
Under review as a conference paper at ICLR 2024

GNERV: A GLOBAL EMBEDDING NEURAL
REPRESENTATION FOR VIDEOS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, Implicit Neural Representation (INR) has garnered considerable
attention for its effectiveness in compressing various visual information while de-
livering significant advantages in decoding speed. Video compression work with
INR use time index as input and corresponding frame in RGB format as output.
However, related work suffers from poor representation performance due to insuf-
ficient information in the embedding structure. In this paper, we introduce a global
embedding structure, whose parameters are generated by random initialization
and back propagation without any other constraint, and this embedding is shared
by all frames. Furthermore, we propose a progressive training pipeline wherein
large models are built upon the reuse and expansion of small models. Our Global
embedding Neural Representation for Videos (GNeRV) achieves SOTA results
on multiple datasets. Taking UVG dataset as an example, GNeRV model out-
performs the previously leading model HiNeRV by 1.5-2 dB at the same bitrate.
And our progressive pipeline can effectively reduce the computational complexity
of multi-bitrate encoding and save the storage space of multi-bitrate compressed
files.

1 INTRODUCTION

The purpose of the video encoding is to compress the video in a way that ensures quality and facili-
tates its storage and transmission. Traditional video encoding methods, like H. 264 (Wiegand et al.,
2003), HEVC (Sullivan et al., 2012), and VVC (Bross et al., 2021) typically rely on manually de-
signed structures to compress video content across multiple dimensions. And with the development
of deep learning, deep learning based approaches, such as DVC (Lu et al., 2019), DCVC (Li et al.,
2021), and FVC (Hu et al., 2021) focus on replacing traditional components with deep learning
modules. While these approaches have demonstrated the potential of neural network to achieve im-
pressive rate-distortion performance, their codec have millions of parameters and decoding a pixel
requires up to a million multiplications.

More recently, Implicit Neural Representations (INR) like NeRF (Mildenhall et al., 2021) have
emerged as a captivating area of study for researchers. INR methods use neural networks to effec-
tively represent diverse visual scenes by fitting them closely. This approach tends to have a very low
complexity on the decoding side. As per the latest research in image INR Ladune et al. (2022), the
complexity of decoding a pixel is only 0.7kMAC.

One prominent INR-based approach for video coding that has garnered considerable attention is
NeRV (Chen et al., 2021). NeRV represents a video as a set of neural network weights. The in-
put to the model is time index and the output is the corresponding whole image in RGB format.
The network architecture combines Multi-Layer Perceptrons (MLP) and convolutional layers. Such
lightweight architecture makes the decoding process computationally efficient and device-friendly.

However, the structure employed in current video INR work for embedding extraction presents cer-
tain challenges. NeRV (Chen et al., 2021) uses a huge MLP to extract frame-by-frame embedding
from content-independent time vectors, and the whole process is inefficient. HNeRV (Chen et al.,
2023) uses a convolutional encoder to extract frame-by-frame embedding from the image, but its
embedding is not large enough, which makes the representation of the subsequent network more dif-
ficult. FFNeRV (Lee et al., 2022) learns the sparse frame-level embedding directly, and interpolate
such sparse embedding to obtain the frame-by-frame embedding. Considering that the embedding

1



Under review as a conference paper at ICLR 2024

Figure 1: Comparison with several recent methods. From left to right: NeRV (Chen et al., 2021),
HNeRV (Chen et al., 2023), FFNeRV (Lee et al., 2022) and our GNeRV.

of the video INR has little correlation with the final output, this method of introducing temporal
information is generally ineffective.

What’s more, the encoding side usually has to encode video at multiple bitrates to satisfy multiple
decoding side requirements. However, in previous video INR work, models for each bitrate point
had to be trained independently, and the models of high bitrate are not associated with the models
of low bitrate, which leads to a waste of computational resources, as well as the storage space of the
encoded files.

In this paper, we introduce a global embedding structure with parameters generated through random
initialization and backpropagation, without any additional constraints, and it is shared by all frames.
This structure can be directly input into the upsampling block and thus we don’t have to use any
embedding extraction networks. And unlike other work, we introduce temporal information only
by shifting the distribution of intermediate features. Furthermore, for the first time, we explore
the potential of video INR in representing residual information. We propose a progressive pipeline
that employs INR to represent multi-level residual information, obtains better model performance,
effectively reduces the computational complexity and storage cost of multi-bitrate compression. Our
Global Embedding Neural Representation for Video (GNeRV) demonstrates superior performance
when compared to other video INR models. For instance, on the UVG dataset, GNeRV outperforms
HiNeRV (Kwan et al., 2023) by 1.5-2 dB while maintaining the same bpp.

In summary, our contributions can be summarized as follows:

• We introduce a novel global embedding structure shared by all frames in the video. Our
GNeRV network achieves state-of-the-art compression results in video INR field across
multiple datasets.

• We propose a progressive pipeline that uses video INR to represent residual information.
This pipeline offers several advantages, including improved performance, increased com-
putational efficiency, and reduced storage space requirements in scenarios requiring multi-
bitrate coding.

2 RELATED WORK

Embedding In Implicit Neural Representation. Implicit neural representations (INR) leverage
neural networks to represent diverse visual scene information, including images (Dupont et al.,
2021; 2022), videos (Chen et al., 2021; 2023), and 3D scenes (Mildenhall et al., 2021; Barron et al.,
2021). Typically, INR network implementations are denoted as fθ(x) = y, where x represents the

2



Under review as a conference paper at ICLR 2024

embedding of the visual scene, y contains RGB information, and θ signifies the network’s weight in-
formation. Initially, researchers in these directions adopted positional information as an embedding
x to facilitate learning of high-frequency scene details, as suggested by Tancik et al. (Tancik et al.,
2020). However, compared to content-independent time vectors, content-relevant embeddings as the
starting point of the model’s forward propagation will effectively reduce the learning difficulty of the
network and thus improve the model’s representation performance. Content-relevant embedding can
be obtained in a variety of ways, using manual methods of coupling image information and location
coding like Chen et al. (2022), extracting it from images using specific encoders like Chen et al.
(2023); Zhao et al. (2023), or through random initialization and back propagation like Ladune et al.
(2022); Müller et al. (2022); Lee et al. (2022). Considering video INR work, methods that contain
more constraints like Chen et al. (2022; 2023) when embedding acquisitions perform much less well
than methods with fewer constraints like Zhao et al. (2023); Lee et al. (2022). For embedding: less
constraints yields better performance.

INR For Video Compression. NeRV (Chen et al., 2021) is a popular video INR work, due to the
huge amount of information in the video and the existence of a lot of intra-frame and inter-frame
redundancy, the efficiency of this image-wise model with convolution layers will be far more than
that of the previous purely linear layer pixel-wise model like Tancik et al. (2020); Sitzmann et al.
(2020). Among the work inspired by NeRV, Bai et al. (2022) applied patch-wise INR to represent
segmented video data. Chen et al. (2023) uses an encoder to extract embedding information from
the image, and Zhao et al. (2023) uses two encoders to extract embedding information from the
image and inter-frame residuals and fuses them as the final embedding. He et al. (2023) uses an
encoder-decoder architecture, where the encoder encodes the first and last two frames in a gop, and
the decoder performs motion estimation and warping of features at all scales. Lee et al. (2022) ob-
tains sparse, multilevel embedding information through random initialization and back propagation
and obtains temporally correlated embeddings through the use of linear interpolation in the tem-
poral dimension. This work also attempts to exploit inter-frame correlation by using the network
output optical flows and weighted file warping outputs. Li et al. (2022) adjusts the position of the
pixel-shuffle layer within the block and reduces the number of channels in the middle of the block
compared to the original block structure. This design reduces the number of parameters in the block
structure, enhancing expression efficiency without compromising performance. And another tem-
poral branch was introduced using the distribution shift method in GAN (Huang & Belongie, 2017).
Kwan et al. (2023) utilizes a new block structure that takes inputs as bilinear interpolations of the
previous layer’s block outputs, combined with spatio-temporal information embeddings, eliminating
the need for feature size multiplication by a pixelshuffle layer.

3 METHOD

3.1 GNERV: GLOBAL EMBEDDING NERV

The overall architecture of our GNeRV model is illustrated in Figure.2. The input of the network is
time index t, and the output is the the reconstructed image of frame t. The beginning of the network’s
forward propagation is global embedding, which is part of the network’s trainable parameters. When
passing through the block structure, the size of the embedding increases step by step and the number
of channels is changed. Meanwhile, the time information will shift the distribution of features in
the process. In the end, the header layer transforms the last layer of features into a 3-channel RGB
format image.

Embedding. We discard embedding extraction module and instead introduce the embedding struc-
ture directly. The structure of embedding in our GNeRV model is a simple tensor, whose parameters
will be randomly initialized and updated by back propagation. Its shape is C0 × h × w, where C0

is a hyperparameter that can be set in the configuration file. This parameter also directly determines
the number of channels in the subsequent convolution block. The higher the number of channels,
the better the model’s representation. Here, h,w is the shape of embedding, equal to the resolution
of the video to be represented divided by its greatest common divisor. Taking the video whose res-
olution is 1080 × 1920 as an example, h,w will be set to 9, 16. Since all frames share one global
embedding, this structure accounts for less than 1% of the total number of parameters in the model,
saving the parametric quantities for later convolution networks.

3



Under review as a conference paper at ICLR 2024

Figure 2: The detailed structure of GNeRV model, all frames share one global embedding. PE is
short for position encoding. Red line represent the distribution shift operation. And there are two
block structures under different conditions.

Conv-Up Block. The Conv-Up blocks are used for gradually multiplying feature sizes and restoring
image information. By adjusting the upscaling factor in the configuration file, you can control the de-
gree of feature size enlargement through the pixel shuffle layer. Conv-Up blocks are available in two
structures, depending on the number of input and output channels. If the number of input channels is
greater than the number of output channels, the block will be structured as Conv-Conv-Pixelshuffile,
as depicted in the left block structure in Figure.2. Conversely, if the number of output channels is
greater than the number of input channels, the block will be structured as Conv-Pixelshuffile-Conv,
as shown in the right block structure.

Distribution Shift Branch. Because the upsampling process occurs incrementally, the output of
each block becomes the input of the next block. Our time information is applied at the input of each
block. The time index t is passed through a positional encoding module and a small MLP layer that
produces channel-wise means and variances, which are used to change the distribution of the input
features.

DS
(
f j
i

)
= σi,j

f j
i − µ

(
f j
i

)
σ
(
f j
i

)
+ µi,j (1)

µi,j , σi,j = hj(h(Γ(ti))) (2)

Γ(t) =
(
sin

(
b0πt

)
, cos

(
b0πt

)
, . . . , sin

(
bl−1πt

)
, cos

(
bl−1πt

))
(3)

In Equation.1, DS is short for distribution shift. f j
i represents the feature of the ith frame to be

input into the jth upsampling block. µ(f j
i ) and σ(f j

i ) denote the mean and variance of features
f j
i across spatial dimensions, respectively. µj

i and σj
i are generated by a small MLP as shown in

Equation.2, with their input being the time index after position encoding as shown in Equation.3. h
represents the linear layer shared by all blocks, while hj represents the linear layer for the jth block.
b represents the base of position encoding, and l represents the position encoding level. The length
of the position encoded time vector is 2l. We find that in video INR work, the efficiency of such
distribution shifting method is much better than that of introducing temporal information from the
embedding. More details will be shown in the ablation experiment.

4



Under review as a conference paper at ICLR 2024

Model Compression. At the end of training, we acquire model parameters in the form of 32-bit
floating-point values. We perform parameter quantization tensor by tensor. Specifically, we calculate
the channelwise maximum and minimum values of each tensor along the 0th dimension and then
uniformly quantize them using 8-bit quantization. After all the tensors have been processed, we will
count the number of the quantized values and use arithmetic coding to entropy encode the quantized
parameters to achieve further compression.

3.2 PROGRESSIVE PIPELINE

If the high bitrate model can utilize the already trained low bitrate model, the high bitrate model does
not have to be trained from scratch. The encoding side will save considerable computing power and
storage space, or achieve better compression performance with the same computational resources.
We thus propose a progressive pipeline. Such pipeline is depicted in Figure 3. To illustrate this
process, let’s consider the three-stage pipeline as an example. In this approach, we utilize the first
network (low bitrate) to represent the original video. At the end of training, we compute frame-by-
frame differences between the original video and the reconstructed video as a residual video. This
residual video then serves as the target for training the second network. Once the training of the
second network (mid bitrate) is completed, we calculate the difference again. This time, it’s between
the real residual and the residual generated by the second network. We then initiate training for the
third network (high bitrate). During the output phase, the process is reversed. The reconstructed
video with low bitrate is combined with the multilevel residual video for the final output. Since
the multilevel network can be decoded in parallel, there is no increase in decoding time, and such
process is iterable as shown in Equation.4 and 5

Figure 3: Pipeline of the 3-stage progressive process.

Ri,j =

{
Ri,j−1 − R̂i,j−1 if j ≥ 2

vi − v̂i if j = 1
(4)

Ŷi,j =

{
v̂i +

∑n
j=1 R̂i,j if j ≥ 1

v̂i if j = 0
(5)

where R̂i,j represents the jth level residual for the ith frame to be represented by INR. Ŷi,j de-
scribes the final reconstruction of the jth level network for frame i. Variables with caps denote data
reconstructed by INR, while those without caps represent real data.

4 EXPERIMENT

4.1 DATASETS AND IMPLEMENTATION DETAILS

We evaluated GNeRV on the Bunny sequence, UVG dataset (Mercat et al., 2020), and MCL-JCV
dataset (Wang et al., 2016). The Bunny sequence comprises 132 frames with a resolution of 1280
x 720. UVG includes 7 videos with resolutions of 1920 x 1080, each having a length of 600 or

5



Under review as a conference paper at ICLR 2024

Figure 4: Frame 539 of the Ready. sequence from the UVG dataset. From left to right: original
image, reconstructed image of HNeRV, reconstructed image of our GNeRV.

300 frames. The MCL-JCV dataset consists of 30 videos with a resolution of 1920 x 1080, each
containing 150 frames.

During model training, we used the Adam optimizer with beta as (0.5, 0.999). Learning rate is set
to 2e-3 for the original video and 2e-4 for the residual video in progressive pipeline, with warmup
cosine learning rate decay, 20% warmup epochs. We trained the model for 300 epochs with a batch
size of 4, unless specified otherwise. The embedding shape is C0×9×16 since the video resolution
ratio is 9:16, where C0 is a hyperparameter defining the channel number for embedding and sub-
sequent Conv-Up blocks, directly controlling the model’s parameter count. The first block doubles
the feature channel, and each subsequent block halves the channel count. When features’ channels
number decreases, the minimum channel number of the the block’s output feature is maintained at
30. The upscaling factors of Conv-Up blocks for 1080p video are set to 5, 3, 2, 2, 2, and for 720p
video, they are set to 5, 2, 2, 2, 2. For the position encoding in the distribution shift branch, b and
l are set to 1.25 and 20, respectively. The input and output channels of common linear layer used
for feature distribution shift are set to 40 and 40. And The input and output channels of the separate
linear layer for each block are set to 40 and the channel of the input into each block.

The loss function of the model is defined in Equation 6:

L =
1

T

T∑
i=1

α ∥vi − v̂i∥1 + (1− α) (1− SSIM (vi, v̂i)) (6)

In Equation 6, vi represents the ground-truth frame in the video, while v̂i represents the recon-
structed frame. The term α serves as a trade-off factor between MSE loss and SSIM loss. In our
experiments, α is set to 0.7 to balance the losses when processing full frames. When working with
residual video, α is set to 1, as SSIM is irrelevant for residual information.

All experiments were conducted on a single Nvidia 4090 GPU using Pytorch version 2.1.0.

4.2 MAIN RESULT

Video Compression. We conducted a comprehensive comparison of our model with existing video
INR models and traditional codecs on multiple datasets. Specifically, these models include NeRV
(Chen et al., 2021), HNeRV (Chen et al., 2023), ENeRV (Li et al., 2022), DNeRV (Zhao et al.,
2023), HiNeRV (Kwan et al., 2023), and traditional codecs H.264 (Wiegand et al., 2003) and H.265
(Sullivan et al., 2012).

Our model achieved state-of-the-art results for video compression in various scenes and at different
resolutions, surpassing other video INR methods. Our network demonstrated adaptability to scenes
with different resolutions.

On the Bunny sequence, we conducted a comparison of our GNeRV model with NeRV, HNeRV, and
ENeRV. GNeRV outperformed all other models across all sizes, as depicted in Table.1. It’s worth

6



Under review as a conference paper at ICLR 2024

noting that the parameter number of the E-NeRV model cannot be set below 2 million due to the
complexity of its attention structure in the embedding generation module. And the quality of video
reconstructed by NeRV model is poor at low bitrate. So the lower band of model parameter number
is set to 0.57.

Table 1: Video representation results on the bunny sequence. Results are in PSNR.

NeRV Parameter Number/M - - - 0.57 0.95 1.51 3.2 6.8 12.52
PSNR(dB) - - - 27.71 29.11 30.85 33.85 36.81 39.56

HNeRV Parameter Number/M 0.058 0.124 0.291 0.545 0.96 1.5 3.575 6.77 12.5
PSNR(dB) 27.27 27.31 29.76 31.55 33.65 35.58 38.51 40.63 42.31

E-NeRV Parameter Number/M - - - 2.25 2.53 2.86 3.5 6.81 12.5
PSNR(dB) - - - 31.19 33.93 35.52 37.19 40.62 42.86

GNeRV Parameter Number/M 0.053 0.115 0.274 0.519 0.92 1.66 3.17 6.67 12.42
PSNR(dB) 29.11 31.95 34.19 35.73 37.46 39.01 40.83 42.58 43.53

On the UVG dataset, we compared our GNeRV model with NeRV, HNeRV, DNeRV, HiNeRV and
x264, x265. Note that HNeRV and DNeRV can only reconstruct videos with a resolution ratio of
1:2 due to their fixed embedding generator, leading to representing on center-cropped videos. As
for the traditional codec, we utilized the ffmpeg library with the medium preset and no additional
restrictions. GNeRV consistently outperformed all other INR methods across all sizes, and GNeRV
model exhibited superior rate-distortion (R-D) performance compared to traditional codecs at low
bitrate. The result is shown in Figure.5. We replicated the NeRV, HNeRV experiments, and Table.2
demonstrates the sequence-level quality comparisons of the four size models. Note that when the
model parameter number becomes large, the training of HNeRV becomes unstable. And we replaced
these unstable results using the previous best recovery quality, indicated using italics.

Figure 5: The rate-distortion curves on UVG
dataset

Figure 6: The rate-distortion curves on MCL-
JCV dataset

Table 2: Video representation results on the UVG dataset. MAC is short for Multiplication and
Accumulation. Results are in PSNR(dB).

Model Size MACs/G FPS Beauty Bosph. Honey. Jockey Ready. Shake. Yacht.

NeRV 0.202M 7.30 320 29.45 27.93 31.14 24.49 19.06 27.99 24.11
HNeRV 0.210M 25.16 270 29.82 28.29 33.5 24.11 18.97 29.71 24.31
GNeRV 0.058M 10.59 140 32.73 31.89 36.18 26.12 22.67 31.26 27.8

NeRV 4.61M 13.90 295 33.66 34.39 38.42 33.06 26.22 34.32 29.33
HNeRV 4.47M 329.70 54 33.89 35.45 39.4 32.87 26.56 35.44 30.08
GNeRV 4.66M 54.80 141 40.13 40.76 42.96 37.06 30.91 39.84 34.39

NeRV 8.63M 25.21 250 34.03 35.9 39.09 34.9 28.22 35.62 30.99
HNeRV 8.66M 640.10 35 34.21 36.86 39.62 34.71 28.64 36.52 30.08
GNeRV 8.72M 85.55 140 40.42 41.77 43.07 39.35 33.13 40.5 35.71

NeRV 14.02M 45.01 190 34.27 37.17 39.44 36.14 29.93 36.69 32.35
HNeRV 14.03M 1041.04 22 34.37 36.86 39.35 35.91 30.23 37.37 30.08
GNeRV 14.08M 133.07 143 40.57 42.41 43.19 40.52 34.79 41.26 36.58

7



Under review as a conference paper at ICLR 2024

Table 3: Comparison of computational complexity, storage space, reconstruction performance be-
tweeen two pipelines.

Pipeline style Stage 1 Stage 2 Stage 3 Total

Respective
Channel Number 160 230 280 -
MACs/G ↓ 54.80 91.14 133.07 279.01
Parameter Number/M ↓ 4.66 9.49 14.07 28.22
PSNR(dB) ↑ 38.01 38.91 39.90 -

Progressive
Channel Number 160 160 160 -
MACs/G ↓ 54.80 54.80 54.80 164.4
Parameter Number/M ↓ 4.66 4.66 4.66 13.98
PSNR(dB) ↑ 38.01 39.60 40.42 -

On the MCL-JCV dataset, we compared our GNeRV model with NeRV, HiNeRV and traditional
codec. Our model consistently outperforms other video INR models and is comparable to conven-
tional encoders at low bitrate as shown in Figure.6. Comparing the performance of the model on
both datasets, the video INR work is more advantageous when dealing with longer sequences.

Progressive Pipeline.

We assumed that the coding side needs to produce compressed files with low, medium and high
bitrate. We used two processes to realize this need, Method 1 is to obtain implicit neural repre-
sentations of the three qualities using small, medium and large models trained from the scratch
respectively, referred to as “Respective”. Method 2 adopts progressive process, where the model’s
training target is the residual information of the original video and the reconstructed video from the
previous models, referred to as “Progressive”.

Such experiments were conducted on the UVG dataset. We used the three-stage progressive pipeline
on the base GNeRV model with 160 channels, whose corresponding bpp is around 0.03. Based on
the model we had already gained, we trained two other models of the same size for representing
the two-level residuals, with 300 epochs of training for each model. We can reuse the model at low
bitrate, and finally get a better reconstruction result with a model trained from scratch at the same
bitrate. What’s more, progressive pipeline can reduce computational complexity and save storage
space comparing to the pipeline that train every model in a single stage. We show the differences
between the two approaches in the Table.4.2.

4.3 ABLATION STUDY

Training Epochs. Given the nature of INR work, which focuses on overfitting, the number of
training epochs directly affects the final model performance. We performed controlled experiments
where we varied the number of training epochs on the Bunny sequence. The results are illustrated
in Figure.7.

Temporal Information Coupling Path. The method that incorporates time information into the
neural network through the distribution shift of feature is referred to as “DS”. And we designed an
ablation experiment to argue that such design is much more efficient than modulating the embedding
with time information directly, referred to as “M”. Specifically, after reshaping the time vector to
(1, 9, 16), we transformed it into temporal information with the same number of channels as the
embedding through two convolutional layers, and added this tensor to the embedding to complete
the modulation. We control the parameter number of DS-branch and that of M-branch the same.

We conducted this experiment on the Bunny sequence and obtained the results shown in Table.4. Our
original model contains only DS-branch. We trained a model with two time-informative branches.
We used this model to produce three outputs, a direct output, an output that masks the M-branch,
and an output that masks the DS-branch. When comparing the model with two branches, it was
observed that the DS-branch had a significant influence, while masking the M-branch had minimal
impact on the output. When comparing the original model and the model with two branching paths,
the two temporal branching paths introduced more parameters while making the model degrade at
high bitrate, which suggests that modulating the embedding directly instead makes training difficult.

8



Under review as a conference paper at ICLR 2024

Figure 7: The effect of the num-
ber of training epoch on the
video quality reconstructed by
the model.

Figure 8: Comparison between
progressive pipeline and one-
stage pipeline.

Figure 9: A 40-channel model
representing bunny sequence
with different scale in progres-
sive pipeline.

Table 4: Ablation study on the time branch conducted on bunny sequence. Results are in PSNR(dB).

Channel Number 20 40 80 152 223 304
Parameter Number/M 0.115 0.274 0.92 3.17 6.67 12.42

w. DS 31.95 34.19 37.46 40.83 42.58 43.53
w. DS and M 32.00 34.26 37.46 41.12 42.46 43.41
w. DS and M, mask M 31.98 34.22 37.42 40.86 42.14 42.26
w. DS and M, mask DS 17.93 17.96 17.96 17.88 17.95 17.97

Progressive Pipeline. When we adopt the progressive pipeline to train our INRs at one bitrate, it
consumed more training epochs to represent the same video sequence. Thus, we need to conduct ex-
periments to ensure that the pipeline remains efficient compared to the original model. Specifically,
since we trained a base model for 300 epochs and two residual models for 600 epochs in a 3-stage
progressive pipeline, we trained a base model for 900 epochs for comparison on the Bunny sequence.
The results are presented in Figure.8. We found that such a pipeline does not lead to performance
degradation. This implies that we can confidently use it to gain engineering convenience.

Scale Of Residual Information. When employing a network to represent residual information,
it’s beneficial to use a small trick: scaling the residuals before training. This ensures that INR can
effectively learn valid residuals. Figure.9 illustrates how the scale of residuals impacts the results.
The horizontal axis represents the logarithm of the scale of the residuals. We experimented with
scales of 1, 10, 100, 10k, and 100k on the first level of residuals. The second and subsequent levels
of residuals are based on the results calculated by multiplying the previous level of residuals. The
residual scale remains constant at 100 and does not multiply level by level; instead, it represents
an absolute. We found that only the first residual requires a scaling factor to handle the residual
information effectively. There is no need to use larger residual scales for subsequent INR levels to
avoid performance degradation. Therefore, we set the default scale for residuals to 100.

5 CONCLUSION

In this paper, we introduce GNeRV, a novel video implicit representation model that builds upon the
input-output format of the NeRV framework while significantly enhancing the embedding structure.
Our main innovation lies in the incorporation of a global embedding structure, which replaces the en-
tire architecture for embedding extraction. GNeRV boasts a straightforward design that adapts seam-
lessly to video sequences of varying resolutions, and it allows for model size to be scaled efficiently
from nearly zero, showcasing remarkable potential for low-bitrate applications. Our approach attains
state-of-the-art results across multiple datasets. Additionally, we present a novel training pipeline
in which we utilize INR to overfit residual information, offering support for multiple-bitrate coding
scenario, where high bitrate models can reuse low bitrate models. We can obtain better representa-
tion performance and reduce the computational complexity. Lastly, we emphasize that our method
serves as an effective alternative to traditional techniques in offline compression scenarios for low-
bitrate videos.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Yunpeng Bai, Chao Dong, and Cairong Wang. Ps-nerv: Patch-wise stylized neural representations
for videos. arXiv preprint arXiv:2208.03742, 2022.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864,
2021.

Benjamin Bross, Jianle Chen, Jens-Rainer Ohm, Gary J Sullivan, and Ye-Kui Wang. Developments
in international video coding standardization after avc, with an overview of versatile video coding
(vvc). Proceedings of the IEEE, 109(9):1463–1493, 2021.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shrivastava. Nerv: Neu-
ral representations for videos. Advances in Neural Information Processing Systems, 34:21557–
21568, 2021.

Hao Chen, Matt Gwilliam, Bo He, Ser-Nam Lim, and Abhinav Shrivastava. Cnerv: Content-
adaptive neural representation for visual data. arXiv preprint arXiv:2211.10421, 2022.

Hao Chen, Matthew Gwilliam, Ser-Nam Lim, and Abhinav Shrivastava. Hnerv: A hybrid neural
representation for videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10270–10279, 2023.

Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin: Com-
pression with implicit neural representations. arXiv preprint arXiv:2103.03123, 2021.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Goliński, Yee Whye Teh, and Arnaud
Doucet. Coin++: Neural compression across modalities. arXiv preprint arXiv:2201.12904, 2022.

Bo He, Xitong Yang, Hanyu Wang, Zuxuan Wu, Hao Chen, Shuaiyi Huang, Yixuan Ren, Ser-
Nam Lim, and Abhinav Shrivastava. Towards scalable neural representation for diverse videos.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6132–6142, 2023.

Zhihao Hu, Guo Lu, and Dong Xu. Fvc: A new framework towards deep video compression in
feature space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1502–1511, 2021.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 1501–1510,
2017.

Ho Man Kwan, Ge Gao, Fan Zhang, Andrew Gower, and David Bull. Hinerv: Video compression
with hierarchical encoding based neural representation. arXiv preprint arXiv:2306.09818, 2023.

Théo Ladune, Pierrick Philippe, Félix Henry, and Gordon Clare. Cool-chic: Coordinate-based low
complexity hierarchical image codec. arXiv preprint arXiv:2212.05458, 2022.

Joo Chan Lee, Daniel Rho, Jong Hwan Ko, and Eunbyung Park. Ffnerv: Flow-guided frame-wise
neural representations for videos. arXiv preprint arXiv:2212.12294, 2022.

Jiahao Li, Bin Li, and Yan Lu. Deep contextual video compression. Advances in Neural Information
Processing Systems, 34:18114–18125, 2021.

Zizhang Li, Mengmeng Wang, Huaijin Pi, Kechun Xu, Jianbiao Mei, and Yong Liu. E-nerv: Expe-
dite neural video representation with disentangled spatial-temporal context. In European Confer-
ence on Computer Vision, pp. 267–284. Springer, 2022.

Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An
end-to-end deep video compression framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11006–11015, 2019.

10



Under review as a conference paper at ICLR 2024

Alexandre Mercat, Marko Viitanen, and Jarno Vanne. Uvg dataset: 50/120fps 4k sequences for
video codec analysis and development. In Proceedings of the 11th ACM Multimedia Systems
Conference, pp. 297–302, 2020.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on circuits and systems for video
technology, 22(12):1649–1668, 2012.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020.

Haiqiang Wang, Weihao Gan, Sudeng Hu, Joe Yuchieh Lin, Lina Jin, Longguang Song, Ping Wang,
Ioannis Katsavounidis, Anne Aaron, and C-C Jay Kuo. Mcl-jcv: a jnd-based h. 264/avc video
quality assessment dataset. In 2016 IEEE international conference on image processing (ICIP),
pp. 1509–1513. IEEE, 2016.

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h. 264/avc
video coding standard. IEEE Transactions on circuits and systems for video technology, 13(7):
560–576, 2003.

Qi Zhao, M Salman Asif, and Zhan Ma. Dnerv: Modeling inherent dynamics via difference neural
representation for videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2031–2040, 2023.

11


	Introduction
	Related Work
	Method
	GNeRV: Global Embedding NeRV
	Progressive Pipeline

	Experiment
	Datasets and Implementation Details
	Main Result
	Ablation Study

	Conclusion

