
1 
 

Chapter of the edited collection: Mangroves: Ecology, Biology and Taxonomy. 

 

Mudskippers: human use, ecotoxicology and biomonitoring of mangrove and other soft 

bottom intertidal ecosystems.  

 
Gianluca Polgar1 and Richard Lim2 
 
1Institute of Biological Sciences, Institute of Ocean and Earth Sciences, Faculty of Science, University of Malaya, 
50603 Kuala Lumpur, Malaysia. Tel. +603-7967-4609 / 4182; e-mail: gianluca.polgar@gmail.com / 
gianluca.polgar@um.edu.my. Web site: www.themudskipper.org 
2Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology 
Sydney, Broadway, New South Wales 2007, Australia. e-mail: Richard.Lim@uts.edu.au 
 
 

Abstract (269) 
Mudskippers (Gobiidae: Oxudercinae) are air-breathing gobies, which are widely distributed 
throughout the West African coast and the Indo-Pacific region. They are closely linked to 
mangrove and adjacent soft bottom peri-tidal ecosystems. Some species are amongst the best 
adapted fishes to an amphibious lifestyle. All mudskippers are benthic burrowers in anoxic 
sediments, and since tidal mudflats are efficient sediment traps, and sinks for nutrients and other 
chemical compounds, they are constantly in contact with several types of pollutants produced by 
industrial, agricultural and domestic activities. Due to their natural abundance, considerable 
resistance to highly polluted conditions, and their benthic habits, mudskippers are frequently 
used in aquatic ecotoxicological studies. For the same reasons, mudskippers also frequently 
occur in urbanised or semi-natural coastal areas. Since several species are widely consumed 
throughout their whole geographical range, these same characteristics also facilitate their 
aquaculture in several countries, such as Bangladesh, Thailand, Philippines, China, Taiwan and 
Japan. Even when not directly used, mudskippers are often abundant and are important prey 
items for many intertidal transient species (marine visitors), and several species of shorebirds. 
Therefore, there is potential for bioaccumulation of toxicants wherever mudskippers and 
pollution co-occur. This chapter reviews the ecotoxicology of mudskippers, and their potential 
for use as biomonitors to better manage coastal swamp ecosystems. The diverse sympatric 
assemblages of mudskipper species allow for spatially differentiated ecotoxicological 
investigations along the whole intertidal zone, since adults are often territorial and/or sedentary, 
and show species-specific patterns of habitat differentiation. A case study is also proposed where 
this approach could be adopted to address potential health-risk issues in a local population who 
are regular consumers of mudskippers. 
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Introduction 

One third of the human population lives in coastal areas, which constitutes only 4% of the 
Earth’s land area (Barbier et al. 2008). This concentration of human activities heavily impacts on 
coastal ecosystems. In particular, large estuaries host the largest soft bottom intertidal 
communities on Earth and are frequently sites of major urban settlements, and are heavily 
impacted by human activities. Along tropical and subtropical coasts, intertidal soft bottom 
systems, such as tidal mudflats and mangrove forests, characterize the great majority of 
shorelines. Habitat destruction, fragmentation and activities impairing the hydrology of the 
catchment area (Doody 2005; Lacerda et al. 2001; Farnsworth & Ellison 1997) are probably the 
most severe forms of anthropogenic impacts affecting these ecosystems. Only 40-50 years ago, 
mangrove forests fringed 70-75% of low-energy tropical shorelines around the world (Por & Dor 
1984). Over the last 60 years, 30-40% of the global coverage has been lost (Ellison 2008; Blaber 
2007; Wilkie and Fortuna 2003; Alongi 2002), with declining rates probably faster than that of 
coral reefs and tropical rainforests (Duke et al. 2007). Another source of anthropogenic impact 
on such systems is the increasingly frequent introduction of alien species through ballast water of 
ships (Moyle 1998). Sustainable ecosystem-based management and conservation efforts aimed at 
the maintenance of such systems for future generations, as they provide considerable direct and 
indirect services to human settlements (e.g. fishery production; sediment stabilization; shoreline 
protection from marine and climatic energetic events; degradation of organic nutrients; habitat 
for endemic, evolutionarily unique, or migratory species; and as recreational areas e.g. Polgar & 
Sasekumar 2010). 

Water and sediment pollution, mainly resulting from the use of aquatic systems as convenient 
repositories for human biological and industrial wastes (e.g. sewage, industrial, agricultural and 
transportation effluents, oil spills), can also exert toxic effects on soft bottom intertidal systems 
(Hogarth 2007; PEMSEA 1999; Chaw et al. 1993; Sasekumar 1980). As a result, coastal 
communities can suffer from health issues induced either by the direct action of toxic substances 
in the water and sediments, or by trophic transfer, caused by the spreading of many contaminants 
through food webs (e.g. Di Giulio & Hinton 2008; Luoma & Rainbow 2005). Massive kills 
caused by the release of toxic substances in the environment are obvious detrimental effects. 
Although highly destructive, acute events allow for the immediate identification of causal agents, 
and rapid ecosystem remediation and rehabilitative actions can be attempted. 

Nonetheless, sublethal effects can be equally destructive in the long term, acting in a more 
subtle and gradual way, often hampering the identification of the causal factors, and delaying 
appropriate management decisions. When contaminants can bioaccumulate, trophic transfers 
occur: if species at lower trophic levels become tolerant to sublethal toxic effects (e.g. Andreasen 
1985), contaminants can spread through the food webs and concentrate at higher trophic levels. 
In several documented cases of trophic chains including fish and man, decades had passed before 
lethal concentrations at top trophic levels were reached, and interactions with other factors such 
as overfishing eventually disrupted ecosystem functioning, leading to the extinction of predator 
populations (Moyle and Cech 2000; Miller et al. 1989). 
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Soft bottom intertidal communities are generally tolerant to environmental change and 
pollution. Intertidal communities are also particularly resilient. Extremely variable 
environmental conditions select for strongly convergent traits in intertidal resident species, such 
as relatively high reproductive potential and highly dispersive early life stages (Hogarth 2007; 
Hartnoll 1987). Such adaptations generally enable these species to recolonise rehabilitated 
systems (e.g. Townsend & Tibbetts 1995) even after mass extinctions at the community level 
have locally occurred, such as those caused by massive releases of toxic contaminants (e.g. 
major oil spills; Chaw et al. 1993); fires of industrial plants (Otitoloju et al. 2007); or to the 
combined action of habitat destruction, pollution and introduction of alien species (e.g. Bennett 
& Moyle 1996). Of course, recolonisation would necessarily imply the presence of unimpacted 
ecosystems within the species’ range of dispersal. Furthermore, local extinctions or degradation 
of intertidal communities can also affect adjacent terrestrial and aquatic ecosystems, by 
disrupting the trophic links connecting their food webs (Unsworth et al. 2009; Nagelkerken et al. 
2008). For instance, top predators of soft bottom intertidal communities such as mangrove 
forests and tidal mudflats generally are transient marine and terrestrial visitors (e.g. predatory 
fishes and shorebirds; Clayton 1993). 

Ecotoxicological studies also require insights to the dispersal and fate of bioavailable toxic 
chemicals in the environment (i.e. nutrients, organic, inorganic and organo-metallic contaminants 
(Di Giulio & Hinton 2008; Braunbeck et al. 1998). Since the 1960s, ecotoxicological studies on 
the effects of contaminants on fishes have provided insights to anthropogenic environmental 
impacts on aquatic systems. In fact, environmental contamination can be assessed either by 
chemically characterising water and sediments for known contaminants (e.g. Tam & Wong 
1995), or observing rapid fish responses (mortality, behavioural changes) to suspect 
contaminated water in the laboratory (e.g. Heath 1987). However, rapid sub-lethal and lethal 
bioassays frequently do not provide information on past conditions (Helfman et al. 1997). In this 
respect, body burdens of bioaccumulated contaminants provide more information on the history 
of contamination; in particular, sedentary and territorial fishes reasonably make better sentinel 
models to indicate contamination in a particular habitat or location. The biomarker approach 
(Huggett et al. 1992; McCarthy & Shugart 1990) provides more sensitive and more immediate 
responses at the cellular and suborganismal level such as physiological, histological, cytological, 
genetic and biochemical endpoints. Other measures include structural and functional parameters 
(e.g. deformities, energetics, metabolism, growth rate, reproductive activity, immune 
competence). These can be correlated to the environmental conditions. At the community level, 
combined measures of fish populations and trophic structure, health and behaviour can be 
compared with reference communities, providing health bioindicators [e.g. Indices of Biotic 
Integrity (IBI); Roset et al. 2007]. 

The bioaccumulation of organic and inorganic contaminants in fish tissues can occur through 
either aqueous uptake or ingestion . In the latter case, bioaccumulation mediates the distribution 
and concentration of contaminants through food webs (Braunbeck et al. 1998). Chemicals can 
bioconcentrate or biomagnify in the biota depending on their properties such as their persistence 
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and octonal-water partition coefficients (Kow). Both bioconcentration and biomagnification in 
fishes depend on the bioavailability of waterborne or ingested contaminants, which in turn is 
determined by the dynamic relationship between the water column and sediments, acting as 
source and sink compartments, respectively. In particular, the bioavailability of organic 
contaminants in different aquatic environments is often determined by their hydrophobicity (Di 
Giulio & Hinton 2008). 

Due to the lower environmental energy conditions and high sedimentation rate, soft bottom 
intertidal systems are efficient sediment traps (Duke & Wolanski 2001). On mudflats, very fine 
sediments accumulate large quantities of organic carbon and nitrogen through adsorption onto 
mineral surfaces (Logan & Longmore 2003). In particular, organic and anoxic muds are known 
to extract trace metals from the water column by reaction with sulfides (Chapman et al. 1998), 
and provide binding surfaces for hydrophobic organic pollutants, rapidly concentrating them (Di 
Giulio & Hinton 2008; Di Pinto et al. 1993). Not surprisingly, soft bottom intertidal and subtidal 
benthic communities, characterised by detritus-based food webs (e.g. Odum & Heald 1975) are 
particularly impacted by such contaminants. 

Hydrophobic contaminants are well known for resisting chemical and biological degradation 
in the environment (viz. persistent organic pollutants, or POPs; e.g. Bhatt et al. 2009; Rand 
2003). Furthermore, their hydrophobic nature promotes increasing bioaccumulation in lipid 
tissues in higher trophic organisms. Apart from fat content, the age of contaminated organisms 
(duration of exposure) is an important factor for biological uptake, since time is required to 
achieve equilibrium between tissue and contaminants (Larsson et al. 1991). Also for this reason, 
fish are often more useful than invertebrates in biomonitoring hydrophobic contaminants, since 
the lifespans of many invertebrates are frequently too short to record steady-state concentrations 
in their tissues (e.g. Nakata et al. 2002). However, bioaccumulation results from a balance 
between uptake and elimination rates. In particular, species-specific detoxifying metabolic 
mechanisms (Blanchard et al. 1997) and spawning (Guiney et al. 1979) can play an important 
role in decreasing hydrophobic contaminant levels in the organism. 

In the aquatic environment, metal and metalloid contaminants are also particularly important, 
being present in a variety of anthropogenic effluents. Nonetheless, the evaluation of ecological 
risk from metal contamination is particularly complex, involving metal-specific, geochemical, 
exposure route and species-specific biological factors (Luoma & Rainbow 2005; Wang 2002). In 
addition, other abiotic factors can affect the bioavailability and hence toxicity to exposed 
organisms such as pH, redox potential, hardness and organic ligands. The same relationship 
between bioaccumulation and toxicity is not simple, and biomonitors must be carefully tested for 
their capacity to drive ecosystem changes in response to metal contamination, relative to other 
components of the investigated community. Assuming steady state conditions in the organism, a 
simple biodynamic model (DYMBAM: Schlekat et al. 2002), takes into account metal uptake 
(both aqueous and dietary) and loss rates by measuring simple standardised parameters in the 
laboratory. Highly significant 1:1 correlations between predicted and field observations in 
several case studies are encouraging (Luoma & Rainbow 2005). Based on such relationships, 
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considerable variability in the above mentioned factors requires consideration of peculiar 
characteristics of the ecosystem, community and selected biomonitor(s), whenever risk 
assessments for these contaminants are conducted. Biodynamic models offer the opportunity to 
compare and explain the variability of bioaccumulation in different species within a study 
community, when investigating the ecological effects of contamination. 

This review of the biology and ecotoxicology of mudskippers aims at demonstrating the 
potential use of these species as biomonitors in environmental assessments of tropical and sub-
tropical soft bottom intertidal systems. Such potential would greatly benefit from future research 
effort to fill the gaps in the biological and ecological knowledge of this group. A possible case 
study where such an approach could be adopted (lower Fly River and Delta, Papua New Guinea) 
is also presented (Polgar et al. 2010). 
 
Mudskippers: ecology, physiology and interactions with humans 

The following overview outlines some biological traits that make mudskippers excellent 
biomonitors and biomarkers for ecotoxicological studies. Mudskippers (Gobiidae: Oxudercinae: 
Periophthalmini; Murdy 1989) are amphibious gobies which are closely linked to tropical and 
subtropical soft bottom inter- and peritidal ecosystems. This group presently includes 34 species 
in seven genera: Periophthalmus Bloch & Schneider, 1801; Periophthalmodon Bleeker, 1874, 
Boleophthalmus Valenciénnes, 1834; Scartelaos Swainson 1839; Pseudapocryptes Bleeker, 
1874; Zappa Murdy, 1989; and Apocryptes Valenciénnes, 1837. The highest species richness 
occurs in South-East Asia, Australia and New Guinea. Nonetheless, the group’s distribution 
spans a wide biogeographical range, from the west coast of Africa to the whole Indo-west-
Pacific region (Murdy 1989). At the habitat level, adults are differentially distributed from the 
upper sub-tidal to the high intertidal zone, including tidal reaches of rivers and supratidal 
ecotones to freshwater swamps (Polgar et al. 2010). In some regions, diverse sympatric 
assemblages of up to 11 species can be found (Polgar & Bartolino 2010; Polgar & Crosa 2009; 
Md Ali & Norma-Rashid 2005; Takita et al. 1999). 

Mudskippers are relatively small fish species (maximum size: 4-25 cm total length), which 
are either primary (Yang et al. 2003) or secondary consumers (Kruitwagen et al. 2007a; 
Colombini et al. 1996), or omnivores (Bucholtz et al. 2009; Milward 1974). In particular, 
primary consumers among mudskippers (e.g. Boleophthalmus spp.) are benthic 
phytoplanktivores, and feed by scraping microbial biofilms on exposed mud surfaces. It is 
known that such biofilms are composed of a matrix of extracellular polymeric secretions (EPS), 
and are able to effectively chelate metals and other contaminants (Decho 2000), mediating their 
trophic transfer into benthic food webs. 

These species can be very abundant locally (Polgar & Bartolino 2010), being predated by 
many intertidal transient fishes (marine visitors: Gibson 1999), including species of commercial 
importance, reptiles and shorebirds (Clayton 1993; Jayne et al. 1988; G. Polgar, pers. obs.). All 
known species are burrowers, and are, therefore, reasonably sedentary. In several species of the 
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genera Boleophthalmus, Periophthalmodon and Periophthalmus, territorial behaviour has been 
extensively described (e.g. Clayton & Vaughan 1988; Brillet 1975). 

The reproductive biology and life history of oxudercine species is little known, and a 
generalised model can only be assumed on the basis of observations made on a few genera and 
species (Mazlan & Rohaya 2008; Dinh et al. 2007; Hong et al. 2007; Etim et al. 2002; King & 
Udo 1997; Hagiwara et al. 1993; Saitoh 1993; Hoda 1986; Matoba & Dotsu 1977; Brillet 1976; 
Kobayashi et al. 1971). Based on this model, the male attracts the female into a reproductive 
burrow in the mud substrate, and eggs are attached to the ceiling of a specialised chamber filled 
with air (Ishimatsu et al. 2000; 1998). As is usual in mudskippers, eggs are guarded by the male 
(Ishimatsu et al. 2007). Larvae are planktonic, and after 30-50 days of pelagic life (Kon & 
Yoshino 2001), they settle in the intertidal zone (Chen et al. 2008; Dinh et al. 2007). Young 
apparently perform exploratory behaviours (errants: Clayton & Vaughan 1988, G. Polgar, pers. 
obs.) and eventually establish stable territories around burrows (e.g. Clayton & Vaughan 1988; 
Brillet 1976). 

The extremely dynamic conditions of tropical soft bottom intertidal habitats have selected for 
extreme physiological adaptations to environmental changes over the evolutionary history of 
mudskipper species. In particular, the anoxic and hypercarbic sediments where mudskippers dig 
their burrows are characterised by low redox potential values and high ammonia, soluble 
phosphate and acid sulphide concentrations all of which can affect the bioavailability of some 
chemicals such as metals, ammonia, etc. (Hogarth 2007; Ishimatsu et al. 2000). All mudskippers 
are bimodal breathers (Graham 1997): they breathe in air both by gulping air into the bucco-
pharynx and expanded opercular chambers, and by cutaneous respiration (Graham 1997). The 
same gas-exchange surfaces are utilised for respiration in both water and air environments. The 
degree of anatomical and physiological adaptations to aerial respiration varies amongst different 
species (Kok et al. 1998; Low et al. 1990), with more amphibious ones even incapable of 
repaying an oxygen debt while under water, and have a bradycardic diving syndrome which is 
probably unique amongst fishes (Takeda et al. 1999; Kok et al. 1998; Garey 1962). In fact, 
mudskippers are generally poorly adapted to respire aquatically in hypoxic conditions, and use 
aerial respiration to avoid hypoxic stress (Lee et al. 2005; Ishimatsu et al. 2000; 1998; Aguilar, 
2000). Even almost completely aquatic mudskipper species can live in waters with high organic 
loads [e.g. Pseudapocryptes elongatus (Cuvier, 1816); Bucholtz et al. 2009; Takita et al. 1999; 
G. Polgar, pers. obs.]. 

Mudskippers are also highly tolerant of environmental ammonia concentrations. Not unlike 
most teleosts, they are essentially ammoniotelic, with excretion mainly through the gills (Evans 
et al. 1999). Periophthalmodon schlosseri (Pallas, 1770) can tolerate concentrations of 450 µM 
NH3 for at least 7 days, a condition that according to Peng et al. (1998) is only comparable to 
Oreochromis alcalicus grahami (Boulenger, 1912) [= Alcolapia grahami (Boulenger, 1912), a 
cichlid living in alkaline African lakes], but at much lower pH values. The relatively more 
aquatic Boleophthalmus boddaerti (Pallas, 1770) [= B. boddarti (Pallas, 1770) sensu Murdy 
1989; Fig. 1] can tolerate about 40 µM NH3 (Peng et al. 1998), a performance comparable to 
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Periophthalmus cantonensis (Osbeck, 1765) (= P. modestus Cantor, 1842 sensu Murdy 1989; 
Iwata 1988). These latter values are comparable to ammonia concentrations that are lethal for a 
range of freshwater, estuarine and tide pool gobioid aquatic fish species (about 45 µM NH3 over 
24 hours: Iwata 1988). 
 
 

 
Figure 1. Three mudskipper species frequently utilised in ecotoxicological studies. a. Boleophthalmus 

boddarti (Pallas, 1770), distributed from west India (Mumbai) eastward to southern Viet Nam and 
Indonesia (Murdy 1989); b. Boleophthalmus dussumieri Valenciénnes, 1837, distributed in the Persian 
Gulf, Gulf of Oman, Pakistan, eastward to west India, up to Mumbai (Murdy 1989); c. Boleophthalmus 

pectinirostris (Linnaeus, 1758), distributed from southern Japan and southern Korea southward to 
mainland China, Indonesia and South-East Asia (Murdy 1989; Polgar & Crosa 2009); d. Periophthalmus 

waltoni Koumans, 1955, distributed in the Persian Gulf, Gulf of Oman and Pakistan. The former three 
congeneric species, whose geographic distribution partially overlaps, were probably frequently 
misidentified in ecotoxicological studies. 
 

Both Pn. schlosseri and B. boddarti can decrease the rate of proteolysis and amino acid 
catabolism under ammonia loading conditions, thus slowing down the accumulation of ammonia 
(Lim et al. 2001). Pn. schlosseri is capable of actively excreting NH4

+, even at pH 9.0 (Randall 
et al. 2004; Chew et al. 2003), and of decreasing skin permeability to NH4

+ ions at increasing 
environmental ammonia concentrations. B. boddarti is not capable of actively eliminating NH4

+, 
but can concentrate ammonia in its muscle, liver and plasma, thus preventing further NH4

+ 
passive uptake. Pn. schlosseri can even excrete H+ and lower the pH of small water volumes 
(e.g. inside burrows), thus reducing the NH3 concentration around the body and preventing a 
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back flux of NH3 through the gills (Ip et al. 2004a). Adaptations to cope with high levels of 
endogenous ammonia, probably highly adaptive for intertidal mud burrowers, were possibly 
crucial pre-adaptations to an amphibious lifestyle. In fact, gills drastically decrease their 
excretory function in air, and ammonia tends to rapidly accumulate in body fluids when out of 
water. During terrestrial activities, Pn. schlosseri detoxifies ammonia through partial amino acid 
catabolism (alanine synthesis): this metabolic pathway also produces energy and allows this 
species to  perform intense terrestrial exercise whilst not consuming glycogen reserves (Ip et al. 
2004b). A similar strategy is probably adopted by P. modestus (Iwata 1988). 

All the investigated oxudercine species are euryhaline and can withstand rapid and drastic 
changes in salinity. Pseudapocryptes elongatus shows no apparent behavioural reaction to 
instantaneous changes from 25 ppt to 0–50 ppt, after 96 hours of exposure (Bucholtz et al. 2009). 
In northern Australia, Periophthalmus minutus Eggert, 1935 can live for several days inside 
burrows with 40–70 ppt salinities during the dry season (Tatsusuke Takeda, unpub. mat.). 
Osmoregulation in hypersaline conditions is accommodated through the accumulation of free 
amino acids (FAA) and ammonia in muscles (Iwata et al. 1981), and through the rapid activation 
of the gills’ chloride cells (Evans et al. 1999), which in some amphibious species are also found 
in skin patches behind the pectoral fins (Sakamoto & Ando 2002). The resistance to dehydration 
upon emergence, which is related to hyperosmotic osmoregulatory capabilities (Evans et al. 
1999), was also measured in a few amphibious mudskippers, which were found to have an 
evaporative water permeability capacity comparable to that of frogs (Gordon et al. 1978; 1969). 
The structure of the skin and some particular mucous secretions can partly account for such 
capabilities (Zhang et al. 2003; 2000). In several mudskipper species regulation in hyposmotic 
conditions is at least partially behavioural (cutaneous evapotraspiration: Clayton 1993). 

Relative to aquatic fishes, mudskippers also cope with extreme environmental temperature 
changes. Out of water, daily temperatures on the substrate surface can range between 10-15°C 
(Tytler & Vaughan 1983), while in tide pools water can reach temperatures of about 40°C 
(Taylor et al. 2005). Thermoregulation in mudskippers is mainly behavioural (microhabitat 
selection; evaporative cooling; orientation with respect to solar radiation; changes in colouration: 
Taylor et al. 2005; Clayton and Vaughan 1988; Tytler & Vaughan 1983; Stebbins & Kalk 1961). 
In particular, the use of burrows is of crucial importance in amphibious species (Lee & Graham 
2002; Aguilar 2000; Tytler & Vaughan 1983). Mudskippers living in temperate zones remain in 
their burrows during the winter months (Takegaki et al. 2006; Townsend & Tibbetts 1995; 
Kobayashi et al. 1971), while some tropical species are able to aestivate in deep burrows closed 
with a plug of mud when supra-tidal tide pools dry up during the dry season (Swennen et al. 
1995; Hora 1935; 1933). 

Interactions between humans and mudskippers are both frequent and intense. Due to the 
tolerance of these species to organic pollution, available habitats frequently host large 
mudskipper populations close to coastal urban settlements. Mudskippers are either consumed or 
used in traditional medicine and as baits throughout their geographic range. In Bangladesh, 
China, Japan, Korea, Philippines, Taiwan, Thailand and Viet Nam several species are considered 
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a delicacy, thus are extensively farmed, as witnessed by the relatively rich tropical aquaculture 
literature on these species (e.g. Bucholtz et al. 2009; Kizhakudan & Shoba 2005; Zhang & Hong 
2003; Shusen & Jiazhong 1995; Chung et al. 1991; Chen 1990; Hong & Wang 1989; Fineman-
kalio & Alfred-Ockiya 1989; Koga et al. 1989; Zhang et al. 1989; Chen & Ting 1986; Chen 
1982). Traditional techniques are employed for fishing several species, viz. pitfall traps (Sierra 
Leone: Turay et al. 2006; Japan: Dotsu 1974), valved traps (Nigeria: Mariogahe 1990), traps to 
extract mudskippers from their burrows (Viet Nam: Bucholtz et al. 2009); and long rods with 
special hooks (Japan: Dotsu 1974). Mudskipper flesh can have high nutritive value (Banerjee et 

al. 1997; Misra et al. 1983) and their consumption is only limited by local traditions and beliefs 
(G. Polgar, pers. obs.). In a preliminary test evaluating the palatability of some mudskippers 
species (Swennen et al. 1995), their taste scores were higher than that of the widely consumed 
species (mullets). 

Not unlike many air-breathing fishes (Graham 1997), mudskippers are cultured because of 
their considerable tolerance to environmental stressors, and organic and inorganic toxicants. 
Therefore, it is highly recommended that when they are used as a food source in polluted areas 
they should be carefully and periodically monitored for contaminants  to assess the health risk to 
consumers. Where necessary, prompt environmental remediation and ecosystem rehabilitation 
should be implemented to maintain the sustainability of this resource (McLeod et al. 2005). For 
these purposes, basic research at sub- and supra-organismal levels is needed to further our 
understanding of the ecotoxicology and biology of these fishes, in particular the toxicodynamics 
in different species and their effects at the community level. 
 
The ecotoxicology of mudskippers (4,538) 
A bibliographic online search (Google Scholar, PubMed) of the scientific literature on the 
ecotoxicology of mudskippers, resulted in 45 papers and 3 book chapters, spanning 40 years: 
1970s (n = 2), 1980s (n = 6), 1990s (n = 17), and 2000s (n = 23), with the most recent paper and 
chapter published in 2009 and 2010, respectively. Twenty two papers were published in journals 
with a national or regional scope, i.e. not included in the database of Thomson Reuters (2011) 
making up about 50 % of the whole sample. Nonetheless, these references were frequently cited 
in recent research papers, suggesting that scientific interest on this topic is at the regional level. 
Over the last decade, more than 80 % of the papers were published on ISI journals. 

The history of the ecotoxicology of mudskippers follows the historical trends in scientific 
methodology developed in ecotoxicology (Luoma & Rainbow 2005; Rand 2003). Early studies 
consisted of dose- and duration-dependent experiments at the organismal and sub-organismal 
levels, and on the ecotoxicology of heavy metals. More recent studies were on stress responses 
and propagation through food webs at the supra-organismal level, with a focus on the 
ecotoxicology of hydrophobic organic compounds. 
 
Heavy metals and metalloids 



10 
 

Heavy metals (HM), metals and metalloids include toxic elements of great concern, such as Cu, 
Zn, Cd, Hg, Pb, Al, Cr, Se, Ag, As, and Sb, released into the environment by industrial and 
domestic activities. Water quality greatly affects their speciation and toxicity, which also varies 
widely with the biotic system affected (e.g. Rand 2003). 

To our knowledge, the first ecotoxicological studies on mudskippers were conducted in the 
1970s by Uchida et al. (1971), who measured the concentration of heavy metals in 
Boleophthalmus pectinirostris (Fig. 1) and other organisms in the Ariake Sea (Japan). 

Patel et al. (1985) investigated the presence of Zn, Mn, Cu, Fe, Co, Ni, Cd, Cr, Pb and Sr in 
water, sediments, the clam Anadara granosa, and the mudskipper Boleophthalmus boddaerti (= 
B. boddarti) in the Mumbai harbour area, to biomonitor the effects of urbanisation and 
anthropogenic pollution. No evidence of dangerous levels and no systematic or substantial 
spatial or temporal fluctuations of these elements in the biotic and abiotic matrices over a period 
of 4 years was found in this study. However, the high percentage mortality of clams in one of the 
surveyed locations was correlated to the presence of anoxic conditions, which was due to organic 
and industrial pollution. 

Mahajan & Srinivasan (1988) measured Hg concentrations in sediments, bivalves, benthic 
fishes (Boleophthalmus boddarti), crabs, prawns, gastropods and pelagic fishes. Hg levels were 
higher in the first two groups of organisms. Interestingly, they found that contaminant levels 
increased after the rainy season, suggesting an increased input through increased surface runoff. 

Boleophthalmus dentatus (= B. dussumieri Valenciénnes, 1837 sensu Murdy 1989; Fig. 1) 
was utilised in a series of ecotoxicological studies in India. Lakshmi et al. (1990; 1991a) studied 
the chronic dose and duration-dependent inhibition of HgCl2 on ATPases and acid and alkaline 
phosphatases in the gills of this species. Similar studies (Lakshmi et al. 1991b,c) were conducted 
on different ATPases of the intestine and kidney. In all of these studies, the authors found a 
approximately linear inhibition of all the studied enzymes with increasing sublethal 
concentrations and durations of exposure of the contaminant. The severe cellular damage 
observed was related to the apparent blockage of transport mechanisms across cell membranes. 

Kundu et al. (1992a,b) investigated the enzymological and histopathological effects of 
sublethal doses of Hg++ (0.50, 1.00, 1.25, 1.50 ppm HgCl2 ; LC50 = 1.65 ppm) on the kidneys, 
gills, intestine, liver, brain and muscle of Boleophthalmus dentatus (= B. dussumieri) for up to 3 
days. Their results indicated a dose and duration-dependent inhibition of ATPase enzymes in all 
the studied tissues, at longer durations and higher concentrations of the contaminant. Kidneys, 
gills and liver were the most impacted organs. Using the same mudskipper species as a model, 
Kundu et al. (1995) measured significant dose and duration dependent changes in the activity of 
5 types of ATPases of the brain and muscle, induced by exposure to Cr(VI) (30-60 mg/l for 1-3 
days). In several trials a significant stimulation of the enzymes’ activity was observed, and 
interpreted as a response to the toxicant. However, a general dose dependent inhibition of the 
enzymes’ activity was found. Neurological and behavioural effects were also observed. 

Also the mudskipper Periophthalmus dipes (= P. dipus Bleeker, 1845 = P. argentilineatus 
Valenciénnes, 1837 sensu Murdy 1989) was utilised in several studies on heavy metals in India. 
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Thaker et al. (1996; 1997; 1999) studied the dose and duration-dependent effects of Cr(VI), an 
important carcinogenic pollutant in water bodies, on the activities of five types of ATPases and 
alkaline phosphatases in several tissues. Based on the ATPases, the authors found evidence for a 
cascade of metabolic effects in different anatomical compartments: first the gills, with mainly 
dose-dependent effects; then the kidneys, with both dose and duration-dependent effects; and 
finally the intestine, with mainly duration-dependent effects. The authors speculated that this 
cascade phenomenon probably affected osmoregulation, acid-base balance, nutrient assimilation, 
and mobility of intestinal muscles (see also Kundu et al. 1995). Effects on phosphatases (Thaker 
et al. 1997) were more variable. 

In a preliminary study conducted in Indonesia, Amin & Nurrachmi (1999) found higher 
levels of Ni, Pb and Cd in the liver and muscle of Periophthalmus sp. from an industrialized area 
(Dumai) relative to a nearby unimpacted area (Sumatra, Straits of Malacca). 

Kapil & Ragothaman (1999) found that mercury, copper and cadmium contaminations 
induced changes in the total protein content of the muscles of Boleophthalmus dussumieri. 

Ni et al. (2000) conducted one of the first studies on the assimilation efficiencies (AEs) of 
heavy metals in fishes (Cd, Cr, and Zn), to quantify the relative importance of bioconcentration 
and biomagnification. They used two species of zooplankters, an ambassid fish, and a 
mudskipper (Periophthalmus cantonensis = P. modestus). While AEs were generally lower than 
in carnivorous invertebrates, their results clearly demonstrated that trophic transfers occur, with 
species-specific differences in the AEs for different metals which follow different metabolic 
routes from zooplankters to fishes. 

Ni et al. (2005) described the aqueous uptake, dietary assimilation and elimination of Cd, Se 
and Zn in Periophthalmus cantonensis (= P. modestus) acclimated at different salinities (10-30 
ppt). The dietary assimilation efficiency based on consumption of radiolabeled polychaetes was 
tenfold higher for Se than for Zn and Cd, and was not influenced by salinity. In contrast, the 
highest concentration factor (CF: equilibrium ratio between concentration in the organism and 
concentration in water) was found for Zn, followed by Cd and Se. Salinities began to affect CFs 
only after 12 h, with final CFs significantly higher at lower salinities. This trend was similar for 
all contaminants studied, and could be due to physiological changes. Elimination rates were not 
significantly affected by salinity, but Se was more rapidly eliminated following aqueous uptake 
relative to dietary ingestion. Accumulated Cd was mainly found in the gut, whereas the other 
metals were more abundant in the muscle. 

Eboh et al. (2006) measured the levels of copper, zinc, lead, mercury, arsenic, chromium and 
calcium in the muscle, gills and liver tissues of Periophthalmus koelreuteri [= P. barbarus 
(Linnaeus, 1766)] and other fish species from Nigeria, finding that the levels of these metals 
were generally lower than those found in other commercial species in the USA. 

Liu et al. (2006) measured the activities of the enzymes xanthine oxidase (XOD), superoxide 
dismutase (SOD), catalase (CAT) and malonyldialdehyde (MDA) in the liver of Boleophthalmus 

pectinirostris exposed to different levels of Cd2+, concluding that only XOD and SOD are 
sensitive to Cd2+ stress. 
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Liu and Zhou (2007) observed the chronic effects of sublethal doses of cadmium (1.0, 0.1 
mg/l for 10 days) on the hepatic cells of Periophthalmus modestus, finding dose-dependent 
effects on intracellular organelles (mitochondria, endoplasmic reticulum, nucleolus, and, at 
higher concentrations, the nucleus). They inferred that damage was caused by lipidic over 
oxidation. 

Bu-Olayan & Thomas (2008) measured the acute and chronic effects (aqueous uptake) of Zn, 
Cu, Cd and Fe in Periophthalmus waltoni Koumans, 1955 (Fig. 1) under laboratory conditions. 
Acute toxicity tests showed that Cd was the most toxic metal (LC50 values of the other metals 
were 2-4 times higher), followed by Fe, Cu and Zn. The bioaccumulation factors (BAF) 
calculated after sub-lethal chronic exposure (lowest observed effect concentration (LOEC) and 
LC15 for 60 d exposure) showed an identical pattern, with more toxic metals having higher 
BAFs. For all contaminants and at both concentrations, bioaccumulation was highest in the liver, 
intermediate in muscles, and lowest in gills. Nonetheless, the authors did not specify whether 
fishes could emerge at will (they were maintained in glass tanks filled with filtered seawater and 
no substrate), which would probably influence both the degree of exposure of the gills to the 
contaminants and contaminant uptake during aquatic respiration. 
 
Organic contaminants 

Organic contaminants have being massively introduced in the environment since the 20th 
century; these include polychlorinated biphenyls (PCBs), polychlorinated aromatic hydrocarbons 
(PAHs), chlorinated dioxins and furans, aliphatic and aromatic hydrocarbons, synthetic detergent 
and several types of pesticides (Rand 2003). The toxic effects on the aquatic fauna are extremely 
variable. Several of these chemicals are particularly persistent and hydrophobic (hence 
lipophilic), and are consistently biomagnified through food webs. 

Parmar & Patel (1993) found a significant decrease in the glycogen content in 
Boleophthalmus dentatus (= B. dussumieri), after lethal and sub-lethal doses of the 
organochlorine pesticide endosulfan. Patel & Parmar (1993) found that endosulfan also induces a 
significant decrease of the protein content in B. dussumieri, and maximally in the liver. Several 
PCBs are well known fish endocrine disrupters and inhibitors of antioxidants, being associated 
with oxidative stress, impairment of protein metabolism, and hyperglycemia through 
glycogenolysis (e.g. Gill et al. 1991). It should be noted here that hyperglycemia, induced by 
cortisol or catecholamines is a generalised response to environmental stressors in fishes (Thomas 
2008; Wendelaar Bonga 1997). 

Feng et al. (2001a) investigated the variation of the concentration of reduced-glutathione 
(GSH) in the liver and ovaries of Boleophthalmus pectinirostris at concentrations of 0, 0.05, 0.2 
and 0.5 mg/L of benzo(a)pyrene (BaP) for up to a week. The GSH levels in the liver and ovaries 
of BaP-exposed fishes respectively increased and decreased significantly with dose, relative to 
controls. Such results indicated either adaptation of or toxic effects on these organs, which 
appear to be heavily affected by this toxicant. Feng et al. (2001b) found that BaP significantly 
increased the activities of the antioxidants superoxide dismutase and glutathione peroxidase at 
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relatively higher concentrations, while no effect was measured on the catalase, in the liver of B. 

pectinirostris. 
In one of the first studies of the impact of contaminants at the community level, Nakata et al. 

(2002) studied the accumulation of PCBs in mudskippers (Boleophthalmus pectinirostris, 
Periophthalmus modestus) and worm-eel gobies (Odontamblyopus rubicundus; Gobiidae: 
Amblyopinae), crabs and mussels living on the tidal flats of the Ariake Sea, Japan. All fishes 
showed a larger percentage of heavier and more hydrophobic 5-7 chlorinated PCB congeners, 
with some species-specific patterns, while 2-3 chlorinated congeners were more abundant in 
sediments. The concentration ratios of heavier PCBs between organisms and sediments were 
highest in carnivorous fishes (P. modestus and O. rubicundus), intermediate in omnivores (crab), 
lower in herbivorous fishes (B. pectinirostris), and lowest in mussels, possibly due to their 
shorter lifespan. Such results indicated that trophic level plays a key role in PCB 
bioaccumulation. Interestingly, this pattern was reversed for non-ortho coplanar CBs (a minor 
class in this sample), suggesting different toxicokinetic mechanisms. The authors also found 
positive and significant relationships between PCB levels and size of B. pectinirostris, 
suggesting that growth and feeding rates (hence biomagnification) are important factors for the 
bioaccumulation of persistent contaminants in mudskippers, and that the accumulation rate was 
faster than growth rate. In particular, in larger size classes a weaker correlation suggested slower 
growth and feeding rates in older mudskippers. Also, the weak correlation found in younger 
mudskippers (< 1 yr), caused by a high variability of PCB concentrations, was apparently due to 
very variable feeding and growth rates, which in turn were probably determined by the intense 
exploratory behaviour and lower social status prior to establishment of territorial behaviour in 
this species (“errants”: Hofmann et al. 1999; Clayton & Vaughan 1988). As previously found in 
other fish species, this study also showed that female B. pectinirostris can eliminate PCBs 
through spawning, with a transfer rate of about 10% of female body burdens during each 
spawning event. 

Nakata et al. (2003) made further observations on the environmental distribution, 
bioaccumulation and toxic potencies of PCBs in the tidal mudflats of the Ariake Sea and 
compared them with PAHs. While the former contaminants accumulated in higher trophic levels 
(coastal and tidal omnivorous fishes), the latter ones were dominant at lower levels and in 
detritivorous species (clams, crabs), possibly reflecting a higher degree of PAH adsorption on 
sediment particulates. Accordingly, a larger proportion of TCDD (tetrachlorodibenzodioxin) 
total toxic equivalents (TEQs) in coastal and tide flat species vs. detritivorous species was 
represented by PCBs and PAHs, respectively. 

Nakata et al. (2005) monitored the environmental levels of dichlorodiphenyltrichloroethane 
and its isomers (DDTs), dichlorodiphenyldichloroethylene and dichlorodiphenyldichloroethane 
(DDD and DDE, respectively), hexachlorocyclohexane isomers (HCHs), chlordane compounds 
(CHLs), hexachlorobenzene (HCB) and PCBs in three different ecosystems in northern China 
(Lake Tai, Hangzhou Bay, and in the vicinity of Shanghai city). Contaminants were measured in 
sediments, crustaceans, fishes (including Boleophthalmus pectinirostris), birds and aquaculture 
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feed. DDT and its major metabolites (DDD and DDE) were the most abundant contaminants. In 
particular, trophic transfer and biomagnification were particularly conspicuous in marine food 
webs. They also concluded that even if these contaminants had been banned in China, fresh 
inputs of this pesticide were apparently still taking place in coastal environments around 
Hangzhou Bay at the time of the study. 

Wong et al. (2005) conducted a study on the presence of PCBs and organochlorine 
insecticides in aerial deposition, seawater, sediment and biota in two sites in the Hong Kong Bay, 
one of the busiest and most densely populated ports in the world, which receives agricultural and 
industrial effluents from large fluvial systems throughout the year. They compared the Mai Po 
Nature Reserve system (a Ramsar site), located right in front of the Pearl River delta and 
dominated by mudflat, mangrove and aquaculture systems, with A Chau, a small and less 
impacted island on the eastern side of Hong Kong. Direct measurements of contaminants were 
coupled with in vitro bioassays, in order to assess estrogenic potency, non specific cytotoxicity, 
and total dioxine-like activity. Several taxa were examined, including a sample of unidentified 
polychaetes, three species of farmed detritivorous fishes, two gobies, two crustaceans, a clam, 
and a mudskipper [Boleophthalmus boddaerti ? = B. pectinirostris (Linnaeus, 1758); to our 
knowledge, this species was never recorded in Hong Kong]. Unfortunately, different species 
were analysed in the two sites, possibly reducing the value of this comparison. However, the 
results showed that Mai Po was more heavily contaminated than A Chau, and that o,p’ and p,p’ 
isomers of a wide range of persistent organic pollutants were present in the different 
environmental matrices. DDTs, HCB, cyclodienes and PAHs were dominant contaminants in 
Mai Po. Mudskippers were highly contaminated, containing higher concentrations of all these 
contaminants than both polychaetes and prawn; comparable or higher amounts of cyclodienes 
and comparable or lower amounts of DDTs and HCB than farmed fishes; and higher amounts of 
PAHs. In samples with positive bioassay responses, PAHs were dominant, although the 
endocrine disrupting hazard could not be clearly evaluated. 

In the same sites, Wong et al. (2006) measured the concentrations of several organochlorine 
insecticides (DDTs, HCHs, HCB and 11 cyclodiene insecticides) in water, sediments, and 
several organisms: plankton, polychaetes, a clam, two shrimp, and several fish species, including 
Boleophthalmus boddaerti (see above considerations). Also in this study, DDTs were dominant 
contaminants. The concentrations of pollutants in the Mai Po sediments was higher than levels 
considered hazardous, while in water and organisms, concentrations were below the hazard and 
tolerance levels for human consumption (US EPA, FDA; ISQG). Among the organisms, fish 
contained higher concentrations of dominant contaminants (DDTs, Cyclodienes), and 
mudskippers were again amongst the most contaminated species. In May Po, sediment pollutant 
concentration along a transect from land to sea decreased within a mangrove belt of <1 km, 
suggesting some role played by mangrove rhizospheres in detoxifying the sediment, as reported 
by Lacerda et al. (1993) for heavy metals. The predominance of DDD and DDE relative to DDT 
in this study suggests that the ban of DDT after the massive releases that occurred during the 
1970s and 1980s, and some low-cost management practices (periodic flushing and re-flooding of 
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fish ponds) reduced the presence of contaminants in cultivated and wild fish, even if the 
measureable levels of DDTs in the water indicated that some fresh inputs were still present. 

Islam et al. (2006) conducted a descriptive study on the chronic effects of sub-lethal 
concentrations of DDT on the behaviour and liver histology of Apocryptes bato (Bleeker 1874), 
a widely farmed and consumed fish in Bangladesh [the studied species possibly was 
Pseudapocryptes elongatus (Cuvier, 1816): to our knowledge, A. bato is usually not consumed in 
this area]. At increasing concentrations, the authors observed lethargic movements, increased 
frequency of air gulping, irregular swimming, aggressive behaviours, flicks, thrusts and 
coughing. After 20 days at the maximum concentration, loss of balance and fin paralysis were 
observed in most fishes. These latter specimens suffered serious hepatic damage, with 
vacuolization, necrosis, degeneration of the reticular tissue, and disaggregation of the 
parenchyma, especially in heavily vascularised areas. 

Nakata et al. (2009) documented the presence of heavy contamination of benzotriazole UV 
stabilizers in sediments and several marine organisms (including mollusks, mudskippers, birds 
and sharks) from the Ariake Sea, Japan. Contaminant concentrations were highly correlated to 
sediment organic carbon content, implying strong adsorption of the contaminants to organic 
matter. The high contaminant concentrations measured at higher trophic levels (predatory fishes 
and coastal birds) would suggest the presence of biomagnification. Nonetheless, environmental 
conditions apparently had a stronger influence than trophic levels, since organisms collected on 
the tidal mudflat (e.g. clams, gastropods, oysters and mudskippers) generally contained higher 
concentrations of contaminants than animals at higher trophic levels collected in adjacent 
shallow waters. This suggests that contaminant levels in the mud and interstitial water are higher 
than in the water column. 

Takao et al. (2010) measured the concentrations of PAHs, alkylphenols, and organotin 
compounds in sediments, the mudskipper Periophthalmus modestus and the aquatic goby 
Acanthogobius flavimanus from nine estuaries in the Ariake Sea. Presence and distance of 
potential sources of these contaminants from sampling stations were also reported. The presence 
of contaminants in the environment was also assessed by measuring the levels of vitellogenin in 
males. Vitellogenin, a protein precursor of egg yolk, can be artificially induced in male fish by 
several chemicals, which are derived from organochlorine contaminants, and mimic the female 
hormone that induces its synthesis (Ohkubo et al. 2003). Vitellogenin levels in male 
mudskippers were much higher than in male aquatic gobies and several other species in literature 
(e.g. Soyano et al. 2010). A possible explanation could be related to the mudskippers’ 
amphibious lifestyle, which may expose them more directly to organic sediments, while 
alkylphenols (e.g. nonylphenol) are one of many synthetic hormone disrupters in fish. 
Nonetheless, high levels of vitellogenin were also found in stations where alkylphenols were not 
detected, suggesting that other unmeasured contaminants such as natural and synthetic human 
female hormones (e.g. found in contraceptive pills) could be present in treated sewage effluent of 
these highly populated coastal areas. 
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Fluoride 

Fluoride is an important contaminant occurring in fertilizers and industrial effluents. It 
accumulates in fish skeletal tissues and is transferred through food webs. Toxicity to fish is both 
dose and duration-dependent. It acts as an enzymatic poison, interrupting glycolysis and protein 
synthesis. Since its toxicity decreases with water hardness (Ca++ and Cl-), its effect is usually less 
on marine and estuarine fishes (Camargo 2003). 

Shaikh & Hiradar (1987) described the chronic effects of sub-lethal concentrations of 
fluoride on liver, renal and brain tissues of Boleophthalmus dussumieri. The most destructive 
effects were observed in the liver, with progressive degeneration and necrosis. They also 
observed that the same treatment markedly decreased the activities of acid and alkaline 
phosphatases and the total level of proteins in the liver and muscles (Shaikh & Hiradar 1988). 

Nakata et al. (2006) measured the distribution of perfluorinated contaminants (PFCs) in 
sediments and aquatic organisms (including mudskippers) from shallow water and tidal flats of 
the Ariake Sea, Japan. Perfluorooctane sulfonate (PFOS) was dominant in shallow waters, and 
bioaccumulated at higher trophic levels (e.g. cetaceans and birds). On tidal flats, 
perfluorooctanoate (PFOA) was the most abundant compound. Relative to hydrophobic 
contaminants (e.g. organochlorines: Nakata et al. 2002), PFCs were significantly less abundant 
in sediments and tidal flat organisms, and PFOS levels in shallow water species were comparable 
or significantly higher than that for organochlorines. These results confirm that the aqueous 
phase is a major sink for polar PFCs, while organic sediments are the major sink of non-polar 
organic pollutants. 
 
Radionuclides 

Patel et al. (1975) utilised Periophthalmus schlosseri [= Periophthalmodon schlosseri (Pallas 
1770); to our knowledge, this species was never recorded from west Indian coasts] and other 
benthic species (fish, bivalves and crustaceans) to monitor the effects of radioactive effluents of 
an atomic research center near Bombay (= Mumbai, Gujarat, India). The authors found that 
137Cs, 144Ce and 106Ru rapidly accumulated in the sediments since regular discharge began. In 
particular, 137Cs was distributed throughout the whole sampled area, and bioaccumulated in 
muscle tissues of all the analysed organisms. 

In the same area, Bangera & Patel (1984) measured the concentration of 238U, 226Ra, 210Pb 
and 210Po in the clam Anadara granosa and the mudskipper Boleophthalmus boddaerti (= B. 

boddarti). They found a higher concentration of the natural radionuclides in sediments, with a 
prevalence of 210Po and 210Pb, which were also bioaccumulating in the organisms’ tissues. 

More recently, Wang et al. (2003) simulated the dynamics of 95Zr in a controlled system 
including sediment, water and two biotic compartments (a gastropod, Nassarius semiplicatus; 
and a mudskipper, Boleophthalmus pectinirostris), and found that this radionuclide concentrated 
more rapidly in the gastropod than in the mudskipper. 
 
Studies on different combinations of pollutants or complex effluents 
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In some cases, the effects of effluents with an heterogeneous chemical composition or the 
distribution of different types of pollutants were investigated. 

Chhaya et al. (1997a,b,c) studied the effects of effluent from dyeing and printing industries 
on Periophthalmus dipes (= P. dipus = P. argentilineatus). In the study on the sub-lethal effects 
on Na+, K+ ATPase, Mg++ ATPase, Ca++ ATPase and total ATPases of the liver, brain and 
muscle, Chhaya et al. (1997a) found significant changes amongst ATPase activity levels for 
different exposure durations (2, 4, 6 days) within doses in all the investigated ATPases and 
tissues, except for Mg++ ATPase in the brain. Dose effects of the effluents [0.1, 0.5, 1.0%; LC50 
(96 hr) = 1.72%] were significantly different only for the Na+, K+ ATPase in the liver and 
muscle. In several cases, increases in ATPase activity at lower levels and longer exposure 
periods suggest adaptation to the toxicants present in the effluents (e.g. Cr; Lakshmi et al. 1990). 
In all other cases, significant inhibition in the activity levels was observed. Following the same 
experimental design and utilising the same contaminants and model species, Chhaya et al. 
(1997b) investigated the effects on the same ATPases in the gills and intestine, while Chhaya et 

al. (1997c) studied the effects on the acid and alkaline phosphatases in gills, intestine, liver, brain 
and muscle. In the former case, they found strong duration-dependent effects; in the latter, they 
found significant dose and duration-dependent effects in the gills, and only duration-dependent 
effects in other tissues. 

In an attempt to establish ecotoxicological methods and find suitable biomarker fish models 
in Bangladesh, Al-Arabi & Goksøyr (1998) studied the responses of Apocryptes bato to several 
toxicants. The authors conducted a preliminary investigation on the effects of intraperitoneal 
injections of β-Naphthoflavone (BNF, 50 mg/kg), a polychlorinated biphenyl (PCB) mixture 
(Clophen A50, 20 mg/kg) and cadmium chloride (CdC12, 2 mg/kg) on the activity and protein 
level of cytochrome P4501A (CYP1A), and found a persistent induction of this protein in the 
liver. 

Lam & Lam (2004) reviewed the results of an investigation made by the CCPC (Centre for 
Coastal Pollution and Conservation in Hong Kong) on the concentration of pollutants in a sample 
of intertidal animals living on the tidal flats of the Mai Po Nature Reserve in Hong Kong, an 
important migratory stop-over site for shorebirds. The organisms sampled included a mudskipper 
(Boleophthalmus pectinirostris), two aquatic teleost species, three crustacean species and a 
number of polychaete species. Relative to the other organisms, B. pectinirostris had higher levels 
of Pb and Hg, the highest levels of total HCHs, heptachlor, DDE, DDT and total PCBs, and 
lower levels of other heavy metals, PAHs, and petroleum hydrocarbons (PHCs). The evaluated 
risk quotients (RQs) for the analysed organisms were at a level of concern (RQ ≥ 1) for most 
contaminant types, either on mudflats, or in mangrove forests, or both. In some cases, RQs were 
exceedingly high (e.g. for Cu and heptachlor, RQs > 10). In particular, PCBs, dieldrine, DDE 
and DDT were considered potentially harmful to waterbirds via ingestion of contaminated prey, 
especially mudskippers (B. pectinirostris). In fact, egrets, bitterns and herons (Ardeidae) are 
dominant consumers of mudskippers (Clayton 1993; G. Polgar, pers. obs.). More recently, Lam 
et al. (2008) assessed the risks of organohalogenated compounds on the eggs of the populations 
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of two ardeid bird species from three coastal areas in South China, predicting that concentrations 
of dioxin-like (coplanar) PCBs and ΣDDEs in the eggs would probably affect bird populations. 
ΣDDTs were the predominant and most abundant residues, while ΣPBDEs were more abundant 
in areas where rapid industrialization had occurred. 

Kruitwagen et al. (2006) described the effects of pollution on natural populations of 
Periophthalmus argentilineatus living in differently polluted coastal areas in Tanzania. They 
reported the occurrence in natural populations of eye malformations (anophthalmia) which imply 
damage of earlier embryonic processes, an unprecedented case in natural fish populations. 
 
Genotoxicology 

This branch of toxicology studies the effects of toxicants on the genome: i.e. contaminants that 
can disrupt function and structure at both organismal and ecosystemic level (e.g. Anderson et al. 
1994). 

Krishnaja & Rege (1982) conducted a baseline study on the mutagenic effects of mitomycin 
C (MMC) and heavy metals (Hg, Se, Cr) on the mitotic chromosomes of the gill cells of 
Boleophthalmus dussumieri (Cuv. and Val.) (= B. dussumieri Valenciénnes, 1837 sensu Murdy 
1989). These mudskippers, which are also extensively consumed in the Mumbai area, were 
selected amongst 20 other fish species for their favourable karyotype and cytological traits in 
different tissues, low incidence of spontaneous aberrations, easy and low cost maintenance in 
laboratory, relatively small size, tolerance to experimental conditions, and availability in large 
numbers throughout the year. Thus B. dussumieri was proposed as a suitable model for in vivo 
studies on the direct and indirect effects of mutagenic pollutants in the environment. The authors 
found that chromosomal aberrations and increased mitotic activity were induced by all the 
studied contaminants, with MMC inducing breaks near the centromere regions, and Se being the 
most toxic HM in direct exposure experiments (intramuscular injections). In indirect exposure 
assays (toxicants released in the water) Hg induced the largest number of aberrations. The 
authors concluded that considerable baseline knowledge was needed to bring this model to a 
standardised testing protocol for the study of genotoxicity of specific contaminants. In particular, 
baseline cell kinetic studies of this species was needed to better understand the occurrence of 
spontaneous and induced chromosomal aberrations; and further investigations of the chronic 
effects of indirect exposure. Nonetheless, apparently no significant progress in this direction has 
been made to date. 

Feng et al. (2003) measured DNA breaks as a biomarker of exposure to benzo[a]pyrene 
[BaP, a polycyclic aromatic hydrocarbon (PAH) strongly suspected to be carcinogenic both in 
aquatic species and humans] in the liver of Boleophthalmus pectinirostris. The authors found that 
at 0.5 mg/l BaP, DNA breaks were significantly more frequent than that in controls after 12 hr of 
exposure, being increasingly more frequent until 7 days of exposure. Dose-response positive 
correlations were also found both at exposures of 3 and 7 days, even though the amount of 
damage at 0.2 mg/l was similar than at 0.5 mg/l, suggesting saturation of the effect at 
concentrations >0.2 mg/l. DNA breaks were not significantly repaired after 3 days at 0.5 mg/l 
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exposure plus 4 days in unpolluted water, indicating that B. pectinirostris might be an 
appropriate species for this type of biomarker assay. 

Gadhia et al. (2008) recently extended the observations of Krishnaja & Rege (1982) to the 
effects on the gills of Boleophthalmus dussumieri through direct exposure to the antineoplastic 
antibiotics Bleomycin and Doxorubicin. The authors confirmed the suitability of this species as a 
cytogenetic model for in vivo detection of potential mutagens, finding dose and time dependent 
increases in chromosomal aberrations after treatment with all the antibiotics. 
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The lower Fly River and delta: A possible case study 

Introduction 

The Fly River is one of the largest basins in the Indo-West Pacific region: in terms of discharge, 
it ranks with the top ten tropical rivers (Alongi 1990). Its delta is tide dominated, with a minimal 
wave influence, except during monsoons (Dalrymple et al. 2003). These conditions are ideal for 
the formation of tidal mudflats, which in the northern side are colonised by extensive mangrove 
forests, which exhibit a marked zonation (Robertson et al. 1991). 

The middle Fly River had been chronically and heavily impacted by intense mining 
activities, determining severe environmental issues of international concern (Van Zyl et al. 
2002a,b). Peculiar geochemical conditions apparently reduce the biological availability of 
toxicants in the river’s waters, and mining apparently impacts most on sedimentological and 
flooding cycles (Roberts 1999; Van Zyl et al. 2002a,b; Townsend & Townsend 2004). The lower 
Fly River and delta are much less affected, and maintain large and diverse mudskipper 
communities (Polgar et al. 2010). Nonetheless, mudskippers’ peculiar behaviour and ecology 
makes them particularly prone to long-term accumulation of toxicants, due to their intimate 
contact with HM contaminated soft sediments. Mudskippers are also a consistent part of the 
traditional fishery of villages in the Fly delta, being utilised as baits and food. Therefore, it is 
suggested that the risk of bioaccumulation of toxic HM in mudskipper tissues in this area and 
potential health risks for human consumption cannot be ignored, and investigations are needed to 
fill this knowledge gap. 
 
Material and Methods 

Several field surveys were made during September 2007 in the estuarine reaches of the Fly River 
and its delta, Western Province, Papua New Guinea (Fig. 2; Polgar et al. 2010). Mudskippers 
were collected from their burrows by hand, or with a handnet from the banks of rivers, creeks, 
and inside forests. The specimens were preserved in formalin and identified according to the 
available taxonomic keys (Larson & Takita 2004; Jafaar & Larson 2008; Murdy 1989). 

Finally, interviews of people from Wapi village (Fig. 2), and observations of daily fishing 
activities documented the human use of several mudskipper species. 
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Figure 2. The Fly delta: sites visited and sampled. Upper panel: W3 was the most recent settlement of the 
Wapi village at the time of the study. It was located in the middle of a lowland forest, with easier access 
to the fresh water table, and at the end of a tidal creek. Two older settlements are present (W1, W2), 
which were gradually abandoned due to the excessive frequencies of tidal submersions and crocodile 
attacks (Crocodilus porosus). Lower panel: The Ok Tedi-Strickland-Fly river system and the locations of 
the two mines; shaded rectangle: area of study. OM: Oktedi Mine; PM: Porgera Mine. 
 
Human use of the mudskippers of the lower Fly River and delta 

Ten mudskipper species were collected. These were Oxuderces wirzi (Koumans, 1938); 
Scartelaos histophorus (Valenciénnes, 1837); Boleophthalmus caeruleomaculatus McCulloch & 
Waite, 1918; Periophthalmodon freycineti (Quoy & Gaimard, 1824); Periophthalmus darwini 

Larson & Takita, 2004; Periophthalmus novaeguineaensis Eggert, 1935; Periophthalmus takita 
Jafaar & Larson, 2008; and Periophthalmus weberi Eggert, 1935. Two more species, 
Boleophthalmus sp. and Periophthalmus sp., did not correspond to any key and are currently 
being described. 
 

Interviews and analysis of several fish catches from the Fly River delta (Wapi villages, Fig. 
2) showed several mudskipper species were extensively used as food items or as baits (Table 1). 
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Table 1. Human use in the Wapi village. Vernacular names of mudskipper species used by the people of 
the Wapi village. TLmax: maximum recorded total length; Food or bait: usage by the Wapi people: F = 
used as food; B: used as bait; N = not used. 

Species 
Vernacular 
name 

TLmax 
(cm) 

Food 
or bait 

Periophthalmus darwini Larson & Takita, 2004 sakomo 5‡ N 

Periophthalmus novaeguineaensis Eggert, 1935 sakomo 5* N 

Periophthalmus sp. sakomo 5§ N 

Periophthalmus takita Jaafar & Larson, 2008 nebesokera 9† N 

Periophthalmus weberi Eggert, 1935 paraguamo# 12§ N 

Periophthalmodon freycineti (Quoy & Gaimard, 1824) genora  28§ F 

Boleophthalmus caeruleomaculatus McCulloch & Waite, 1918 ebanea 20** F/B 

Boleophthalmus sp. poti 15§ F/B 

Scartelaos histophorus (Valenciénnes, 1837) seekakowea 17¥ N 

Oxuderces wirzi (Koumans, 1937) canipo 10** F 

 
#the courting male of P. weberi is named ‘blue paraguamo’. ‡ Larson & Takita 2004 and Jaafar & 
Larson, 2008; *Larson & Takita 2004; †Allen et al. 2002; §G. Polgar, this study; **Murdy 1989; 
¥Rainboth 1996. 
 

Fishermen capture them on mudflats, mud banks, and in front of the fringing forest along the 
coast, removing them from their burrows by hand, as they do for the mud crab Scylla serrata 
(Forsskål, 1755) (Fig. 3). The 1:1 correspondence between several vernacular names and 
scientific species is noticeable, particularly in the case of the discrimination between P. weberi 
(sexes are identified as separate species) and other species of Periophthalmus (Table 1). 
Fishermen are familiar with the species-specific habitat distribution of the mudskippers. 
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Figure 3. A typical catch by Wapi fishermen on a mudflat in front of a mangrove forest (Sisikura I.). Bsp: 
Boleophthalmus sp.; fre: Periophthalmodon freycineti; Ss: Scilla serrata. Notice how the crabs are tied up 
with grasses, to be safely transported. 
 
Pollution and potential health risk issues 

The Ok Tedi Mine (Ok Tedi Mining Limited: OTML) has been active since 1984, initially 
mining for gold, and then copper (from 1987; Van Zyl et al. 2002a). The mine is located on 
Mount Fubilan, in the Star mountain range, about 1,800 m above sea level, close to the 
headwaters of the Ok Tedi River, a tributary of the Fly River. The Ok Tedi joins the Fly River at 
about 840 river km from the delta (Fig. 2). About 80,000 metric tonnes of mine tailings, toxic 
effluents and 120,000 metric tonnes of waste rocks are released daily into the Ok Tedi River 
(Van Zyl et al. 2002a). As a consequence, the suspended load of the Ok Tedi increased from 100 
ppm to 450-500 ppm since the beginning of mining activities (Minerals Council of Australia 
2000). 

The Porgera Gold Mine is located in Enga Province, about 130 km north-west of Mount 
Hagen, and has been active since 1990. It discharges its tailings (about 15,500 tons per day) and 
rocks from erodible waste dumps (30,000-40,000 tons per day) in the Porgera-Strickland River 
System (Van Zyl et al. 2002b). The Strickland River is another important tributary of the Fly 
River. In 1999, at the confluence with the Tumbudu River, the mine sediment load accounted for 
about 25-33% of its total sediment load (PJV 1999). 

As a comparison, the average total suspended sediment discharge of the Fly River was 
estimated to be about 345,000 tons per day (Salomons & Eagle 1990). 

Mine tailings contain toxic compounds, mainly heavy metals (HM), such as copper, arsenic, 
lead, zinc, and mercury. According to the Minerals Council of Australia (2000), pollution effects 
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are buffered both by the alkaline waters of these rivers, which would prevent release of HM from 
particulates, and by their high organic carbon content, which would make HM not bio-available. 
Studies conducted in the environment and on finfish, bivalves and crustaceans, showed that HM 
levels in the animals’ tissues would not be at dangerous levels (World Health’s Organisation 
guidelines) for human health in the lower Fly River and its delta (Minerals Council of Australia 
2000). 

OTML reports that the highest impact of mining activity is sediment accumulation on the 
river bed (aggradation), which increases the frequency and duration of inundations of flood 
plains and lowlands by over-bank flooding (BHP 1999). This results in hundreds of km2 of 
diebacks of the flood plain vegetation in the Ok Tedi and middle Fly catchments (Van Zyl et al. 
2002a). According to these reports, this impact is highest in the Ok Tedi River and middle Fly 
River, lower in the lower reaches of the Fly and much less significant in the delta. 

Nonetheless, other reports documented cases of periodical or exceptional releases of 
significant amounts of particularly dangerous pollutants in the river caused by mining activities 
or accidents (Roberts 1999), such as cyanides, used to extract gold and other precious metals. 
Cyanides neither biomagnify nor transfer through food webs, and are seldom persistent in the 
environment. Nonetheless, fishes are extremely sensitive to cyanides, with both acute and 
chronic effects, such as teratogeny, yolk sac dropsy, malformations, liver necrosis, behavioural 
and reproductive impairment, increased susceptibility to predation, osmoregulatory disturbances, 
and altered growth patterns (Eisler & Wiemeyer 2004). Mudskippers like Boleophthalmus 

boddarti are more tolerant to cyanides, due to a surplus of cytochrome oxydase, the capability to 
accumulate ammonia and inducible detoxifying mechanisms (Chew et al. 1998). 

In the lower Strickland, 7-10 fold increases of the concentrations of zinc, arsenic and copper 
were found in catfish tissues; those of the zinc exceeded the 1989 Australian National Health and 
Medical Research Council maximum residue limit (PJV 1999). Higher mercury concentrations 
were found in consumers of fish from Lake Murray, at the confluence of the Strickland River 
with the Fly River, relative to non-fish consumers from the more polluted areas of the upper 
Strickland River (Abe et al. 1995), suggesting that bioaccumulation takes place also in relatively 
unpolluted waters. Moreover, Acid Mine Drainage (AMD), created by the leaking of sulphide-
rich orebody on failing waste dumps and dredge materials, may rapidly release drastic amounts 
of toxic heavy metals into ground and surface waters (OTML PRG 2000). 

The presence of intensive industrial activities along the river and in peculiar ecosystems 
where mudskippers live may suggest that consumption of these fishes in the Fly River delta can 
potentially cause health problems. In particular, the large carnivorous species Periophthalmodon 

freycineti is regularly consumed by inhabitants in the Fly delta, thus being the first candidate for 
bioaccumulation and potential health issues. Nonetheless, no study ever measured the levels of 
contaminants in tissues of mudskippers from the Fly River and its delta (OTML, Environment 
Dep., pers. comm. 2007). 

The extensive traditional use of mudskippers as baits and food by villagers in the Fly River 
delta and the regular release of potentially dangerous contaminants into the Fly River from 
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intense mining activity upriver suggest that risks of bioaccumulation of pollutants in mudskipper 
tissues may be present in this area. Other aquatic species which are routinely utilised as 
biomonitors in eco-toxicological studies (clams, finfish, crustaceans), may actually contain lower 
levels of HM than in the tissues of mudskippers (Lam & Lam 2004). 
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Conclusion 

For their abundance and availability, easy and inexpensive maintenance, and considerable 
tolerance to water quality changes, mudskippers have been frequently used both in aquaculture 
and in eco-toxicological studies. Therefore, in polluted coastal areas where mudskippers occur 
the potential for bioaccumulation and human health issues for direct or indirect consumption is 
reasonably substantial. 

Mudskippers can absorb and concentrate many different pollutants released into the 
environment by industrial, agricultural, domestic and transportation activities, which cause 
physiological, histological, and embryological damage. In particular, mudskippers are known to 
accumulate higher concentrations of some toxic compounds (e.g. DDT and some heavy metals) 
in their tissues, relative to other aquatic and benthic species. In fact, their robustness to 
environmental stressors and tolerance to many contaminants give them the capacity to be 
chronically exposed to toxicants without significant acute effects, while their relatively low 
trophic status makes them less prone to biomagnifying toxicants. These factors make them good 
models for sub-lethal ecotoxicological studies. 

Therefore, apart from the devastating effects of habitat destruction, local extinctions of 
mudskipper populations exclusively due to moderate levels of pollution are unlikely. On the 
other hand, better knowledge of the species-specific chronic effects (e.g. bioaccumulation, 
endocrine and metabolic changes) of different contaminants in this diverse group would assist in 
better use of representatives of this group as models for ecotoxicological studies of soft bottom 
intertidal tropical and subtropical systems. In particular, the different trophic characteristics of 
different mudskipper species (carnivores, omnivores, herbivores) and their habitat differentiation 
and ecological partition would allow contaminant assessments both along the intertidal gradient, 
and at different trophic levels. 

In fact, like many environmental parameters, such as salinity, sediment grain size and organic 
matter content, and frequency of submersion (Raffaelli & Hawkins 1999), anthropogenic impacts 
are likely to vary considerably along the intertidal zone. A study conducted in an intertidal 
mangrove ecosystem (Kruitwagen et al. 2007b) suggested that the hydrophobic fraction of the 
effluents of a textile industry decreased from land to sea, probably due to adsorption onto the 
highly organic mangrove sediments (Chapman et al. 1998). Since this fraction had higher acute 
embryotoxicity than the polar fraction (e.g. Kruitwagen et al. 2007b), this would suggest a 
differential impact of this type of pollution along the intertidal zone. Habitat destruction is also 
invariably more intense from land to sea (Polgar 2008; Polgar & Sasekumar, 2010), while the 
damaging action of oil spills follows an inverse path, from sea to land (Chaw et al. 1993). 

In soft bottom tropical and subtropical systems, mudskippers are amongst the very few 
vertebrate intertidal residents (sensu Gibson 1999). They inhabit these habitats over their 
embryonic and post-larval life, and can live up to 5-7 years (Kruitwagen et al. 2006; Nanami & 
Takegaki 2005; Etim et al. 1996). Such characteristics, together with the relatively low trophic 
status of these mudskippers (secondary consumers: Kruitwagen et al. 2007a), suggest that some 
contaminants released into the sea may have early effects on these fishes (e.g. malformations) 
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relative to species at higher trophic levels or that spend less time in the intertidal zone (marine 
and terrestrial visitors). Therefore, in spite of there tolerance to aquatic toxicants, these attributes 
would make them efficient early warning model species in such ecosystems, prompting 
remediation before the effects of pollution spread to terrestrial top predators (shorebirds) or 
adjacent marine ecosystems. 

For that which concerns our preliminary survey in the lower Fly River and its delta, we argue 
that the presence of severe anthropogenic impacts resulting from continued and intense mining 
activities upriver should prompt periodic assessments of possible health risks to the local people. 
This can include the use of various biomarker endpoints in mudskippers as part of an 
environmental monitoring program to assess the effect of heavy metal levels (e.g. As, Hg, Cu, 
Zn, Pb) on mudskippers inhabiting the Fly delta. Finally, we hope that future OTML reports will 
be published in peer reviewed journals, thus making these data accessible to the scientific 
community, to allow for a better understanding of the impacts of anthropogenic pollution on this 
and other similar ecosystems. 
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