

Gembloux Agro-Bio Tech Université de Liège

Screening of mahoran plants for cosmetic applications.

Saive M.¹, Frederich M.², Fauconnier M-L.¹

¹ Laboratory of general and organic chemistry (Gembloux Agro-Bio Tech, University of Liège, Belgium)

² Laboratory of pharmacognosy, institute of pharmacy, (CHU, University of Liège, Belgium)

Figure 1 : Location of Mayotte

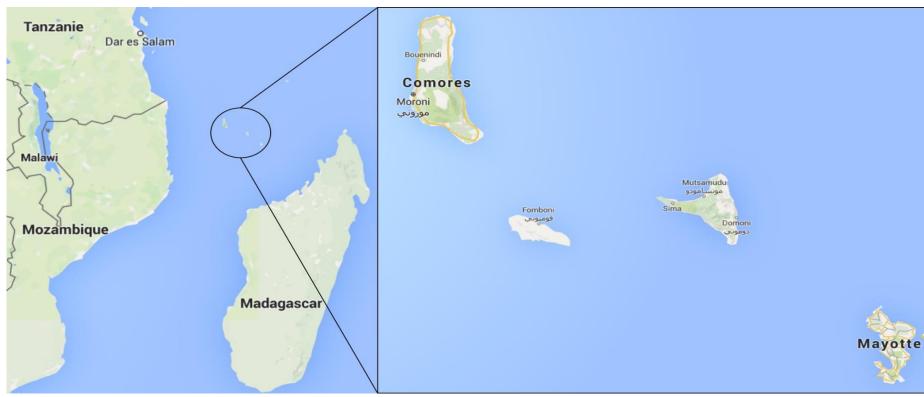
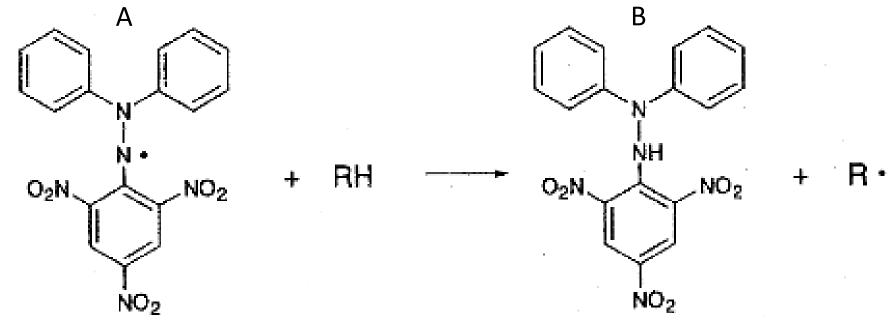
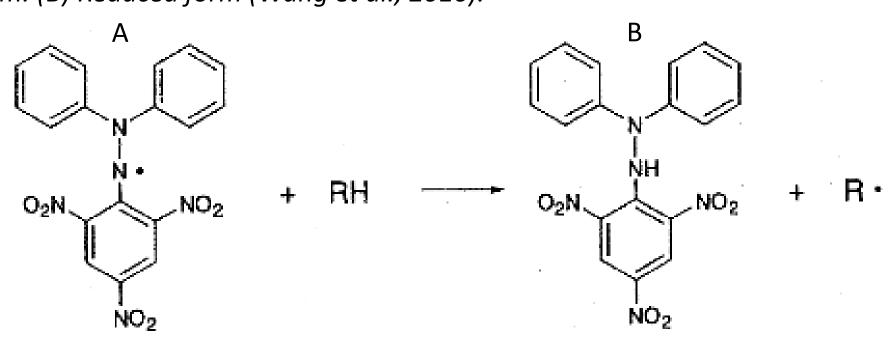
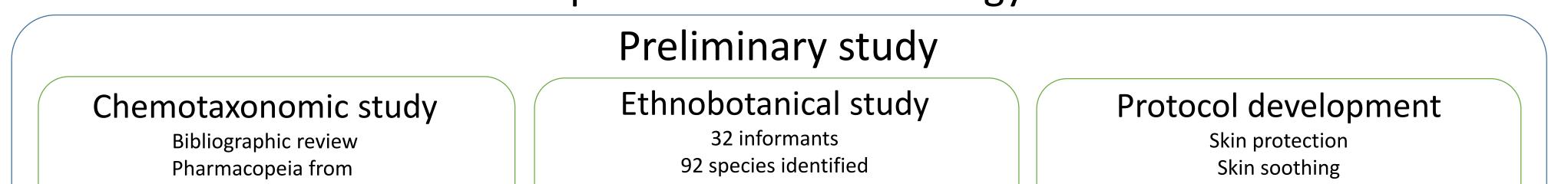
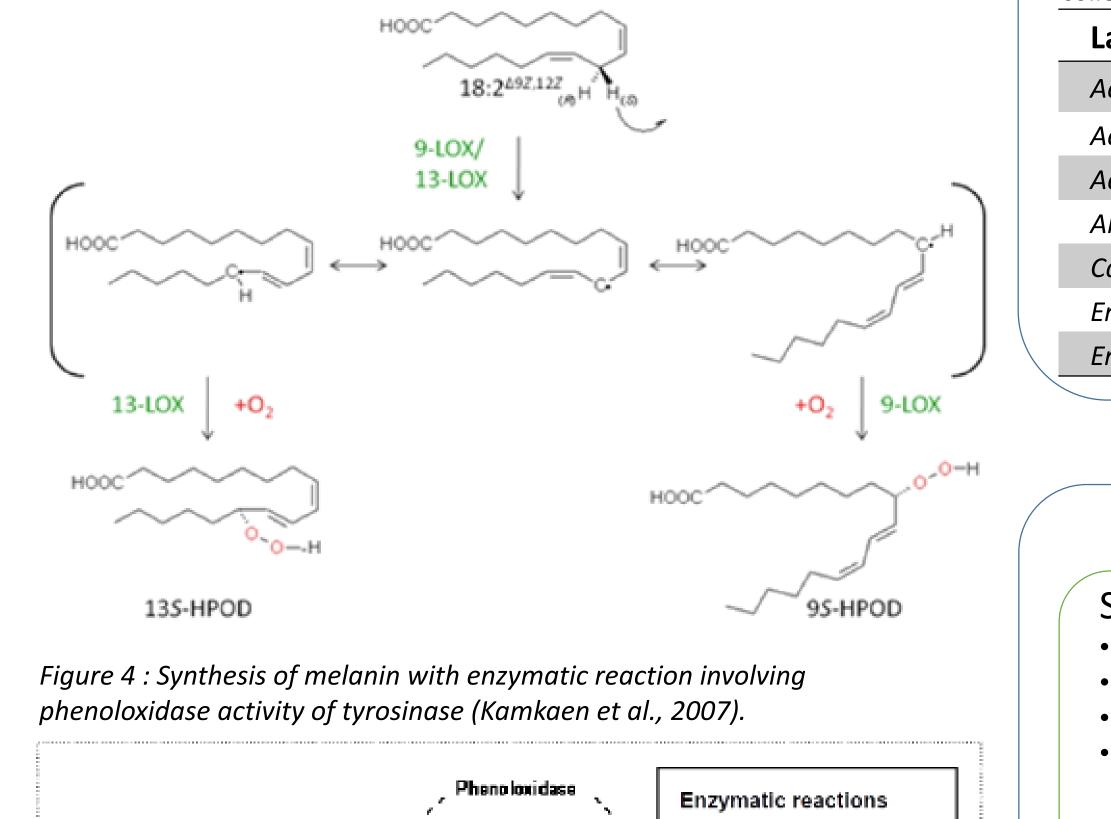




Figure 2: Reaction of DPPH in contact with a hydrogen donor. (A) Radical form. (B) Reduced form (Wang et al., 2016).



Introduction


Since time immemorial, people have used plants for energy and to cure themselves; these plants are deeply linked to our evolution and our culture. This study aims at identifying the plants used traditionally as cosmetics in Mahoran culture, in order to develop new products. Following a chemotaxonomical study and an ethnobotanical study, plant samples from different species (Table 1) were brought back from Mayotte and were analyzed so as to determine some of their biological activities such as skin soothing, skin whitening, and skin protection.

This works aims to develop a new branch of green cosmetics based on the Mahoran Flora, keeping in mind the environment and to provide a social and economic boost for the island.

Experimental methodology

Figure 3 : Synthesis of 13-hydroperoxy-9,11-octa-decadienoic acid (13S-HPOD) and 9-hydroperoxy-9,11-octa-decadienoic acid (9S-HPOD) using lipoxygenase and linoleic acid (Andreou et al., 2009).

Madagascar, Seychelles, La Reunion Species selection based on informant consensus 5 species

Skin whitening

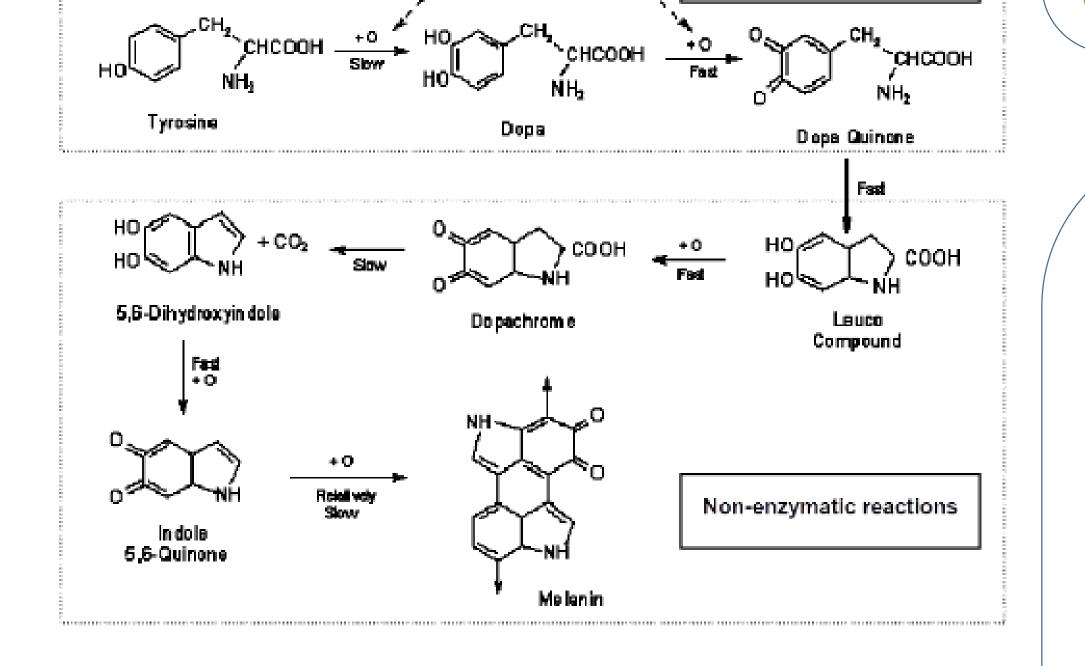
Sampling

Table 1 : List of the sampled species issued from the ethnobotanical and chemotaxonomic study. Most organs available during the infield missions were collected in order to by analyzed. Crude extracts were realized using acetone.

Latin name	Latin name	Latin name			
<i>Acalypha hispida</i> Bum. F.	Kalanchoe pinnata (Lam.) Pers.	Paullinia pinnata L.			
Acalypha wilkesiana Müll. Arg.	Lantana camara L.	<i>Pandanus mayotteensis</i> H. St. John			
Adansonia digitata L.	Lawsonia inermis L.	Persea americana Mill.			
Aloes mayottensis A. Berger	<i>Leea guineensis</i> G. Don	Sesamum indicum L.			
Cananga odorata (Lam.) Hook. f. & Thomson	Litchi chinensis Sonn.	Syzygium aromaticum (L.) Merr. & L.M. Perry			
Erythroxylum corymbosum Boivin ex. Baill.	<i>Litsea glutinosa</i> (Lour.) C. Rob.	Tamarindus indica L.			
<i>Erythroxylum lanceum</i> Bojer.	Myristica fragans Houtt.	Zingiber zerumbet (L.) Sm.			

Skin protection

- Antioxidant activity
- α, α -diphenyl- β -picrylhydrazyl (DPPH) (Fig. 2)
- $\lambda = 517 \text{ nm}$
- Reference : 6-Hydroxy-2,5,7,8tetramethylchromane-2-carboxylic acid (TROLOX)


Biological activity evaluation

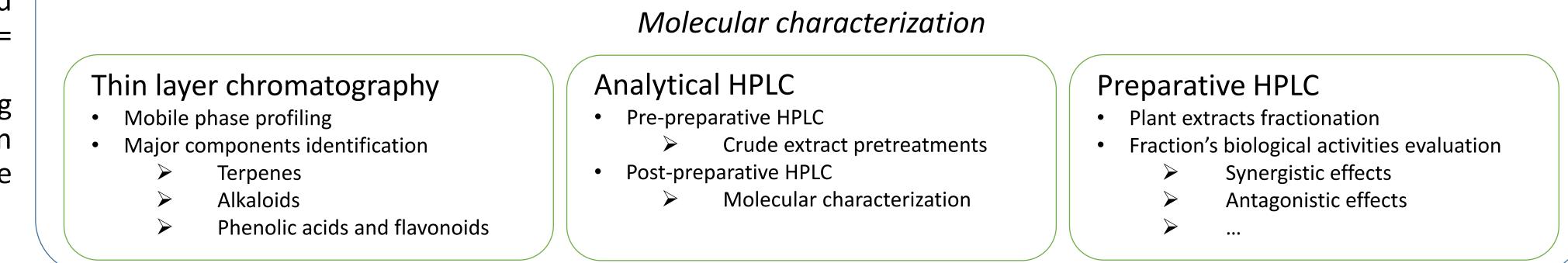
Skin soothing

- Anti-inflammatory activity
- Lipoxygenase pathway (Fig. 3)
- Substrate : linoleic acid
- $\lambda = 234 \text{ nm}$
- 9 and 13 HPOD synthesis inhibition
- Reference : Nordihydroguaiaretic acid (NDGA)

Skin complexion

- Whitening activity
- Tyrosinase Pathway (Fig. 4)
- Substrate : L-DOPA
- $\lambda = 475 \text{ nm}$
- Dopachrome synthesis inhibition
- Reference : Kojic acid

Results and perspectives


Finally, out of the 21 species analyzed only 15 showed significant positive activities (Table 2). The most effective antioxidant activity was observed in fresh leaves from *Leea guineensis* G. Don. (IC50 = 0,281 g/L) and dried roots from *Litchi chinensis* Sonn. (IC50 = 0,346 g/L). The best results for the anti-inflammatory activity were observed in the dry leaves from *Persea Americana* Mill. (IC50 = 0,981 g/L) and *Myristica fragrans* Houtt. (IC50 = 1,209 g/L). The plant extracts showing the best anti-tyrosinase activity were the dry leaves from *Leea* guineensis G. Don. (IC50 = 0,374 g/L) and the dry wood from *Erythroxylum corymbosum* Boivin ex Baill. (IC50 = 2,498 g/L). The following steps in this work will consist of separating the crude extracts of the most interesting samples in order to characterize the molecules responsible for the observed biological activities.

Species	Average IC50 (g/L)						Average IC50 (g/L)			
	Organ	DPPH L	.ipoxygenase	Tyrosinase	Species	Organ	DPPH	Lipoxygenase	Tyrosinase	
<i>Acalypha hispida</i> Burm. F.	Fresh leaves	0,434			Myristica fragrans Houtt.	Dry seeds		1,209		
	Dry flowers	1,350		85,707	Paullinia pinnata L.	Dry leaves	1,343			
	Fresh flowers	0,485				Dry liana	1,786			
	Dry leaves		187,134			Dry aerial roots	1,439			
Acalypha wilkesiana Müll. Arg.	Fresh leaves	0,396		31,750	Persea americana Mill.	Fresh leaves	0,889			
<i>Cananga odorata</i> (Lam.) Hook. f. et Thomson	Fresh flowers		6,700			Dry leaves	0,860	0,981		
	Dry leaves			7,355		Fresh kernel	2,164		68,460	
<i>Erythroxylum corymbosum</i> Boivin ex Baill.	Dry leaves	0,538				Dry kernel	2,043	35,725		
	Dry wood			2,498		Dry roots	0,956		16,674	
Kalanchoe pinnata (Lam.) Pers.	Fresh leaves	1,175			<i>Syzygium aromaticum</i> (L.) Merr. et L.M. Perry	Fresh leaves	0,455			
Lantana camara L.	Fresh leaves	1,589		87,800		Dry leaves	0,562		11,364	
	Dry leaves	1,666				Dry wood	0,532			
Lawsonia inermis L.	Fresh leaves	0,562				Dry roots	3,228		11,369	
	Dry leaves	0,906			Tamarindus indica L.	Dry leaves				
	Dry roots	0,958				Fresh leaves			8,300	
<i>Leea guineensis</i> G. Don	Fresh leaves	0,281		7,575	Zingiber zerumbet (L.) Sm.	Dry leaves		4,060	36,552	
	Dry leaves	0,607	2,710	0,374		Dry flowers		11,191		
	Dry fruits	1,410		10,108		Fresh rhizom		15,440		
	Dry roots	0,815				Dry rizhom		3,565		
<i>Litchi chinensis</i> Sonn.	Fresh leaves	1,670				Dry stem		11,380	487,320	
	Dry leaves	0,499	2,050	2,746	Kojic acid				0,33814	
	Dry wood	0,446			Nordihydroguaiaretique acid			0,07169		
	Dry roots	0,363		4.033	6-hydroxy-2,5,7,8-tetramethylchroman- acid	2-carboxylique	0,00062			

Perspectives

Figure 5 : Leea guineensis G. Don

Acknowledgment and References

- This study was promoted by AROMAORE and financed by the office for the development of agricultural economy of outer seas (ODEADOM).
- Andreou, A. & Feussner, I. (2009). Lipoxygenases-structure and reaction mechanism. Phytochemistry, 70(13), 1504-1510.
- Kamkaen, N., Mulsri, N. & Treesak, C. (2007). Screening of some tropical vegetables for anti-tyrosinase activity. Thail Pharm Health Sci J, 2(1), 15-19.
- Wang, G., Huang, X., Pei, D., Duan, W., Quan, K., Li, X., & Di, D. (2016). DPPH-HPLC-DAD analysis combined HSCCC for screening and identification of radical scavengers in Cynomorium songaricum Rupr. New Journal of Chemistry, 40(4), 3885-3891