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Abstract

This paper presents an online learning mechanism to address the challenge of state tracking
for unknown linear systems under general adversarial disturbances. The reference trajectory
is assumed to be generated by unknown exosystem dynamics, which relaxes the common
assumption of known dynamics for exosystems. Learning a tracking control policy for un-
known systems with unknown exosystem dynamics under general disturbances is challenging
and surprisingly unsettled. To face this challenge, the presented online learning algorithm
has two stages: In the first stage, an algorithm identifies the dynamics of the uncertain
system, and in the second stage, an online parametrized memory-augmented controller ac-
counts for the identification error, unknown exosystem dynamics as well as disturbances.
The controller’s parameters are learned to optimize a convex cost function, which is not
necessarily quadratic, and learning the control parameters is formulated as an online con-
vex optimization problem. This approach uses the memory of previous disturbances and
reference values to capture their effects on performance over time. Besides, it implicitly
learns the dynamics of the exosystems. The algorithm enables online tuning of controller
parameters to achieve state tracking and disturbance rejection. It is shown that the algo-
rithm achieves a policy regret of O(T 2/3). In the simulation results, the performance of
the presented tracking algorithm is compared with the certainty equivalent H∞-control and
linear quadratic regulator.

1 Introduction

Reference tracking is a fundamental problem in control theory (Isidori, 1985; Huang, 2004; Dixon et al.,
2004; Vamvoudakis et al., 2017) and it has many applications (Zare et al., 2022), where the goal is to design
a control policy that steers the closed-loop system towards a reference trajectory or set-point. Significant
progress has been made toward developing reference tracking controllers for both linear and nonlinear sys-
tems. Most of the existing results, however, have made all or some of the following assumptions: 1) the
system dynamics are known; 2) the exosystem dynamics generating the reference trajectories are known; 3)
the system is deterministic and might be under bounded energy disturbances or the system is stochastic and
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under independent and identically distributed (i.i.d.) noise, mostly Gaussian noise; and 4) only asymptotic
tracking is of concern, and no optimality of performance is concerned.

Several learning-based or adaptive controllers have been presented to deal with epistemic uncertainties (i.e.,
uncertainties that can be reduced by collecting data) in system dynamics and exosystem dynamics (i.e.,
to relax numbers 1 and 2 of the above-mentioned assumptions). Traditional adaptive controllers do not
provide performance guarantees, as they only optimize an instantaneous cost function (Lewis, 1986; Sutton
& Barto, 2018; Bertsekas, 2019; Zhang & Lewis, 2012). In contrast, reinforcement learning (RL) (Yao &
Yao, 2022; Wang et al., 2022b; Chen et al., 2019; Gao & Jiang, 2022; Deng et al., 2021; Mei et al., 2022;
Modares et al., 2016; Rabiee & Safari, 2023) leads to learning adaptive optimal control policies by optimizing
a long-horizon cost function using collected data. Despite this advantage, existing RL-based control solutions
for continuous state-actions are limited to deterministic systems with no disturbances (Li & Wu, 2020; Hao
et al., 2021) or bounded disturbances (Li et al., 2020; Mohammadi et al., 2021) and stochastic systems
with Gaussian noise (Cheng et al., 2019). For the case of bounded disturbances, RL algorithms typically
reformulate the H2-optimal control design into a robust min-max or H∞-optimal control problem (Khalil,
2002; Modares et al., 2015), which can be overly conservative. To this end, some works proposed combining
controllers such as resonant control with H∞ for a better performance (Dadkhah & Moheimani, 2023). For
stochastic systems, existing RL algorithms are either based on policy gradient under which the controller
is parametrized and its parameters are learned through the gradient descent method or based on policy
iteration method under which the policies are iteratively evaluated until convergence. The former requires
approximating the expected gradient of the cost function, and the latter requires approximating the expected
cost itself. These results are typically limited to systems with Gaussian noise. However, in practical control
systems, adversaries aiming to degrade the control performance can act as adversarial disturbances that are
unpredictable and do not follow any distribution.

In this paper, the main focus is on constructing tracking controllers for linear systems when the underlying
system dynamics and exosystem dynamics are unknown, and disturbances are adversarial. Adversarial
disturbances can take any arbitrary form and are not restricted to those that are bounded with a known
bound or follow a probability distribution. A control policy in the form of (disturbance, reference)-action
is developed that leverages a fixed-size history of disturbances and reference values in its actions. The
presented online learning algorithm extends the results of Yaghmaie & Modares (2023); Hazan et al. (2020)
to systems with unknown dynamics and has two stages: In the first stage, a system identifier algorithm
estimates the unknown dynamics and uncertainty, and in the second stage, an online parameterized memory-
augmented controller is learned to optimize a convex cost function while accounting for the identification
error, unknown exosystem dynamics, and adversarial disturbances. Yaghmaie & Modares (2023) provides
a concise parameterization of the control policy resulting in O(

√
T ) regret bound benchmarking against

the best linear control policy when the system dynamics is known. In this extension to their work, our
algorithm achieves a regret bound of O(T 2/3) for linear systems with unknown dynamics. Besides the
theoretical guarantees, in the simulation results, we compare the performance of the presented algorithm
with a couple of relevant solutions including the H∞ and Linear Quadratic Regulator (LQR) control to
highlight its superior performance.

2 Related works

In this section, the related works to the problem of optimal tracking are summarized. These works are
focused on scenarios with an induced disturbance on the states and also where the dynamics of the system
are unknown.

System identification: Linear dynamic system identification is the process of determining the mathemat-
ical model that describes the input-output behavior of a linear dynamic system and it has been studied in
Ljung (1998). The least-squares method and its variants, such as total least squares and recursive least
squares, are widely used to identify the system’s parameters (Tatari et al., 2021; Faradonbeh et al., 2017;
Sarkar et al., 2019). System identification using machine learning techniques, such as artificial neural net-
works and support vector machines, has also gained popularity in recent years (Nagumo & Noda, 1967;
Weber et al., 2019; Chiuso & Pillonetto, 2019; Mehrzad et al., 2023). The choice of method depends on
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the system’s characteristics, the available data, and the required accuracy of the identified model. A prop-
erly identified model can facilitate the design of robust controllers and the prediction of system behavior
under different operating conditions. In situations where there is an adversarial disturbance, the use of the
least-squares method may produce unreliable estimates. Thus, this paper exploits the method introduced
by (Theorem 19 in (Hazan et al., 2020)).

Output regulation theory: The output regulation theory, as introduced by Isidori and Huang in their
works (Isidori, 1985; Huang, 2004), has been widely utilized in the design of model-free reinforcement learning
(RL) algorithms for solving optimal tracking problems, as well as in attenuating the effects of disturbances
(Gao et al., 2017; Chen et al., 2022; Jiang et al., 2020b; Chen et al., 2019; Jiang et al., 2020a; Gao & Jiang,
2016; 2015). However, a limitation of RL and adaptive dynamic programming (ADP) approaches based on
the output regulation theory is that they assume the disturbance is generated by a dynamical system, which
is not always the case in many real-world applications. This constraint restricts the applicability of the
output regulation theory in practical scenarios. Additionally, ADP methods typically optimize risk-neutral
(expected) or risk-aware measures of the cost function under the assumption of i.i.d and Gaussian noise.
This assumption is made because either the value function is learned directly based on collected data to
estimate expected or risk-aware accumulated rewards in policy interaction or value iteration methods, or the
expected or risk-aware cost function or its derivative with respect to control parameters is learned from data
in policy gradient methods. For general disturbances, usually a robust control approach is utilized which is
discussed below.

Robust control design: To handle general disturbances with limited energy, the H∞-control theory is
often employed to guarantee an L2-gain performance bound (Doyle, 1995; Khalil, 2002; Modares et al.,
2015). That said, the H∞-approach is known to be overly conservative, as the resulting robust controller
is designed to hedge against the worst-case disturbance sequence, which is rarely encountered in reality.
To that end, some works proposed online compensation for unknown stochastic disturbances for motion
planning and control (Faust et al., 2015).

Gaussian disturbance: The Linear Quadratic Regulator (LQR) can be used to design an optimal controller
for linear systems subject to Gaussian process disturbance (noise) (Bertsekas, 2012). It is also the optimal
controller for noise-free linear systems. However, in many practical control systems, the disturbance does
not follow a Gaussian distribution or the cost function is not quadratic. The provided guarantees so far in
the literature are for the Gaussian case.

3 Optimal Reference Tracking Problem

Notations and preliminaries: Let I represent an identity matrix with the appropriate size. Let 1 and 0
denote matrices with appropriate sizes consisting of all ones and all zeros, respectively. The gradient of a
function f(x) with respect to x is denoted by ∇xf . The L2-norm of x is denoted by ∥x∥L2 = (

∑+∞
k=0 ∥xk∥2) 1

2

where ∥xk∥ is the instantaneous Euclidean norm of the vector xk. For matrix A, the spectral norm is
denoted by ∥A∥, and the Frobenius norm is denoted by ∥A∥F . Let IE be an indicator function on set E.
For a time-dependent variable xk, the notation xi:j , j ≥ i is defined as xi:j = {xi, xi+1, .., xj}. The notation
O() is leveraged throughout the paper to express the regret upper bound as a function of T .

3.1 Tracking Problem

Consider the following linear dynamical system

xk+1 = Axk +Buk + wk, (1)

where the variables xk ∈ Rn and uk ∈ Rm represent the state and control input of the system, respectively.
In equation 1, wk ∈ Rn denotes the adversarial (unknown and arbitrary) disturbance. Only a bound, which
also does not need to be known a priori, is assumed on the disturbance for theoretical reasons. It can be
assumed that x0 = 0 without loss of generality and incorporate the initial condition into w0.

The objective of this paper is to choose the input variable uk in such a way that the state of the system xk

follows an arbitrary reference signal rk that is not known beforehand. This reference signal is only revealed
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sequentially after the control input has been applied.

zk+1 = Szk,

rk = Fzk,
(2)

where zk ∈ Rp, rk ∈ Rn represent the state and the output of the reference generator.

In the sequel, a list of a few definitions and results are brought that are related to equation 1-equation 2 and
the tracking problem.

Definition 1 (Agarwal et al., 2019) Consider

xk+1 = Axk +Buk,

and γ ∈ [0, 1), κ > 1. A linear controller K is (κ, γ)-stable if ∥K∥ ≤ κ and ∥Ãt
K∥2 ≤ κ2(1 − γ)t ∀ t ≥ 0

where ÃK = A+BK. Equivalently, a linear controller K is also (κ, γ)-stable if there exist a decomposition
of ÃK = QLQ−1, such that ∥L∥ ≤ (1 − γ), and ∥A∥, ∥B∥, ∥Q∥, ∥Q−1∥, ∥K∥ ≤ κ.

Definition 2 (Strong Controllability)(Definition 7 in (Hazan et al., 2020)) A linear dynamical system
(A,B) is said to have controllability index λ if the matrix Gλ is full-row rank, and

Gλ = [B,AB,A2B...Aλ−1B],

where Gλ is defined as the matrix associated with (A,B) for λ ≥ 1. In addition, such a system is also defined
(λ, κ) strongly controllable if ∥(GλG

T
λ )−1∥ ≤ κ.

In a controllable system, the controllability index λ has an upper bound of the number of states in the system.
It is worth noting that, due to the Cayley-Hamilton theorem, the controllability index of a controllable system
is never greater than the dimension of the state space. Assuming that the system (A + BK,B) is (λ, κ)
strongly controllable, similar to the concept of stability, a measurable counterpart of controllability is initially
presented by (Cohen et al., 2018).

Lemma 1 (Maintaining Stability) (Lemma 15 in (Hazan et al., 2020)) Consider an identified dynamical
system with (Â, B̂). Assume that the original system is (κ, γ)-strongly stable. It can be shown that control gain
K is (κ+ ϵA,B , γ− 2κ3ϵA,B)- strongly stable for (Â, B̂), as long as ∥A− Â∥, ∥B− B̂∥ ≤ ϵA,B. For the system
with estimated matrices, one has ∥Â∥, ∥B̂∥ ≤ κ+ ϵA,B. Assuming ∥Q∥, ∥Q−1∥, ∥K∥, ∥A∥, ∥B∥ ≤ κ, we define
Â+ B̂K = QL̂Q−1 where one can show ∥L̂∥ ≤ 1 − γ + 2κ3ϵA,B, where L̂ := L+Q−1((Â−A) − (B̂ −B)K).
Moreover, the Q matrix coincide in both the actual system (A,B) and the one with estimated system matrices
(Â, B̂).

Theorem 1 is typically leveraged to present a fundamental discovery outlining the necessary and sufficient
condition for the existence of a linear feedback strategy that can solve the state tracking problem. Specifically,
the problem concerns ensuring that xk → rk in the absence of disturbances. In this context, the term "linear
feedback policy" denotes a particular approach utilized to address the problem.

Theorem 1 (Isidori, 1985) Consider the dynamical system in equation 1 and the reference signal in equa-
tion 2. Assume that wk ≡ 0, (A,B) is stabilizable. Assume that the learner has previous knowledge on Kfb

such that A+BKfb is strongly stable. Then, the controller

ulin
k (Kf ) = Kfbxk +Kffzk. (3)

solves the classical state tracking problem xk → rk, if and only if there exist matrices Π ∈ Rn×p and Γ ∈ Rm×p

such that

ΠS = AΠ +BΓ, Π − F = 0 (4)

and Kff = Γ −KfbΠ.
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3.2 Performance index

The main goal of this paper is to design a control policy π : (x1:k, w1:k−1, r1:k) → uk that optimizes an average
cost function, reflecting the designer’s intentions. The total cost linked to a given policy π is determined as
follows

JT (π) =
T∑

k=1
ck(xk, uk), (5)

where ck is the rolling cost. Also, the average cost of a policy π is defined as the below equation

J̄T (π) = 1
T

T∑
k=1

ck(xk, uk). (6)

3.3 The presented policy

The conventional linear controller in the form of equation 3 aims to mitigate the impact of adversarial or
arbitrary disturbances on the cost function by determining gains Kfb and Kff using H∞-control design.
However, this approach is overly conservative and encounters difficulties in online control design due to the
non-convexity of the cost function ck(xk, uk) with respect to Kfb and Kff . To tackle this issue, we work
with the class of memory augmented policies which is capable of handling adversarial disturbances and
unknown dynamics (Yaghmaie & Modares, 2023; Agarwal et al., 2019).

Definition 3 A Memory-augmented Control Policy is denoted by π(K,M,P )

uπ
k (K,M,P ) = Kxk +

mw∑
t=1

M [t−1]wk−t +
mr−1∑
s=0

P [s]rk−s, (7)

where K ∈ K is a fixed matrix and Y = [M, P ] = [M [0], ...,M [mw−1], [P [0], ..., P [mr−1]] ∈ Y are parameters
to be learned. The domains K, Y are defined as

K = {K : A+BK is (κ, γ) − stable}, (8)
Y = {Y = [M [0], ...,M [mw−1], P [0], ..., P [mr−1]]|∥M [t]∥, ∥P [t]∥ ≤ κbκ

3(1 − γ)t}.

Since the policy parameters are learned, which are changing over time, Mk = [M [0]
k , ...,M

[mw−1]
k ] and Pk =

[P [0]
k , ..., P

[mr−1]
k ] are representing as the policy parameters at step k.

Observer that the class of memory-augmented policies is more general than the class of linear controller
policies. Indeed, a linear control policy is a special case of the memory-augmented policy.

Let xπ
k be the state attained upon execution of the policy π(K,M0:k−1, P0:k−1) that generates the control

input in equation 7 at time k. One can show that the state attained upon execution of a memory-augmented
control policy is linear in M . This is established in the next lemma. Consequently, this implies linearity
of the memory-augmented control policy in M . Since the cost function ck(xk, uk) is convex in xk, uk and
xπ

k , u
π
k are linear in M , one can conclude that ck is convex in M . Let ÃK = A+BK and define

ΨK,h
k,y (Mk−h−1:k−1) :=Ãy

KIy≤h−1 +
h−1∑
j=0

Ãj
KBM

[y−j−1]
k−j−1 I1≤y−j≤mw

, (9)

ψK,h
k,z (Pk−h−1:k−1) :=

h−1∑
j=0

Ãj
KBP

[z−j−1]
k−j−1 I1≤z−j≤mr

. (10)
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Lemma 2 ((Yaghmaie & Modares, 2023)) Let xπ
k be the state attained upon execution of the policy

π(K,M0:k−1, P0:k−1) that generates the control input in equation 7 at time k. Then

xπ
k = xK

k (M0:k−1, P0:k−1) =Ãh
Kx

π
k−h +

mw+h−1∑
y=0

ΨK,h
k,y (Mk−h−1:k−1)wk−y−1

+
mr+h−1∑

z=0
ψK,h

k,z (Pk−h−1:k−1)rk−z.

(11)

or equivalently

xπ
k = xK

k (M0:k−1, P0:k−1) =
k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1 +

k−1∑
z=0

ψK,k
k,z (P0:k−1)rk−z. (12)

3.4 Assumptions and the optimal tracking problem

In this subsection, a list of the assumptions is brought to be used throughout the paper and define the
optimal tracking problem in the presence of adversarial disturbances.

Assumption 1 (dynamical system) The pair (A,B) is unknown but stabilizable. The actual system
matrices (A,B) and the identified system dynamics matrices (Â, B̂) are bounded, i.e., ∥A∥, ∥B∥ ≤ κ and
∥Â∥, ∥B̂∥,≤ κ+ ϵA,B, where ϵA,B denotes the distance between the actual and identified system matrices.

Assumption 2 (disturbance) The disturbance sequence wk is bounded, i.e., ∥wk∥ ≤ κw for some κw > 0.
Moreover, the disturbance wk does not depend on the control input uk.

Assumption 3 (reference signal) The dynamics of the reference signal generator are unknown but de-
tectable. The state of the reference signal zk is not measurable but the output rk is measurable and rk, zk

are bounded, i.e., ∥rk∥ ≤ κr and ∥zk∥ ≤ κz.

Assumption 4 (Known Linear Controller) A control gain K in equation 7 that makes the unknown
system (A,B), (κ, γ) − stable is available to the learner. In other words, the set in equation 8 is known.

Remark 1 Partial knowledge of the system model can be typically extracted for many practical systems using
the physical information available, which can be leveraged to design robust controllers satisfying Assumption
4. That is, even though no knowledge of the system models is used during learning, partial knowledge of the
system models (e.g., the matrices A and B belonging to sets of possible system models) is required to find the
starting control policy. This is a standard assumption in most control systems since, without a stabilizing
control policy to start with, the system’s state can quickly become large and useless to learn from, and the
system can also fail before any learning occurs.

Assumption 3 stipulates that the reference signal must be bounded, as an unbounded reference signal may
lead to an unbounded average cost. This assumption is commonly employed in analyzing average cost, as
observed in works like Abbasi-Yadkori et al. (2014) and Adib Yaghmaie et al. (2019). Nevertheless, the
issue of tracking unbounded reference signals can be tackled by exploring discounted cost settings, where an
appropriate discounting factor can ensure the boundedness of the discounted cost. This approach has been
demonstrated in other studies, including Kiumarsi et al. (2014).

Assumption 5 (cost function) The cost ck(xk, uk) is convex in xk, uk. Moreover, when ∥x∥, ∥u∥ ≤ D,
it holds that |ck(xk, uk)| ≤ βD2 and ∥∇xck(x, u)∥, ∥∇uck(x, u)∥ ≤ GcD for some β > 0 and Gc > 0.

Assumption 5 broadens the scope of applicable cost functions beyond quadratic forms, thereby enhancing
the inclusiveness of the assumption.
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Problem 1 (Optimal Tracking Against Adversarial Disturbances with Unknown Dynamics)
Consider the dynamical system in equation 1, the reference generator in equation 1-equation 2 and the cost
function in equation 5. Let Assumptions 1-5 hold. Design a policy in the form of equation 7

uπ
k (K,M,P ) = Kxk +

mw∑
t=1

M [t−1]wk−t +
mr−1∑
s=0

P [s]rk−s,

from the class of memory-augmented policies in Definition 3 to optimize the total cost in equation 5

JT (π) =
T∑

k=1
ck(xk, u

π
k ).

4 Memory-augmented online state-tracking algorithm

We propose Algorithm 1 to solve Problem 1. The algorithm uses the concept of truncated state and cost
which will be defined in the sequel.

4.1 Truncated state, input and cost

Similar to (Yaghmaie & Modares, 2023), we limit everything to a fixed memory length of H. Let x̃π
k , ũ

π
k , : fk

represent the truncated state, input, and cost if the system had started at x̃π
k−H = 0. The expressions for

x̃π
k , ũ

π
k are

x̃π
k (Mk−H−1:k−1, Pk−H−1:k−1) = (13)

mw+H−1∑
y=0

ΨK,H
k,y (Mk−H−1:k−1)wk−y−1 +

mr+H−1∑
z=0

ψK,H
k,z (Pk−H−1:k−1)rk−z,

ũπ
k (Mk−H−1:k, Pk−H−1:k) = (14)

Kx̃K
k (Mk−H−1:k−1, Pk−H−1:k−1) +

mw∑
t=1

M
[t−1]
k wk−t +

mr−1∑
s=0

P
[s]
k rk−s,

and the truncated cost fk reads

fk(Mk−H−1, ...,Mk−1,Pk−H−1, ..., Pk−1)
= ck(x̃π

k (Mk−H−1:k−1, Pk−H−1:k−1) − rk, ũ
π
k (Mk−H−1:k, Pk−H−1:k)).

(15)

In Appendix B, some theoretical results are provided regarding the memory-augmented controllers and the
associated states and costs which are essential in obtaining the main result in Theorem 4.

4.2 The overall online learning algorithm (Algorithm 1)

Algorithm 1 involves two stages. In the first stage, the system dynamics are identified, then, in the second
stage, the online controller is learned. This approach is commonly known as the explore-then-commit pipeline
and will be explained in the sequel.

The algorithm starts in Line 1 with the selection of a stabilizing controller gain K, as well as other necessary
parameters.

System identification (Algorithm SysId): Following the initiation of the algorithm, the identification
stage begins by executing Algorithm SysId. As detailed in Algorithm SysId, the controller in equation 18
is used to collect T0 samples. In this algorithm, it is assumed that the learner has access to a stabilizing
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control gain K. System identification using binary inputs with values of -1 and 1 (also called bipolar inputs)
is a method to analyze and model the behavior of a system. By systematically applying binary input
sequences consisting of -1 and 1, the system’s response is measured and recorded in Line 3.In Lines 4,5,6,
dummy variables G and Q are computed. Then, in Line 7, a deterministic-equivalent matrix pair (Â, B̂)
is identified through an iterative procedure that determines matrices of the form (A + BK)iB, followed
by solving a linear system of equations to recover the original matrix A. Note that during this stage, the
trajectory to be followed is disregarded. The estimated dynamics (Â, B̂) is fed to the presented robust
tracking algorithm. This identification procedure is inspired by (Hazan et al., 2020).

Remark 2 (Ljung, 1995) Generating a stochastic binary signal often involves the introduction of white
Gaussian noise, which is subsequently filtered using a carefully selected linear filter. The resulting signal’s sign
is then extracted, conforming it to a desired binary level. A signal is deemed favorable for the identification
of linear systems when it exhibits a small crest factor. The crest factor, with a minimum value of 1, is
achieved when employing a binary waveform. However, binary signals prove less useful for nonlinear system
identification due to their limited information content and lack of varied excitation levels (Novak et al.,
2009).

Robust tracking (Algorithm RobTrack): Upon identification of the system, the domain set Y is ini-
tialized and a loop starts. In Line 7, the reference signal rk is recorded. uπ

k in equation 7 is calculated
and applied to the system. Next, in Line 8, the next state xk+1 is observed, and the disturbance ŵk is
estimated by equation 16. Selection of ŵk according to equation 16 ensures that the state, action, and cost
produced by Algorithm 1 coincide with those of the actual system. In Line 9, the algorithm suffers the cost
ck(ek, uk). Then Line 10, the truncated state and inputs are computed from equation 13-equation 14 using
the latest values of M,P , and the truncated cost fk(M [0], ...,M [mw−1], P [0], ..., P [mr−1]) is calculated from
equation 15. In Line 11, the weights M, P are adjusted with projected gradient descent on the truncated
cost fk(M [0], ...,M [mw−1], P [0], ..., P [mr−1]) based on equation 17.

It should be noted that during each iteration k of the algorithm outlined in Algorithm 1, the values of
ŵT0+1:k−1 and rT0+1:k are already known and accessible. Additionally, for all k < T0, ŵk and rk are defined
to be equal to the zero vector. Thus, it is possible to compute the expressions in equation 13-equation 15 for
any given iteration of the algorithm. The projection operator ΠM and ΠP are matrix projection operators
with L2 norm of κbκ

3(1 − γ).

The properties related to Algorithms SysId and 1 are given in Appendices C-D.

4.3 Regret Analysis

The standard measure for online control based on the gradient descent is the policy regret (Agarwal et al.,
2019), which is defined here as the difference between cumulative cost of the designed parameterized control
policy π learned by Algorithm 1 and that of the optimal linear control policy in the form of equation 3.

Definition 4 Consider the system in equation 1. Let the control policy be designed to generate the control
action uk in equation 7 at time k. Let Algorithm 1 be used to update the parameters of uk. Then, its regret
is defined as

Regret =
T∑

k=1
ck(xk, uk) − min

Kf ∈K
JT (Kf ),

where JT (Kf ) is the total cost in equation 5 of the linear feedback controller in equation 3.

The regret compares the performance of Algorithm 1 generating controllers from the class of feasible memory-
augmented control policies with the best linear control policy in hindsight.
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Algorithm 1 Online state tracking algorithm
1: Initialize: Set a stabilizing controller gain K, perturbation horizon mw, reference horizon mw, rounds of

system identification T0, number of iterations after system identification T , and horizon of identification
λ.

2: Stage 1: System Identification

(Â, B̂) = SysId(T0, λ).

3: Stage 2: Robust Tracking (Algorithm RobTrack)
4: Initialize Y = {Y = [M [0], ...,M [mw−1], P [0], ..., P [mr−1]]|∥M [t]∥, ∥P [t]∥ ≤ κbκ

3(1 − γ)t} .
5: Set ŵk = 0 for all k ≤ T0 and ŵk = xT0 .
6: for k = T0 + 1, .., T0 + T do
7: Record rk and execute

uπ
k (K,M,P ) = Kxk +

mw∑
t=1

M [t−1]ŵk−t +
mr−1∑
s=0

P [s]rk−s

8: Observe xk+1 and record an estimate

ŵk = xk+1 − Âxk − B̂uk. (16)

9: Suffer ck(ek, uk).
10: Compute fk(M [0], ...,M [mw−1], P [0], ..., P [mr−1]) in equation 13-equation 15 for Â, B̂, and ŵ.
11: Update M, P .

M = ΠM (M − η∇Mfk(M [0], ...,M [mw−1], P [0], ..., P [mr−1])),
P = ΠP (P − η∇P fk(M [0], ...,M [mw−1], P [0], ..., P [mr−1])).

(17)

Algorithm SysId System identification by inducing random inputs
1: Inputs: T0, λ.
2: for k = 1, ..., T0 do
3: Induce the control

uk = Kxk + ηk, ηk ∼i.i.d. {±1}m. (18)

4: Observe and record the resulting state xk.
5: Calculate Qj = 1

T0−λ

∑T0−λ−1
k=0 xk+j+1η

T
k , ∀j ∈ {λ}.

6: Form G0 = (Q0, ..., Qλ−1), G1 = (Q1, ..., Qλ).
7: Outputs: Â and B̂

B̂ = Q0, Â
′ = G1G

T
0 (G1G0)−1, Â = Â′ − B̂K.

In the sequel, we give the regret analysis of Algorithm 1. The main technical difficulty in the regret analysis
lies in combining the system identification and the online control approach where both the estimated and
true dynamics are present. Another aspect is to find the right balance between the identification and control
horizons to guarantee a sublinear regret bound.
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Theorem 2 Suppose Algorithm 1 is executed under Assumptions 1-5. Let H = mw = mr. Select the
learning rate η and the memory size H to satisfy η = O( 1

Gcκw

√
T

), H = O(log κ2T
γ ), and T0 = T 2/3. Then,

Regret = O(T 2/3).

Proof: Let K∗ = arg minK∈K
∑T

k=1 ck(xk, uk). We decompose the regret as

Regret =
T∑

k=1
(ck(xk, uk) − ck

minK∈K
(xk, uk))

=
T0∑

k=1
(ck(xk, uk) − ck

minK∈K
(xk, uk)) +

T∑
k=T0+1

(ck(xk, uk) − ck
minK∈K

(xk, uk))

≤
T0∑

k=1
(ck(xk, uk) − ck

minK ∈K
(xk, uk)) +

T∑
k=1

(ck(xk, uk) − ck
minK ∈K

(xk, uk))

=
T0∑

k=1
(ck(xk, uk) − ck

minK ∈K
(xk, uk))︸ ︷︷ ︸

J0

+ J(A|Â, B̂, {ŵ}, {r}) − J(K∗|Â, B̂, {ŵ}, {r})︸ ︷︷ ︸
R1

+ J(K∗|Â, B̂, {ŵ}, {r}) − J(K∗|A,B, {w}, {r})︸ ︷︷ ︸
R2

.

The term J0 contains the regret for the system identification stage in Algorithm SysId. The regret analysis
is given in Lemma 8 where we show that R1 = O(T0). The term R1 compares the total cost by our
algorithm using the estimated dynamics with that of the best linear controller using the estimated dynamics.
In Theorem 4, we prove that R2 = O(

√
T ). The term R2 compares the total cost by the best linear

controller using the estimated dynamics with that of using the original dynamics. In Lemma 11, we show
that R2 = O(TT−1/2

0 ). Selecting T0 = T 2/3, the regret is concluded.

5 Simulation results

In this section, the simulation results are given.

5.1 The dynamical system, reference, and cost function

Consider the following tracking problem where the dynamics of the system is considered as

xk+1 =
[
1 1
0 1

]
xk +

[
1 0
0 1

]
uk + wk, (19)

and the reference signal is generated by

zk+1 =

 0 1 0
−1 1.5 0
0 0 1

 zk, z0 = [1,−2, 0.5]T ,

rk =
[
1 0 0
0 0 1

]
zk.

(20)

where

xk =
[
x1k

x2k

]
, wk =

[
w1k

w2k

]
, rk =

[
r1k

r2k

]
, ek =

[
e1k

e2k

]
=

[
x1k − r1k

x2k − r2k

]
.

10
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A quadratic cost with Q = 20I2, R = I2 is considered; that is

ck = eT
kQek + uT

kRuk.

Note that the presented algorithm is designed to handle any convex cost function, but a quadratic cost
is chosen for comparison with classical control approaches such as Linear Quadratic Regulator (LQR) and
H∞-controllers.

5.2 Disturbances

We consider 7 different cases of disturbance. In each case, the disturbance is introduced at the start of the
simulation, and as a result, the sequence of disturbances is consistent across all algorithms. The first three
cases involve randomly generated disturbances, while the remaining cases involve continuous disturbances,
which allows us to study how the algorithms perform when the disturbances are not stochastic. Also, a
worst-case disturbance case is considered to assess the performance of the tracking algorithm against an
adversary.

• Uniformly sampled disturbance It is considered the disturbance to be uniformly sampled from
the interval [0, 1].

• Constant disturbance The constant disturbance is considered as w1k = w2k = 1.

• Amplitude modulation disturbance The disturbance is considered as w1k = w2k =
sin(6πk/500) sin(8πk/500).

• Sinusoidal disturbance A sinusoidal disturbance is considered as w1k = w2k = sin(8πk/100).

• Gaussian disturbance Gaussian disturbances is utilized where w1k ∼ N (0, 0.01) and w2k ∼
N (0, 0.01) in this study. If the system’s dynamic is known, the optimal controller for an LQR cost is
a linear one (Bertsekas, 2012). The support for the Gaussian noise is not finite for the LQR method.
That said, the theoretical results require the disturbance to be bounded. However, the actual bound
does not necessarily need to be known and could be large, in contrast to robust control methods
such as H∞. In this paper’s simulation, the Gaussian noise generator (numpy.random.normal) is
utilized which is provided by Numpy in Python that generates bounded samples.

• Random walk disturbance It is assumed that the disturbance follows a random walk and is
generated by wk = 0.999wk−1 + ηk−1, where ηk−1 ∼ N (0, 0.01). The internal dynamics of the
random walk is chosen to be 0.999 instead of 1 in order to ensure the boundedness of the disturbance.
When the noise follows a random walk, the optimal LQR controller is linear. To illustrate this, the
random walk disturbance in equation 1 is replaced with

xk+1 = Axk +Buk + 0.999wk−1 + ηk−1.

Here, in each time step k, the state xk is measured, and according to Assumption 1, wk−1 is known.
A new state variable x̄k = [xT

k , w
T
k−1] is introduced, then one can obtain

x̄k+1 =
[
A 0.999I
0 0.999I

]
x̄k +

[
B
0

]
u+

[
I 0
0 I

]
ηk−1. (21)

Thus, equation 1 with a random walk disturbance can be viewed as an extended system described
by equation 21, where the noise ηk−1 is Gaussian. Consequently, the optimal controller for this
extended system is the LQR.

• Worst-case disturbance (Adversary) Tracking an unknown reference signal with an adversary
agent can be formulated as a two-player zero-sum game in which the control policy seeks to minimize
the value function, while the disturbance policy wk desires to maximize it. The goal is to find the

11
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feedback saddle point (u∗
k, w

∗
k) such that if we take the rolling cost ci = xT

i Qxi + uT
i Rui − γ2wT

i wi,
one has

J∗(xk) = min
uk

max
wk

T∑
i=k

[eT
i Qei + uT

i Rui − γ2wT
i wi]. (22)

The worst disturbance based on the formulation of the zero-sum game in (Kiumarsi et al., 2017) can
be computed at each state as w∗

k = −Kw(xk − rk) where Kw can be computed as

Kw =(ITPI − γ2I −DTPB(R+BTPB)−1)−1(ITPA− ITPB(R+BTPB)−1BTPA)

where P satisfies the game algebraic Riccati equation (GARE)

P =ATPA+Q− [ATPB ATPI]
[
R+BTPB BTPD
DTPB DTPD − γ2I

]−1 [
BTPA
DTPA

]
.

5.3 The compared control approaches

The effectiveness of the presented online tracking algorithm is shown by comparing it to other linear control
methods, including the LQR and H∞ approaches. These approaches optimize a quadratic performance index
and are considered optimal for Gaussian and worst-case disturbances, making them the best performers in
scenarios where these types of disturbances are present.

In the LQR approach, we consider two cases where the actual model of the system is known, as well as when
an estimated model is used for the design. We set T0 = 464, λ = 5 when we identify the dynamics of the
system in an approach. The details are given in the description of each algorithm. In the case of Adversarial
disturbance, the identified model from the Gaussian noise is used since the adversarial disturbance makes
the open-loop system unstable. Learning a system model despite an adversarial disturbance is a daunting
challenge and an open problem.

• Online state tracking in Algorithm 1: During the execution of the algorithm, the value of
K is maintained unchanged, which can be obtained based on a priori knowledge of the systems’
dynamics. Note that this K can be any stabilizing controller that the algorithm is assumed to have
access to. The other parameters are chosen as H = 5, mr = 5, mw = 5, and η = 0.0001, and M
and P are initialized as zero matrices. In this algorithm, no information about the dynamics of the
reference signal is needed. This algorithm only relies on the measured outputs of the reference signal
rk. Similarly, no information about the disturbance is Incorporated into this algorithm.

• LQR: The feedback controller gain Kfb is chosen as −(R+BTPrB)−1BTPrA, where Pr is calculated
using ARE(A,B,Q,R), assuming knowledge of the dynamics of the reference signal. Subsequently,
Kff is calculated using the approach mentioned in Theorem 1. The control law uk = Kfbxk +Kffzk

requires knowledge of the state of the reference signal, denoted as zk, which is constructed from rk

using the dynamics of the reference signal as described in Lemma 1 of (Yaghmaie & Modares, 2023).

• Certainty equivalent (C.E.) LQR and LQR for random walk: The feedback controller gain
Kfb is chosen as −(R + B̂TPrB̂)−1B̂TPrÂ, where Pr is calculated using ARE(Â, B̂, Q,R), with
(Â, B̂) being the identified system. Subsequently, Kff is computed with the method mentioned
in Theorem 1. Also, the control law uk = Kfbxk + Kffzk requires knowledge of the state of the
reference signal, denoted as zk, which is constructed from rk using the dynamics of the reference
signal as described in Lemma 1 of (Yaghmaie & Modares, 2023).
It is observed in Subsection 5.2 that when the disturbance is a random walk, the system dynamics
can be extended according to equation 21. The extended dynamics involve a Gaussian disturbance,
and consequently, LQR for the extended dynamics is used as the optimal controller. In this case,
the algorithm is referred to as “LQR for random walk”.

12
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Table 1: The final maximum and normal difference between the identified dynamics of the system (Â, B̂)
and the actual one (A,B). "Maximum difference" refers to the maximum difference in the identification of
entries of matrices A and B

Disturbance Max Difference for A Norm of Difference for A Max Difference for B Norm of Difference for B
Constant 0.14 0.27 0.03 0.04
Amplitude mod. 0.11 0.17 0.06 0.08
Sinusoidal 0.16 0.27 0.03 0.04
Gaussian 0.07 0.07 0.03 0.03
Random walk 0.22 0.28 0.07 0.10
Uniformly sam. 0.06 0.08 0.02 0.03

• Certainty equivalent (C.E.) H∞-control: The Certainty equivalent (C.E.) H∞-control ap-
proach aims to design a controller, denoted as Kfb, for the system described by equation 1, such
that the L2-norm of the system’s output, scaled by

√
Q, divided by the L2-norm of the worst-case

disturbance input, denoted as w, is less than or equal to a threshold. For the sake of comparison,
it is assumed that the dynamics of the reference input, described by equation 20, are known. This
knowledge is utilized to construct zk from rk as described in Lemma 1 of (Yaghmaie & Modares,
2023). Then, the control input uk is calculated as uk = Kfbxk +Kffzk, where Kff is the feedforward
controller computed with the method mentioned in Theorem 1. Certainty equivalent H∞-control
approach is conservative, as it ensures a finite L2-gain for the worst-case disturbance.

5.4 Evaluation of the identification algorithm

In this subsection, the performance of the identification algorithm is discussed for the 6 cases of the distur-
bance in Subsection 5.2. In Table 1, the maximum difference between the actual system and the identified
one is summarized, as well as the norm of their difference. When the noise is non-Gaussian, system iden-
tification using random binary inputs and the least squares method have different implications. Random
binary inputs can provide diverse frequency content for analysis, but they may be more sensitive to outliers
and non-linear distortions, resulting in potentially less accurate parameter estimates. Meanwhile, the least
squares method assumes Gaussian noise, and when this assumption is violated, the parameter estimates ob-
tained may be biased or less accurate due to the influence of non-Gaussian noise. Thus, the choice between
these methods should consider the specific non-Gaussian characteristics of the noise to ensure reliable system
identification results. In table 1 the results gained from the presented system identification show that even
though the disturbances are not Gaussian except for one case, the identification errors are very close to it,
with a maximum L2 norm error of 0.28 for random walk noise and a minimum L2 norm error of 0.03 for
Gaussian noise.

5.5 Evaluation of the Tracking Algorithm

In Fig. 1, the reference signal is plotted over t = [9900, 10000] for the representation purpose. The
algorithms in Subsection 5.3 are run for T = 10000 steps and the final average costs are brought in Table 2.
The performance of the algorithms over t = [9900, 10000] is depicted in Fig. 2 - 8.

When the disturbance follows a non-Gaussian or non-random walk distribution, there is no analytical ap-
proach to determine the optimal linear feedback policy. In such cases, the H∞-controller is commonly
employed to design a linear feedback policy that ensures a finite L2-gain for the worst-case disturbance, al-
beit with a conservative approach. If the actual disturbance is not the worst-case scenario, the H∞-controller
may not yield the best performance. According to Fig. 2 - 7, the presented algorithm has an even better
performance in constant, amplitude modulation, sinusoidal, random walk, uniformly distributed, and adver-
sarial disturbances. Additionally, the performance of the presented algorithm is comparable to the actual
LQR and certainty-equivalent LQR when Gaussian noise is present.

In the case where the disturbance is Gaussian and the dynamics of the reference signal and the actual
system are known, the optimal linear feedback policy can be determined by selecting Kfb = −(R +
BTPrB)−1BTPrA, where Pr = ARE(A,B,Q,R), and subsequently calculating Kff . For the sake of the

13



Published in Transactions on Machine Learning Research (01/2024)

Table 2: The final average cost, as introduced in equation 6, incurred by the different algorithms over a
duration of T = 10000 steps is presented. Notably, the most competitive average cost values, indicated in
bold, are reported for each respective disturbance case. It is noteworthy that the evaluation of LQR for
random walk is solely applicable to scenarios involving random walk disturbances, and thus its performance
is only assessed in such instances. C.E. refers to certainty equivalent and R.W. refers to random walk.

Disturbance Algorithm 1 C.E. LQR C.E. H∞ C.E./Actual LQR R.W. LQR
Constant 8.04 40.07 29.18 N.A. 57.76
Amplitude mod. 7.83 16.74 12.72 N.A. 17.58
Sinusoidal 15.21 27.71 20.08 N.A. 30.21
Gaussian 5.62 5.32 5.29 N.A. 5.25
Random walk 17.75 236.11 163.02 19.22 / 15.48 236.68
Uniformly sam. 10.09 19.51 16.09 N.A. 21.99
Adversarial 13.76 17.21 14.75 N.A. 17.17

experiment, one can take Kfb computed this way as the initial stabilizing control gain for the presented
algorithm as well. The results can be seen in Table 2. The average cost of the presented tracking approach
is considerably close to the optimal control when the noise is Gaussian (LQR). This can be seen in Figure 9.
A similar discourse is applicable to the scenario of a random-walk disturbance, as elucidated in Subsection
5.2, where it is demonstrated that the optimal controller for the system in the presence of a random-walk
disturbance can be obtained by solving an LQR problem for the extended system. That said, the uncer-
tainty that is present in the model identification of the system resulted in poorer performance of the certainty
equivalents as compared to the presented algorithm.

6 Conclusion

In this paper, the challenge of state tracking in the presence of general disturbances is addressed, even
when the dynamics of the actual system are unknown. An algorithm that combines an identification period
with a memory-augmented robust tracking algorithm is introduced. This presented algorithm enables online
tuning of the controller parameters to achieve state tracking and disturbance rejection while minimizing
convex costs. It is shown that the presented online algorithm achieves a policy regret of O(T 2/3). In our
future research, we plan to extend our approach to partially observable dynamical systems and eliminate the
bounded assumption on the reference signal.

Figure 1: The reference signals used for the evaluation and comparison of various control algorithms under
different disturbances.
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Figure 2: Tracking error for constant disturbance for the presented Algorithm 1, versus certainty equivalent
H∞-control, certainty equivalent LQR control, and LQR control knowing the dynamics of the system using
the reference signals in Fig. 1.

Figure 3: Tracking error for amplitude modulation disturbance for the presented Algorithm 1, versus cer-
tainty equivalent H∞-control, certainty equivalent LQR control, and LQR control knowing the dynamics of
the system using the reference signals in Fig. 1.
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A Real-world Application Example

In the main body of the paper, we compared the performance of the presented algorithm with LQR, H∞,
and their certainty equivalent versions. In this subsection, the implementation of the algorithm is brought
on a real-world application. The operational efficiency of lithium-ion batteries is inherently influenced by
various factors in real-world situations, such as ambient temperature, battery aging, and operational status.
These factors pose significant risks to the secure functioning of lithium batteries and may potentially lead to
undesirable damage to the connected equipment. Consider the following tracking a constant signal problem
where the dynamics of the system of a Lithium-ion battery from (Fan et al., 2023; Wang et al., 2022a) as
shown in Figure 10 is

xk+1 =

1 − 1
R1C1

0 0
0 1 − 1

R2C2
0

0 0 1

xk +

 1
C11
C2

− 1
Cb

uk + wk, (23)

where nominal values are (C1, C2, Cb) = (39.91F, 3.50F, 40F ) and (R1, R2) = (0.0269 Ω, 7.3 Ω) and the
reference signal is generated by

zk+1 =

1 0 0
0 1 0
0 0 1

 zk, z0 = [−0.02,−5.20, 0.89]T ,

rk =

1 0 0
0 1 0
0 0 1

 zk.

(24)

where

xk =

x1k

x2k

x3k

 , wk =

w1k

w2k

w3k

 , rk =

r1k

r2k

r3k

 , ek =

e1k

e2k

e3k

 =

x1k − r1k

x2k − r2k

x3k − r3k

 .
A quadratic cost with Q = I3, R = 1 is considered; that is

ck = eT
kQek + uT

kRuk.

A.1 Disturbances

Same as the previous simulation, in this section we brought the comparison of the different control algorithms
implemented on the system under different disturbances.

• Uniformly sampled disturbance It is considered the disturbance to be uniformly sampled from
the interval [0, 0.5].

• Constant disturbance The constant disturbance is considered as w1k = w2k = w3k = 0.05.

• Amplitude modulation disturbance The disturbance is considered as w1k = w2k = w3k =
0.05 × sin(6πk/500) sin(8πk/500).

• Sinusoidal disturbance A sinusoidal disturbance is considered as w1k = w2k = w3k = 0.05 ×
sin(8πk/100).

• Gaussian disturbance Gaussian disturbances is utilized where w1k ∼ N (0, 0.05) and w2k ∼
N (0, 0.05) in this case.

• Worst-case disturbance (Adversary) Same as explained in Section 5, the worst-case disturbance
is generated using the zero-sum game formulation.
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Table 3: The final maximum and normal difference between the identified dynamics of the system (Â, B̂)
and the actual one (A,B). "Maximum difference" refers to the maximum difference in the identification of
entries of matrices A and B

Disturbance Max Difference for A Norm of Difference for A Max Difference for B Norm of Difference for B
Constant 0.89 0.89 0.00 0.00
Amplitude mod. 0.09 0.11 0.00 0.00
Sinusoidal 0.19 0.25 0.00 0.00
Gaussian 0.32 0.45 0.00 0.00
Uniformly sam. 0.65 0.68 0.27 0.27

A.2 The compared control approaches

same as the previous simulation example, the below control algorithms are employed to assess their perfor-
mance against the previously mentioned disturbances.

• Online state tracking in Algorithm 1:During the execution of the algorithm, the value of K is
maintained unchanged, which can be obtained based on a priori knowledge of the systems’ dynamics.
Note that this K can be any stabilizing controller that the algorithm is assumed to have access to.
The other parameters are chosen as H = 5, mr = 5, mw = 5, and η = 0.0001, and M and P are
initialized as zero matrices.

• LQR with the actual system matrices

• Certainty equivalent (C.E.) LQR

• Certainty equivalent (C.E.) H∞-control

The settings of the last three algorithms are the same as defined before.

A.3 Evaluation of the identification algorithm

In this subsection, the performance of the identification algorithm is discussed for the 5 cases of the dis-
turbance mentioned in the previous section. The identification period for this system is 293. In Table 3,
the maximum difference between the actual system and the identified one is summarized, as well as the L2
norm of their difference. As can be seen in Table 3, the performance of the system identification is the worst
for the "Constant disturbance" case with L2(A − Â) = 0.89 which is similar to the results of the previous
example. The best identification accuracy happened for the "Amplitude modulation" case.

A.4 Evaluation of the Tracking Algorithm

for this example, the algorithms are run for T = 5000 steps and the final average costs are brought in Table
4. Tracking the constant signals for the three states of the system t = [4900, 5000] is depicted in Fig. 11 -
16. As it can be seen, due to the inherent limitations in computing the feedforward term during tracking,
particularly when matrix B lacks square dimensions, the accuracy of the feedforward term is compromised.
Consequently, across all algorithms reliant on this computation such as C.E. LQR and H∞, a discernible
decline in tracking performance becomes evident, emphasizing the superiority of the presented algorithm. It
can be seen in Table 4, that the presented algorithm outperforms all other methods in the tracking of the
defined reference signal.
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Table 4: The final average cost, as introduced in equation 6, incurred by the different algorithms over a
duration of T = 5000 steps is presented. Notably, the most competitive average cost values, indicated in
bold, are reported for each respective disturbance case.

Disturbance Algorithm 1 C.E. LQR C.E. H∞ LQR
Constant 2.35 28.28 51.15 30.77
Amplitude mod. 1.34 23.32 2.02 22.80
Sinusoidal 1.17 27.36 20.94 22.63
Gaussian 1.19 30.51 70.02 22.63
Uniformly sam. 1.94 31.45 26.01 23.61
Adversarial 1.77 12.66 2.60 7.58

Appendix B: Theoretical Results

B Results related to the memory augmented controller

In this section, a list of results related to the memory-augmented controllers is brought.

• Lemma 3 provides bounds for ΨK,h
k,y and ψK,h

k,z .

• Lemma 4 gives bounds on the states and inputs.

• Lemma 5 provides a bound on the tracking error.

• Lemma 6 defines the Lipschitz condition on the truncated cost.

• Lemma 7 gives a bound on the gradient of the truncated cost for the tracking algorithm.

Lemmas 3, 6-7 are given in (Yaghmaie & Modares, 2023) and Lemmas 4-5 are inspired by (Yaghmaie &
Modares, 2023) and are essential in proving the main results in Theorem 4.

Lemma 3 (Lemma 4 in (Yaghmaie & Modares, 2023)) Let Assumptions 1-5 hold. Suppose that K
is (κ, γ)-strongly stable. Then,

∥ΨK,h
k,y ∥ ≤ κ2(1 − γ)yIy≤h−1 +mwκ

5κ2
b(1 − γ)y−1,

∥ψK,h
k,z ∥ ≤ mrκ

5κ2
b(1 − γ)z−1.

(25)

Lemma 4 Let Assumptions 1-5 hold. Define

Y0:k := [M0:k, P0:k],
YH,k := [Mk−H:k, Pk−H:k].

D :=γ−1κwκ
3 + (κrmr + κwmw)(1 − γ)−1κ6κ2

b

1 − κ2(1 − γ)H
+ (κw + κbκκz)κbκ

3

γ
,

Suppose that K and K∗
fb are (κ, γ)-strongly stable. Define xlin

k (K∗
fb,K

∗
ff ) as the system state corresponding

to an optimal linear feedback controller. Then, one has

max(∥xπ
k (Y0:k−1)∥, ∥x̃π

k (YH,k−1)∥, ∥xlin
k (K∗

fb,K
∗
ff )∥) ≤ D, (26)

max(∥uπ
k (Y0:k)∥, ∥ũπ

k (YH,k)∥) ≤ D,

∥xπ
k (Y0:k−1) − x̃π

k (YH,k−1)∥ ≤ κ2(1 − γ)HD,

∥uπ
k (Y0:k) − ũπ

k (YH,k)∥ ≤ κ3(1 − γ)HD.
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Proof: Using equation 11, one has

∥xπ
k∥ ≤∥ÃH

K∥∥xπ
k−H∥ + κw

mw+H−1∑
y=0

∥ΨK,H
k,y (Mk−H−1:k−1)∥ + κr

mr+H−1∑
z=0

∥ψK,H
k,z (Pk−H−1:k−1)∥

≤κ2(1 − γ)H∥xπ
k−H∥ + κwγ

−1(κ2 +mwκ
5κ2

b(1 − γ)−1) + κrγ
−1(mrκ

5κ2
b)(1 − γ)−1.

The above recursion satisfies

∥xπ
k∥ ≤ γ−1κwκ

2 + (κrmr + κwmw)(1 − γ)−1κ5κ2
b

1 − κ2(1 − γ)H
.

Similarly, from equation 13, one has

∥x̃π
k (YH,k−1)∥ ≤

mw+H−1∑
y=0

∥ΨK,H
k,y (Mk−H−1:k−1)wk−y−1∥ +

mr+H−1∑
z=0

∥ψK,H
k,z (Pk−H−1:k−1)rk−z∥

≤ γ−1κwκ
2 + γ−1(κwmw + κrmr)κ5κ2

b(1 − γ)−1 ≤ D.

where the last inequality is obtained because 0 ≤ 1 − κ2(1 − γ)H ≤ 1. Moreover,

∥xlin
k (K∗

fb,K
∗
ff )∥ =∥

k−1∑
y=0

Ãy
K∗

fb
wk−y−1 +

k−1∑
i=0

Ãi
K∗

fb
BK∗

ffzk−i∥

≤γ−1κ2(κw + κκbκz) ≤ D.

Besides, one has

∥uπ
k (Y0:k)∥ = ∥Kxπ

k (Y0:k−1) +
mw∑
t=1

M [t−1]wk−t +
mr−1∑
s=0

P [s]rk−s∥

≤ κ∥xπ
k (Y0:k−1)∥ + κw

mw∑
t=1

κbκ
3(1 − γ)(t−1) + κr

mr−1∑
s=0

κbκ
3(1 − γ)s

≤ γ−1κwκ
3 + (κrmr + κwmw)(1 − γ)−1κ6κ2

b

1 − κ2(1 − γ)H
+ (κw + κr)κbκ

3

γ
≤ D.

Similarly,

∥ũπ
k (YH,k)∥ = ∥Kx̃π

k (YH,k−1) +
mw∑
t=1

M [t−1]wk−t +
mr−1∑
s=0

P [s]rk−s∥

≤ κ∥x̃π
k (YH,k−1)∥ + κw

mw∑
t=1

κbκ
3(1 − γ)(t−1) + κr

mr−1∑
s=0

κbκ
3(1 − γ)s

≤ γ−1κwκ
3 + γ−1(κwmw + κrmr)κ6κ2

b(1 − γ)−1 + (κw + κr)κbκ
3

γ
≤ D.

To bound the difference between the actual and truncated state, from equation 13 and equation 11, one has

∥xπ
k (Y0:k−1) − x̃π

k (YH,k−1)∥ = ∥ÃH
Kx

π
k−H(Y0:k−H−1)∥ ≤ κ2(1 − γ)HD,

which gives

∥uπ
k (Y0:k) − ũπ

k (YH,k)∥ ≤ ∥K∥∥ÃH
Kx

π
k−H(Y0:k−H−1)∥ ≤ κ3(1 − γ)HD.

This completes the proof.
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Lemma 5 Let Assumptions 1-5 hold. Suppose that K is (κ, γ)-strongly stable. Define the tracking error as

ek := xπ
k (Y0:k−1) − Fzk.

Then,

∥ek∥ ≤ κwγ
−1(κ2 +mwκ

5κ2
b(1 − γ)) + κrγ

−1(1 − γ)l−1mrκ
5κ2

b + κr

l−1∑
z=0

κz.

Proof: Without loss of generality and for simplicity, assume that ∥F∥ = ∥F−1∥ ≤ κ. The tracking error
reads

ek =
k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1 +

k−1∑
z=0

ψK,k
k,z (P0:k−1)rk−z − Fzk.

Using the bounds in equation 25

∥ek∥ ≤
k−1∑
y=0

(κ2(1 − γ)yIy≤k−1 +mwκ
5κ2

b(1 − γ)y−1)κw + κκz +
k−1∑
z=0

mrκ
5κ2

b(1 − γ)z−1κr

≤κwγ
−1(κ2 +mwκ

5κ2
b(1 − γ)−1) + κκz + κrγ

−1mrκ
5κ2

b ,

which is based on the fact that
∑N

n=0(1 − γ)n ≤ 1
γ in the last inequality.

Lemma 6 (Lemma 7 in (Yaghmaie & Modares, 2023)) Let Assumptions 1-5 hold. Define YH,k =
[Y1, ..., Yt, ..., Y2H ] = [Mk−H:k Pk−H:k] and ỸH,k = [Y1, ..., Ỹt, ..., Y2H ] where ỸH,k has all its elements the
same as YH,k, except one element. Then, the truncated cost function in equation 15 satisfies the following
Lipschitz condition

|fk(Y1, , ..., Yt, ..., Y2H) − fk(Y1, , ..., Ỹt, ..., Y2H)| ≤ Lf ∥Yt − Ỹt∥

where

Lf := 3GcDκbκ
3(κr + κw).

Lemma 7 (Lemma 8 in (Yaghmaie & Modares, 2023)) Let Assumptions 1-5 hold. The following gra-
dient bound is satisfied

∥∇YH,k
fk(YH,k)∥F ≤ 6Hd2Gc (κr + κw)κbκ

3γ−1 =: Gf

where d = max(n,m).

C Results related to Algorithm SysId

In this subsection, a list of the properties related to Algorithm SysId is brought. More specifically:

• Theorem 3 gives the bounds on the estimated dynamics.

• Lemma 8 gives bounds on the state and the input while Algorithm SysId is running.

To this end, Some additional notations will be required along with the proofs. Let

• J(A|A,B, {w}, {r}) be representing the total cost associated with executing the algorithm A over
the T time steps. With some abuse of notations, one can say J(K|A,B, {w}, {r}) shows the total
cost associated with executing the linear controller K,

25



Published in Transactions on Machine Learning Research (01/2024)

• xk(A|A,B, {w}, {r}) be the state visited at time k, and

• uk(A|A,B, {w}, {r}) be the control input at time k.

Also, if instead of (A,B) in the above notations, (Â, B̂) are used, it means that they are associated with the
identified system instead of the actual one.

Theorem 3 (Theorem 19 in (Hazan et al., 2020)) If the system identification algorithm is run for T0
steps, the output pair (Â, B̂) satisfies, with probability 1 − δ, that ∥Â−A∥T0 , ∥B̂ −B∥T0 ≤ ϵA,B, where

T0 = 103λmn2κ10 κ2
w

γ2ϵ2A,B

log κmn
δ

.

Lemma 8 Assume that Algorithm SysId is run for T0 steps. Select the input as uk = Kxk + ηk, where
ηk = [ηk1, ..., ηkm]T , ηkj ∼ {±1}, j = 1, ...,m. Define

Did := κ3

γ
(κw + κb

√
m) +

√
m.

Then,

∥xk∥ ≤ Did, ∥uk∥ ≤ Did, (27)

J0 =
T0∑

k=1
∥ck(xk, uk) − ck

minK ∈K
(xk, uk)∥ ≤ 4T0GcD

2
id. (28)

Proof. From the strong stability of K, for xk, one has

∥xk+1∥ ≤ ∥
k∑

i=0
(A+BK)k−i(wi +Bηi)∥

≤
k∑

i=0
κ2(1 − γ)k−i(κw + κb∥ηi∥).

Based on ηkj ∼ {±1}m, one has ∥ηk∥ ≤
√
m. As a result, using the fact that

∑k
i=0(1 − γ)i ≤ 1

γ

∥xk∥ ≤ κ2

γ
(κw + κb

√
m). (29)

For ∥uk∥, one can derive the following

∥uk∥ ≤ ∥Kxk + ηk∥ ≤ κ
κ2

γ
(κw + κb

√
m) +

√
m =: Did.

Next, an upper bound for ∥ck(xk, uk) − minK∈K ck(xk, uk)∥ is computed. Based on Assumption 5, one has

∥ck(xk, uk) − min
K∈K

ck(xk, uk)∥

≤ GcDid∥xk − xk(KOpt|A,B, {w}, {r})∥ +GcDid∥uk − uk(KOpt|A,B, {w}, {r})∥
≤ 2GcD

2
id + 2GcD

2
id ≤ 4GcD

2
id.

The result in equation 28 is concluded by summing the above inequality over T0 steps.
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D Result related to Algorithm 1

The following lemma provides an estimation of the upper bounds for the state, control input, and perturbation
during the tracking stage.

Lemma 9 In the tracking step of Algorithm 1 for k ≥ T0 + 1 subsequently,

∥xπ
k∥ ≤ κ2

γ
(κw + κ2

b

κ3

γ
(κw + Ew,T0 + κ2

γ
(κw + κb

√
m)) + κ2

b

κ3

γ
κr) =: Dx, (30)

∥uπ
k∥ ≤ κDx + κb

κ3

γ
(κw + Ew,T0 + κ2

γ
(κw + κb

√
m)) + κb

κ3

γ
κr =: Du. (31)

and

∥ŵk − wk∥ ≤ ϵA,B(Dx + (κDx + κ3κb

γ
(κw + Ew,T0 + κ2

γ
(κw + κb

√
m)) + κ3κb

γ
κr)) =: Ew, (32)

ϵA,B(κDx,T0 + κb
κ3

γ
(κ

2

γ
(κw + κb

√
m)) + κb

κ3

γ
κr) =: Ew,T0

where Dx, Du and Ew are the upper bounds to the state, control input and perturbation estimation error,
respectively. Ew,T0 is the upper bound on the perturbation error at k = T0.

Proof. We prove the result by induction. First note that for equation 1 if the input is chosen as

uπ
k = Kxk +

mw∑
j=1

M [j−1]ŵk−j +
mr∑
s=0

P [s]rk−s, (33)

the state xπ
k+1 reads

xπ
k+1 =

k∑
i=0

(A+BK)k−i(wi +B

mw∑
j=1

M [j−1]ŵk−j +B

mr∑
s=0

P [s]rk−s).

As a result,

∥xπ
k+1∥ ≤ ∥

k∑
i=0

(A+BK)k−i(wi +B

mw∑
j=1

M [j−1]ŵk−j +B

mr∑
s=0

P [s]rk−s)∥ (34)

≤
k∑

i=0
κ2(1 − γ)k−i(κw + κb∥ŵk∥

mw∑
j=1

κbκ
3(1 − γ)t−1 + κb∥rk∥

mr∑
s=0

κbκ
3(1 − γ)s).

At time step k = T0, one defines ŵk = xT0 whose upper bound is computed in equation 29. Thus, for k = T0,
one has

∥ŵT0∥ ≤ κ2

γ
(κw + κb

√
m).

Based on the fact that
∑k

i=0(1 − γ)i ≤ 1
γ for k = T0, one gets

∥xπ
T0+1∥ ≤ κ2

γ
(κw + κ2

b

κ3

γ
(κ

2

γ
(κw + κb

√
m)) + κ2

b

κ3

γ
κr) =: Dx,T0+1.
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Then,

∥uπ
T0+1∥ ≤ ∥Kxπ

k+1∥ +
mw∑
j=1

∥M [j−1]ŵk−j∥ +
mr∑
s=0

∥P [s]rk−s∥

≤ κDx,T0+1 + ∥ŵk∥
mw∑
j=1

κbκ
3(1 − γ)t−1 + ∥rk∥

mr∑
s=0

κbκ
3(1 − γ)s

≤ κDx,T0+1 + κb
κ3

γ
(κ

2

γ
(κw + κb

√
m)) + κb

κ3

γ
κr := Du,T0+1.

Assuming that ∥A− Â∥, ∥B − B̂∥ ≤ ϵA,B , at k > T0

∥ŵk − wk∥ ≤ ∥((A− Â)xk + (B − B̂)uk)∥ ≤ ϵA,B∥xk∥ + ϵA,B∥uk∥.

Thus,

∥ŵk − wk∥ ≤ ϵA,B(κ
2

γ
(κw + κ2

b

κ3

γ
(κ

2

γ
(κw + κb

√
m) + κ2

b

κ3

γ
κr))+

ϵA,B(κDx,T0 + κb
κ3

γ
(κ

2

γ
(κw + κb

√
m)) + κb

κ3

γ
κr) := Ew,T0 ,

and

∥ŵk∥ ≤ max(Ew,T0 + κw, ∥ŵT0∥).

Then, if the upper bound for ∥ŵk∥ is replaced with Ew,T0 + κw + ∥ŵT0∥ in equation 34, the bounds in
equation 30-equation 31 are concluded.

E Helper results for the proof of the regret bound

To prove the regret bound, a few results are needed.

• Lemma 10 is a technical result to be used in Lemma 11.

• Lemma 11 gives an upper bound for the difference in the costs for the real and estimated systems
using a linear controller.

• Lemma 12 provides an upper bound for the difference between the cost of using the tracking algo-
rithm and the minimum cost that can be achieved by the same class of controller.

Lemma 10 For any matrix pair P,∆P , such that ∥P∥, ∥P + ∆P∥ ≤ 1 − γ, it holds

∞∑
i=0

∥(P + ∆P )i − P i∥ ≤ ∥∆P∥
γ2 .

Proof. This proof is based on an inductive argument. First,we prove that the inequality ∥(P +∆P )i −P i∥ ≤
∥∆P∥i(1 − γ)i−1 holds true. Then, the validity of this claim can be easily verified for i = 0 and i = 1. Next,
it is shown that this claim is valid for the case i+ 1. Observe that

∥(P + ∆P )i+1 − P i+1∥ ≤ ∥(P + ∆P )(P + ∆P )i − (P )(P )i∥
≤ ∥P ((P + ∆P )i − P i) + ∆P (P + ∆P )i∥
≤ ∥P ((P + ∆P )i − P i)∥ + ∥∆P (P + ∆P )i∥
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It is known from the claim that ∥(P+∆P )i−P i∥ ≤ i∥∆P∥(1 − γ)i−1 and it is assumed that ∥P+∆P∥ ≤ 1−γ,
thus,

∥P ((P + ∆P )i − P i)∥ + ∥∆P (P + ∆P )i∥ ≤ ∥P∥∥((P + ∆P )i − P i)∥ + ∥∆P (P + ∆P )i∥
≤ (1 − γ)i∥∆P∥(1 − γ)i−1 + ∥∆P∥(1 − γ)i

≤ (i+ 1)(1 − γ)i∥∆P∥.

Then,
∞∑

i=0
∥(P + ∆P )i − P i∥ =

∞∑
i=−1

∥(P + ∆P )(i+1) − P (i+1)∥ ≤

∞∑
i=−1

(i+ 1)(1 − γ)i∥∆P∥ =
∞∑

i=0
(i)(1 − γ)i−1∥∆P∥.

(Hazan et al., 2020) in Lemma 17 showed that
∑∞

i=0 i(1 − γ)i−1 ≤ 1
γ2 . Thus, the proof is concluded.

Lemma 11 Assuming that ∥A− Â∥ ≤ ϵA,B , ∥B− B̂∥ ≤ ϵA,B, where ϵA,B ≤ 0.25k−3γ, and that K is (κ, γ)-
strongly stable with respect to the pair (A,B). Then, from Lemma 9, for any perturbation sequence satisfying
∥wk − ŵk∥ ≤ Ew, and it is assumed that ∥ŵ0∥ ≤ W0, the following statement holds

|J(K|Â, B̂, {ŵ}, {r}) − J(K|A,B, {w}, {r})| ≤ poly(κ, 1
γ
, λ,m, n, κw, κz)GcT T

−1/2
0 .

Proof. One has ∥L∥ ≤ 1 − γ for (A,B) and ∥L̂∥ ≤ 1 − γ + 2κ3ϵA,B from Lemma 1. It can be said that
L̂ = L+∆L and ∥∆L∥ ≤ 2κ3ϵA,B . Using Lemma 10 for L and L̂ it can be stated that if one take ϵA,B = γ

4κ3 ,
one will have ∥L∥ and ∥L̂∥ ≤ 1 − γ

2 . The linear controller K is as equation 3, and is (κ, γ)-strongly stable
for (A, B). It holds

xk(K|A,B, {w}, {r}) =
k∑

i=0
(A+Bkfb)i(BKffzk−i + wk−i).

Thus, with the assumption that κb ≤ κ without any loss of generality,

∥xk(K|A,B, {w}, {r})∥ ≤ κ4κz

γ
+ κ2κw

γ
.

Similarly it can be said that by Lemma 1, since ϵA,B = γ
4κ3 , κ > 1, and 0 ≤ γ ≤ 1 one has ∥Â∥ ≤

∥A∥ + ϵA,B and ∥B̂∥ ≤ ∥B∥ + ϵA,B , hence

∥Â∥ ≤ κ+ γ

4κ3 ≤ κ+ 1
4κ3 ≤ 2κ,

∥B̂∥ ≤ κ+ γ

4κ3 ≤ κ+ 1
4κ3 ≤ 2κ.

Thus, K is (2κ, γ
2 )-strongly stable for (Â, B̂) and

∥xk(K|Â, B̂, {ŵ}, {r})∥ ≤ (2κ)4κz

γ/2 + (2κ)2κz

γ/2 W0 ≤ 32κ4κz

γ
+ 8κ2W0

γ
.
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Subsequently:

∥xk+1(K|A,B, {w}, {r}) − xk+1(K|Â, B̂, {ŵ}, {r})∥

≤
k∑

i=0
∥(A+BKfb)iwk−i − (Â+ B̂kfb)iŵk−i + (A+BKfb)iBKffzk−i − (Â+ B̂Kfb)iB̂Kffzk−i∥

≤
k∑

i=0
(∥(A+BKfb)iwk−i − (A+BKfb)iŵk−i∥ + ∥(A+BKfb)iŵk−i − (Â+ B̂kfb)iŵk−i∥

+ ∥(A+BKfb)iBKffzk−i − (Â+ B̂Kfb)iB̂Kffzk−i∥).

Starting from the first term, one has
k∑

i=0
∥(A+BKfb)iwk−i − (A+Bkfb)iŵk−i∥) ≤ κ2Ew

γ
+ κ2(1 − γ)kW0.

For the second term, one has ∥Â + B̂kfb∥ ≤ Q−1L̂Q and ∥A + Bkfb∥ ≤ Q−1LQ. Since ∥L∥, ∥L̂∥ ≤ 1 − γ
2 ,

then ∥Â+B̂kfb∥, ∥A+Bkfb∥ ≤ Q−1(1− γ
2 )Q. Additionally, ∥Q∥, ∥Q−1∥ ≤ κ. Using Lemma 10 and knowing

∥∆L∥ ≤ 2κ3ϵA,B ,

k∑
i=0

(∥(A+BKfb)iŵk−i − (Â+ B̂kfb)iŵk−i∥)

≤
k∑

i=0
(∥(Q−1LQ)iŵk−i − (Q−1L̂Q)iŵk−i∥)

≤ κ2W0

k∑
i=0

∥(L)i − (L̂)i∥

≤ 8κ5 ϵA,B

γ2 W0.

For the third term, following the same steps from the last part,

k∑
i=0

∥((A+BKfb)iBKffzk−i − (Â+ B̂Kfb)iB̂Kffzk−i)∥

≤ 4κ4(2κ3ϵA,Bκz)
γ2 .

Thus,

∥xk+1(K|A,B, {w}, {r}) − xk+1(K|Â, B̂, {ŵ}, {r})∥

≤ κ2Ew

γ
+ κ2(1 − γ)kW0 + 8W0κ

5ϵA,B

γ2 + 8κ7ϵA,Bκz

γ2 .

From assumption 5, it can be shown that ∥xk∥, ∥uk∥ ≤ D and ∥∇xck(x, u)∥, ∥∇uck(x, u)∥ ≤ GcD. With
abuse of the use of the notation, let D̂ denote the bound related to the identified system. It holds:

uk+1(K|Â, B̂, {ŵ}, {r}) = Kfbxk+1(K|Â, B̂, {ŵ}) +Kffzk+1.
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Thus,

∥uk+1(K|Â, B̂, {ŵ}, {r})∥ ≤ 8κ3W0

γ
+ 32κ5κz

γ
+ κκz =: D̂.

As a result, we have

|J(K|Â, B̂, {ŵ}, {r}) − J(K|A,B, {w}, {r})| ≤ TGcD̂∥xk+1(K|A,B, {w}, {r}) − xk+1(K|Â, B̂, {ŵ}, {r})∥

≤ TGc(8κ3W0

γ
+ 32κ5κz

γ
+ κκz)(8κ5W0ϵA,B

γ2 + 8κ7ϵA,Bκz

γ2 + κ2(1 − γ)kW0 + κ2Ew

γ
).

From equation 32, one can derive Ew ≤ poly(κ, κb,m, κw, γ
−1, κr)ϵA,B , and W0 ≤ Ew. Also, from Theorem

3, it is known that T0 = ϵ−2
A,Bpoly(κ, κw,m, n). Thus, one can write the above inequality as

|J(K|Â, B̂, {ŵ}, {r}) − J(K|A,B, {w}, {r})| ≤ poly(κ, 1
γ
, λ,m, n, κw, κz)GcT T

−1/2
0 .

Lemma 12 Let Assumptions 1-5 hold. Let xπ∗

k denote the state using the optimal memory-augmented
controller uπ∗

k . Set H = mw = mr. Let Y ∗
H,k := [M∗, ..,M∗, P ∗, ..., P ∗] denote the optimal weights learned

by Algorithm 1, each one of the weights repeated for H times, and x̃π
k (Y ∗

H,k), ũπ
k (Y ∗

H,k) denote the truncated
states and control using these optimal weights according to equation 13-equation 14. Then

|ck(x̃π
k (Y ∗

H,k) − rk, ũ
π
k (Y ∗

H,k)) − ck

(
xπ∗

k − rk, u
π∗

k

)
| ≤ 2GcD

2κ3(1 − γ)H .

Proof of Lemma 12: Stacking optimal learned weights for k times makes Y ∗
0:k := [M∗, ...,M∗, P ∗, ..., P ∗], and

then stacking them for H times defines Y ∗
H,k := [M∗, ...,M∗, P ∗, ..., P ∗]. Based on Lemma 4, one has

|ck(x̃π
k (Y ∗) − rk, ũ

π
k (Y ∗)) − ck

(
xπ∗

k − rk, u
π∗

k

)
| ≤ Gc D ∥(xK

k (Y ∗
0:k−1) − rk) − (x̃π

k (Y ∗
H,k) − rk)∥

+GcD ∥uK
k (Y ∗

0:k−1) − ũπ
k (Y ∗

H,k)∥ ≤ 2GcD
2κ3(1 − γ)H .

This completes the proof.

Theorem 4 Suppose A :=Algorithm RobTrack is executed under Assumptions 1-5. Let H = mw = mr.
Select the learning rate η and the memory size H to satisfy η = O( 1

Gcκw

√
T

), H = O(log κ2T
γ ), and T0 = T 2/3.

The regret of Algorithm RobTrack on the identified system (Â, B̂) and the perturbation {ŵ} is

J(A|Â, B̂, {ŵ}, {r}) − J(Aopt|Â, B̂, {ŵ}, {r}) = O(
√
T ),

where J(Aopt|Â, B̂, {ŵ}, {r}) denotes the total cost associated with the optimal memory-augmented policy
uπ∗

k .
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Proof: To begin, one has

J(A|A,B, {w}, {r}) − J(Aopt|A,B, {w}, {r}) =
T∑

k=1
ck(ek, uk) −

T∑
k=1

ck

(
xπ∗

k − rk, u
π∗

k )

=
T∑

k=1
ck(ek(Y0:k−1), uk(Y0:k−1)) −

T∑
k=1

fk(YH,k)︸ ︷︷ ︸
αT

+
T∑

k=1
fk(YH,k) −

T∑
k=1

fk(Y ∗)︸ ︷︷ ︸
βT

+
T∑

k=1
fk(Y ∗) −

T∑
k=1

ck

(
xπ∗

k − rk, u
π∗

k )︸ ︷︷ ︸
ζT

,

where Y ∗ = [M [0]∗, ...,M [H−1]∗, P [0]∗, ..., P [H−1]∗] ∈ (Rm×n)2H denote the optimal weights learned by Algo-
rithm 1, satisfying the conditions in 3.

The regret analysis is split into three parts: αT denotes the difference between the cost of Algorithm 1 and
the truncated cost. βT denotes the difference between the truncated and optimal truncated costs. ζT denotes
the difference between the optimal truncated cost and the optimal memory-augmented control policy.

The bound of the first term αT is given by

|ck(ek, uk) − fk(YH,k)| ≤ Gc D ∥(xK
k (Y0:k−1) − rk) − (x̃π

k (YH,k) − rk)∥ +GcD ∥uK
k (Y0:k−1) − ũπ

k (YH,k)∥
≤ 2GcD

2κ3(1 − γ)H ,

where one can use Lemma 4 to get the above result. Therefore,

∥αT ∥ = ∥
T∑

k=1
ck(ek, uk) −

T∑
k=1

fk(YH,k)∥ ≤ 2T GcD
2κ3(1 − γ)H = O(

√
T ), (35)

where the last equality is obtained based on H = O(log T ).

The term βT can be bounded by Theorem 4.6 of Agarwal et al. (2019) and the results of Lemmas 6 and 7 as
T∑

k=1
fk(YH,k) −

T∑
k=1

fk(Y ∗) ≤ 1
η
M2

b + TG2
fη + LfH

2ηGfT,

where Mb := 2
√
dκbκ

3γ−1, d = max(n,m). By selecting η = O( 1
Gcκw

√
T

), H = O(log (T )), then βT =
O(

√
T ).

The last term is the difference between the truncated cost of the algorithm and the cost by the optimal
memory-augmented controller. For the third term, using Lemma 12,

T∑
k=1

fk(Y ∗
H,k) −

T∑
k=1

ck

(
xπ∗

k − rk, u
π∗

k

)
≤ 2T GcD

2κ3(1 − γ)H = O(
√
T ),

where the last equality is obtained based on H = O(log (T )). Observe that

• If ϵA,B ≤ γ
4κ3 , Lemma 1 guarantees that k is (2κ, γ

2 )-strongly stable on (Â, B̂),

• If ϵA,B ≤ poly(κ, 1
γ ), the iterates obtained by running Algorithm A (trajectory tracking algorithm)

satisfy ∥xk∥, ∥ŵk∥ ≤ poly(κ, 1
γ , n)(1 + κw), as guaranteed by Lemma 9.
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Given the aforementioned observations and the proof before that, it is ensured that

J(A|Â, B̂, {ŵ}, {r}) − J(Aopt|Â, B̂, {ŵ}, {r}) ≤ O(
√
T ).

Also, for the sake of completeness and self-containment of this article, it can be mentioned that from (Yagh-
maie & Modares, 2023), it is known that

J(A|A,B, {w}, {r}) − J(K|A,B, {w}, {r}) ≤ O(
√
T ),

and following the same steps as before one can conclude

J(A|Â, B̂, {ŵ}, {r}) − J(K|Â, B̂, {ŵ}, {r}) ≤ O(
√
T ).
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(a) Gaussian (b) Constant

(c) Random walk (d) Amplitude modulation

(e) Uniformly sampled (f) Sinusoidal

(g) Adversary

Figure 9: The changes in the average cost J̄T , as given by equation 6 over time T is compared between
Algorithm 1 and other control methods, namely certainty equivalent H∞-control, certainty equivalent LQR
control, and LQR control with knowledge of system dynamics, for different types of disturbances such as
Gaussian, random walk, uniformly sampled, constant, amplitude modulation, sinusoidal, and adversary
disturbances.
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Figure 10: Circuit of a Lithium-ion battery.

Figure 11: Tracking performance for constant disturbance for the presented Algorithm 1, versus certainty
equivalent H∞-control, certainty equivalent LQR control, and LQR control knowing the dynamics of the
system.
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Figure 12: Tracking performance for amplitude modulation disturbance for the presented Algorithm 1, versus
certainty equivalent H∞-control, certainty equivalent LQR control, and LQR control knowing the dynamics
of the system.

Figure 13: Tracking performance for sinusoidal disturbance for the presented Algorithm 1, versus certainty
equivalent H∞-control, certainty equivalent LQR control, and LQR control knowing the dynamics of the
system.
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Figure 14: Tracking performance for Gaussian disturbance for the presented Algorithm 1, versus the certainty
equivalent H∞-control, certainty equivalent LQR control, and LQR control knowing the dynamics of the
system.

Figure 15: Tracking performance for the uniformly sampled disturbance for the presented Algorithm 1,
versus certainty equivalent H∞-control, certainty equivalent LQR control, and the LQR control knowing the
dynamics of the system.
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Figure 16: Tracking performance for the adversary disturbance for the presented Algorithm 1, versus the
H∞-control, certainty equivalent H∞-control, certainty equivalent LQR control, and LQR control knowing
the dynamics of the system.
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(a) Gaussian (b) Constant

(c) Amplitude modulation (d) Uniformly sampled

(e) Sinusoidal (f) Adversary

Figure 17: The changes in the average cost J̄T , as given by equation 6, over varying values of T , is com-
pared between Algorithm 1 and other control methods, namely certainty equivalent H∞-control, certainty
equivalent LQR control, and LQR control with knowledge of system dynamics, for different types of dis-
turbances such as Gaussian, uniformly sampled, constant, amplitude modulation, sinusoidal, and adversary
disturbances.
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