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ABSTRACT Recent reports of high frequency sound
production by cusk-eels cannot be explained adequately
by known mechanisms, i.e., a forced response driven by
fast sonic muscles on the swimbladder. Time to complete
a contraction-relaxation cycle places a ceiling on fre-
quency and is unlikely to explain sounds with dominant
frequencies above 1 kHz. We investigated sonic morphol-
ogy in the fawn cusk-eel Lepophidium profundorum to
determine morphology potentially associated with high
frequency sound production and quantified development
and sexual dimorphism of sonic structures. Unlike other
sonic systems in fishes in which muscle relaxation is
caused by internal pressure or swimbladder elasticity,
this system utilizes antagonistic pairs of muscles: ven-
tral and intermediate muscles pull the winglike process
and swimbladder forward and pivot the neural arch
(neural rocker) above the first vertebra backward. This
action stretches a fenestra in the swimbladder wall and
imparts strain energy to epineural ribs, tendons and lig-
aments connected to the anterior swimbladder. Rela-
tively short antagonistic dorsal and dorsomedial muscles
pull on the neural rocker, releasing strain energy, and
use a lever advantage to restore the winglike process
and swimbladder to their resting position. Sonic compo-
nents grow isometrically and are typically larger in
males although the tiny intermediate muscles are larger
in females. Although external morphology is relatively
conservative in ophidiids, sonic morphology is extremely
variable within the family. J. Morphol. 000:000–000,
2007. � 2007 Wiley-Liss, Inc.
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The frequency spectrum of fish sounds produced
by swimbladder vibration is determined as a forced
response to sonic muscle contraction and swim-
bladder properties (Sprague, 2000; Fine et al.,
2001, 2004). The requirement for sonic muscles to
drive each sound cycle has selected for extreme
speed (Fine et al., 2001), and fish sonic swimblad-
der muscles are considered the fastest muscles in
vertebrates (Tavolga, 1964; Rome and Linstedt,
1998; Ladich and Fine, 2006). In fishes that make
long duration tonal sounds (e.g., toadfish, midship-

man, mormyrids, gurnards and searobins), the
muscle contraction rate sets the fundamental fre-
quency (Skoglund, 1961; Crawford and Huang,
1999; Bass and McKibben, 2003; Amorim and
Hawkins, 2005); i.e., simultaneous contraction of
paired sonic muscles at 200 Hz will drive a har-
monic sound with a fundamental frequency of 200
Hz. The northern searobin alternates muscle con-
traction so that the fundamental frequency is dou-
ble the rate of individual contraction (Bass and
Baker, 1991; Connaughton, 2004). More commonly,
fish sounds are produced as a series of short-dura-
tion wide-band pulses (Winn, 1964). In weakfish
(family Sciaenidae), each sound pulse is driven by
a single muscle twitch, and the dominant fre-
quency appears to be determined by timing char-
acteristics of the sonic muscle twitch rather than
bladder resonance (Connaughton et al., 2002) sug-
gesting a similar mechanism to multicontraction
tonal sounds. Rather than waiting for the contrac-
tion of a muscle antagonist, muscle relaxation and
hence the relaxation component of a twitch sound
(Fine et al., 2001) is caused by bladder elasticity or
pressure built up in the bladder by contraction of
sonic muscles. Dispensing with antagonist contrac-
tion removes the inertia that is otherwise involved
in a change of muscle direction necessary to com-
plete a sound cycle. Therefore, the timing of the
muscle contraction–relaxation cycle typically pla-
ces a ceiling on the maximum fundamental in lon-
ger-duration tonal sounds or dominant frequency
in single-twitch sounds.

Most fishes that use sonic swimbladder muscles
for sound production vocalize at relatively low fre-
quencies that fit the forced-twitch model. For
example, sonic muscles in the oyster toadfish can
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follow an electrical stimulus at 400 Hz without tet-
any (Fine et al., 2001) although the highest funda-
mental frequencies of toadfish recorded in nature
approach 300 Hz (Fine, 1978; Thorson and Fine,
2002; Remage-Healey and Bass, 2005). Single-

twitch sounds can have higher dominant frequen-
cies, and the maximum for the weakfish Cynoscion
regalis is above 500 Hz (Connaughton et al., 2002).
Note that high frequency components in fish
sounds (e.g., those above the peak frequency) rep-
resent higher order vibrations of the swimbladder
and not the driving frequency. In many cases,
these high frequency components may be above
the fish’s auditory range and therefore irrelevant
to communication (Ladich and Fine, 2006).

Ophidiids, the dominant group of benthic deep-
sea fishes in both numbers and species in tropical
and subtropical areas (Howes, 1992; Nielsen et al.,
1999; Music personal communication), have swim-
bladder muscles, implicating them in sound pro-
duction (Marshall, 1967). Recent descriptions of
the sounds produced by a shallow-water ophidiid,
Ophidion marginatum, indicate a dominant fre-
quency above 1 kHz (Mann et al., 1997; Perkins,
2001; Sprague and Luczkovich, 2001; Rountree
and Bowers-Altman, 2002). This frequency is too
high to be explained by the twitch model because
no vertebrate muscle is known to complete a
twitch in less than 1 ms. We examined the sonic
anatomy underlying potentially high frequency
sound production in the fawn cusk-eel Lepophi-
dium profundorum, a species that lives on the
outer continental shelf in the Northwest Atlantic
Ocean (Collette and Klein-MacPhee, 2002) and
whose sounds have not been recorded. Although
direct evidence is lacking, we are proceeding under
the hypothesis that other ophidiids, but not related
carapids (Parmentier et al., 2006b), likewise pro-
duce high frequency sounds. Several previous
studies in ophidiids have clarified parts of the
mechanism and indicate considerable variability
within the sonic anatomy of the family (Rose,
1961; Courtenay, 1971; Carter and Musick, 1985;
Howes, 1992; Casadevall et al., 1996; Parmentier
et al., 2006a). These studies have noted sexual
dimorphism in sonic structures, and the present
study quantifies sexual differences for the first
time.

MATERIALS AND METHODS

Fawn cusk-eels Lepophidium profundorum (Gill, 1863) were
captured by otter trawl and frozen aboard Albatross IV cruises.
Fish were collected from Cape Hatteras to the Gulf of Maine at
depths of about 50 fm from spring (March and April) and fall
(September and October) bottom trawl surveys in 2001, 2002,
and 2004.

Specimens were weighed to 0.1 g and measured for total
length (TL) to the nearest millimeter, and gonads were exposed
to determine fish sex. Fish were dissected to expose muscles
attached to the swimbladder or to processes that connect to the
bladder, and the origin and insertion of these muscles were
described. We measured muscle length between the origin and
insertion and length of the tendons protruding from the ventral
muscle. Muscles (the right muscle of each pair) were weighed in
milligrams after soaking in 0.9% NaCl for 5 min and blotting to
ensure uniform hydration. Swimbladder length and weight
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Fig. 1. A: Relationship of weight to length for combined
males and females in Lepophidium profundorum: Y 5
1.116e0.01316X, r2 5 0.90. B: Relationship of skull weight to fish
weight: Males: Y 5 264.91 1 21.72 X, r2 5 0.80, Females:
231.51 1 17.74X, r2 5 0.84. C: Relationship of spine length to
total length for combined males and females: Y 5 1.041 1
0.02118X, r2 5 0.60.
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were also measured. Dissected specimens were placed in hot
water with soap to facilitate tissue removal to expose the skele-
ton. We measured the length of the rostral spine, the dry
weight of the neurocranium (hereafter referred to as the skull)
and the length, height, and weight of the winglike process and
weight of the ‘‘neural rocker.’’ The neural rocker and winglike
process were broken at a suture allowing us to weigh the two
components individually.

Quantitative data from the skeleton, swimbladder, and sonic
muscles were regressed against fish size (weight and total
length), and sexual differences were determined by analysis of
covariance. We used regressions to calculate adjusted means to
compare male and female characters for a medium-sized indi-
vidual (225 mm TL and 25 g).

RESULTS

Fish ranged from 130 to 274 mm TL and
included 36 females and 29 males. Size distribu-
tions were similar for both sexes, and males and
females were not distinguishable externally. They
had equivalent length–weight regressions, which
were therefore combined into a single regression
(Y 5 1.116e0.01316 TL, r2 5 0.90) (Fig.F1 1A, Table 2).

Skull weight increased linearly with fish weight
(male r2 5 0.84, female r2 5 0.80) (Fig. 1B, Ta-
ble 2). Although there was considerable overlap
between males and females, skulls were heavier
in males than in females (F1,60 5 6.1988, P 5
0.0156). Notably, a keel on the midline of the cau-
dal part of the parasphenoid, which separates the
right and left ventral sonic muscles (see below),
was sufficiently deeper in males that this charac-
ter can be used to determine fish sex. The spine on

the snout, which is not visible externally, increased
linearly with fish size with no sexual difference
(Fig. 1C). The combined r2 value (0.60) was fairly
low because some spines were broken despite
being housed within tissue. Although likely defen-
sive, spine function is unknown, and these obser-
vations appear to rule out a courtship function or
a contribution to sexual dimorphism in head
weight.

Sonic Mechanism
Skeleton. The first five vertebrae bear epineu-

ral ribs of different sizes (Figs. F22, 6, and 7). The
first vertebra bears a large complex process con-
sisting of an expanded rib, the winglike process,
and a neural arch with two small median articula-
tion heads that fit within depressions on the side
of the first vertebra (Figs. 2 and F33). These two
attachments confine movement to a single plane:
the neural arch and spine pivot (rock back and
forth) in the anteroposterior direction. We refer to
this structure as the neural rocker to distinguish
it from the rocker bone found in the anterior
swimbladder wall in other ophidiids (Rose, 1961;
Casadevall et al., 1996). The neural rocker is
larger in males (Tables T1, T21 and 2, Fig. 8) and has
expanded lateral shoulders compared to a more
rounded contour in females (Figs. 2 and 3). The
winglike process is fused to the anterolateral base
of the neural rocker at a suture, and the two can
be removed as a single structure. The medial half
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Fig. 2. Dorsal and ventral
view of vertebrae I–V and epi-
neural ribs in male and female
Lepophidium profundorum.
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of the winglike process is concave and narrows lat-
erally to a ridge with a crest on the lateral margin.
The crest is deeper in males than in females, and
the expanded tip of the winglike process is nar-
rower and more pointed in males than in females

(Fig. 2). The width of the winglike process is
slightly wider in males than in females and consid-
erably longer in males because of the distal tip
(Figs. 2 and 8). A ligament on the ventrolateral
surface of the winglike process (SWB ligament 1a)
connects to the anterior face of the swimbladder
(SWB) (Figs. 2, 5, and 7).

The remaining epineural ribs (EP2–5) have a
single slender articulation head that would allow
them to move in different directions except that
movement is restricted by their attachments,
which forms a scaffold over the anterior bladder
(Figs. 2 and 7). The winglike process connects to
EP2 by a ligament (SWB ligament 1b), and the tip
of EP2 bears a ligament (SWB ligament 2) that
connects to the swimbladder (Fig. 7). EP3 is thin
proximally and becomes broader laterally binding
to the bladder with connective tissue. The proxi-
mal part of EP3 connects to the osseous plate on
vertebra 4, which should restrict forward move-
ment of the rib and stabilize the bladder. The osse-
ous plate is larger with a greater lateral extension
in males than females (Table 2). A smaller but
similar structure is present on vertebra 5.

Swimbladder morphology. The swimbladder
is a slender sac consisting of a single chamber,
which increases in girth from the anterior end for
a short distance before gradually tapering. The
bladder ends in a tail that is longer in females
than in males (Figs. F4, F54 and 5C). The bladder lies
under the first through twelfth vertebrae and is
tightly coupled to the vertebral column through
the ninth vertebra. Again note particularly the
broad attachment site on the osseous plate on the
fourth and to a lesser extent on the fifth vertebra
(Figs. 2 and 7). Interestingly, the posterior portion
of the bladder is less closely attached but held to
the 10th through 12th vertebrae by three strong
string-like bands of connective tissue (Fig. 4C).
The bladder has a similar length in males and
females but is considerably heavier in males
(Tables 1 and 2, Fig. 9).

The bladder may be divided into three regions.
The anterior region is notably thickened and is
the attachment site for sonic muscle ligaments
(described above) and tendons (described under
muscles). The second region, termed the swimblad-
der fenestra in ophidiiform fishes (Howes, 1992), is
thin and transparent without an outer collagenous
covering (Fig. 5A,B). The final region, the remain-
der of the bladder, is tightly coupled to the verte-
bral column, and begins at epineural rib 3 (EP3).
The fenestra in males covers three-fourths of the
swimbladder circumference and is larger dorsally
tapering around the bladder sides (Fig. 5A). In
females, the smaller fenestra is restricted to the
dorsal surface. The anterior lip of the fenestra
(ALF) is notably thickened and is the insertion
site of SWB ligament 2. The fenestra is more flexi-
ble than other bladder tissue and permits muscle
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Fig. 3. Neural rocker (first neural arch), winglike process
(WLP) and pivot joint in Lepophidium profundorum. Note the
broad shoulders on the neural rocker in A, the expanded tip of
the WLP and the projections of the pivot joint in B, which fit
into the recesses in the vertebra in C. Scale bar 5 1 mm.
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attachments to displace the anterior wall of the
bladder (region 1). Dorsally, the region just caudal
to the posterior edge of the fenestra attaches to
EP3, and, as stated previously, the motion of this
rib is severely restricted by ligament EP3–EP4,
which connects the proximal end of EP3 to the os-
seous plate on vertebra 4. This connection, as well
as the tight coupling of the dorsal swimbladder
wall to the vertebral column, will hold the poste-
rior bladder relatively rigid during sonic muscle
contraction.

Sonic muscles. The fawn cusk-eel has four
pairs of sonic muscles (ventral, intermediate, dor-
sal and dorsomedial), all of which insert on the
swimbladder or skeletal elements that move the
swimbladder (Figs. 4,F6, F7 5A, 6, and 7). These muscles
have been given various names in other ophidiids;
for instance, the ventral muscles have been
referred to as M1 (Rose, 1961), primary sonic mus-
cle (Courtenay and McKittrick, 1970), ventrolat-
eral and ventromedial sonic muscles (Carter and
Musick, 1985), and anterolateral segment of the
epaxial muscle (Howes, 1992). Hopefully the termi-
nology used here and in Parmentier et al. (2006a)
will become standard.

Ventral muscle. The ventral muscles originate
broadly on the flattened parasphenoid and are sep-
arated by a vertical keel, which is more extensive
in males than females (Figs. 6 and 7). These
muscles end in a long tendon that bifurcates. The
straight portion runs directly to its insertion on
the midportion of the ridge crest on the ventral
winglike process (Figs. 4, 6, and 7). The ventral
muscle tendon branches at a right angle, forming
an intermuscular tendon that connects to the op-
posite ventral muscle tendon after running
through the thickened anterior wall of the swim-
bladder (Figs. 4B and 5A). Thus, the ventral mus-
cle forms an indirect lateral and a direct medial
attachment to the swimbladder.

Intermediate muscle. The intermediate mus-
cle originates on a protrusion situated behind the
foramen of the vagal nerve on the anterior part of
the basioccipital (Fig. 6). The muscle is narrow
and runs beneath Baudelot’s ligament in males,
whereas in females it is wider and surrounds
the ligament. The insertion of the intermediate
muscles, medial to the insertion of the ventral
muscles, is on a curved ridge that travels down
the ventral side of the winglike process. The ridge
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TABLE 1. Summary of sexually dimorphic characters in the sonic system of Lepophidium profudorum

Character Male Female

Ventral muscle Heavier and thicker Lighter and thinner
Intermediate muscle Lighter and narrow Heavier and wide
Dorsal muscle Heavier and thicker Lighter and thinner
Parasphenoid keel Wide Narrow
Posterior tip of the swim bladder Short Elongated
Swim bladder fenestra Wide and long Narrow and short
Ligament between EP1 and EP2 Thin Large, ligament runs to EP3
Ventral plate on the 4th vertebra Large Small
Wing-like process Elongated posterior tip Shorter tip
Neural rocker Larger with flattened dorsal

aspect and lateral shoulder
Thin and rounded

TABLE 2. Sexual dimorphism of sonic structures in Lepophidium profundorum

Structure Male Female Probability

Ventral muscle L (mm) 13.6 11.8 <0.0001
Ventral muscle Wt (mg) 78.0 54.0 <0.0001
Intermediate muscle L (mm) 7.8 7.6 NS
Intermediate muscle Wt (mg) 6.7 13.5 <0.0001
Dorsal muscle L (mm) 10.9 9.4 <0.0001
Dorsal muscle Wt (mg) 80.0 38.0 <0.0001
Ventral muscle tendon L, (mm) 3.1 2.2 0.038
Intermuscular tendon L (mm) 2.8 3.1 NS
WLP width (mm) 2.5 2.2 0.0028
WLP length (mm) 7.4 5.9 0.0018
WLP weight (mg) 14.9 7.4 <0.0001
Neural rocker Wt (mg) 6.7 3.6 0.0003
Swimbladder L (mm) 31.0 31.0 NS
Swimbladder Wt (mg) 511.0 363.0 0.0006

Adjusted means were calculated for a 225 mm TL or 25 mg fish using regressions for males and
females; Probability values were taken from analysis of covariance; In many cases (see graphs), the
slopes were equal in which case the P value indicates significance of elevation.
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forms a posterior border of a concave surface on
the process.

Dorsal muscle. The dorsal muscle originates on
the epiotic, exoccipital, and the anterior portion of
the supraoccipital crest (Fig. 6A,B) and extends to
the lateral posterior portion of the dorsal surface of
the neural rocker (Figs. 6 and 7). A medial dorso-
ventrally compressed dorsomedial muscle (DMm),
described here for the first time, connects the pos-
terior tip of the supraoccipital to the apex of the
neural rocker.

Relative Growth and Sexual Dimorphism

The dorsal, intermediate, and ventral sonic
muscles exhibited a linear increase in length and
weight with fish size and were sexually dimorphic
(Tables 1 and 2, Fig. 10). The dorsal and ventral
muscles were larger in males, but the intermediate
muscle was larger in females. The dorsal muscle
in males had an adjusted mean weight of 80 mg
(calculated for a midsized 25 g, 225 mm TL fish),
the ventral muscle 78 mg, and the thin intermedi-
ate muscle was considerably lighter at 6.7 mg.
Comparable values in females were 38, 54, and
13.5 mg, respectively. Comparisons of the muscles
within each sex (Table 2) indicate that the ventral
muscle is longer than the dorsal muscle in both
sexes and heavier than the dorsal muscle in
females; in males the two muscles were compara-
ble in weight (P > 0.05). The intermediate muscles
were shorter and lighter than the other two in
both sexes.

Swimbladder lengths were similar in both sexes,
but bladders were heavier in males (Table 2, Fig.
9). The tendon of the ventral muscle was longer in
males, but intermuscular tendon length was simi-
lar in both sexes (Table 2, Fig. 9). Finally, the neu-
ral rocker was heavier in males as reflected in its
broader structure (Figs. 2 and 8), and the winglike
process was slightly wider, longer and therefore
considerably heavier in males than in females (Ta-
ble 2, Fig. F88). The increased length of the winglike
process accommodates the longer ventral muscle
and ventral muscle tendon in males. Since the
ventral tendon inserts laterally on the slender tip
of the winglike process, the longer ventral muscle
in males should impart a greater torque on the
winglike process, thereby increasing the movement
of the swimbladder during sound production.

The regression of dorsal muscle weight against
fish weight had a greater slope in males than in
females as did ventral muscle tendon length, neu-
ral rocker weight, winglike process weight, and
swimbladder weight (Figs. F9, F108–10). However, muscle
length of all three sonic muscles and weights of
the ventral and intermediate muscles grew at an
equivalent rate in both sexes (slopes were not
significantly different) although structures were
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Fig. 4. A: The swimbladder of Lepophidium profundorum.
B: The ventral muscles (VM) with the protruding ventral mus-
cle tendon (VMT) that attaches to the WLP, and the intermus-
cular tendon (IMT) that enters the anterior wall of the bladder.
The anterior wall has been cut away to reveal the tendon. C:
Stringlike connective tissue attachments from vertebrae 10–12
to the posterior bladder.
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larger in one sex (e.g. males except for the inter-
mediate muscles), indicative of significant differen-
ces in elevations of the regressions.

Function. Pulling on the ventral and interme-
diate muscles causes the winglike process to pivot
forward thereby forcing the anterior surface of the
swimbladder forward and downward, and thus
stretching the swimbladder fenestra (Fig. 7). This
process is aided by a series of connections (swim-
bladder ligaments 1a, 1b, 2, and the intermuscu-
lar tendon). Therefore, contraction of the ventral
and intermediate muscles will place these ele-
ments under tension (Fig. 7). Motion of the wing-
like process causes the neural rocker to pivot
backward until it is pinned against the dorsal
spine of the second vertebra, which therefore func-
tions as a stop to ventral muscle contraction. Con-
traction of the dorsal muscle antagonist pivots
the neural rocker forward, restoring swimbladder
position.

DISCUSSION

Knowledge of sound production in deep-sea
fishes is circumstantial (Mann and Jarvis, 2004)
and based mainly on anatomy, i.e., the presence of
sonic swimbladder muscles (Marshall, 1967). To
our knowledge, the striped cusk-eel Ophidion mar-
ginatum, which lives in shallow water, is the only
identified ophidiid whose sounds have been re-
corded (Mann et al., 1997; Perkins, 2001; Sprague
and Luczkovich, 2001; Rountree and Bowers-Alt-
man, 2002), and its sound pulses have anoma-
lously high peak frequencies exceeding 1 kHz. We
started our investigation into the sonic anatomy of
the fawn cusk-eel Lepophidium profundorum to
uncover anatomical features that might lead to
high frequency sound production. The discovery of
antagonistic muscle pairs was disconcerting, since
a muscle antagonist must slow down one action
before starting another, thereby seemingly favor-
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Fig. 5. Sonic specializations
of the swimbladder in male and
female Lepophidium profundo-
rum. A: The intermuscular
tendon (IMT), swimbladder fe-
nestra, and anterior lip of the
fenestra (ALF). B: The attach-
ment of the ventral muscles
(VM) to the WLP, WLP attach-
ment to the bladder via tendon
L1a, and the side view of the
swimbladder fenestra in the
male but not in the female. C:
Swimbladder tail, which is lon-
ger in females than males.
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ing lower rather than higher swimbladder vibra-
tion frequencies.

Swimbladder sounds typically result from forced
responses to muscle contraction (Fine et al., 2001;
Connaughton et al., 2002; Connaughton, 2004;
Fine et al., 2004). However, a typical fish mecha-

nism of sound generation in cusk-eels would still
require opposite movements of the muscle antago-
nists to occur in less than 1 ms to produce a sound
with a dominant frequency above 1 kHz. Such
speed is unlikely for muscle contraction or motor
neuron control. Another avenue for generating
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Fig. 6. Top: Drawing of the skull, first
5 vertebrae and epineural ribs in Lepo-
phidium profundorum. Middle: Drawing
of the ventral, intermediate, and dorsal
muscles superimposed on the skeleton.
Bottom: Micrograph of the sonic muscles.
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sounds has been demonstrated in carapid fishes,
which are closely related to the ophidiids (Cour-
tenay and McKittrick, 1970; Nielsen et al., 1999).
Unlike all other sounds generated by fast sonic
swimbladder muscles, sounds in Carapus acus are
generated with slow muscles that require 490 ms
for a twitch and that tetanize above 10 Hz (Par-

mentier et al., 2006b). For comparison, toadfish
sonic muscles require about 10 ms for a twitch and
can follow an electrical stimulus at 400 Hz (Sko-
glund, 1961; Fine et al., 2001). Resonant frequency
calculations (Weston, 1967) for an underwater bub-
ble with an equivalent radius to the swimbladder
in Carapus boraborensis predicted frequencies an
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Fig. 7. Top: Drawing of the
skull and anterior vertebrae illus-
trating torque patterns of the ven-
tral, intermediate, and dorsal
muscles on the neural rocker and
WLP. Bottom: Schematic diagram
of the sonic apparatus including
skeletal elements, tendons, and
sonic muscles in male and female
Lepophidium profundorum.
Arrows in the right figure illus-
trate movements of ligaments, ten-
dons, and the swimbladder fenes-
tra during contraction of the ven-
tral and intermediate muscles.
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octave higher than that produced by the fish (Par-
mentier et al., 2006b). Since the swimbladder of
the fawn cusk-eel is larger than that of C. borabor-
ensis, generation of high frequency sounds by blad-
der resonance is unlikely. A swimbladder fenestra
(Howes, 1992), which decouples sonic muscle-
induced movement of the anterior swimbladder
from the rest of the structure, occurs in both
carapids and ophidiids. Therefore, it is parsimoni-
ous to assume that fawn cusk-eel sounds are also
induced by slow muscles. Another parallel between
carapids and the fawn cusk-eel is the presence of
modified ribs in close association with the swim-
bladder fenestra. In C. boraborensis, a broad modi-
fied rib, the swimbladder plate, is intimately con-
nected to the fenestra, and Parmentier et al.
(2006a) hypothesized that the plate is excited by
the rapid return of the fenestra, which was
stretched and then released by sonic muscle con-
traction; plate vibrations in turn were seen as
driving the swimbladder and determining the
sound frequency.

Although the carapid mechanism does not utilize
antagonistic muscles, we see a number of parallels
in the sonic mechanism in the fawn cusk-eel. The
cusk-eel’s ventral and intermediate muscles pull
the swimbladder forward, pivoting the neural
rocker backward until it hits the neural arch of
the second vertebra, which should rapidly termi-
nate motion. The ventral muscles will be more
effective in deforming the swimbladder than the
intermediate muscles because of their greater
mass and length, greater tendon length, and more

lateral insertion. It is conceivable that residual
ventral and intermediate muscle contraction after
the stop increases tension on the winglike process,
tendons, and ligaments as if they were spring-
loaded. The intermediate muscles have larger
fibers than the ventral and dorsal muscles in
Ophidion barbatum (Parmentier et al., 2006a),
and it is therefore plausible that the intermediate
muscles will be slower and maintain tension after
the stop. Further, we hypothesize that the
extended thin tips of the male winglike process are
an adaptation to store strain energy (Alexander,
2002).

The ligament attaching the third epineural rib
to the osseus plate on vertebra 4 plus the intimate
attachments of the dorsal swimbladder to the ver-
tebral column isolates the posterior bladder from
muscle contractions. In fact, the system is
designed to displace the anterior portion of the
swimbladder forward primarily by stretching the
fenestra. The complex bladder attachments of the
ventral muscles (winglike process laterally and
intermuscular tendon medially) act as a stay to
keep the front of the bladder from buckling,
thereby serving to transfer muscle work efficiently
to bladder displacement. Swimbladder shape is
restored by shorter antagonistic dorsal and dorso-
medial muscles that work indirectly by pulling the
neural rocker forward. Because of the pivot action
and the longer winglike process, the dorsal
muscles enjoy a mechanical lever advantage (for
speed but not force) so that a short movement will
be translated into a longer motion of the swim-
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Fig. 8. Relationship of winglike
process (WLP) and neural rocker
to total length or weight in male
and female Lepophidium profundo-
rum. A: WLP width to TL. Males:
Y 5 20.1981 1 0.01183X, r2 5
0.60. Females: Y 5 20.4154 1
0.01171X, r2 5 0.70. B: WLP
length to TL. Males: Y 5 21.27 1

0.0386X, r2 5 0.87. Females: Y 5
20.1673 1 0.02741X, r2 5 0.88. C:
WLP weight to fish weight. Males:
0.01183X, r2 5 0.60. Females: Y 5
20.4154 1 0.01171X, r2 5 0.70.
WLP length to TL. Males: Y 5
21.27 1 0.0386X, r2 5 0.87.
Females: Y 5 21.296 1 0.3471X,
r2 5 0.88. D: Neural rocker weight
to fish weight. Males Y 5 22.235
1 0.3570X, r2 5 0.72. Females: Y
5 20.04565 1 0.1465X, r2 5 78.
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bladder. Measuring from the prongs that insert in
the vertebra, the ratio of the height of the neural
rocker to the length of the winglike process in a
male is about 1:2.5. Therefore, a small forward
movement of the rocker will exert a magnified dis-
placement of the bladder approximating that ratio.
However, the lever advantage of the dorsal
muscles results in a force disadvantage. Since con-
traction of the dorsal muscles will release strain
energy (Alexander, 2002) stored in the winglike
process, tendons and epineural rib 2 (Fig. 7), dor-
sal muscle action should not require a great deal
of force. The bladder should pop back rapidly, gen-
erating a rapid increase in pressure within the
bladder. Note that the dorsal muscle in the striped
cusk-eel undergoes a seasonal hypertrophy that
should facilitate bladder return (Courtenay, 1971).

The bladder ends in a little tail, and similar tails
are present in unrelated sciaenid fishes (Chao,
1978), suggesting convergent evolution. The wide
anterior end of the bladder will admit high veloc-
ities courtesy of the fenestra, and the taper down
to the more rigid posterior tail will concentrate the
pressure of an acoustic wave and reflect it back to
the anterior end where it could potentially re-
excite tendons and ligaments, evoking a multicycle
pulse. The swimbladder tail will not be an effective
sound radiator because of its small surface area
and resistance to movement, i.e., low volume veloc-

ity (Bradbury and Vehrencamp, 1998), suggesting
the flat surface of the bladder between the fenes-
tra and the tail is primarily responsible for radiat-
ing sound.

Pivot joints in mammals permit a circular rota-
tion (Marieb and Mallatt, 2001), e.g., the proximal
radioulnar and alantoaxial joints in humans,
which allow us respectively to rotate our forearm
and our head from side to side. The attachment of
the neural rocker to the first vertebra, a longitudi-
nal pivot joint whose motion is restricted to the
anterior–posterior plane, appears to be a new type
of joint with low inertia and a stop that would
favor high speed cycling.

Preliminary audiograms for the striped cusk-eel
Ophidion marginatum indicate it is an auditory
generalist with low frequency hearing (B. Casper
and D. Mann, personal communication). They
found an upper auditory limit of 800 Hz using the
auditory brainstem response. We therefore suggest
that the cusk-eel sonic mechanism evolved to pro-
duce high sound pressure levels with slow muscles
and that high frequency sound production was gen-
erated incidentally, basically an epiphenomenon.
Therefore, only low frequency components of the
sound spectrum, those below the peak frequency, are
likely to play a role in acoustic communication.

The phylogeny of ophidiiform fishes is poorly
understood (Nielsen et al., 1999) and does not
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Fig. 9. Relationship of swimbladder length and weight to total length or weight and ventral muscle tendon and intermuscular
tendon length to total length in male and female Lepophidium profundorum. A: Swimbladder length to TL. Males: Y 5 215.24 1
0.2059X, r2 5 0.82. Females: 29.457 1 0.1803X, r2 5 0.89. B: Swimbladder weight to fish weight. Males: Y 5 246.64 1 22.31X, r2

5 0.84. Females: Y 5 10.96 1 14.06X, r2 5 0.79. C: Ventral muscle tendon length to TL. Males: Y 5 22.477 1 0.02492X, r2 5

0.43. Females: Y 5 20.4753 1 0.0119X, r2 5 0.31. D: Intermuscular tendon length to TL. Males: Y 5 21.057 1 0.01735X, r2 5
0.52. Females: Y 5 21.463 1 0.02017X, r2 5 0.63.
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provide a clear platform for interpreting evolution-
ary changes in sonic morphology. Howes (1992)
examined the morphology of a large number of
ophidiids, including several aspects of the sonic
system without considering function. He separated
the ophidiids into two major patterns: (1) those
with direct contacts between the swimbladder and
expanded ribs, and (2) those in which the swim-
bladder is isolated from nonexpanded ribs. Our
discussion here will concentrate on studies focused
primarily on the sonic mechanism, which all
appear to come from Howe’s first group. These
studies indicate extreme variability, and sonic
mechanisms examined fall into three patterns.
The simplest system is present in the deep-water
Barathrodemus manatinus, collected from 1,800–
2,600 m (Carter and Musick, 1985). Males possess
two ventral muscles (a lateral and a medial) that
both originate on the prootic. The lateral muscle,
present only in males, inserts on the swimbladder
wall, and the medial muscle inserts broadly on
ribs attached to vertebra 4 in males and females.
Compared to development in more shallow forms,

the muscles appear quite slender, and there is no
neural rocker, rocker bone or winglike process. It
is not currently possible to interpret this system
as primitive or, rather, a degenerate adaptation to
the deep sea. Splitting of the ventral muscles into
lateral and medial components would argue that
this adaptation is not basal.

The second basic pattern is found in the fawn
cusk-eel (this study) and the striped cusk-eel Ophi-
dion marginatum (Courtenay, 1971). Although
there are major differences in swimbladder mor-
phology, both species have ventral, intermediate,
and dorsal muscles. Courtenay’s ventral muscles
(his primary sonic muscles) connect to the winglike
process (his bladelike first ribs) in males but to
thickened outpocketings of the anterior bladder in
females. In the fawn cusk-eel, ventral muscles con-
nect to the winglike process and swimbladder in
both sexes. Courtenay finds a medial sound-pro-
ducing muscle (5 our intermediate muscle) only in
females, whereas it is present in both sexes in the
fawn cusk-eel and enlarged in females. Courtenay
mentions that the dorsal muscles insert broadly on
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Fig. 10. Relationship of dorsal,
intermediate, and ventral muscle
length and weight to fish total
length and weight in male and
female Lepophidium profundorum.
A: Dorsal muscle length to TL.
Males: Y 5 24.139 1 0.06668X, r2

5 0.80. Females: Y 5 23.713 1

0.05841X, r2 5 0.78. B: Intermedi-
ate muscle length to TL. Males: Y
5 21.237 1 0.03907X, r2 5 0.64.
Females: Y 5 21.227 1 0.4011X,
r2. C: Ventral muscle length to TL.
Males: Y 5 22.219 1 0.07009X, r2

5 0.75. Females: Y 5 23.641 1

0.06883X, r2 5 0.88. D: Dorsal
muscle weight to fish weight.
Males: 211.22 1 3.638X, r2 5
0.80. Females: Y 5 26.373 1
1.769X, r2 5 0.68. E: Intermediate
muscle weight to fish weight.
Males: Y 5 0.00995 1 0.2668X, r2

5 0.49. Females: Y 5 2.849 1
0.4243X, r2 5 0.53. F: Ventral
muscle weight to fish weight.
Males: Y 5 6.986 1 2.836X, r2 5
0.54. Females: Y 5 26.197 1
2.392X, r2 5 0.76.
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the distal anterior surfaces of the first neural
spine (our neural rocker). Our thin dorsomedial
muscle that inserts medially on the apex of the
neural rocker has not been previously described.
However, Courtenay states that the dorsal muscle
is weakly attached to the medial surface of the
spine with connective tissue that is easily torn.
His observation could reflect the incipient forma-
tion or loss of this muscle. Notably, the dorsal
muscle in the striped cusk-eel is so much larger
than the ventral muscle in males that the struc-
ture can be recognized externally as a hump on
the head. The fawn cusk-eel is sexually monomor-
phic, and the vental and dorsal muscles are simi-
lar in size in males in our spring and fall samples,
both of which appear to be outside of the mating
season.

The third pattern is present in some Ophidion
(Ophidiidae) and Onuxodon (Carapidae), which
have a rocker bone protruding from the front wall
of the swimbladder (Rose, 1961; Tyler, 1970; Par-
mentier et al., 2006a). In Ophidion barbatum, suc-
cessive contractions of the ventral and dorsal
muscles cause counter clockwise and then clock-
wise rotation of the rocker bone, resulting in the
inward and outward deformation of the swimblad-
der (Parmentier et al., 2006a). We suggest that the
intermuscular tendon and the anterior wall of the
swimbladder in the fawn-cusk-eel may be a precur-
sor to the rocker bone (see also Parmentier et al.,
2002; Parmentier and Diogo, 2006).

Measurements of sonic structures in this study
provide the first quantitative treatment of sexual
dimorphism in this family. Larger intermediate
muscles in female fawn cusk-eels and their pres-
ence in females but not males in striped cusk-eels
(Courtenay, 1971) clearly reverses the normal
trend in sound production in which a sonic mecha-
nism is either larger or present only in males of
many fish species (Ladich and Fine, 2006). Several
structures in the male (notably dorsal muscle
weight, ventral muscle tendon length, neural
rocker weight, winglike process weight, and swim-
bladder weight) grow at a greater rate in males
suggesting androgenic control (Fine and Penny-
packer, 1986; Connaughton and Taylor, 1995; Fine,
1997). However, the occurrence of similar slopes
yet significant differences in lengths for all sonic
muscles in males and females is difficult to inter-
pret. The same is true for equivalent regression
slopes of the ventral and intermediate muscle
weights between males and females. One possible
cause would be a hormonal effect during a critical
period coinciding with initial gonad maturation.
The greater muscle lengths and weights, extended
tips on the winglike process, and a more massive
swimbladder with a more developed fenestra sug-
gest that males are capable of producing more
intense sounds than females, presuming that
females can call at all.
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