
Computer Networks 173 (2020) 107223

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Slow denial-of-service attacks on software defined networks

Túlio A. Pascoal a , 1 , ∗ , Iguatemi E. Fonseca

b , Vivek Nigam

b , c

a Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
b Informatics Centre, Federal University of Paraiba, Joao Pessoa, Brazil
c fortiss GmbH, Munich, Germany

a r t i c l e i n f o

MSC:

00-01

99-00

Keywords:

Distributed denial-of-service attacks (DDoS)

Software defined networking (SDN)

Slow-rate attacks

High-rate attacks

a b s t r a c t

Software Defined Networking (SDN) is a network paradigm that decouples the network’s control plane, delegated

to the SDN controller, from the data plane, delegated to SDN switches.

For increased efficiency, SDN switches use a high-performance Ternary Content-Addressable memory (TCAM) to

install rules. However, due to the TCAM’s high cost and power consumption, switches have a limited amount of

TCAM memory. Consequently, a limited number of rules can be installed. This limitation has been exploited to

carry out Distributed Denial of Service (DDoS) attacks, such as Saturation attacks, that generate large amounts

of traffic. Inspired by slow application layer DDoS attacks, this paper presents and investigates DDoS attacks on

SDN that do not require large amounts of traffic, thus bypassing existing defenses that are triggered by traffic

volume.

In particular, we offer two slow attacks on SDN. The first attack, called Slow TCAM Exhaustion attack (Slow-

TCAM), is able to consume all SDN switch’s TCAM memory by forcing the installation of new forwarding rules

and maintaining them indeterminately active, thus disallowing new rules to be installed to serve legitimate clients.

The second attack, called Slow Saturation attack, combines Slow-TCAM attack with a lower rate instance of

the Saturation attack. A Slow Saturation attack is capable of denying service using a fraction of the traffic of

typical Saturation attacks. Moreover, the Slow Saturation attack can also impact installed legitimate rules, thus

causing a greater impact than the Slow-TCAM attack. In addition, it also affects the availability of other network’s

components, e.g. , switches, even the ones not being directly targeted by the attack, as has been proven by our

experiments. We propose a number of variations of these attacks and demonstrate their effectiveness by means of

an extensive experimental evaluation. The Slow-TCAM is able to deny service to legitimate clients requiring only

38 s and sending less than 40 packets per second without abruptly changing network resources, such as CPU and

memory. Moreover, besides denying service as a Slow-TCAM attack, the Slow Saturation attack can also disrupt

multiple SDN switches (not only the targeted ones) by sending a lower-rate traffic when compared to current

known Saturation attacks.

1

v

t

m

e

m

A

s

d

S

o

s

a

p

T

a

a

o

t

h

R

A

1

. Introduction

Software Defined Networking (SDN) is a network paradigm that pro-

ides easier network management. It allows better network configura-

ion, performance, monitoring and automation. SDN facilitates network

anagement by decoupling the data plane from the control plane. While

nabling new features, SDN also has its own security concerns, which

ay be exploited by attackers to carry out Distributed Denial of Service

ttacks (DDoS).

A logically centralized controller at the SDN control plane is respon-

ible for taking the decision of where packets should be forwarded, i.e. ,

efining routing actions, while the task of forwarding packets is left to
∗ Corresponding author.

E-mail addresses: tulio.pascoal@uni.lu (T.A. Pascoal), iguatemi@ci.ufpb.br (I.E. Fo
1 This work was done while at the University of Paraiba.

i

ttps://doi.org/10.1016/j.comnet.2020.107223

eceived 14 October 2019; Received in revised form 15 February 2020; Accepted 15

vailable online 19 March 2020

389-1286/© 2020 Elsevier B.V. All rights reserved.
DN switches at the data plane. Notably, the controller is a single point

f failure.

A second vulnerability regards the limited amount of memory SDN

witches have to store forwarding rules. Whenever a packet arrives to

 switch, it searches whether there is a matching rule installed for that

acket. This search is efficient because of dedicated memories called

ernary Content-Addressable Memory (TCAM), where forwarding rules

re stored. If no rule is applicable, the switch queries the controller for

 decision about current packet. The controller may install a new rule

r drop the packet.

However, TCAM is expensive resource and has high power comsump-

ion [1] . Therefore, most current commercial SDN switches have a lim-

ted TCAM space [1–3] and can store only a limited number of rules
nseca), nigam@fortiss.org (V. Nigam).

 March 2020

https://doi.org/10.1016/j.comnet.2020.107223
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107223&domain=pdf
mailto:tulio.pascoal@uni.lu
mailto:iguatemi@ci.ufpb.br
mailto:nigam@fortiss.org
https://doi.org/10.1016/j.comnet.2020.107223

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

(

m

c

t

i

n

t

t

a

t

s

e

n

w

s

a

[

t

p

S

p

l

i

o

b

i

w

h

e

a

S

F

w

p

w

i

F

u

a

w

t

a

e

p

2

t

a

s

t

p

p

t

w

i

p

t

S
C

w

F

s

s

s

t

m

v

w

r

u

t

m

S

b

h

c

i

c

S
C

2 Not to confuse the incoming packet buffer, which stores packets, with the

TCAM that stores rules.
typically 1500 to 8000 rules) [1,3–6] . The limited amount of TCAM

emory in SDN-switches has been exploited to carry out DDoS attacks,

alled Saturation attacks [1,3,5,7,8,8–14] . A Saturation attack forces the

arget SDN switch to install a great number of new rules, thus consum-

ng switch’s TCAM capacity. This not only disallows the installation of

ew flows for legitimate clients, but also causes the network controller

o crash because of increased traffic between the switch and the con-

roller.

A number of defenses have been proposed to mitigate Saturation

ttacks. The main underlying assumption of these measures is that at-

ackers will send unique packets in a very high rate by, for example,

poofing IPs. This causes abrupt changes of network parameters, which

asily trigger defense countermeasures.

However, the assumption that DDoS attacks can be launched by

ecessarily generating high traffic is not necessarily true. Indeed as

itnessed by the class of slow-rate Application Layer DDoS attacks,

uch as Slowloris [15] , attackers can deny service of a web-server or

 VoIP server by sending a very low rate of requests to the target server

16–18] . Attackers can also carry out low-rate attacks using computa-

ionally weak devices [19,20] and exploit new vulnerabilities on ap-

lication layer protocols in order to evade detection mechanisms, e.g. ,

lowNext [21] .

Inspired by slow-rate Application DDoS Attacks [15,16,20,22] , this

aper investigate slow DDoS attacks on SDN, which do not require very

arge amount of traffic. Since existing defense are triggered by monitor-

ng traffic volume, these slow attacks can bypass such defenses.

We offer and investigate the following types of Slow attacks:

• A Slow TCAM Exhaustion attack (Slow-TCAM) denies service by send-

ing unique-crafted packets to provoke a new flow rule installation in

a target SDN switch. The attack follows by recruiting and coordinat-

ing a large enough botnet (typically of 1500 to 4000 bots). Each

bot sends, in a disguised manner, an unique packet causing the tar-

get switch to install a forwarding rule thus exhausting the switch’s

TCAM and denying service to new legitimate clients . Finally, in order

to avoid that the installed rules are dropped due to rule timeouts, the

botnet periodically resends packets, thus reactivating each installed

rule. As our experiments demonstrate, the Slow-TCAM attack can be

carried out by generating a very low amount of traffic, up to 4 pack-

ets per second as opposed to more than 1000 packets per second in

existing Saturation attacks [3,5,13,23] . This means that it can bypass

existing defenses which assume high-rate attacks.

• A Slow Saturation attack combines the Slow-TCAM attack with a

lower rate Saturation attack. It is able to deny service using a frac-

tion of traffic of an usual Saturation Attack. Whereas Saturation at-

tacks require traffic of more than 200 packets per second [24] , the

Slow Saturation affects service using only 100 packets per second. In

contrast to the Slow-TCAM, which does not affect already installed

rules, the Slow Saturation attacks also leads to the dropping of al-

ready installed rules by forcing their respective timeout expiration.

This means that an attacker can also deny service to clients using flows

installed before the attack (existing rules in TCAM).

We investigate two variants of the Slow Saturation attack. The first

variation generates continuous traffic, while the second variation

generates bursts of high traffic. We also measure the effects of the

attack in the SDN network as a whole, i.e. , the effect of the attack

in other network’s components, but the targeted switch. Given the

fact that the attack stress the network’s controller, it also interferes

and hampers the expected behavior of other devices linked to the

affected controller.

We experimentally evaluate and discuss the features and the impact

f these attacks assuming a reasonable system and threat model.

Paper Structure: After briefly revisiting the OpenFlow protocol used

y SDN and its main workflows in Section 2 , an introduction to exist-

ng attacks on SDN is presented in Section 3 . Posteriorly, in Section 4 ,

e introduce our proposed slow attacks, namely the Slow-TCAM Ex-
austion and the Slow Saturation attacks, followed by Section 5 , which

xtensively evaluates and discusses about existing defense mechanisms

nd possible counter-measures for the novel presented attacks. Then in

ection 6 , we describe our experimental setup, results and discussion.

inally, related work is discussed in Section 7 before concluding the

ork in Section 8 .

Conference Paper: This extends and improves on the conference pa-

er [25] , which introduces the Slow-TCAM attack. For this manuscript,

e have extended and improved the experimental results in [25] by us-

ng a more realistic client traffic model for the Slow-TCAM experiments.

urthermore, we propose and investigate a novel attack, called Slow Sat-

ration attack, which was not present in the conference paper. We also

dded new experimental evaluation set up by assembling an new net-

ork topology consisting of more than one switch in order to measure

he effects of the attack on other network’s assets. Finally, we evalu-

ted existing defense approaches against SDN-aimed attacks and their

ffectiveness against our proposed attacks. In addition, we also discuss

ossible countermeasures.

. SDN fundamentals

While we assume that the reader is familiar with the OpenFlow pro-

ocol [26] , the widely used SDN southbound protocol, which enables

 controller to coordinate SDN switches forwarding process, we review

ome of the messages exchanged between a SDN switch and the con-

roller. The installation of rules in SDN are based on two approaches:

roactive and reactive . In the former, the SDN switch starts with some

re-defined rules, while in the latter new rules are installed according

o queries (PACKET_IN messages) sent by the switch, in a dynamic way.

In the reactive mode, which is the most common approach [27] ,

henever a packet is received by a SDN switch, it checks whether there

s a matching forwarding rule. If so, it applies the rule defined for that

acket. However, if no rule is applicable, a table-miss is occurring and

hen the switch exchanges the following messages with the controller:

witch → Controller ∶ PACKET _ IN (𝑝𝑎𝑐𝑘𝑒𝑡 ′𝑠ℎ𝑒𝑎𝑑𝑒𝑟)
ontroller → Switch ∶ FLOW _ MOD (𝑖𝑑𝑙𝑒 _ 𝑡𝑖𝑚𝑒𝑜𝑢𝑡)

The PACKET_IN message contains the incoming packet’s header,

ith its buffer_id , in _port, payload and other main information.

LOW_MOD messages contain the rule that should be installed by the

witch and is always sent by the network’s controller. The controller can

pecify a rule idle timeout. Given a rule timeout of T o , a rule is unin-

talled by the switch if it is not triggered for T o time units. The use of

imeouts is a mechanism to remove less used rules, thus freeing TCAM

emory for other rules to be installed. Typically, the timeout T o is a

alue between 9 and 11 s [10] .

Once the message FLOW_MOD is received by the switch, it checks

hether there is enough space in its TCAM memory for installing a new

ule. If this is the case, the rule is installed and the packet is forwarded

sing it. Otherwise, the switch drops the packet and informs the con-

roller that its TCAM memory is full (see Fig. 1) by sending the following

essage:

wit ch (dropspacket) → Cont roller ∶ TABLE _ FULL

In case a PACKET_IN is sent to controller and the switch’s incoming

uffer is full 2 , the whole packet content will be sent instead of packet’s

eader only. This fact stresses the switch-to-controller communication

hannel, which can lead to denial of service, considering that a flood-

ng of new unique packets can overload the controller and as a result

ompromise entire network proper functioning.

witch → Controller ∶ PACKET _ IN (𝑝𝑎𝑐 𝑘𝑒𝑡 ′𝑠𝑤ℎ𝑜𝑙𝑒𝑐 𝑜𝑛𝑡𝑒𝑛𝑡)
ontroller → Switch ∶ FLOW _ MOD (𝑖𝑑𝑙𝑒 _ 𝑡𝑖𝑚𝑒𝑜𝑢𝑡)

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Fig. 1. Switch-controller behavior when TCAM table is full.

s

c

S

i

s

t

C
S

s

t

o

T

o

c

t

3

t

b

i

a

c

o

S

c

a

s

a

c

t

[

a

o

t

t

m

o

h

o

u

T

s

h

E

w

a

1

T

p

[

P

u

d

a

a

d

n

c

S

S

a

i

S

t

4

4

n

t

t

Table 1

Saturation attack: availability, controller’s CPU and memory usage when under

attacks of different intensities.

Attack traffic Regular controller

Availability (%) CPU (%) Memory usage (MB)

Continuous (100 pkts/s) 100 24.7 40.5

Continuous (200 pkts/s) 24.2 45.4 214.1

Continuous (400 pkts/s) 13.4 50.7 266.1

Continuous (600 pkts/s) 10.8 50.6 269.6

Continuous (800 pkts/s) 10.3 51.8 265.6
Additionally, always a rule is uninstalled due to its inactive time, the

witch sends a OFPT_FLOW_REMOVED (OFPRR_IDLE_TIMEOUT) to the

ontroller.

witch → Controller ∶ FLOW _ REMOVED (𝐼 𝐷𝐿𝐸 _ 𝑇 𝐼 𝑀 𝐸𝑂𝑈𝑇)

Similarly, when a rule is deleted by a controller decision (by send-

ng a OFPC_DELETE message), the rule is uninstalled in TCAM and the

witch sends a OFPT_FLOW_REMOVED (OFPRR_DELETE) message to

he network controller.

ont roller → Swit ch ∶ OFPC _ DELETE (𝑟𝑢𝑙𝑒)
witch → Controller ∶ FLOW _ REMOVED (𝐷𝐸 𝐿𝐸 𝑇 𝐸)

Moreover, we point out that the communication between a SDN

witch and the controller is expensive as it builds a secure channel for

heir communication. Typically, the OpenFlow protocol is implemented

n top of Secure Sockets Layer (SSL) or Transport Layer Security (TLS).

herefore, a defense should avoid switch-to-controller communication

verhead.

Lastly, as mentioned in the OpenFlow specification [28] , in case of

onnection’s interruptions between a switch and controller, there are

wo possible modes in which the switch enters:

• Fail Secure Mode: In this mode, all following packets and messages

destined to the controller are dropped. The remaining installed flow

rules in the switch TCAM continue to expire according to their time-

outs.

• Fail Standalone Mode: In this model, the switch starts to work as a

legacy Ethernet switch or router, processing packets by its reserved

port. This mode is only applicable for hybrid switches, which are

switches that jointly support normal Ethernet switching and Open-

Flow operations. This is not the case of virtual switches, e.g. , the

Open vSwitch, which is one of the most popular implementations of

OpenFlow switches [29] .

. Attacking software defined networks

SDN has been increasingly adopted by network managers and indus-

ry thanks to its better programmability and automation. SDN has also

een used for denial of service attacks detection [30] . However, one of

ts main concerns is about its own security and vulnerabilities. For ex-

mple, its centralized controller is a potential exploit vector that can

ompromise the entire network, forcing them to be well-configured in

rder to achieve scalability, high responsiveness and security. Another

DN’s drawback is that SDN switches have a limited TCAM space that

an be steadily overflowed.
To the best of our knowledge, with the exception of the Slow-TCAM

ttack [25] , existing denial of service attacks on SDN are based on the

ending of flooding traffic. Therefore, exploiting the limited TCAM space

vailability in SDN switches and overloading its switch-to-controller

ommunication (thus, stressing SDN data and control planes). Recall

hat SDN switches are able to store between 1500 and 8000 rules

1,3–6] and also have a finite packet’s incoming buffer. Therefore, there

re attacks on SDN which attempt to (1) consume the TCAM memory

f switches and (2) overload the switch-to-controller communication,

hese attacks are known by Saturation attacks [3,5,13,23] .

These attacks are carried out by sending unique packets at a high

raffic rate (typically greater than 500 unique packets per second), nor-

ally by spoofing IPs. This flooding behavior triggers the installation

f a huge number of rules in switches’ TCAM. Once the TCAM is ex-

austed, the targeted switch starts to drop packets leading to denial

f service. Moreover, a Saturation attack goes even further by sending

nique packets at an even higher rate consuming not only the switch’s

CAM memory, but also the switch’s incoming buffer. The switch, then,

tarts sending to the controller the whole packet instead of the packet’s

eader only. Thus, overloading the controller and leading it to crash.

ventually, a controller crash or malfunctioning affects the whole net-

ork.

For purpose of illustration and comparison, we carried out Saturation

ttacks with different traffic rates on a switch with capacity of installing

500 rules. (The detailed experimental setup is described in Section 6).

able 1 summarizes the different attacks. For lower rates (100 packets

er second), the service is available to all legitimate clients. In addition,

24] shows that the performance of most commercial switches, such as

ica8 and HP Procurve, only starts to deteriorate when receiving 200

nique packets per second. This is in accordance to our own experiments

epicted in Table 1 .

As described in Section 7 , defenses for the TCAM Exhaustion attack

nd the Saturation attack assume that the attacker necessarily sends

 great number of unique packets, i.e. , flooding the switch. Existing

efenses monitor parameters that are affected when receiving a large

umber of unique packets, e.g. , rule installation rate, CPU and memory

onsumption and number of unpaired rules, for example.

However, this assumption is not necessarily true. We identify that

DN is vulnerable to two new attacks which use lower traffic rates: the

low TCAM Exhaustion attack (Slow-TCAM) and the Slow Saturation

ttack. In the following sections, we describe these two attacks. Then

n Section 5 , we discuss how one could mitigate theses attack and in

ection 6 , we demonstrate by simulation the effectiveness of these at-

acks.

. Slow DoS attacks on SDN

.1. System and threat model

Our system and threat model consider a scenario where there are a

umber of legitimate client hosts. In addition, there is also an attacker

hat has or controls some other hosts (bots), which are all linked to the

argeted switch. We also assume that the OpenFlow protocol is operated

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Table 2

Slow DoS attacks’ parameters and their respective description.

Attack parameter Description

T o The inferred flow rules’ timeout of the network.

N r The inferred number of the targeted TCAM table of the switch.

N ps The rate in which the attacker is sending new unique packets.

N pr The rate in which the attacker is re-sending packets.

u

m

n

c

u

S

a

p

t

O

n

d

S

s

t

f

M

S

4

p

a

i

n

n

t

c

a

t

4

t

i

b

w

s

s

f

w

s

i

i

[

n

p

4

t

n

c

[

a

L

4

f

s

i

d

4

i

r

r

p

⟨

w

f

s

s

𝖥

N

O

F

s

i

t

𝖥

sing the most commonly applied rule installation mode, the reactive

ode [27] .

Apart from being connected to the targeted switch, the attacker does

ot need any prior knowledge about network topology or switches and

ontroller configurations. The attacker can first infer the SDN timeout

sing existing SDN timeout probing approaches [31,32] , such as SDN

CANNER [4] , and then crafts its packets using the gathered information

ccordingly. Our system model assumptions have been replicated from

revious existing works on attacking SDN networks [3,5,13,23,25,33] .

A Slow-TCAM attack final goal is to overflow the TCAM table of the

arget switches by crafting and sending the packets in a disguised way.

nce the switches’ flow tables are full, no new rule can be installed and

ew packets will be dropped by the switches, i.e. , disrupting the SDN

ata plane. On the other hand, the Slow Saturation apart from sending

low-TCAM traffic, it also disrupts the SDN control plane by launching

aturation traffic at certain intervals, thus stressing and consequently in-

errupting switch-to-controller connection. When such communication

ailures take place, we assume that the switch will enter the Fail Secure

ode according to OpenFlow specifications and described at the end of

ection 2 .

.1.1. Slow attacks’ principles

Our proposed attacks are composed of two phases, namely (i) Probing

hase and (2) Launching phase . The former allows the attacker to infer

nd identify network’s settings, such as T o , N r , N ps and N pr described

n Table 2 . These parameters enable attackers to decide the optimal

umber of packets and minimal packet sending rate in order to trigger

ew flow rules’ installation and refresh their timeouts, thus keeping the

arget switch’s flow table continuously full. Once gathering network’s

onfiguration an adversary is ready to craft packet’s payload and rate

ccordingly, therefore starting the latter phase that consists of sending

he hushed traffic.

.1.2. Probing phase

The main rationale behind the Probing phase is based on the fact

hat in any SDN network when a new packet that causes a table-miss

n the switch arrives, it perceives a longer response time. This happens

ecause as introduced in Section 2 , the switch needs to query the net-

ork’s controller for its decision on the rules that will be created to that

pecific packet. All next packets that match that rule, will experience a

horter responsive time because now the switch only needs to apply the

orwarding rule set by the controller before.

Notably, an adversary can smartly create and send packets to the net-

ork, and monitor the packet’s response time. As a result, by applying

tatistical tests on the collected data, such as t-tests [4] , the attacker can

nfer the network’s timeouts. Similarly, attacker can also craft packets

n order to find packet’s match fields that trigger flow rule installation

33] . As the particularities and intuition of these approaches are not

ovel, we opt to refer the readers to [4,31–33] for a more detailed ex-

lanation and reasoning of such approaches in SDN.

.1.3. Launching phase

Once gathering network’s information from previous phase, the at-

acker is now able to define the N ps and N pr metric rates, such that they

ot only cause minimal impact on the network’s bandwidth, but also

ontinuously keep malicious rules installed in the targeted flow table
25] . After setting all parameters for the attack, the attacker plots the

ttack by crafting and sending the packets accordingly.

As each attack has its particular features, we explain their respective

aunching phase separately in the following sections.

.2. Slow TCAM exhaustion attack (slow-TCAM)

The Launching phase of the Slow TCAM attack is carried out as by

ollowing the steps:

1. Recruit a large enough number of bots, typically a number a bit

greater than a half the rule capacity of the target switch (N r).

A number between 1500 and 4000 is enough considering exist-

ing SDN-enabled commercial switches [1–3] . This is feasible as

the attacker can recruit a botnet using standard methods, e.g. ,

phishing or purchasing such botnet service. For example, the

”0x-booter ” is a type of Crime-as-A-Service that offers DoS-for-

hire consisted of 20,000 bots [34] . Notice that the attacker is not

spoofing IP addresses.

2. Each bot sends a unique packet to the target switch. Whenever the

switch receives the first packet, a new rule is installed. Moreover,

since there is no IP spoofing, two flows, an incoming and outgoing

flow, are eventually installed.

3. The unique packet generation rate (N ps) is controlled so that the

rate that new rules are installed is not too high. The N ps rate

defines how fast an attacker is able to overflow the target switch

flow table. In our experiments, the attacker generates a traffic of

up to 40 packets per second, while typical flooding and Saturation

attacks generate a traffic greater than 1000 packets per second

[3,5,13,23] .

4. Meanwhile, each bot keeps re-sending, at a N pr low rate, packets

to the switch within its rule idle timeout T o . Recall that the T o can

be inferred by the attacker by trial and error using SDN SCANNER

[4] . Consequently, once the switch’s TCAM is full of bot rules and

none of their rule is uninstalled, the TCAM will be always full.

Thus, not being able to manage the installation of new rules.

5. Finally, by keeping the botnet behaving coordinated, the attacker

is able to keep the target switch in the TABLE_FULL state indefi-

nitely.

When a Slow-TCAM attack is carried out, the controller and the

witch operate normally, but they are forced to serve only the flow rules

nstalled before the attack and the flow rules installed by the attacker , thus

enying service to new legitimate clients.

.2.1. Slow-TCAM by example

In order to better understand how the Slow-TCAM attack works, we

llustrate it by example. Assume a target switch with 𝑁 𝑟 = 5 and the

ule timeout 𝑇 𝑜 = 10 . Moreover assume that the attacker has already

ecruited a large enough botnet. In this case, a botnet of 3 bots is enough.

Assume for simplicity that a rule is represented by the following tu-

le:

𝗋𝗎𝗅𝖾 𝑖 , 𝑛 ⟩

here 𝗋𝗎𝗅𝖾 𝑖 stands for the rule identifier and n is the remaining seconds

or timeout of the rule to be activated.

Once a controller is connected to the switch, a special rule repre-

enting their communication is created. The resulting switch flow table

tate is as follows:

𝗅𝗈𝗐 _ 𝖳𝖺𝖻𝗅𝖾 = ⟨𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 _ 𝗋𝗎𝗅𝖾 , ∞⟩

ow, suppose a bot attacker sends a packet to the switch. After the

penFlow messages are exchanged and receiving the correspondent

LOW_MOD message, the switch installs the new flow rules. Moreover,

ince the bot is not spoofing its IP, the queried service will respond lead-

ng to the installation of an outgoing rule. Therefore, the switch’s flow

able has the following state:

𝗅𝗈𝗐 _ 𝖳𝖺𝖻𝗅𝖾 = ⟨𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 _ 𝗋𝗎𝗅𝖾 , ∞⟩, ⟨𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 , 10 ⟩, ⟨𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾 , 10 ⟩
1 1 1

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Fig. 2. TCAM table consumption: Comparison between a Saturation attack with intensity of 100 packets per second and a Slow Saturation attack (i.e. , a Slow-TCAM

attack with intensity of 5.8 packets per second and a Saturation attack with intensity of 100 packets per second). The target SDN switch is capable of storing 1500

rules and the rule timeout is set to 10 s.

A

d

A

𝖥

A

r

w

i

p

o

𝖥

g

n

𝖥

N

a

t

d

4

c

t

a

u

s

c

o

e

s

t

e

ssume two seconds elapse. Another bot also send its packet causing ad-

itional incoming (𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾) and outgoing (𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾) rules to be installed.

t this point, the switch’s TCAM is full with the following rules:

𝗅𝗈𝗐 _ 𝖳𝖺𝖻𝗅𝖾 = ⟨𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 _ 𝗋𝗎𝗅𝖾 1 , ∞⟩, ⟨𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 1 , 8 ⟩, ⟨𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾 1 , 8 ⟩,

⟨𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 2 , 10 ⟩, ⟨𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾 2 , 10 ⟩

ny new flows cannot be installed as switch’s TCAM does not have more

oom left to store new ones. If this happens, a TABLE_FULL message

ill be sent by the switch to the controller and the packets trying to be

nstalled are dropped from the network, leading to the denial of service.

Additionally, during 7 s, the attacker’s bots do not need to send any

ackets as the timeout of their rules will not expire before that. The state

f the switch after 7 s is as follows:

𝗅𝗈𝗐 _ 𝖳𝖺𝖻𝗅𝖾 = ⟨𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 _ 𝗋𝗎𝗅𝖾 1 , ∞⟩, ⟨𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 1 , 1 ⟩, ⟨𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾 1 , 1 ⟩,

⟨𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 2 , 3 ⟩, ⟨𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾 2 , 3 ⟩

At this moment, in order to keep their rules installed, the bots that

enerated the rules 𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 1 and 𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 2 will re-send a packet so to re-

ew the timeout of their rules, respectively, as illustrated below:

𝗅𝗈𝗐 _ 𝖳𝖺𝖻𝗅𝖾 = ⟨𝖼𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 _ 𝗋𝗎𝗅𝖾 1 , ∞⟩, ⟨𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 1 , 10 ⟩, ⟨𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾 1 , 10 ⟩,

⟨𝗂𝗇𝖼 _ 𝗋𝗎𝗅𝖾 2 , 10 ⟩, ⟨𝗈𝗎𝗍𝗀 _ 𝗋𝗎𝗅𝖾 2 , 10 ⟩

otice that the bots do not need to resend the same exact packet, but

ny packet that activates these rules will do the work. Indeed, in order

o avoid simple monitoring defenses, the bot may choose packets with

ifferent payload or requests.

.3. Slow saturation attack

The Launching phase of the Slow Saturation attack is carried out by

ombining a Slow-TCAM attack and a Saturation attack with a lower

raffic rate. The Slow Saturation combines the power of the Slow-TCAM

nd the Saturation attack, i.e. , it denies service by using less traffic than

sual Saturation attacks, and it allows to deny service to clients that are

erved by rules previously installed in the SDN switch.

We illustrate and discuss these features in the Fig. 2 a and b.

• Lower Traffic Rate: Fig. 2 illustrates the difference between a Sat-

uration and a Slow Saturation attack using the same traffic rate of

100 packets per second, on a target SDN switch with 𝑁 = 1 , 500
𝑟
rules and 𝑇 𝑜 = 10 s. As shown in Fig. 2 a, the Saturation attack is not

able to successfully deny service (as also shown in Table 1). It does

occupy 1000 of the 1500 of the available table rules.

On the other hand, as shown in Fig. 2 b, the Slow Saturation suc-

cessfully disrupts service by using the same traffic rate Nps of 100

packets per second. This is because the Slow-TCAM component of the

attack is able to keep their rules alive and installed for longer peri-

ods, in conjunction with the rules from the saturation component of

the attack. It is important noticing that saturation traffic is not able

to renew their rule’s timeouts as it always send unique packets.

• Dropping Previously Installed Rules: Furthermore, as also illus-

trated by Fig. 2 b, the Slow Saturation attack is able to disrupt the tar-

get switch, thus leading to a dropping of active rules. Around 480 s

after the attack starts, the switch begins to suffer from communi-

cation failures with the controller, thus dropping stored rules (due

to their timeout expirations - recall the fail secure mode definition

from Section 2). Note that there are moments during the experiment

in which there is no rule installed. This is due to the fact of longer

(above 10 s) periods of switch-to-controller communication failure,

leading to a complete dropping of installed rules.

In addition, there are situations in which the switch keeps around

800 to 1000 rules installed, the key insight of this evidence is that

while the rules installed by the saturation component of the attack

are dropped by the rule timeout, the rules installed by the Slow-

TCAM component of the attack are kept alive more easily (as they

are rejuvenated by the attacker). Hence, this effect turns possible

for the attack to consume all the switch’s TCAM at certain points in

time.

A Slow Saturation attack affects, therefore, not only new legitimate

lients (by disrupting SDN data plane with the Slow-TCAM component

f the attack), but also legitimate clients that are served by previous

xisting SDN rules (by the Saturation component of the attack, which

lightly and punctually stress the SDN control plane, causing switch-

o-controller communication failures that leads to flow rule’s timeout

xpiration).

We consider two variants of this attack:

• Continuous: In the Continuous Slow Saturation attack, both the

Slow-TCAM and the Saturation attack are carried out simultaneously

and during the duration of the attack, e.g. , Fig. 2 b.

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Fig. 3. Slow Saturation: Number of installed rules in the target SDN switch during a Slow Saturation attack with punctual burst(s) of 1000 packets per second and

Slow-TCAM intensity of 5.8 unique packets per second.

r

m

v

5

f

a

i

w

o

t

s

1

i

c

i

b

a

n

l

4

(

a

h

t

w

a

s

c

t

a

u

t

5

t

a

n

a

o

r

w

I

I

i

s

i

i

d

k

p

l

m

r

d

i

r

e

h

S

a

a

n

I

u

6

c
• Bursts: In the Burst Slow Saturation attack, the Slow-TCAM attack is

carried out during the whole duration of the attack, but the Satura-

tion attack alternates between two active periods (the bursts), when

both the Slow-TCAM and the Saturation traffics are sent; and sleeping

periods, in which the attack is only sending Slow-TCAM traffic.

The goal of the Burst Slow Saturation attack is to reduce the average

ate of packets, hence increasing the chances of bypassing defenses that

onitor the average traffic load.

Fig. 3 a and b illustrate how Burst Slow Saturation attacks deny ser-

ice. In this experiment, we first populate the switch’s TCAM table with

00 flow rules installed by legitimate clients. Then, we stars two dif-

erent variations of the Saturation attack, one with only one burst, and

nother one with two bursts.

In Fig. 3 a, the switch’s TCAM is first populated with 500 flow rules

nstalled by legitimate clients. At the 75th second, an Saturation attack

ith only one burst starts (red square in the figure). From that moment

n, several switch-to-controller connection interruptions take place due

o the stress caused by the attack. These interruptions lead to the unin-

talling of flow rules due to their timeout expiration. For example, at the

35th second, all the installed flow rules have been expired (red circle

n the figure). Thus, denying service to all previously served legitimate

lient’s flow rules. Finally, only at the 150th the communication is re-

nitiated, enabling an attacker to launch a Slow-TCAM traffic, therefore

eing able to load the TCAM table with malicious rules.

Similarly, Fig. 3 b illustrates a sequence of two bursts of Saturation

ttacks. The first burst was able to disrupt switch-to-controller commu-

ication until the 185th second. From that moment, a Slow-TCAM traffic

aunched by an attacker could reach the TCAM table full capacity at the

27th second. Then, at the 430th a second saturation burst is started

represented by a blue square in the figure) leading to the removal of

ll currently installed rules at 485th. At this moment, an attacker could

ave started launching a Slow-TCAM traffic to fulfill the switch flow

able once more.

In addition, it is important noticing that an attacker can freely choose

hen to start or release bursts of saturation traffic. This can be perceived

nd used as a means to not only drop all current installed rules in a target

witch, but also to ensure that when the switch-to-controller communi-

ation is back alive, the most number of new installed rules come from

he Slow-TCAM’s traffic part of the attack.

In summary, this experiment shows the practicability of a Saturation

ttack when not only dropping previously installed rules (with the sat-
ration part of the attack) but also when overflowing switch’s TCAM

able capacity with its Slow-TCAM component.

. Mitigating TCAM-aimed attacks

The existing approaches against TCAM-aimed attacks imply that at-

ackers send unique packets at a very high rate, mixing IP spoofing

nd flooding techniques. This behavior causes abruptly changes in the

etwork that easily triggers countermeasures. The main approaches to

void these attack are based on: (1) setting rule timeouts (idle time-

ut) embedded in the OpenFlow, which is the standard mechanism for

emoving obsolete rules; (2) monitoring unpaired rules, i.e. , rules for

hich there is an incoming flow, but no outgoing flow. When spoofing

Ps, attacker rules are not able to have outgoing flow rules as the spoofed

P may be not achievable; (3) monitoring of rule installation rate, which

s used to trigger countermeasures when the rate of new rules are high,

uch a case of a Saturation attack, and (4) CPU and memory monitor-

ng of SDN controllers and switches, in which when under stress they

ncreasingly start to consume more computational resources in order to

eal with the augmented traffic.

Considering the novelty of the Slow-TCAM attack, to the best of our

nowledge, only SelectIve deFense for TCAM (SIFT) [25] has been pro-

osed as a defense against Slow-TCAM attacks until nowadays. Simi-

arly, such as a novel attack, no defense has been proposed to directly

itigate the hereby presented Slow Saturation attack. Table 3 summa-

izes the main current defenses used to mitigate Saturation attacks. We

iscuss why they are not capable of mitigating TCAM-aimed attacks.

Although SIFT mitigates the Slow-TCAM attack, it is not able to mit-

gate alone the Slow Saturation attack. The reason is the relatively high

ate of packets generated by the Slow Saturation attack. We replayed all

xperiments presented in this work and we observed that SIFT cannot

andle high-rate traffic. We believe that in order to mitigate the Slow

aturation attack, SIFT would have to work with other parameters, such

s switch’s CPU/memory consumption. There are also some approaches

nd alternative defense mechanisms that could be implemented in the

etwork along with SIFT to effectively cease a Slow Saturation attack.

t is also possible to merge some existing approaches that mitigate Sat-

ration attacks (such as the ones presented in Table 3) with SIFT.

. Experimental results

We implemented the Slow-TCAM and Slow Saturation attacks and

arried out a number of experiments. We used two virtual machines,

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Table 3

Existing defense approaches against TCAM-aimed attacks.

Approach Short description Vulnerability against Slow-TCAM and Slow Saturation attacks

Yu et al. [35] ; Katta

et al. [2]

Propose architectural changes to TCAM and

OpenFlow protocol in order to increase rule

storage.

Their main goal is to enhance SDN perfomace, nevertheless their changes will only

demand a larger botnet by the attacker. Their approaches are not also able to mitigate

the Slow Saturation attack as they do not protect the switch-to-controller

communication.

AVANT GUARD [23] Validates TCP Handshake before installing

rules.

As Slow-TCAM bots have legitimate IP, connection and so forth, they trespass the TCP

Handshake testing. Furthermore, it has a vulnerability in its cache module , which can be

exploited by attackers, leading to denial of service, as presented by [14] .

SPHINX [3] Monitors rule installing and creation rate. As Slow-TCAM sends packets in a slow and ”legitimate ” way in addition to being

configurable, the attacker can circumvent the limiars set in the defense. As during a

Slow Saturation attack the adversary can control the rate and the interval of Saturation

attack, the attacker can bypass the triggers of this defense.

Shin et al. [4] ;

Kandoi et al. [5]

Applies OpenFlow mechanisms, such as

Optimal Timeout and textitFlow Aggregation in

a dinamic way.

The traffic sent by a Slow-TCAM attack is very similar to client traffic, then hampering

and increasing false positive matches during the detection. It is true that Flow

Aggregation can maximize rule storage, however they need to be used very carefully as

they can facilitate the incoming of malicious traffic to the network. Aside that, it is not

capable of mitigating Saturation attacks, as mentioned in [36] , consequently, they

cannot mitigate the Slow Saturation attack.

FLOOD GUARD [13] Monitors switch’s CPU and memory usage. Slow-TCAM has a little impact in these parameters while attacking, hence the defense is

not to detect and start countermeasures against the attack. The attacker can perform a

minimalist Slow Saturation attack, reducing the traffic rate and interval time. Thus,

avoiding to consume switch’s resources, trespassing the defense.

Wang et al. [8] Applies traffic analysis along with neural

networks and entropy techniques in order to

decide about rule installation.

Slow-TCAM has a traffic similar to legitimate clients, therefore the defenses suffer from

false positive detection. As the Slow Saturation mixes slow a flooding traffic it can

difficult even more the accuracy of the defenses’ analysis. In addition, it also has cache

vulnerabilities as found in AVANT GUARD [14] .

Jinan S. [9] Applies a peer support strategy along

switches in the network, where they share

their idle storage TCAM space.

This defense is not able to detect the presence of the Slow-TCAM attack but it can retard

the beginning of the denial of service, forcing the attacker to recruit a larger botnet .

Furthermore, it is only concerned about the TCAM overflow, therefore, no

countermeasures is taken against the flooding traffic of the Slow Saturation attack.

Xu et al. [37] Uses the Tocken Bucket model to control

PACKET_IN messages sent to the controller.

As Slow-TCAM attack traffic is slow and its rules are always reinstalled, it does not

generate a high traffic of PACKET_INs in the network, consequently less

switch-to-controller communication are performed. In addition, the Slow Saturation only

send high traffic in certain intervals of time. Thus, the defense is not capable of

detecting and mitigating the attack as it will never be triggered.

Shang et al. [27] Uses a cache system to keep rules not found

in the flow table (”table-miss ” entries), thus

sending PACKET_INs to the controller in a

controlled way.

Slow-TCAM does not send a high traffic, running silently. Thus, not activating the

approach countermeasures. In relation to the Slow Saturation attack, the adversary can

model the attack in a way that it will not surpass traffic rate specified by the defense.

Ma et al. [38] Propose a Moving Target Defense (MTD)

approach, which posses a pool of

interchangeable controllers that are shifted

dynamically according to their stress level

(due to flooding attacks). They also offer MTD

approaches for reducing the success rate of

attackers scanning the SDN network.

Their approach can only mitigates flooding-based attack, i.e. , Saturation attacks.

Therefore, they cannot mitigate the Slow-TCAM component of our proposed attack.

Although their MTD scheme of dynamic delays hinders the chances of attackers

fingerprinting the network easier, an attacker still can carry out a Slow-TCAM or Slow

Saturation attack using smaller interval periods.

SDN-Anti-DDoS [39] Its mitigation module is responsible for

detecting anomalies in PACKET_IN messages,

such as unpaired rules (derived from IP

spoofing-based attacks) as well as the rate of

new incoming PACKET_INs.

As this approach is threshold-based, an attacker can adapt the traffic rates of both

components of the Slow Saturation attack. In addition, the Slow-TCAM traffic component

of the attack not only does not spoof IPs, but also generates a low rate packet sending,

thus surpassing mitigation techniques proposed by this defense.

ReCON [40] Applies MTD techniques in order to minimize

and re-use under-utilized critical SDN

network’s resources, i.e. , OpenFlow Agent

(OFA).

Similarly, this approach does not monitor TCAM table occupancy, as a consequence, it is

not able to treat the Slow-TCAM component of our attack.

o

a

s

[

[

C

w

o

i

t

s

r

a

o

S

m

s

e

t

b

6

t

r

t

w

a

ne running Mininet [41] along with Open vSwitch 2.5.0 [29] , which

re a well-known network emulator and open-source virtual switch, re-

pectively. Another virtual machine executed the SDN controller Ryu

42] using OpenFlow 1.3 [26] . For the attack generation we used Hping

43] and Scapy python library [44] .

The Mininet machine was a Ubuntu 14.04 LTS, Intel i7-5500U

PU@2,40 GHz with 3 GB of RAM memory, while the Ryu machine

as a Ubuntu 16.04.1 LTS, Intel i7-5500U CPU@2,40 GHz with 1 GB

f RAM memory. The host machine was a Windows 10 - 64 bit, Intel

7-5500U CPU@2,40GHz with 8 GB of RAM memory.

In order to avoid resource limitation interference, we carried out

he Saturation and Slow Saturation attacks on a Dell PowerEdge T430

erver with dual 8-core Xeon E5-2620 CPU@2,10 GHz and 64 GB RAM,

unning the same virtual machines images (Mininet and Ryu) informed

bove. We set the SDN switch rule capacity to 1500 rules with rule time-

ut T o of 10 s as recommended in the literature [10] .
Fig. 4 a shows the set-up of our experiments for the Slow-TCAM and

low Saturation first experiments. We also performed additional experi-

ents with the Slow Saturation attack in a scenario where there are two

witches in the SDN topology. The goal of the latter experiments is to

valuate how a Slow Saturation attack affects other existing switches int

he network, even when a non targeted switch belongs to the topology,

ut yet is not targeted by the attacker.

.1. Slow-TCAM results

Legitimate client traffic (Host 2) consisted of 375 unique connec-

ions, which means the installation of 750 rules (incoming and outgoing

ules) in a switch, i.e. , half the switch rule capacity. We implemented

he Slow-TCAM attack where the attacker (Host 3) possesses a botnet

ith more than 760 bots and no more than 800 bots. Both legitimate

nd attacker’s bots accessed the web-server (Host 1).

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Fig. 4. Experimental set-ups.

Fig. 5. Slow-TCAM attack with intensity of 5.8 unique packets per second.

Table 4

Slow-TCAM: attack rate, availability, time to service, time to DoS, CPU and memory consumption. The

value on Availability corresponds to the number of clients that are able to obtain a response after the

attacker has carried out the attack and occupied all the TCAM memory.

Average attack rate Availability (%) TTS (ms) Time to DoS (s) CPU (%) Memory usage (MB)

No Attack 100 12.6 – 1.1 36.9

3.2 unique pkts/s 0.0 ∞ 478 2.5 42.3

4.6 unique pkts/s 0.0 ∞ 324 3.8 43.0

5.8 unique pkts/s 0.0 ∞ 258 4.7 42.3

9.2 unique pkts/s 0.0 ∞ 162 4.9 42.5

13.6 unique pkts/s 0.0 ∞ 110 6.4 42.2

15.6 unique pkts/s 0.0 ∞ 96 7.2 41.9

23.6 unique pkts/s 0.0 ∞ 63 10.4 41.8

39.5 unique pkts/s 0.0 ∞ 38 10.9 42.3

m

r

b

a

t

t

h

t

u

d

s

i

p

r

a
In contrast to [25] , we reproduced a new and more realistic legiti-

ate client traffic by using the tool Scapy [44] . Clients now are able to

enew their flow rules by accessing the web-server more than once, thus

etter simulating a real web-client traffic. We simulated 200 clients that

re randomly created within periods of 5 and 10 s, sending 10 requests

o the web-server (on Host 1) each.

Table 4 summarizes our experimental results for the Slow-TCAM at-

ack. We measured the legitimate client availability after the attacker

as occupied all the TCAM memory, time to service (TTS), the time for
he attacker to deny service, the controller’s average CPU and memory

sage.

Our experiments show that Slow-TCAM attack can be effective in

enying service to legitimate clients accessing the network using a SDN

witch. We carried out a number of experiments with different attack

ntensities from 3.2 unique packets per second to 39.5 unique packets

er second. In comparison typical flooding attacks has a rule installation

ate greater than 500 unique packets per second [3,5,13,23] . Once the

ttacker successfully occupied all the TCAM memory, every one of its

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Table 5

Slow saturation: attack rate, availability, CPU and memory usage when under an attack of a

variety of intensity. The slow part of the attack had a intensity of 5.8 unique packets per second.

Attack rate Regular controller (no defense approaches embedded)

Availability (%) CPU (%) Memory usage (MB)

Continuous (100 pkts/s) 12.8 36.1 147.5

Continuous (200 pkts/s) 2.8 45.4 157.5

Continuous (400 pkts/s) 3.6 46.3 165.9

Continuous (800 pkts/s) 2.7 47.3 176.3

Bursts (100 pkts/s during 20 s every 20 s) 27.5 17.6 123.5

Bursts (100 pkts/s during 40 s every 40 s) 29.9 17.7 129.2

Bursts (100 pkts/s during 60 s every 60 s) 17.1 16.4 121.3

Bursts (200 pkts/s during 20 s every 20 s) 16.3 25.0 135.1

Bursts (200 pkts/s during 40 s every 40 s) 18.8 26.0 130.8

Bursts (200 pkts/s during 60 s every 60 s) 15.8 29.7 122.7

Bursts (400 pkts/s during 20 s every 20 s) 12.2 32.0 141.0

Bursts (400 pkts/s during 40 s every 40 s) 15.7 33.3 122.7

Bursts (400 pkts/s during 60 s every 60 s) 13.2 29.7 124.3

Bursts (800 pkts/s during 20 s every 20 s) 8.52 35.6 151.1

Bursts (800 pkts/s during 40 s every 40 s) 5.4 33.6 159.4

Bursts (800 pkts/s during 60 s every 60 s) 10.4 29.6 129.0

b

a

w

4

m

i

o

w

h

r

s

t

b

t

n

w

t

t

s

s

1

s

g

a

r

a

3

I

h

p

a

h

c

h

i

a

s

6

t

a

P

i

o

v

S

(

d

t

a

r

S

r

t

r

a

d

6

n

c

u

W

o

o

S

T

t

f

s

i

o

t

t

a

t

t

b

o
ots sends with periodicity of 3 s a packet to keep its corresponding rule

ctive in the SDN switch.

Fig. 5 a illustrates the TCAM consumption by the Slow-TCAM attack

ith intensity of 5.8 unique packets per second. It takes a bit more than

 min to occupy all the rule capacity by installing 1500 rules. The re-

aining scenarios with different attack intensities had the same behav-

or. For our slowest attack, with intensity of 3.2 unique packets per sec-

nd, the attacker can deny service even more silently in around 8 min

ith practically no impact on the controller’s CPU usage. On the other

and, the attacker can also deny service more quickly in, 38 s, by car-

ying out a Slow-TCAM attack with intensity of 39.5 unique packets per

econd with still a very low impact on the controller’s CPU usage. No-

ice that the attacker is able to keep the rules installed in the switch

y avoiding their timeout to be fired. This can be observed by the fact

hat no rules are uninstalled. Once all 1500 rules are installed, there is

o more room for new rules thus denying service to legitimate clients

hich require new rules to be installed.

We measured the number of FLOW_MOD messages sent by the con-

roller (illustrated in Fig. 5 b). As the attack is slow, it causes the con-

roller to send a low amount of FLOW_MOD messages (less than 40 per

econd) and once the TCAM is occupied the number of FLOW_MOD mes-

ages reduces even further. For example, it were generated less than

750 FLOW_MOD messages in 300 s of Slow-TCAM attack. In compari-

on, the Saturation attacks described in Section 3 , 6000 messages were

enerated in 35 s. Moreover, the rate of rule installed when carrying out

 Slow-TCAM attack is 10 times lower than when carrying out a Satu-

ation attack. Notice as well that this number can also be reduced if the

ttacker is willing to carry out an attack with an even lower rate, e.g. ,

.2 unique packets per second. Finally, as the attacker is not spoofing

Ps, all rules installed in the switch to handle his packets are paired, i.e. ,

ave an incoming and outgoing rules.

More recently, a similar low-rate attack against SDN have been pro-

osed in [33] . They evaluated their attack considering same topology

s in our work, with the exception of that they used a commercial

ardware-based switch EdgeCore AS4610-54T with a 1800 flow rule

apacity, i.e. , a real SDN testbed was considered. As expected, they

ave found same findings and drawn same conclusions as encountered

n our work. For this reason, we are confident that the Slow-TCAM

ttack has same efficiency when launched against TCAM-embedded

witches.

.2. Slow saturation experimental results

We carried out experiments with both versions of the Slow Satura-

ion Attack, namely Continuous and Bursts. Since these attacks gener-
te a greater amount of traffic, we used for these experiments the DELL

owerEdge server introduced in this section in order to avoid negative

nterference by lack of resources.

Table 5 summarizes our Slow Saturation experiments. The Continu-

us Slow Saturation attack was promptly able to considerably affect ser-

ice (12.8%) when sending only 100 packets per second. In comparison,

aturation attacks with the same intensity was not able to deny service

see Table 1). Continuous Saturation attacks with greater intensity also

enied service (web-server had a lower than 4% service availability). On

he other hand, the controller’s memory and CPU consumption during

 Continuous Slow Saturation attack were similar to Saturation attacks.

On the other side, Burst Slow Saturation attacks considerably dis-

upted service availability, albeit less than similar-intensity Continuous

low Saturation attacks. Note that during burst attacks, there is no satu-

ation traffic for some intervals of time (20, 40 and 60 s - depending on

he type of the experiment), thus making room for some legitimate client

ules. However, the impact of Burst Slow Saturation to controller’s CPU

nd memory was considerably lower, thus being more likely to bypass

efenses that monitor such parameters.

.2.1. Additional effects of the slow saturation attack

In order to measure the effects of the Slow Saturation attack in the

etwork as a whole, we created a topology in which two switches are

onnected to the same network’s controller and clients and attackers

se different switches to access the web-server on Host 1 (see Fig. 4 b).

e measured the parameters for 200 clients (sending 10 requests each

ne of them) using the non targeted switch to access the web-server

n Host 1. Note that the only attacked switch is the Switch 2, while

witch 1 only receives legitimate client traffic. However, as shown in

able 6 , even not going through the targeted switch, the availability of

he web-server for the legitimate clients decreased (availability varied

rom 78.9% to 90.4%). In addition, some of client packets has not been

uccessfully answered by the non attacked switch due to the network

nstability caused by the attack.

This behavior is explained by the fact that the saturation component

f the Slow Saturation attack is capable to disrupt the network’s con-

roller, consequently, both switch (even the not attacked one) suffers

he denial of service effects. Therefore, a Slow Saturation attack is also

ble to disrupt other network‘s device components, i.e. , switches, and

hen the entire network. Thus, an attacker is capable of disrupting a

arget SDN-network even not having full knowledge about its topology.

These experimental results demonstrate that the attacker has a num-

er of options when carrying out Slow Saturation attack, each with its

wn features: the type of Saturation attack (Continuous or Burst), its

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

Table 6

Slow saturation: attack rate, total sent vs. total unanswered packets by legitimate clients and avail-

ability when under an attack of a variety of intensity. The slow part of the attack had a intensity of

5.8 unique packets per second.

Attack rate Non targeted switch (no defense approaches embedded)

Total sent / Unanswered packets Availability (%)

Continuous (200 pkts/s) 1984 / 397 79.9

Continuous (500 pkts/s) 2000 / 373 81.4

Continuous (800 pkts/s) 1976 / 415 78.9

Bursts (200 pkts/s during 60 s every 60 s) 1976 / 189 90.4

Bursts (800 pkts/s during 20 s every 15 s) 1990 / 266 86.7

Bursts (800 pkts/s during 60 s every 60 s) 1989 / 230 88.4

i

a

6

i

N

g

S

u

a

r

f

a

b

i

i

t

i

c

t

r

h

f

w

p

d

f

i

t

o

d

o

t

r

a

e

t

d

e

s

i

7

s

m

a

b

s

M

D

o

8

t

i

b

t

w

c

p

s

r

T

w

f

m

r

r

m

t

F

a

m

a

a

i

h

e

o

t

s

h

t

c

[

o

t

a

c

s

i
ntensity, intervals between bursts, and the intensity of the Slow-TCAM

ttack.

.3. Possible countermeasures

As it have been shown in [25] , the defense SIFT is capable of mit-

gating Slow-TCAM attacks (which only targets the SDN data plane).

evertheless, given the number of its features, it is challenging to miti-

ate a Slow Saturation attack. For example, SIFT is not able to mitigate

low Saturation attacks because it is not able to handle the attack’s sat-

ration component, which affects not only the SDN control plane, but

lso its data plane.

Therefore, as there is already a variety of defenses that mitigate satu-

ation attacks, we speculate that combining SIFT with existing defenses

or Saturation attacks (such the ones in Table 3) may be effective. In

ddition, we also think that applying Moving Target Defense (MTD)-

ased approaches [38,40,45–47] would offer a effective way of mitigat-

ng Slow Saturation attacks. The main rationale behind a MTD approach

s that it randomly changes some networks settings, parameters or even

opology, therefore, dynamically changing the attacker surface. Thus,

mposing some advantages on the defender side.

For example, Ma et al. [38] applies a MTD technique that randomly

hanges packets’ delays so that attackers cannot correctly infer SDN’s

imeouts. Besides that, they keep pool of healthy SDN controllers that

eplace controllers in critical stages (i.e. , being attacked). On the other

and, Gillani et al. [40] presented ReCON, a defense mechanism that of-

ers a control agent that dynamically manages under-utilized resources

ithin the SDN network’s control plane and then increases resources ca-

abilities of control plane’s devices in critical situation, thus, minimizing

amages on the SDN control plane. Moreover, Kampanakis et al. [45] of-

er IP randomization techniques in order to frustrate attackers launch-

ng scanning attacks. Similarly, Jafarian et al. [46] offer the same fea-

ure, however focusing on creating a more effective approach in terms

f speed. Equivalently, MacFarland and Shue [47] not only aims at ran-

omizing IP addresses, but also MAC address. Hence, decreasing chances

f successful attacks, as attackers have to constantly find their proper

argets.

Therefore, we argue that by applying MTD-based methods, such as

eplacing faulty controllers with healthy ones, which are kept spare in

 controller pool reserve, and randomly setting timeouts of flow rules is

nough to mitigate the attacks proposed in this work. As a result, we plan

o combine our previous work [25] with several anti-saturation attack

efenses and MTD techniques, and experimentally evaluate it consid-

ring a variety of scenarios to effectively measure the effectiveness of

uch hybrid defense mechanism. However, a more detailed investigation

s left for future work.

. Related work

For the best use of SDN programmability, SDN switches utilize a

pecial type of memory: Ternary Content Addressable Memory (TCAM). A
emory which has a faster and wide query power than Content Address-

ble Memory (CAM) and Random Access Memory (RAM). However, all its

enefits come with high prices and power consumption. Current SDN

witches have approximately 1 Mbit to 2 Mbit of TCAM, where each 1

bit chip costs U$ 350 and consumes 15 Watt/1MBit in average [1] .

ue to these factors, SDN switches have a limited TCAM and can store

nly a narrow number of flow rules [1–3] , typically between 1500 and

000 rules.

Some proposals [2,35] suggest modifications to the OpenFlow pro-

ocol used in SDN and in the structure of TCAM memory in order to

mprove memory management. Likely, a tagging approach is proposed

y Banerjje et al. [48] . In their mechanism, TCAM entries utilize less bits

o represent flow rules. For example, the tagged flows use only 24 bits

hile regular flow entries have 356 bits. Thus, increasing TCAM storing

apacity.

Kandoi and Antikainen [5] and Shin and Gu [4] comment and pro-

ose the possibility of using Optimal Timeout technique to flow rules,

eeking for better TCAM usage. In other words, their mechanism install

ules setting their idle_timeout according to flow traffic of the network.

his avoids that rules keep installed without being used, or uninstalled

hile being used. Consequently, improving TCAM usage. They also of-

er the Flow Aggregation mechanism which is a technique that generates

ore general rules defining macroflows, instead of using more specific

ules, defining microflows. This strategy can increase the quantity of

ules installed in a TCAM, but at the expense of leaving the network

ore vulnerable to other attacks, e.g. , Get-Flooding, allowing malicious

raffic to use the network. Moreover, as pointed out by Wang et al. [13] ,

low Aggregation is not capable of mitigating Saturation attacks such

s the ones proposed by Curtis et al. [36] .

The main goal of these proposals is to enhance SDN general perfor-

ance, whereas we expose the TCAM limited space SDN vulnerability

s a mean to deny its service. This means that with these approaches the

ttacker may need to require some more bots to deny service.

The aim of Saturation attacks is to force the switch to constantly

nstall new rules. In the literature, this is accomplished by sending a

igh rate of unique packets, e.g. , using spoofing and sending UDP pack-

ts [3,5,7] . Furthermore, the Saturation attack [1,8,10–14] has as main

bjective to crash the controller by sending a large amount of traffic

o a SDN switch occupying its incoming buffer. This causes the switch to

end to the controller the whole packet instead of only sending the packet

eader.

Dhawan et al. [3] propose the detection of DoS attacks by monitoring

he rate of rule creation by the SDN controller. If this rate surpasses a

ertain threshold, then mitigation actions are taken. Similarly, Xu et al.

37] use token bucket model in order to limit the attack rate. On the

ther hand, Shang et al. [27] propose FLOOD DEFENDER. It remodels

he data plane flow table in order to maximize switches TCAM usage

nd utilizes deviation mechanisms to detour packets in order to save

ontroller resources. Since the Slow-TCAM attack can be configured to

et a particular rate of rule creation, these defenses are not effective

n mitigating the Slow-TCAM attack. It is true that FLOOD DEFENDER

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

a

l

i

s

u

a

A

a

a

W

e

c

a

a

s

t

a

s

t

i

i

s

s

o

m

i

p

n

t

e

[

o

a

a

R

e

v

a

m

l

[

o

a

fl

l

r

s

S

i

t

s

s

a

u

n

a

l

m

8

fi

a

S

d

t

e

a

d

s

o

d

r

n

i

n

t

t

m

c

t

b

m

S

D

i

t

C

d

W

i

e

e

F

A

L

p

8

t

a

R

llows to store more flow rules; however the attacker will only need a

arger, but still relatively small botnet.

The strategy AVANT GUARD [23] detects when a TCP-handshake

s completed before creating rules in the network. It has been recently

hown [14] that this defense is vulnerable to a modification of the Sat-

ration attack capable to consume all AVANT GUARD’s resources. As in

 Slow-TCAM attack, the attacker’s bots complete the TCP-handshake,

VANT GUARD’s strategy cannot detect Slow-TCAM attacks.

Wang et al. [13] propose to monitor switch’s buffer, controller’s CPU

nd memory usage to mitigate Saturation attacks. As the Slow-TCAM

ttack has little impact to these parameters, the defense proposed by

ang et al. is not effective in detecting Slow-TCAM attacks.

Similarly, Wang et al. [8] recently proposed to use neural networks,

ntropy, and more sophisticated traffic analysis methods to help the

ontroller to make the decision of adding a rule or not. However, their

pproach suffers the same deficiencies as the AVANT GUARD by storing

 cache of rules. Moreover, since Slow-TCAM is a new attack and has

imilar characteristic of legitimate clients, it is not clear whether the

rained neural network proposed by Wang et al. will be able to identify

 Slow-TCAM attack.

Yuan et al. [9] proposes a peer support strategy in which SDN

witches share their unused TCAM memory space among them when

hey are reaching its TCAM limit. This is done by installing flow rules

n the attacked switch (they keep a reserved space in TCAM for that)

n order to divert flows to other peer switches according to parameters

uch as TCAM usage, how close to the attacked switch, how busy is a

witch, and how a switch connects to other switches. However they can

nly retard the attack and has the problem that when the majority or

any switches are full they will divert traffic between them ending up

n a vicious loop.

More recently, Moving Target Defense (MTD) approaches have been

roposed as a means to mitigating and avoiding DDoS attacks on SDN

etworks [38,40,45–47] . The main goal of MTD is to frequently shift

he attack surface, so that demanding higher efforts from attackers. For

xample, randomly setting different timeout values to several flow rules

45,46] , keeping a pool of healthy controllers to be replaced with faulty

nes [38] , and dynamically changing not only network’s controller IP

ddresses, but also MAC addresses [47] . Consequently, increasing over-

ll SDN security.

One of most disguised DDoS attacks available are the so called Low-

ate Application Layer DDoS attacks, such as Slowloris [15] . Attack-

rs can deny service of a web-server or a VoIP server by sending a

ery low rate of requests to the target server [16–18] . Attackers can

lso carry out Low-Rate attacks using rather weak devices such as

obile phones [19,20] and exploit new vulnerabilities on application

ayer protocols in order to evade detection mechanisms, e.g. , SlowNext

21] .

After the proposal of the Slow-TCAM by Pascoal et al. [25] , an-

ther independent and similar slow attack was proposed in [33] . Both

pproach aims to firstly infer some SDN configuration settings, e.g. ,

ow rule timeouts for assembling the strategy of the attack. Posteriorly,

aunching the attack in a disguised way, avoiding abrupt network’s pa-

ameters changes and then evading existing countermeasures. The re-

ults in [33] shows the effectiveness of the attack in hardware-based

DN switches, which validates and consents with our results presented

n [25] and in this paper. Based on our and their findings, we claim

hat our proposed attacks are feasible not only in laboratory-crafted

cenarios, but also in real-word scenarios considering commercial SDN

witches. In addition, we have extended both works [25,33] by offering

 novel Slow Saturation attack and evaluating the attacks’ effectiveness

nder other network’s topology, such as in the multiple-switches sce-

ario.

To the best of our knowledge, due to the novelty of the Slow-TCAM

nd Slow Saturation attacks, there are no proposed mitigation in the

iterature for them. Nevertheless, we have provided possible counter-

easures and guidance in Section 6.3 .
. Conclusion

This paper proposes and investigates slow attacks on Software De-

ned Networks, namely the Slow TCAM Exhaustion attack (Slow-TCAM)

nd the Slow Saturation attack. These attacks exploit the fact that

DN switches can only store a limited number of forwarding rules. We

emonstrate their effectiveness by performing an extensive experimen-

al evaluation.

We show that Slow-TCAM attack can deny service by sending pack-

ts at a very low rate (3.2 packets per second), in contrast to existing

ttacks. It is also able to evade existing defense mechanisms due to its

isguised traffic rate and similarity to legitimate clients behavior. The

econd proposed attack, Slow Saturation, is able to deny service using

nly a fraction of the traffic required by existing Saturation attacks. Ad-

itionally, it is also able to deny service to previous client (installed

ules). Moreover, Slow Saturation attacks can affect and disrupt the SDN

etwork as a whole, given the fact that it stress the network’s controller,

t also disrupt the well functioning of other network’s components con-

ected to it. As a result, it affects other network’s components, e.g. , non-

argeted switches, as shown by our results.

Since existing defenses for DDoS attacks on SDN assume that an at-

ack necessarily floods the network, these defenses are not suitable for

itigating such our offered slow attacks. We believe that such defense

an be constructed by combining SIFT [25] with existing approaches for

he mitigation of Saturation attacks along with MTD-based techniques.

As future work, we aim at deploying our attacks considering a test-

ed with SDN commercial switches, and assembling an efficient defense

echanism able to tackle the particularities and intrinsicalities of such

low DoS attacks, by using the presented guidelines.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

RediT authorship contribution statement

Túlio A. Pascoal: Conceptualization, Methodology, Software, Vali-

ation, Investigation, Resources, Data curation, Writing - original draft,

riting - review & editing, Visualization. Iguatemi E. Fonseca: Fund-

ng acquisition, Project administration, Supervision, Writing - review &

diting. Vivek Nigam: Supervision, Investigation, Writing - review &

diting, Visualization, Conceptualization, Formal analysis, Validation,

unding acquisition.

cknowledgments

This work was supported by the Fonds National de la Recherche

uxembourg (FNR) through PEARL grant FNR/P14/8149128 , and

artially supported by CNPq projects 425870/2016-2, 303909/2018-

 and FAPESP project 15/24516-1. This project received funding from

he EUs Horizon 2020 research and innovation programme under grant

greement No. 830892.

eferences

[1] K. Kannan , S. Banerjee , Compact TCAM: flow entry compaction in TCAM for power

aware SDN, in: International Conference on Distributed Computing and Networking,

Springer, 2013, pp. 439–444 .

[2] N. Katta , O. Alipourfard , J. Rexford , D. Walker , Infinite cacheflow in software-de-

fined networks, in: Proceedings of the Third Workshop on Hot Topics in Software

Defined Networking, ACM, 2014, pp. 175–180 .

[3] M. Dhawan , R. Poddar , K. Mahajan , V. Mann , SPHINX: detecting security attacks in

software-defined networks., NDSS, 2015 .

[4] S. Shin , G. Gu , Attacking software-defined networks: a first feasibility study, in: Pro-

ceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined

Networking, ACM, 2013, pp. 165–166 .

https://doi.org/10.13039/501100001866
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0004

T.A. Pascoal, I.E. Fonseca and V. Nigam Computer Networks 173 (2020) 107223

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[5] R. Kandoi , M. Antikainen , Denial-of-service attacks in OpenFlow SDN networks, in:

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM),

IEEE, 2015, pp. 1322–1326 .

[6] A. Vishnoi , R. Poddar , V. Mann , S. Bhattacharya , Effective switch memory manage-

ment in OpenFlownetworks, in: Proceedings of the 8th ACM International Confer-

ence on Distributed Event-Based Systems, ACM, 2014, pp. 177–188 .

[7] R. Klöti , V. Kotronis , P. Smith , OpenFlow: a security analysis, in: 2013 21st IEEE

International Conference on Network Protocols (ICNP), IEEE, 2013, pp. 1–6 .

[8] M. Wang, H. Zhou, J. Chen, B. Tong, An approach for protecting the OpenFlow

switch from the saturation attack (2016).

[9] B. Yuan , D. Zou , S. Yu , H. Jin , W. Qiang , J. Shen , Defending against flow table

overloading attack in software-defined networks, IEEE Trans. Serv. Comput. 12 (2)

(2016) 231–246 .

10] A. Zarek , Y. Ganjali , D. Lie , OpenFlow Timeouts Demystified, Univ. of Toronto,

Toronto, Ontario, Canada, 2012 .

11] S. Hong , L. Xu , H. Wang , G. Gu , Poisoning network visibility in software-defined

networks: new attacks and countermeasures, NDSS, 2015 .

12] X. Dong , H. Lin , R. Tan , R.K. Iyer , Z. Kalbarczyk , Software-defined networking for

smart grid resilience: opportunities and challenges, in: Proceedings of the 1st ACM

Workshop on Cyber-Physical System Security, ACM, 2015, pp. 61–68 .

13] H. Wang , L. Xu , G. Gu , Floodguard: a dos attack prevention extension in software-de-

fined networks, in: 2015 45th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks, IEEE, 2015, pp. 239–250 .

14] M. Ambrosin , M. Conti , F. De Gaspari , R. Poovendran , Lineswitch: efficiently man-

aging switch flow in software-defined networking while effectively tackling dos at-

tacks, in: Proceedings of the 10th ACM Symposium on Information, Computer and

Communications Security, ACM, 2015, pp. 639–644 .

15] Slowloris DoS application. Available at: https://github.com/llaera/slowloris.pl .

16] Y.G. Dantas , V. Nigam , I.E. Fonseca , A selective defense for application layer DDoS

attacks, in: JISIC 2014, 2014, pp. 75–82 .

17] M.O.O. Lemos , Y.G. Dantas , I. Fonseca , V. Nigam , G. Sampaio , A selective defense

for mitigating coordinated call attacks, 34th Brazilian Symposium on Computer Net-

works and Distributed Systems (SBRC), 2016 .

18] Y.G. Dantas , M.O.O. Lemos , I. Fonseca , V. Nigam , Formal specification and veri-

fication of a selective defense for TDoS attacks, 11th International Workshop on

Rewriting Logic and Its Applications (WRLA), 2016 .

19] E. Cambiaso , G. Papaleo , G. Chiola , M. Aiello , Mobile executions of slow dos attacks,

Logic J. IGPL 24 (1) (2016) 54–57 .

20] E. Cambiaso , G. Papaleo , M. Aiello , Slowdroid: turning a smartphone into a mobile

attack vector, in: Future Internet of Things and Cloud (FiCloud), 2014 International

Conference on, IEEE, 2014, pp. 405–410 .

21] E. Cambiaso , G. Papaleo , G. Chiola , M. Aiello , Designing and modeling the slow next

dos attack, in: International Joint Conference, Springer, 2015, pp. 249–259 .

22] M.O. Lemos , Y.G. Dantas , I.E. Fonseca , V. Nigam , On the accuracy of formal verifi-

cation of selective defenses for TDoS attacks, J. Logical Algebraic Methods Program.

94 (2018) 45–67 .

23] S. Shin , V. Yegneswaran , P. Porras , G. Gu , Avant-guard: scalable and vigilant

switch flow management in software-defined networks, in: Proceedings of the 2013

ACM SIGSAC Conference on Computer & Communications Security, ACM, 2013,

pp. 413–424 .

24] A. Wang , Y. Guo , F. Hao , T. Lakshman , S. Chen , Scotch: elastically scaling up SDN

control-plane using vswitch based overlay, in: Proceedings of the 10th ACM Interna-

tional on Conference on Emerging Networking Experiments and Technologies, ACM,

2014, pp. 403–414 .

25] T.A. Pascoal , Y.G. Dantas , I.E. Fonseca , V. Nigam , Slow TCAM exhaustion DDoS

attack, in: IFIP International Conference on ICT Systems Security and Privacy Pro-

tection, Springer, 2017, pp. 17–31 .

26] OpenFlow, Open Networking Foundation (ONF), https://www.opennet

working.org/ . Accessed in: January 2nd, 2018.

27] G. Shang , P. Zhe , X. Bin , H. Aiqun , R. Kui , FloodDefender: protecting data and control

plane resources under SDN-aimed DoS attacks, in: INFOCOM 2017-IEEE Conference

on Computer Communications, IEEE, IEEE, 2017, pp. 1–9 .

28] OpenFlow switch specification. Available at: https://www.opennetworking.org .

29] OpenVSwitch, 2018. http://openvswitch.org/ . Accessed in: April 22th, 2018.

30] S. Rowshanrad , S. Namvarasl , V. Abdi , M. Hajizadeh , M. Keshtgary , A survey on

SDN, the future of networking, J. Adv. Comput. Sci. Technol. 3 (2) (2014) 232 .

31] H. Cui , G.O. Karame , F. Klaedtke , R. Bifulco , On the fingerprinting of software-de-

fined networks, IEEE Trans. Inf. Forensics Secur. 11 (10) (2016) 2160–2173 .

32] J. Leng, Y. Zhou, J. Zhang, C. Hu, An inference attack model for flow table capacity

and usage: exploiting the vulnerability of flow table overflow in software-defined

network, arXiv: 1504.03095 (2015).

33] J. Cao , M. Xu , Q. Li , K. Sun , Y. Yang , J. Zheng , Disrupting SDN via the data plane:

a low-rate flow table overflow attack, in: International Conference on Security and

Privacy in Communication Systems, Springer, 2017, pp. 356–376 .

34] DDoS-for-Hire Service Powered by Bushido Botnet. Available at:

https://www.fortinet.com/blog/threat-research/ddos-for-hire-service-powered-by-

bushido-botnet-.html .
35] M. Yu , J. Rexford , M.J. Freedman , J. Wang , Scalable flow-based networking with

DIFANE, ACM SIGCOMM Comput. Commun. Rev. 40 (4) (2010) 351–362 .

36] A.R. Curtis , W. Kim , P. Yalagandula , Mahout: Low-overhead datacenter traffic man-

agement using end-host-based elephant detection, in: INFOCOM, 2011 Proceedings

IEEE, IEEE, 2011, pp. 1629–1637 .

37] T. Xu , D. Gao , P. Dong , C.H. Foh , H. Zhang , Mitigating the table-overflow attack

in software-defined networking, IEEE Trans. Netw. Serv. Manag. 14 (4) (2017)

1086–1097 .

38] D. Ma , Z. Xu , D. Lin , Defending blind DDoS attack on SDN based on moving target

defense, in: International Conference on Security and Privacy in Communication

Networks, Springer, 2014, pp. 463–480 .

39] Y. Cui , L. Yan , S. Li , H. Xing , W. Pan , J. Zhu , X. Zheng , Sd-anti-DDoS: fast and

efficient DDoS defense in software-defined networks, J. Netw. Comput. Appl. 68

(2016) 65–79 .

40] F. Gillani , E. Al-Shaer , Q. Duan , In-design resilient SDN control plane and elastic for-

warding against aggressive DDoS attacks, in: Proceedings of the 5th ACM Workshop

on Moving Target Defense, ACM, 2018, pp. 80–89 .

41] Mininet, 2018. http://www.mininet.org/ . Accessed in: December 3rd, 2017.

42] Ryu, 2018. https://osrg.github.io/ryu/ . Accessed in: October 15th, 2017.

43] Hping. Available at: http://www.hping.org/ .

44] Scapy project. Available at: http://www.secdev.org/projects/scapy/ .

45] P. Kampanakis , H. Perros , T. Beyene , SDN-based solutions for moving target defense

network protection, in: Proceeding of IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks 2014, IEEE, 2014, pp. 1–6 .

46] J.H. Jafarian , E. Al-Shaer , Q. Duan , An effective address mutation approach for dis-

rupting reconnaissance attacks, IEEE Trans. Inf. Forensics Secur. 10 (12) (2015)

2562–2577 .

47] D.C. MacFarland , C.A. Shue , The SDN shuffle: creating a moving-target defense using

host-based software-defined networking, in: Proceedings of the Second ACM Work-

shop on Moving Target Defense, ACM, 2015, pp. 37–41 .

48] S. Banerjee , K. Kannan , Tag-in-tag: efficient flow table management in SDN switches,

in: Network and Service Management (CNSM), 2014 10th International Conference

on, IEEE, 2014, pp. 109–117 .

Túlio A. Pascoal is currently a Ph.D. candidate at the Inter-

disciplinary Centre for Security, Reliability and Trust at the

University of Luxembourg. He received his B.Sc. and M.Sc.

in Computer Science from the Federal University of Paraíba

(UFPB), Brazil, in 2016 and 2018, respectively. He accom-

plished a 16-month scholarship during his bachelor’s at the

University of Toronto, Canada from 2013 to 2015. His current

research interests include areas in Computer Networks, Pri-

vacy, and Security, focusing on topics as mitigation of Denial

of Service attacks, techniques for the improvement of Soft-

ware Defined Networks, and privacy-preserving methods for

collaborative systems.

Iguatemi E. Fonseca is currently an associate professor at

the Informatics Center of the Federal University of Paraíba.

He received the electronics engineering degree from the Fed-

eral University of Campina Grande (UFCG), Brazil, in 1999,

and the M.Sc. and Ph.D. degrees from the State University of

Campinas (Unicamp), Brazil, in 2001 and 2005, respectively.

His current research interests include areas in Communica-

tions Networks, working on topics as identification of traffic

in computer networks, techniques for identification and miti-

gation of DDoS attacks, algorithms and protocols in Industrial

Wireless Sensor Networks, WDM and elastic optical networks

with QoS requirements.

Vivek Nigam is a research scientist leading the safety and se-

curity project group at fortiss. He is a Tenured Associate Pro-

fessor at the Federal University of Paraíba, Brazil since 2012.

He completed his Ph.D. studies in 2009 at the cole Polytech-

nique, France on the topic of Computational Logic. He has

contributed with new foundational results, methods, and tech-

niques in several topics of computer science, including for-

mal methods, programming languages, protocol security, and

denial-of-service attacks. He has collaborated in projects to-

gether with leading universities and with industries from sev-

eral domains, such as avionics, automotive and networking.

http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0013
https://github.com/llaera/slowloris.pl
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0023
https://www.opennetworking.org/
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0024
https://www.opennetworking.org
http://openvswitch.org/
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0026
http://arxiv.org/abs/1504.03095
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0027
https://www.fortinet.com/blog/threat-research/ddos-for-hire-service-powered-by-bushido-botnet-.html
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0033
http://www.mininet.org/
https://osrg.github.io/ryu/
http://www.hping.org/
http://www.secdev.org/projects/scapy/
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31292-7/sbref0037

	Slow denial-of-service attacks on software defined networks
	1 Introduction
	2 SDN fundamentals
	3 Attacking software defined networks
	4 Slow DoS attacks on SDN
	4.1 System and threat model
	4.1.1 Slow attacks’ principles
	4.1.2 Probing phase
	4.1.3 Launching phase

	4.2 Slow TCAM exhaustion attack (slow-TCAM)
	4.2.1 Slow-TCAM by example

	4.3 Slow saturation attack

	5 Mitigating TCAM-aimed attacks
	6 Experimental results
	6.1 Slow-TCAM results
	6.2 Slow saturation experimental results
	6.2.1 Additional effects of the slow saturation attack

	6.3 Possible countermeasures

	7 Related work
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

