$

POC $* \mathrm{t}$ is retained unchanged before the POC low vowel *a. Otherwise it has shifted to s or \varnothing, although predominantly s. The dropping is observed only before POC $* u$, and that only in a very limited number of words. One can only speculate that the words with the \varnothing reflex have been either influenced by or borrowed from other Trukic (TK) languages, which are regarded as having undergone a second shift of $* t$, i.e. $t>s$ and $s>\emptyset$ (Sohn et al 1976). This speculation is partly supported by the reflexes of POC *patu stone, which are fasd (old form) and fad (new form). Examples of DR 7 follow:
*t $>\mathrm{t}$
*tari s) > tani to cry
$\therefore \operatorname{tansi}(k)>\operatorname{tati}$ sea
*tali > tali rope
*talina $>$ talina ear
*tama $>$ tama father
*tano(?) > talo earth
\therefore taku $>$ taxu back
*mata $>$ mata eye
\therefore mataku(t) > mataxu to be afraid
*muta(?) > (m)mwuta to vomit
*t > s
\therefore tuki \gg suxu
*tumpu(?) $>$ subu
$\therefore t u ? u(d)>$ súu
D. *anitu $>$ alusu
*?atun $>$ asu
\therefore kutu $>$ xúsu
*matudu(R) > masuru
*pitu $>\mathrm{fisi}$
*pitu?u $>$ fusd
\%?ate $>$ ase
*?atop $>$ aso
*mate $>$ mase
*mputo(s) > buso
*tika > sixa
*tina $>$ sila
'tipi $>$ sifi
*toko(n) > soxo
$\therefore t>\emptyset$

*motu	$>$ mmweu	to break off
*natu	$>$ lad	child
*patu	$>$ fau	stone (old form: fasu)
*patu	$>$ fau-fau	to weave

Exceptions to $\% \mathrm{t}>\mathrm{t}$ are $* \mathrm{ta}$?aki to draw water $>$ saxii extract it and $\therefore k u R i t a>x u s a$ octopus. Exceptions to $* t>s$ are *putu $>$ utu tree sp.: Barringtonia and *kato > xato basket.

DR 8 (dental denasalisation)

```
*nt, *nd > s
```

The two POC prenasalised dental stops *nt and *nd have merged into the palatal retroflexed fricative š in WOL, as shown in (25).

```
(25) *nt > š
    *-nta > -ša our (incl.)
    *kinta > -xiša we (incl.)
    D. *punti > wiši banana
*nd > s
    *ndanu(m) > šalu water
    *ndau(n) > šəə leaf
```

The reconstruction of POC *puti for banana is not adequate as far as the WOL (and TK) data are concerned, because *puti would have to be subject to DR 7 and would result in a wrong reflex. Therefore, *punti must be the correct reconstruction.

DR 9 (velar spirantisation)

```
simple *k, *rjk > x
```

Simple POC $\% k$ is regularly reflected as x in WOL, while POC *kk remains unchanged. As mentioned earlier, when two x 's meet at a morpheme boundary, they become kk by a synchronic process. We have only one example of $\dot{*} \eta k$ shifting to x.
(26) $* k>x$

*-? aki	$>-\mathrm{axi}$	cause or instrument suffix
* (dl)iki	> šixi	small
*ika(n)	$>\mathrm{ixa}$	fish
*iku	$>$ uxu	tail
*kau	$>$ хәә	fish hook
*kiekie	> xiexie	pandanus
*kinta	> xiša	we (incl.)
*ko(e)	$>\times 0$	you
*kutu	> xúsu	Zouse
*lako	> laxo	to go
*masaki (t)	> mataxi	sick, pain
*mataku(t)	> mataxu	to be afraid
*puko	$>$ uxo	net
*toko (n)	> soxo	staff, pole
$k>\mathrm{kk}$		
*kku	> kku	nail, claw
$\mathrm{k}>\mathrm{x}$		
*nkinit	$>\times i l i-$	to pinch, pluck, nip

One aberrant correspondence is *kali > kkeli to dig. The wol form may have been derived through kakali > xaxali > xexali (dissimilatory a-raising) > xxeli > kkeli.

There are a couple of examples in which $* k$ and $* \eta k$ correspond to \emptyset. These are *suku > tudtud to bathe and *wanka(n) > waa canoe. If these are true cognates, DR 9 has to allow for the \varnothing reflex. At the moment, however, we have no strong evidence to consider them true cognates.

DR 10 (d rhotacism)

$$
* d, * r>r
$$

POC \therefore and $\dot{\prime} \cdot \mathrm{r}$ have been merged to r in WOL, as illustrated in (27). Notice that there are not many examples of $* r>r$. In Grace (1969), *(dr) indicates that some authors reconstructed $* d$ and others $* r$ for the same set of correspondences.

```
(27) *d > r
    \therefore-da > -:ra their
    *da\etaa(n) > raa branch
    *deja > raja turmeric, yeZlow
    *dojo > rojo-roro to hear
    *dua > rüa two
    *madama > marama moon
    *matudu(R) > masurù to sleep
    *ma?udi(p) > maúru alive
    *sida > ira they
    *?uda(口) > ura Zobster
*r > r
    *kari(s) > xeri to scratch, tear
    *raku > raxu to take a handful, eat clumsily
    *turu > surù post
*(dr) > r
    *(dr)ani > rale day
    \therefore(dr)odo > rošo night, darkness
    *si(dr)i(t) > siri semen, masturbation
```

There are exceptions to DR 10 , i.e. certain occurrences of *d (not of *r) are reflected as š in WOL, as in (28).

(28) | *(dr)odo | $>$ rošo | |
| ---: | :--- | ---: |
| | *pada | $>$ faša |
| | *dudu | $>$ ušu-ušu |
| | $*(d l) i k i$ | $>$ šixi |

night, darkness
pandanus
to shake, collect fruit
smalZ
The regular source of s is *ind or $k n t$, as we saw in DR 8. From the wol examples given in (28), we are tempted to modify the reconstructions in such a way that \therefore and $*(\mathrm{dl})$ are rewritten as $\%$ nd.

DR 11 (pharyngeal weakening)

$$
\therefore R>\left\{\begin{array}{l}
r \\
\emptyset
\end{array}\right.
$$

Without statable reasons, the POC pharyngeal $* R$ has either merged with $* d$ and $* r$ to r (cf. DR 10), or been lost as shown in (29). Notice that more examples favour loss.
(29) $\div \mathrm{R}>\mathrm{r}$

$$
\begin{array}{lll}
\text { D. } \begin{array}{lll}
* R a t u & > & \text { rasi }
\end{array} & \text { l,000 } \\
\text { *Ripa } & >\text { (xa)repa } & \text { to go close } \\
\text { *?apaRa } & >\text { afara } & \text { shouZder } \\
* \text { tiRi to urinate }>\text { siri } & \text { to masturbate }
\end{array}
$$

$\therefore \mathrm{R}>\emptyset$

octopus
current
ashamed
house
string, line
new
neck
Here belongs the correspondence $\%$ daka ($)$) $>$ ccaa blood. The form ccaa is assumed to have resuited from *daRa(?) > daRd > rara > rraa > ccaa (by SR 9).

DR 12 (non-high vowel fusion: applies after DR 5 \& DR ll)
*ao > د১

When $* a$ and $* o$ met as a result of dropping of the intervening consonant, they fused with each other, resulting in the long vowel o . Three examples are found, as in (30).

*mapo	$>$	mวد
*napo	$>$	100
*waRo	$>$	yว

to heal
surf, wave
string, rope

An example parallel to (30) is *mawap > mכ to yawn, where *awa is reflected as 0.

DR 13 (dental plosivisation)

$$
* \mathrm{~ns}, \therefore \mathrm{~s}>\mathrm{t}
$$

POC *ns and *s are both reflected as t in WOL. The two proto phonemes may have been reconstructed erroneously, as Milke has pointed out (Grace 1969). According to him, the two phonemes should be one and the same in POC.
(31)
*ns > t

*nsake	> taxe	upwards
*nsama	$>$ tama	outrigger
*nsila (k)	> tula	to shine
*nsiwa	> tiwa	nine
*nsai	> i-tau	who?
*ansa(n)	> ita	name
*anse	> ate	chin, jows
*mansu(rR)	> matu	full (of food)
*pinsa	$>$ fita-	how many
*pinsiko	> fitixo	flesh
*tansi (k)	> tati	sea
> t		
*sili	> tili	to enter
*sola	> tola	coconut blossom
¿'susu	> tutu	breast
*susu	> titi	to sew
*sa?it	$>$ tee-tee	to bind
*sapu	$>$ tad	to pull out
*seu	$>$ tos	rake
*?asu smoke	$>$ atu	appearance of smoke
*ma-masa	$>$ mmata	dry, low tide
*masaki (t)	$>$ mataxi	sick, pain
*'masawa	> matawa	strand, sea

There are some exceptions to DR 13, as shown in (32), where *ns and $* s$ are reflected as s or \emptyset. It might be the case that the wOL words either have undergone irregular shifts due to the influence of $T K$ languages, or are recent borrowings from them.

POC *nj, which is supposed to be Milke's nasal grade of $* \mathrm{~s}$, is reflected in only one convincing example. This reflex is \emptyset, as in $* n j a l a(n)>a l a$ road (cf. *sala(n)).

DR 14 (l/n neutralisation)
simple *l, *n > 1
POC *n and *l are merged as *l in WOL. The only case in which *n is retained unchanged is when it is geminate (cf. Sohn et al 1976). On the other hand, when two l's meet at a morpheme boundary, they automatically become nn (SR 9).
\therefore n > 1
*-na $>$-la his, her, its
*namo $>$ lamwo Zagoon
*namu (k) > lamwu mosquito
*nana(?) $>$ lala pus
*niu(R) \gg luu
*anitu $>$ alusu
*ndanu (m) $>$ šalu
\therefore inu (m) $>$ 山lu
*okinit $>x$ xili
*ma-Tanu float $>$ maalu
*manawa $>$ malawa
*manipi(s) $>$ malifi
\therefore :manu(k) $>$ malu
*panua $>$ falua
coconut
ghost
fresh water
to drink
to pinch, pluck
flood
to Zive, breathe
thin
bird
land
*tano(?) $>$ talo
earth
$* 1>1$

*lako	$>$ laxo
*laŋi(t)	$>$ lani
*lano	$>$ lano
*limu (*lumut)	$>$ lumwu
*njala(n)	$>$ ala
*sola	$>$ tola
*tali	$>$ tali
*napulu(?)	$>$ gaulu

go, walk
sky
a fly
sea-weed, moss
road
coconut blossom
rope
ten

*talina	$>$ talina	ear
*pale	$>$ fale	house
*?uluna	$>$ iluna	pillow

DR 15 (velarisation)

$$
* m>\left\{\begin{array}{l}
m w / \text { *u, *o } \\
m / \text { elsewhere }
\end{array}\right.
$$

POC *m has been split into velarised mw and plain m. Velarised mw, which occurs only before a POC round vowel, has merged with the POC * ηm, a labiovelar.
(34) : $\quad \mathrm{m}$ > mw

As mentioned above, POC $\begin{array}{rr} \\ m \\ \text { appears as } m w \text { in WOL. Examples follow: }\end{array}$
(35) *inmalo $>$ mwalo to submerge
*gmata $>$ mwata worm
*Rugma (?) $>$ imwa house
*ndarma $>$ šimwe head
"ŋmane $>$ mwanea- sibling (different sex)
POC $\because \eta$ is regularly retained unchanged, as shown in (36).
(36) *yaŋo > yano-yano yezzow

シdena $>$ rana turmeric, yellow
*laŋi $(t)>\operatorname{la\eta i}$ sky
*pagu $>$ fagul to be awaken
*rponi $>$ boni night
*talirfa $>$ talira ear
*tani(s) > taŋi to cry
*?uluna $>$ iluna pillow
The POC semivowels are retained unchanged, as in (37). Note that there is only one example of $* y>y$.
（37）
$\therefore y>y$
\therefore yano y yano－yano yelZow
＊w＞w

＊madawa	$>$ maarawa	green，raw
＊masawa	$>$ matawa	sea，ocean
＊walu	$>$ wali	eight
＊awan	$>$ awa	mouth

One exception to（37）is＊waRo＞yدつ string，rope where＊w has shifted to y ．Another exception is＇impaya＞paa bait where $\% y$ has been dropped between a＇s．

Aside from the changes effected by DR＇s 2，3，and 12，the POC vowels are consistently retained unchanged，as illustrated in（38）．
（38）$* a>a$
＊api $>a f i$
＊ia $>$ ia
：panua $>$ falua
$\therefore 0>0$
＊kato＞xato basket
＊onom＞olo six
＊クponi＞bori night
$\therefore \mathbf{i}>\mathbf{i}$
$\begin{array}{ll}\therefore i k a(n) & > \\ \text {＊tipi } & >\text { sifa }\end{array}$
＊tani（s）＞tari
＊kinta $>x i s ̌ a$
＊e＞e
＊anse $>$ ate
＊kiekie $>$ xiexie
＊pale $>$ fale
＊mate $>$ mase
fire
he，she，it
islands
fish
girdle，skirt
to cry
we（incl．）
chin，jaw
pandanus
house
to die

5．CONCLUSION

We have tried to describe the phonological development of WOL from POC by explicitly distinguishing synchronic from diachronic aspects．Nine synchronic and fifteen diachronic rules have been presented，together with examples of lexical correspondences and some putative exceptions．As may be noted in the Appendix，there are quite a few idiosyncratic sound changes that have not been discussed．Some could be accounted for in light of the phonological environments involved，while others must await further investigation．For instance，there are a few examples of（putative）correspondences in which $\% n$ is reflected as η ：＊nuns（io）＞nito squid，＊kani＞xari（i）food，eat，＊门mane＞mwarea－ sibling of different sex，＊nipon＞nii tooth，and＊ponu＞oni turtle．The regular shift is＊n＞ 1 in all positions，and we have no way to state a quasi－ productive rule＊n $>\eta$ ，at least for the moment．We have also included a number of questionable cognates（marked with ？）in the Appendix in the hope that they might provide some important clues for future study，which should be conducted in a broader perspective，i．e．within the framework of comparative Micronesian phonology．

Let us conclude by summarising the regular sound correspondences between POC and WOL, as in (39). For the sound environments, see the fuller statements of the rules in Section 4.
(39)

POC WOL DR's

Consonants

DR 1
DR 5

DR 7

DR 13
*nj \square
$\left.\begin{array}{l}\therefore \text { nt } \\ \therefore \text { nd }\end{array}\right\}$ š (cc, when

DR 10

DR 11
$\therefore k k$ - kk
$\therefore ?$ DR 4
*nm $\longrightarrow \mathrm{mw}$

$*_{m}$	
$\left.\begin{array}{c}m \\ *_{n}\end{array}\right\}-$DR 15 $(n n$, when doubled)	DR 14

$\therefore \mathrm{nn} \longrightarrow \mathrm{nn}$

* $\quad \square \quad \square$

Vowels

DR 2
DR 3

```
*ao, etc._ ЈЈ
*au, etc._
```

Semivowels

APPENDIX. POC-WOL

	POC	WOL surface form	WOL base form

POC

31.	＊ika（n）
32.	＊iku
33.	＊inu（m）
34.	＊ka（dr）u
35.	＊kai
36.	＊kali
37.	＊kami
38.	＊kamu
39.	＊kani
40.	＊kapi（t）
41.	＊kari（s）
42.	＊kasup
43.	\therefore 的atea
44.	＊kato
45.	＊kau
46.	＊kau
47.	＊kawakawa
48.	＊kawe
49.	＊ke
50.	＊kesu
51.	＊kianto
52.	＊kiekie
53.	＊（ki）ki（t）
54.	＊kilala
55.	＊nkinit
56.	*kinta

57．＊ko

58．$\because \mathrm{ko}(\mathrm{e})$
59．$\because k o m u$
60．＊kku
61．＊kuli（t）
62．＊kuRita
63．：kutu
64．＊lako
65．＊laman
66．＊laŋi（t）
67．＊laŋi
68．＊laŋo
69．＊laso
70．：lawas
71．＊iima
72．＊limu
73．＊lo
74．＊loku

WOL surface form
i：XE
U：XU
山l山（m）
xerixerI
xa：xa
（Ulithi：xai）
kkelI
xa：mamI
xa：mi
xani（eat it）
xalE（food）
xaffi（seize it）
xeri（scratch it）
kkutU
xeta
xa：t0
хә
xa：xa
xawexawE

хә：хә
i－xa
（xapili）xú
xiyo
xiyexiyE
xú：xu
xula（know it）
xilI
$x i: s ̌ E$
xo（you！）
xo
xumwU
kkU
xi：lI
xú：sE
XL：sU
lax0
la：mw0
la：クI
？ya：ŋI
1a：ワ0
？to： 10
lela：i
li：mE
lu：mwU
lalo，la－
lexu（make it
tight）

WOL base form
ixa fish
ùxù tail
山l（m）to drink
xeri－xeri to scratch
xaa－xaa tree，wood
kkeli to dig
xaamami lst pl．excl．pronoun
（we）
ye（2nd pl．pronoun）
eat，food
seize，squeeze
to scratch，tear
to spit
side of canoe
opposite outrigger
basket
fish hook
tree，stalk
fish sp．（yellow finned
groper）
to fasten on with straps
here
back of head
outrigger boom
pandanus
to bite at，squeeze
to know
to pinch，pluck，nip
lst incl．pronoun（we）
specifying particle，
vocative particle
you，thou
mouthful，gargle
claw，nail，toe
skin，bark
octopus（cf．＊uRita）
Zouse
to go，walk
sea，lake
sky
wind
house－fly
genitals
Zong
five，hand
seaweed，moss
in
bend，fold

	POC	WOL surface form	WOL base form	Gloss
75.	* l umut	lu:mwl	lumwu	seaweed, moss
76.	*ma	me	me	and, with
77.	*maa	ma	maa	to be ashamed
78.	*ma-? ${ }^{\text {anu }}$	ma: U (flood)	maald	to be afloat
79.	mada	mmašE	mmaša	fermented, soft, ripe
		ma:rE (preserved breadfruit)	mara	
80.	. \therefore madama	meramE	marama	moon
81.	*madawa	ma: rawE	maarawa	green, raw
82.	*mai	me	me	and, with (cf. *ma)
83.	\therefore mala	(ni)male (open space)	(n i) mala	place
84.	*mala?e	malemalE	mala-mala	village, open space in village
85.	*manaŋ	ke-male	ka-mala	spiritual power
86.	* tmalo	mwal0	mwalo	to submerge
87.	tmalu	mannU	malla	soft
88.	*-mami	-mamI	-mami	our (excl.)
89.	*manawa	melawe	malawa	to breathe
90.	* \quad mane	mwaneya-	mwanea-	woman's brother
91.	'tmanipi (s)	malifI	malifi	thin (cf. *mapini)
92.	*manu(k)	ma:lu	malu	bird, animal
93.	*mapini	malifI	malifi	thin (cf. *mapini(s))
94.	*mapo	mo	mวง	to heal (of a wound, sore)
95.	*maRa	ma	maa	to be ashomed (cf. :'maa)
96.	\therefore 'ma-masa	mmatE	mmata	dry, low tide
97.	\therefore \%masaki (t)	metaxI	mataxi	sick, pain
98.	*masawa	metawE	matawa	strand, shore, sea (cf. *sawa)
99.	*'mansu(rR)	ma: $\mathrm{U}^{\text {d }}$	matu'	full (of food), plenty of food
100.	*mata	ma:tE	mata	eye
101.	* jomata	mwa : tE	mwata	worm
102.	'tmata (?)	yematE	e-mata	raw, new
103.	\therefore 'mataku (t)	metax ${ }^{\text {d }}$	mataxu	afraid
104.	*mate	ma:sE	mase	to die, death
105.	*matudu (R)	masuru	masuru	to sleep
106.	ma?udi (p)	madru	madru	alive (of plants)
107.	*mawap	mo: (-1i xatelu)	$\operatorname{mox}-1 \mathbf{i}$ xatelu)	山) to yawn
108.	*moso	mott0	motta	cooked
109.	\therefore 'motu	mmwed	mmwed	to break off, broken
110.	*-mu	-mwl	-mwu	your (sing.)
111.	*mu ?a	mmwa-	mmwa-	front
112.	*mudi	mwiri-	mwiri-	behind, after
113.	:'mu ta ()	(m)mwut0	(m) mwuta	to spit, vomit
114.	*muntu	mwošomwo : šo	mwošo-mwoošo	severed, cut short (cf. *motu)
115.	*-na	-1E	-1a	his, her, its
116.	*na	lE (immed. fut.)	le	sign of future tense
117.	*namo	la:mw0	1 amwo	lagoon
118.	*namu (k)	la:mwU	lamwu	mosquito

POC
119. *nana(?)
120. *napo
121. *natu
122. *nipi(s)
123. *nipon
124. *niu(R)
125. *noRa
126. *nua
127. *nuns(io)
128. *napulu(?)
129. *rase
130. *onom (D. ono)
131. *pada
132. *pai-
133. *paka-
134. *pakiwak
135. *pale
136. *palisi
137. *panua
138. *paŋ(ou)(n), (D. *paru)
139. *pa?oRu
140. $\because p a p a$
141. *mpampa (n)
142. *papine
143. *paRa
144. *paRi
145. *paRu
146. *pat
147. *patu
148. *patu
149. *pa?u
150. itmpaya
151. *pe-
152. *pi(dr)i
153. *pili(?)
154. pine
155. $\dot{\text { 1pinsa }}$
156. *pinsiko
157. *pitu
158. *pitu?u (D. *pitu?o)
159. D. *mpo-
160. *ponu
161. *刀poŋi
162. *ponse
163. *pua (?)
164. *mpua
165. *puki
166. D. *puko
167. *mpule

WOL surface form
WOL base form
lala
1ว
lau
malifilifi
nii
| u u
laloa
la-, le-
gito
gaulu
nase
olo
faša
fa-
xa-
paxowa
fale
fatili
falua
farju
ffəә
faa-
paapa
faifile
afara
faia
xili-fəə
faa-
fad
fau-fau
fəə-
paa
faa
ffiši
ffili
faifile (archaic)
fita-
fitix0
fi:sI
fu:sU
bo
wo:rI
bo: II
?fatule
uwa
bbuwe
wexI (turn)
$\mathrm{u}: \times 0$,
bul0, ubilI

Gloss
pus
surf, wave
child, offspring
thin (cf. *manipi(s))
tooth
coconut
yesterday
inside
squid
ten
weak, exhausted, Iame
six
pandanus
reciprocal prefix
causative prefix
shark
house
grass
land, earth, village
awaken, arouse
new
under, downwards
board, plank, flat
woman
shoulder (cf. *?apaRa)
stingray
hibiscus
four
stone
to weave
to tie, bind
bait, worm
where?
to fold, twist, sprain
to select, choose,
pick up
woman
how many
flesh
seven
star
smell
turtle
night
paddle
fruit
(betel) nut
return
net
white shell, cowry

POC

168.	＊mpulu（t）	bilisE
169.	D．＊puna	u： 00
170.	＊mpu（dr）i（t）	búrúwE
171.	＊mpuso（s）	bu： 0
172.	＊puti（D．＊punti）	wi：šI
173.	＊mputo	bu：s0
174.	＊putu	u：tU
175.	＊raku	raxU
176.	＊Ratu	（same）rasI
177.	＊Ripa	repE
178.	＊Ru？a	山：wE
179.	Rupma（？）	$\mathrm{i}: \mathrm{mwE}$
180.	＊nsanda	？texašE
181.	＊nsai	ited
182.	＊sa？it	te：te
183.	＊nsake	taxE
184.	＊sala（n）	ya：lE
185.	＊njala（n）	ya：lE
186.	＊nsama	ta：mE
187.	＊nsarja	？yeŋa：¢ E
188.	＊nsayi	？ya： I
189.	＊sapu	tau－
190.	＊sau（？）	tta：wE
191.	＊－sawa	ta：wE（channel）
192.	＊seu	to
193.	＊sida	i：rE
194.	＊si（dr）i（t）	？si：rI
195.	＊sikita	si：$\times \mathrm{E}$
196.	＊siku（n）	む：\times U
197.	＊nsila（k）	ttule
198.	＊sili	till
199.	＊sina（R）	ttule
200.	＊nsipo	tiwE
201.	＊nsiwa	ti ：wE
202.	＊so（dr）i	sorou（old form） torou（new form）
203.	＊nsoka	tokatok0
204.	＊sola	to：10
205.	＊suku	？tu：${ }^{\text {d }}$
206.	＊sulu	ttule
207.	＊susu	tu：tU
208.	＊susu（dr）	ti：tI
209.	＊－nta	－šE
210.	＊ta？aki	sa：xi
211.	＊ta－dawa	xa：rawerawE
212.	＊tali	ta：lI

WOL base form
bilisa
una
burda
buso
wiši
buso
utu
raxu
（saŋe）rasi
repa
Ua
imwa
taxaša
i－tad
tee－tee
taxe
ala
ala
tama
aŋa－aŋa
aŋi
ta山－
ttaawa
tawa
tココ
ira
siri
sixa
山メは
ttはla
tili
ttila
tiwe
tiwa
sorou，torou
toka－toka
tola
tu゙い－tuは
ttıla
tutu
titi
－ša
saaxii
（extract it）
xaa－rawarawa
tali

Gloss
gum，sap，glue
ridgepole
buttocks，excrement
navel（cf．＊mputo）
banana
navel，anus
（cf．＊mpuso（s））
tree sp．：Barringtonia
take a handful，eat
clumsily
one thousand
to go close
neck
house
to rise（sun，moon），
to ascend
who？
to bind，restrain
upwards，to climb
road，path
road，path
outrigger
a measure，a span
wind
to pull out，take to pieces
outside，far off
strand，shore，sea
（cf．＊masawa）
to rake，sweep，scratch
they
semen，masturbation
enmity，hostility
tail，tail of fish
lightning，to shine
to enter
to shine
downwards
nine
humility toward a
chief
to stab
coconut bZossom
to bathe，dive，wash
torch，glow
breast，suck
to sew
our（incl．）
to draw water，dig up
green
cord，rope

POC
230. $* t i R i$
231. $* \mathrm{tiRo}(\mathrm{m})$
232. *toka
233. *toko (n)
234. *tolu
235. *tom(i)
236. *topu
237. *tu?a
238. *tu(dr)(i)
239. *tuki
240. *tupa
241. *tumpu (?)
242. *turu
243. *tusu(k)
244. $\begin{gathered}\text { tupu(d) }\end{gathered}$
245. *?uda (ワ)
246. *?uluga
247. *?umu
248. *?una(p) (O.*?una) $\dot{d}:$ lE
249. *upe u:fE
250. *uRita
251. \because ?utup
252. *waka
253. *wanka (n)
254. *walu
255. *waRo
256. *wasa
257. *уаŋо

WOL surface form
talinE
?ccelI
ta:mE
mwa:IE
tamwelU (chief)
ta:10
tanI
?tapiyE
ta:bU
tawi
ta:tI
taimi
?tau- (practitioner)tau-
siyalE siala
sur0 suro
sixe (angry) sixa
si:le sila
si:fI sifi
xu: sE
itiitI
wexarE
wa
wa:lI
yo
? ta:wE
yaroyaŋ0
-

WOL base form
talina
cceli
tama
mwale,
tamwelù
talo
taŋi
tapiya
tabu
tawii
tati
taimii
si:rI (masturbate)
?sa:rU saru
tox0 toxo
so:x0 soxo
seli-
?sorom(i)
?wo:u
so:wE
šu
súxu (hit it)
su:p0
su:bU
su:ru
?ti, xati:ti
sú
d: re
ilunE
u: mwU
siri
seli-
sorom(ii)
ou
soa
šul
sưxúu
supa
subu
surú
tii,
$x a-t i i-t i i$
sud
úra
iluŋa
umwu
山la
ufa
xusa
iti-iti
waxara
waa
wali
yวว
tawa
уапо-уапо

Gloss
ear, earwax
shore tree;
Calophyllum inophyllum
father
man
earth, soil
to cry, weep
bowl
a ban, taboo
conch
sea, salt water
sharpen it
man, person
belly
to Zook at
bad
mother
man's girdle, woman's
skirt
to spurt, urine
oyster
to arrive, land
staff, pole
three
to drink, sip
sugar cane
back, beyond, outside, edge
bone, body
to hammer, pound
fish poison
to be born
post, kneel, knee
to point, index
finger
to stand up
Zobster
pillow
earth oven, to roast
fish-scale, body hair
seedling, seeds
octopus (cf. *kuRita)
to flood, draw water
root
canoe
eight
string, rope
open sea
yellow (cf. *апоаŋо)

NOTES

1．In the writing of this paper，the labour was divided in such a way that Tawerilmang provided the Woleaian（WOL）linguistic data，while Sohn was responsible for the analysis．This paper benefited from a comparative Micro－ nesian seminar conducted by Dr．George Grace in 1972－73．

For a synchronic description of the phonology and syntax of wol，see Sohn 1975.

2．Other POC reconstructions from Grace n．d．a and n．d．b are occasionally cited．These are prefixed with a D．（referring to Grace＇s source，Dyen 1949）．

3．Lee（1976）makes a strong case for certain kinds of rule ordering in natural phonology．

4．Judging from the description of Marshallese stress in Bender（1975）， dissimilatory a－raising may be related to alternating stresses in Woleaian．We must defer the study of WOL stress for the future，however．
5．Base forms of some more thematic－stem transitive verbs are given below：

baisii	untie it	（cf．	bai－bai	to untie）
bboolii	pound it	（cf．	bboo	to pound）
beli ii	snap it	（cf．	beli－beli	to snap off）
fatoxii	plant it	（cf．	fato－fato	to plant）
filetii	stir it	（cf．	file－file	to stir）
narii	taste it	（cf．	na－na	to taste）
raxomii	hug it	（cf．	rraxo	to hug）
toofii	rub it	（cf．	tココ－tココ	to rub）

6．This appears to be a case of idiosyncratic final－vowel shortening，i．e．山山＞山．This exception may be explained away by reconstructing＊pitu？for some pre－WOL（or Proto－TK）stage．

BIBLIOGRAPHY

BENDER, Byron W
1973 Parallelisms in the morphophonemics of several Micronesian languages. WPLUH 5/8:l-16. Reprinted in Oceanic Linguistics 12 (1973):455-477.

1975 Stress in Marshallese. MS. University of Hawaii.
CHOMSKY, Noam and Morris halle
1968 The sound pattern of English. New York: Harper \& Row. DYEN, Isidore

1949 On the history of the Trukese vowels. Language 25:429-436. GRACE, George

1969 A Proto-Oceanic finder list. Working Papers in Linguistics, University of Hawaii 1/2:39-84.
n.d.a. On the history of the Trukese sound system. MS. University of Hawaii.
n.d.b. Some Trukese cognates (from Dyen 1949). Mimeo. University of Hawaii.

HOOPER, Joan B.
1974 Aspects of natural generative phonology. Doctoral dissertation, University of California at Los Angeles. Reproduced by Indiana Linguistic Club, Bloomington, Indiana.

LEE, Gregory
1976 Rule limitation in phonology. MS.
SOHN, Ho-min
1971 a-raising in Woleaian. Working Papers in Linguistic, University of Hawaii 3/8:15-35.

1975 Woleaian Reference grammar. Honolulu: University Press of Hawaii. SOHN, Ho-min, Anthony TAWERILMANG, Isaac LANGAL, and Celestine YANGILMAU

1977 Consonant shifts and subgrouping in the Sonsorol-Ulithi-Woleai chain. Language Sciences 44:19-24.

