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Abstract. The two seminal studies on westward intensification, carried out by Stommel and Munk over 70 years ago, are

revisited to elucidate the role of the domain aspect ratio (i.e. meridional to zonal extents of the basin) in determining the

transport of the western boundary current (WBC). We examine the general mathematical properties of the two models by

transforming them to differential problems that contain only two parameters — the domain aspect ratio and the non-dimensional

damping (viscous) coefficient. Explicit analytical expressions are obtained from solutions of the non-dimensional vorticity5

equations and verified by long-time numerical simulations of the corresponding time-dependent equations. The analytical

expressions as well as the simulations, imply that in Stommel’s model both the domain aspect ratio and the damping parameter

contribute to the non-dimensional transport of the WBC. However, the transport increases as a cubic power in the aspect ratio

and decreases linearly with the damping coefficient. On the other hand, in Munk’s model the WBC’s transport increases linearly

with the domain aspect ratio, while the damping coefficient plays a minor role only. This finding is employed to explain the10

weak WBC in the South Pacific. The decrease in transport of the WBC for small domain aspect ratio results from the decrease

in Sverdrup transport in the basin’s interior because the meridional shear of the zonal velocity cannot be neglected as an

additional vorticity term.

Copyright statement. TEXT

1 Introduction15

As was noted by Henry Stommel, in the opening sentence of his seminal 1948 study “Perhaps the most striking feature of the

general oceanic wind-driven circulation is the intense crowding of streamlines near the western borders of the oceans." These

strong and narrow poleward directed currents, often referred to as “western boundary currents" (WBCs), counterbalance the

weak and wide equatorward (Sverdrup) flow in the interior of the basin. In the North Atlantic this current is the Gulf Stream,

and it was known to oceanographers and explorers for a few centuries — see Stommel (1958) for a historical review. Similar20

WBCs exist in other basins as well and these include the Kuroshio in the North Pacific and the Brazil current in the South

Atlantic. These currents transport large amount of heat from low to high latitudes, thus playing an important role in the climate
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system. The winds overlying, though, are easterlies along the equator (the Trade winds) and westerlies around 40◦ N. There

are no strong northward winds along the western boundaries of the ocean basins and, as is well understood now, the WBCs are

not obviously correlated with the overlying wind patterns. Interestingly, two such WBCs lie in the Pacific viz. the Kuroshio25

and the East Australian current (EAC). Both the Kuroshio and the EAC are centered close to 26◦ latitude in their respective

hemispheres and are driven by similar wind stresses and are adjacent to a ∼ 2000 km long coastline. Despite these structural

similarities, the maximal volumetric transport of the Kuroshio current is 55 Sv (1 Sv = 106 m3s−1) (Qiu, 2019) whereas that

of the EAC is around 30 Sv (Archer et al., 2017). The maximum velocity that EAC attains is also substantially smaller than

that of the Kuroshio (Campisi-Pinto et al., 2020).30

Stommel, apparently in his first oceanography paper (Stommel, 1948, hereafter referred to as S48) was the first to formulate a

simple, yet comprehensive, mathematical model of the WBCs [see e.g. Kunzig (1999)]. S48 is now regarded as a seminal paper

in theoretical physical oceanography (e.g. http://empslocal.ex.ac.uk/people/staff/gv219/classics.d/oceanic.html). S48’s model

probably provides the simplest explanation for the existence of WBCs: in this linear and frictional model on the β−plane

the ocean is taken to be a flat bottom rectangle forced by a cos(latitude)-dependent zonal wind pattern. Walter Munk further35

extended this work to a different frictional (viscous) parameterization and a more general form of the wind stress (Munk, 1950,

hereafter referred to as M50).

In the last 70 years, both models have been modified and extended to further explore the phenomenon of westward intensi-

fication in different settings or to evaluate the importance of different specific processes and terms in the governing equations

(Munk and Carrier, 1950; Veronis, 1966a, b; Pedlosky, 2013; Vallis, 2017, and references therein).40

As in S48 and M50, a large number of these subsequent studies employed the dimensional form of the governing equations

which are the time-independent rotating linearized shallow water equations compounded by friction and forcing. These di-

mensional models include numerous parameters: the zonal and meridional extents of the basin; either the coefficient of linear

drag (i.e. the coefficient in the Rayleigh frictional term) or the kinematic eddy viscosity (i.e. the coefficient in parameterization

of the viscous term); the amplitude (and possibly meridional structure) of the wind stress; the gradient of Coriolis frequency45

(β−effect). On the other hand, a few studies (Welander, 1976; Bye and Veronis, 1979) employed the alternate, concise, ap-

proach of non-dimensionalising the governing equation (or the vorticity equation) to investigate the depth averaged wind-driven

ocean circulation. The non-dimensional approach not only simplifies the problem by reducing the number of dimensional pa-

rameters in the model to fewer non-dimensional ones but also brings out some salient features associated with the problem

which are difficult to unveil in the dimensional formulation.50

By employing a non-dimensional approach, Welander (1976) successfully identified a zonally uniform regime in both S48’s

and M50’s models of wind-driven ocean circulation and using the same approach, Bye and Veronis (1979) derived a correc-

tion to the Sverdrup transport in S48’s model. The aforementioned studies highlighted the importance of the ratio between

meridional and zonal extents of the basin as one of the two fundamental parameters in both S48’s and M50’s models. The

aim of this study is to further elaborate on the role of the domain aspect ratio (defined here as the ratio between the basin’s55

meridional and zonal extents) in S48’s and M50’s models of westward intensification. In particular, we examine the role of

domain aspect ratio in the transport of the WBC as was first hypothesized by Bye and Veronis (1979) in the context of S48’s
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model, “. . . the tendency of north-south diffusive processes to be more significant in basins with a large (small in the present

scaling) aspect ratio makes sense physically and may play a quantitative role in the transport of the western boundary current."

We also examine the relevance of our results to the observed difference in strengths of the five WBCs in the world ocean.60

The paper is organized as follows. Section 2 outlines our proposed scaling [which is slightly different from the one employed

in Welander (1976); Bye and Veronis (1979)] that reduces the number of parameters in the vorticity equations corresponding to

S48’s and M50’s models from five dimensional ones to two non-dimensional ones — one of which is the domain aspect ratio

(the other is damping). The solution for the stream function in the two cases is outlined and using this we obtain the expression

for the non-dimensional transport of the WBC in both S48’s and M50’s models. The applicability of the analytical expression65

of transport for relevant values of the model parameters is validated in Section 3 by simulating the time-dependent equations.

We discuss the results and conclude in Section 4. We also note that there were some typos in the expressions of zonal velocity

and sea surface height (but not the stream function itself) in S48 and for completeness, we list them in Appendix A. These

typos do not change the scientific conclusions drawn in S48.

2 The two-parameter differential problems, their solutions and the transports of the WBC70

2.1 S48’s non-dimensional counterpart

S48’s dimensional vorticity equation for the spatial structure of the stream function, ψ, is given by:

r∇2ψ+β
∂ψ

∂x
= τ0

π

ρ0H0Ly
sin

(
πy

Ly

)
(1)

where r is the Rayleigh friction coefficient, β is the meridional gradient of Coriolis frequency and τ0 is the amplitude of wind-

stress. The operator∇2 is the two dimensional Laplacian, H0 is the mean depth of the barotropic ocean with density ρ0, Ly is75

the meridional dimension (and Lx is the zonal dimension) of the basin. The velocity components in the zonal and meridional

directions, u and v, are related to the stream function via: u=
∂ψ

∂y
and v =−∂ψ

∂x
.

We begin by scaling (1) as follows: x (the zonal coordinate) onLx; y (the meridional coordinate) onLy andψ on γβL3
y where

γ = τ0
π

Ly

(
Lx

ρ0H0β2L3
y

)
is the non-dimensional amplitude of the wind stress curl. With this scaling the non-dimensional form

of S48’s vorticity equation is:80

ε

δ2
∇2ψ+

∂ψ

∂x
= sin(πy) (2)

where

ε=
r

βLx
, ∇2 = δ2

∂2

∂x2
+

∂2

∂y2
. (3)

From this point onwards, both the variables and the operators in the differential equation(s) are non-dimensional while

dimensional quantities will be accompanied by an asterisk (*). Here ∇2 is the non-dimensional Laplacian, δ =
Ly
Lx

is the ratio85

of meridional and zonal extents of the basin (refereed to as the domain aspect ratio) and ε is the non-dimensional width of

the WBC (and also a proxy of the damping). The definition of the non-dimensional stream function implies that the zonal
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velocity and the meridional velocity are given by, u=
∂ψ

∂y
and v =−δ ∂ψ

∂x
, respectively. It is evident from (2) and (3) that the

two parameters, ε and δ, govern the structure of the flow in the basin. The no normal flow conditions at the basin’s boundaries

mandate that the stream function ψ satisfies the boundary conditions: ψ(x,0) = ψ(1,y) = ψ(x,1) = ψ(0,y) = 0. We note that90

the term domain aspect ratio in the present study, δ =
Ly
Lx

, is the inverse of the domain aspect ratio used in Bye and Veronis

(1979) who derived a non-dimensional equation similar to (2).

As has been stated earlier, the non-dimensional formulation lumps the five dimensional parameters in S48’s model — zonal

and meridional extent of the basin, gradient of Coriolis frequency, wind stress amplitude and Rayleigh friction coefficient —

into just two non-dimensional ones: ε and δ (both of which appear only in the Laplacian operator). Following S48, an explicit95

expression for the solution for ψ in (2) is given by:

ψ(x,y) =
δ2

επ2
sin(πy)(peAx+ qeBx− 1) (4)

where

p=
1− eB

eA− eB

q = 1− p100

and

A=− 1

2ε
+
π

δ

√
1+

δ2

4π2ε2
,

B =− 1

2ε
− π

δ

√
1+

δ2

4π2ε2
.

As is evident from (4), the spatial structure of the stream function is controlled by both ε and δ. Panels (a) and (c) of Fig.

1 depict the stream functions for two ε-regimes of S48’s model: (i) weak damping [ε≤ δ2] and (ii) strong damping [ε > δ2].105

For ε≤ δ2, the solution ψ given by (4) becomes linear in x and thus can satisfy only one boundary condition out of two. This

solution is commonly assumed to approximate the exact solution for ψ in the frictionless interior of the basin while a different

approximation applies in the narrow, frictional, boundary layer adjacent to x= 0. Fig. 1(a) depicts this narrow boundary layer

for ε= 0.1δ2 where the stream function first decreases fast with x at small x and then increases slowly with x for large x. For

ε > δ2, the solution, ψ, is symmetric about x=
1

2
and can satisfy the two boundary conditions, ψ(0,y) = 0 = ψ(1,y). This110

is demonstrated in the symmetric stream function depicted in Fig. 1(c) for ε= 10δ2. The explicit expressions of ψ in the two

ranges of ε are given in the Appendix B.

In S48’s model, we define the transport of the WBC as the product of its width, ε, and the average of the meridional velocity,

v =−δ ∂ψ
∂x

, between the western edge of the basin, x= 0, and x= ε evaluated along y =
1

2
i.e. Tr = ε

1

ε

ε∫
0

−δ ∂ψ
∂x

∣∣∣∣
y= 1

2

dx

.

The integral in the definition of the transport, Tr, simplifies to the product of the domain aspect ratio and the difference in the115

values of the stream function evaluated at x= 0 and x= ε along y =
1

2
, i.e. Tr = δ

[
ψ

(
0,

1

2

)
−ψ

(
ε,
1

2

)]
. Substituting the
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Figure 1. The stream functions in different ε regimes of S48’s and M50’s models for δ = 2π/10: (a) and (b) weak damping [ε≤ δ2 in

S48’s model and ε≤ 0.1δ4/3 in M50’s model] — there exists a narrow fast flowing current along the western edge of the basin. (c) and (d)

strong damping [ε > δ2 in S48’s model and ε > 0.1δ4/3 in M50’s model] — the stream function is (nearly) symmetric about x= 0.5 which

indicates that there is no westward intensification.

boundary condition ψ
(
0,

1

2

)
= 0 and using the explicit solution (4) yields:

Tr =
δ3

επ2
(1− peAε− qeBε). (5)

This expression will be compared below to its counterpart in M50’s model and will be compared in section 3 with transports

calculated by numerical simulations.120

Here, we note that the definition of the WBC’s width is somewhat arbitrary and for definiteness we choose it to be ε [as in

Welander (1976); Bye and Veronis (1979); Vallis (2017)]. However, the conclusions drawn in this study are independent of

the precise definition; for instance, the width of the WBC can also be defined as the value of x at which the stream function

reaches an extremum. According to this definition the WBC’s width, ε′ equals∼ 5ε and the corresponding transport is given by

Tr′ =
δ3

5επ2
(1− pe5Aε− qe5Bε). Both, expressions of Tr and Tr′, yield that the transport of the WBC in S48’s model varies125

as ∼ δ3

ε
.
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2.2 M50’s non-dimensional counterpart

The non-dimensional counterpart of M50’s vorticity equation, obtained by employing the scaling proposed in this study in a

similar manner to that of S48 [refer to Munk (1950) for the dimensional equation], is given by:

− ε3

δ4
∇4ψ+

∂ψ

∂x
= sin(πy) (6)130

where

ε=
1

Lx

(
µ

β

)1/3

, ∇4 = δ4
∂4

∂x4
+2δ2

∂4

∂x2∂y2
+

∂4

∂y4
(7)

where µ is the (dimensional) horizontal eddy viscosity coefficient. We note that contrary to (3), the sign in front of the first

term in (7) is negative. This dissimilarity arises because, unlike the parametrization in S48, in M50’s model the damping is

parametrized by the two dimensional bilaplacian operator. Also, in addition to stream function vanishing at the edges of the135

basin another set of boundary condition has to be specified to solve the 4th order equation (6). The additional boundary condi-

tions employed by M50 originate from the inclusion of lateral viscosity which implies that there should be no tangential flow at

the basin’s edges i.e.
∂ψ

∂x

∣∣∣∣
x=0,1

=
∂ψ

∂y

∣∣∣∣
y=0,1

= 0. Following the mathematical steps in M50 yields the following approximate

solution of (6):

ψ =−sin(πy)
[
1−x+ εe(x−1)/ε− e−(x/2ε)ξ(ε)

]
(8)140

and ξ(ε) =

[
cos

(√
3x

2ε

)
+

1− 2ε√
3

sin

(√
3x

2ε

)]
.

Panels (b) and (d) of Fig. 1 depict the stream function for small and large damping in M50’s model. For large damping the

stream function shown in Fig. 1(d) is not entirely symmetric about x=
1

2
. Also, unlike the behavior of the stream function

in S48’s model, the stream function in M50’s model skews more towards the eastern boundary with the increase in damping.

This, less than optimal, behavior of the stream function in M50’s model occurs because the stream function does not vanish145

identically along the eastern boundary and is, instead, a function of ε itself (although, for small ε, the zonal velocity there is

small compared to the rest of the basin).

We turn now to the estimation of the WBC’s transport in M50’s model. As was done in S48’s model, this transport is also

defined as the product of the boundary layer width (ε) and the mean meridional velocity of the current between x= 0 and

x= ε along y =
1

2
. Following the arguments laid out in the previous section [see the paragraph above (5)] an expression for150

transport can be obtained by multiplying the domain aspect ratio by the difference of the stream function values between x= 0

and x= ε along y =
1

2
. Furthermore, substituting the boundary condition ψ

(
0,

1

2

)
= 0 yields Tr =−δψ

(
ε,
1

2

)
. Evaluating

ψ in (8) at
(
ε,
1

2

)
for ε� 1 yields the following simplified expression for the WBC’s transport in M50’s model:

Tr = δ

(
1− e(−1/2)

[
cos

(√
3

2

)
+

1− 2ε√
3

sin

(√
3

2

)])
. (9)
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As anticipated by, the transport of the WBC in S48’s model [given by (5)] is governed by both damping (ε) and domain155

aspect ratio (δ). However, in M50’s model the dependence of the WBC’s transport on the two parameters is strikingly different:

the transport is governed primarily by δ and is weakly dependent on ε. In the next section we validate these claims using

(dimensional) numerical simulations and then apply our results to the present-day world ocean.

3 Numerical simulations and application to the world ocean

The numerical simulations described below were carried out using the time-dependent, forced-dissipative, rotating shallow160

water equation (SWE) dimensional solver that was successfully used in previous studies. The solver employs the finite dif-

ference method to solve SWEs on the β−plane and the simulations are carried out on an Arakawa C grid with leapfrog time

difference scheme. Though the solver can include nonlinear terms, these terms were neglected in the present application. The

reader should refer to Gildor et al. (2016) and Shamir et al. (2019) for a more detailed description of the solver.

The simulations presented here were carried out in a barotropic ocean with the same characteristics as in S48 i.e. on an165

equatorial β−plane (f0 = 0), forced by a wind stress that varies as −τ0 cos
(
πy∗

Ly

)
. Three of the dimensional parameters

remained fixed in all the simulations presented below — the gradient of Coriolis frequency (given by β = 2×10−11 m−1s−1),

the zonal extent of the basin (Lx = 10000 km) and the amplitude of the prescribed forcing (τ0 = 0.2 Nm−2). The other two

dimensional parameters in the two WBC models i.e. the damping coefficients [Rayleigh friction coefficient (r) in S48’s model

and horizontal eddy viscosity (µ) in M50’s model] and the meridional extent of the basin (Ly) are varied to examine the effect170

of ε and δ on the transport. We note that keeping τ0 fixed and varying Ly will yield different values of γ in the simulation,

however, since we scale our ψ∗ on γβL3
y and only look at the non-dimensional transport we do not have to account for the

effects of changes in γ. The results are consistent with what one would obtain by keeping only β and Lx fixed and varying

τ0 along with the damping coefficients and Ly to keep γ constant. The boundary conditions are: the (dimensional) zonal and

meridional velocities vanish along the basin’s meridional and zonal boundaries respectively, i.e. u∗|y∗=0,Ly
= v∗|x∗=0,Lx

= 0.175

The numerical solver is integrated until a steady state is reached. The steady state of the time-dependent simulations is defined

as the state at which the dependent variables in the SWEs [dimensional zonal velocity (u∗), meridional velocity (v∗) and sea

surface height (η∗)] cease to evolve for sufficiently long time.

Panels (a) and (c) in Fig. 2 depict the numerically obtained, non-dimensional stream function
(
ψ =

ψ∗

γβL3
y

)
in the steady

state for the dimensional parameters as in S48’s model (and the corresponding values of ε and δ are noted above these panels)180

while panels (b) and (d) in Fig. 2 depict the numerically obtained, non-dimensional ψ in the steady state for the parameters

relevant to M50’s model (and here too the corresponding values of ε and δ are noted above these panels). The reader should

note that the meridional extent (Ly) of the basin shown in panels (a) and (b) of Fig. 2 is 2π×1000 km, whereas, the meridional

extent of the basin shown in panels (c) and (d) in Fig. 2 is Ly = π/4× 1000 km. In all four cases the shape of the stream

function is very similar to the steady non-dimensional stream functions shown in Fig. 1 [panels (a) and (b)]. We note that for185

the given values of (ε, δ), the ψs obtained from dividing the numerically calculated ψ∗s by the corresponding values of γβL3
y
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Figure 2. Numerically obtained, non-dimensional stream functions for ε= 0.01 and Lx = 10,000 km. (a) S48’s model with δ = 2π/10, (b)

M50’s model with δ = 2π/10. Panels (c) and (d) are the same as (a) and (b) but for δ = 0.25π/10 i.e. the meridional extent of the basin is

one-eighth of that in (a) and (b). Note the different colorbars in panels (a) and (c).

are in agreement with the ψ calculated analytically for the same values of (ε, δ) using (4) for S48’s model and (8) for M50’s

model.

Fig. 2 depicts that in both S48’s and M50’s models, for a fixed value of ε= 0.01 (damping and the width of the WBC), the

gradient of the stream function increases with δ. The higher zonal gradient of the stream function near the western boundary190

yields a larger meridional velocity, thus increasing the transport of the WBC (given by the product of width and average

meridional velocity of the WBC). Clearly, δ exercises a control over the transport of the WBC and hence cannot be ignored.

Fig. 3 compares the analytic and numerically computed values of the non-dimensional transport (Tr) of the WBC in S48’s

and M50’s models as a function of ε for several values of δ. The solid lines denote the analytic value of Tr obtained from the

expressions given by (5) and (9). The ‘numerical transport’ of the WBC is obtained by taking the product of δ and −
ψ∗(ε, 12 )

γβL3
y

.195

Here, ψ∗
(
ε,
1

2

)
is the value of the steady state dimensional stream function at

(
ε,
1

2

)
obtained from the results of the

numerical simulation for a given set of parameters which correspond to a certain (ε,δ).

As is evident by Fig. 3(a), the analytic and numerically calculated non-dimensional transports of the WBC in S48’s model

are in good agreement. Fig. 3(b) shows that the analytic transports of the WBC in M50’s model are nearly independent of ε and

are governed primarily by δ. The numerically calculated transports of the WBC depicted by the dashed lines in Fig. 3(b) show200

a similar dependence on δ but in contrast to the approximate analytic expression these transports vary slightly with ε. We also
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Figure 3. Comparison between analytically (solid lines) and numerically (dots) calculated values of transport (Tr) as a function of ε for

different values of δ in (a) S48’s and (b) M50’s models. The dashed lines depict the cubic spline interpolated curves between the numerically

calculated transports (dots).

note that there is a discernible difference between the analytically estimated and numerically calculated values of transport in

M50’s model for nearly all values of (ε, δ). This is because the expression for the stream function for M50’s model, [i.e. (8)]

only crudely approximates the actual stream function.

Fig. 4 depicts the non-dimensional transport of the WBC in S48’s [panel (a)] and M50’s models [panel (b)] as contours on205

(ε,δ) plane. The contours were obtained by interpolating (using the cubic spline method) between the numerically calculated

values of the WBC’s transport as shown in Fig. 3. As is evident from Fig. 4(a), the non-dimensional transport is a function of

both ε and δ in S48’s model. On the other hand, Fig. 4(b) shows that the transport of the WBC is only weakly dependent on

ε and is governed primarily by δ (the contours are nearly parallel to the abscissa). The position of the different WBCs in the

(ε,δ) parameter space is marked with different symbols and the errorbars account for the inaccuracies in the assigned values210

of the zonal and meridional extents of the basins. The details of how the irregular basins in the world ocean are approximated
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Figure 4. The non-dimensional transport of the western boundary current (WBC) as a function of ε and δ in (a) S48’s model and (b) M50’s

model. The different WBCs in the world ocean are depicted with different symbols and the error bars denote the possible variability of

parameters that can occur because of an error in estimating the zonal and meridional extents of the basins that contain the WBC. The error in

ε is not accounted for in (b) because the WBC’s transport in M50’s model is (nearly) independent of ε. The East Australian Current’s (EAC)

non-dimensional transport, as calculated from both S48’s and M50’s models, is less than the other four WBCs. The uncertainty in δ for the

Brazil Current extends up to 0.375 in both the models, the contours have been restricted to better resolve the boundary currents. The range

between which the non-dimensional transport varies is similar in both the models.

with rectangles are discussed in Appendix C. The error in ε has been omitted from 4(b) because the WBC’s transport in M50’s

model is nearly independent of ε. Despite the large uncertainty in the damping parameters (relevant in S48’s model only) and

domain aspect ratios (relevant in both S48’s and M50’s models) of the five WBCs, the non-dimensional transport of the East

Australian Current (EAC) is distinctly smaller than that of the other WBCs.215

4 Summary and Discussions

Since the introduction of the S48’s and M50’s models about 70 years ago, numerous theoretical and numerical investigations

have been carried out to further explore the characteristics of westward intensification (Munk and Carrier, 1950; Stommel,

1958; Hogg and Johns, 1995; Pedlosky, 2013; Vallis, 2017, and references therein). Both S48’s and M50’s dimensional models

clearly bring out the contribution of each source of vorticity: damping, planetary gradient and wind forcing in producing the220

characteristic east-west asymmetry of the flow in a basin. However, it is difficult to quantify the contribution of each of the five
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dimensional parameters (Lx, Ly , β, τ0 and r/µ) to the transport of WBC, using the dimensional models. A better alternative is

to combine several dimensional parameters to yield a system with fewer non-dimensional parameters as was employed by, for

example, Welander (1976) to identify a zonally uniform regime in ocean circulation and by Bye and Veronis (1979) to identify

the correction to the Sverdrup transport in context of S48’s original model.225

In this article, we address the issue raised by Bye and Veronis (1979) regarding the effect of domain aspect ratio on the

WBC’s transport by providing explicit expressions of the non-dimensional transport in both S48’s and M50’s models. These

expressions are then benchmarked against numerical simulations of the time dependent, forced-dissipative, rotating shallow

water equations. Both the analytic expressions and steady state simulations show that the WBCs’ transports depend on both

ε and δ in S48’s model, however, a change in δ has a stronger effect on Tr when compared to a change in ε
(
Tr ∼ δ3

ε

)
. In230

contrast, the transport of the WBC in M50’s model is nearly independent of ε and is governed primarily by δ (Tr ∼ δ).
In the traditional description of the S48 model the flow is decomposed into two parts: A slow, anti-cyclonic flow in the

inner-basin where the velocities are tiny so frictional effects can be neglected and a return boundary flow where the frictional

vorticity associated with the zonal shear of the poleward directed velocity, balances the planetary vorticity advected by this

velocity. According to this paradigm the WBC simply returns the frictionless equatorward Sverdrup transport of the inner-basin235

so its transport is independent of the friction coefficient and since the (dissipation) Laplacian term does not affect the Sverdrup

interior flow, the transport of the WBC should also be independent of the domain aspect ratio. The present study demonstrates

that the assumption of small damping, ε� 1, implies that only the term ε
∂2ψ

∂x2
of the Laplacian in (2) can be neglected in

this limit while the second term,
ε

δ2
∂2ψ

∂y2
, cannot be neglected in the interior solution when δ2 ∼O(ε). The implication of our

analysis is that the Sverdrup interior flow depends on δ for sufficiently small δ and therefore so does the (return) transport of240

the WBC.

To appreciate this subtle issue one should compare a square basin, where δ = 1, with a narrow and long “channel-like" basin

where δ� 1. In a square basin, the classical approach of equating
∂ψ

∂x
to sin(πy) in the inner basin works well since the North-

South gradient of the zonal velocity (represented by
∂2ψ

∂y2
) is small and can be neglected from the interior solution. However,

in a "channel-like" ocean this quantity is large and cannot be neglected from the balance of terms in the interior solution. An245

examination of the three vorticity terms in the interior [
∂ψ

∂x
,
∂2ψ

∂y2
and−sin(πy)] clarifies that the transport of the WBC (as well

as the equatorward transport in the interior) in a "channel-like" ocean should be smaller compared to a square ocean since the

meridional shear of the zonal velocity lowers the vorticity induced by the curl of the wind stress. In an extreme “channel-like"

ocean with
ε

δ2
� 1 the only term that can balance

∂2ψ

∂y2
is
∂ψ

∂x
that implies a strong, equatorward directed velocity. Indeed, as

was shown by Welander (1976) for a small domain aspect ratio, a boundary layer develops along the basin’s eastern boundary250

in which the strong current flows equatorward.

In M50’s model the vorticity balance of the interior is more involved since the bilaplacian dissipation operator (∇4) has

3 terms, each of which with a coefficient of different power of δ. Thus, the distinction between terms associated with the

inner basin and those with the boundary solution is not as clear as in S48’s model. However, under the assumption of small

damping, ε� 1, the third term in the ∇4 operator [given by (7)] cannot be neglected for δ4 ∼O(ε3). Similar to S48’s model,255
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the vorticity balance in the interior, which is determined in this limit by the interplay of 3 terms
∂4ψ

∂y4
,
∂ψ

∂x
and−sin(πy), yields

a δ−dependent equatorward transport. This δ−dependent transport in the interior is balanced by an equal, poleward-directed,

transport along the western boundary. Although the vorticity associated with
∂4ψ

∂y4
is not as intuitive as that associated with

∂2ψ

∂y2
in S48’s model the change it entails in Sverdrup’s interior solution is similar.

The results derived here highlight an important effect that was overlooked in the classical/traditional WBC theory, namely,260

the effect of the domain aspect ratio on the Sverdrup solution of the inner basin which results from the meridional shear of the

zonal velocity in a narrow zonal channel.

The non-dimensional formulation presented here does not alter the physical basis of the S48 and M50 models. We emphasize

that the dimensional transport (calculated from the product of the non-dimensional transport and γβL3
yH0) in S48’s model

varies linearly with the Rayleigh friction coefficient (r) while in M50’s model it is nearly independent of the eddy viscosity265

(µ). In both models the transport is linear with magnitude of the wind-stress curl.

The application of our results to present-day ocean attributes the small transport of the EAC compared to the other WBCs

to the geometry of the South Pacific ocean. In reality, factors other than the domain aspect ratio may also be important in

determining the transport. For instance, the Brazil current’s volumetric transport is low (especially in the northern part) because

the current is largely confined to the continental shelf (Stramma et al., 1990). Temperature-driven buoyancy fluxes can also270

affect the transport of a WBC (Hogg and Gayen, 2020).

It is highly plausible that with a different arrangement of the continents in previous geologic times, the small domain

aspect ratio that persisted in the ocean at that time could not support a strong WBC. Thus, the resulting higher pole to equator

temperature gradient might have strongly affected the Meridional Overturning Circulation. This hypothesis should be addressed

in a future work.275
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Appendix A: Typos in Stommel (1948)

There are some typos in the expression for u [equation (21)] and η [equation (23)] in Stommel (1948). The correct expressions

are given as:285

u = γ (b/π)cos(πy/b)
(
peAx+ qeBx− 1

)
(A1)

η = −(F/gD)cos(πy/b)(eAxp/A+ eBxq/B)

−(fγ/g)(b/π)2 sin(πy/b)(peAx+ qBeBx− 1)

+(∂f/∂y)(γ/g)(b/π)3 cos(πy/b). (A2)

For the reader’s perusal, the variables in the aforementioned equations are the same as the ones defined in Stommel (1948).290

Fig. A1 provides excerpts from Stommel (1948) over which, the corrections have been highlighted.

Figure A1. Corrections to u and h indicated over excerpts from Stommel (1948).
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Appendix B: Limiting cases of stream function ψ in S48’s model

In the limit ε≤ δ2, the solution ψ tends to:

lim
ε≤δ2

ψ(x,y) = c1
δ2

επ2
sin(πy)(x) (B1)

where c1 = lim
ε≤δ2

A is a number� 1. On the other hand, in the limit of ε > δ2, the solution ψ becomes:295

lim
ε>δ2

ψ(x,y) =
δ2

επ2
sin(πy)[p(ec2x+ ec2(1−x))− 1] (B2)

where c2 = lim
ε>δ2

A=
π

δ
and p=

ec2 − 1

e2c2 − 1
. The function lim

ε>δ2
ψ(x,y) is symmetric about x=

1

2
.

Appendix C: Zonal and meridional extents of the five western boundary currents in present-day world ocean

To determine the zonal and meridional extents of a basin containing a WBC, we identified the mean initiation and termination

latitudes of each WBC based on the available literature. The Gulf Stream begins at the tip of Florida (∼25◦ N) and runs upto300

∼38◦ N where it breaks of into hot and cold rings (Hogg and Johns, 1995). The Kuroshio originates from the bifurcation of

North Equatorial current at 12 - 13◦ N, although this bifurcation point can vary between 10 - 15◦ N (Qiu and Lukas, 1996); it

separates from the Japan coast at 35◦ N as a meandering current colloquially known as the Kuroshio extension which stretches

as far as ∼ 38◦ N (Kida et al., 2016). The East Madagascar-Agulhas current, in the South Indian ocean, runs from 20◦ S to

40◦ S (Lutjeharms et al., 1981; Gordon, 1985; Lutjeharms, 2006) — however the current retroflects between 38◦ S to 40◦305

S (Quartly and Srokosz, 1993). Moreover, the African continental landmass ends close to 35◦ S. The Brazil current begins

between 10◦ S and 12◦ S (Peterson and Stramma, 1991; Stramma et al., 1990) but the intense current attains its intense speed

characteristic of a WBC only when it crosses the Vitoria-Trindade Ridge at 20.5◦ S (Evans et al., 1983). This current separates

from the coastline at a mean value of 36◦ S± 1.1◦ (Olson et al., 1988). The last of the five WBCs in the world ocean is the East

Australian Current (EAC) that extends from 18◦ S to around 35◦ S (Boland and Church, 1981; Ridgway and Godfrey, 1994)310

but a characteristic southward flow is evident only when EAC crosses 22◦ S (Ridgway and Dunn, 2003); the current usually

separates from the coast at 33◦ S (Archer et al., 2017).

We define the meridional extent (Ly) is defined as the distance between the initiation and termination latitudes of the

WBC. On the other hand, to determine the zonal extent (Lx) we calculated the distances between the land masses at both the

initiation latitude and termination latitude. The average of the two distances is defined as the typical Lx for any given WBC.315

For instance, the approximate initiation and termination coordinates for the Kuroshio are 13◦ N, 125◦ E and 35◦ N, 140 E

respectively, which yields Ly ≈ 2500 km. The distances to the opposite landmass, the North American continent (which forms

the eastern boundary of the basin) as calculated from the initiation coordinate and termination coordinate are ∼ 9000 km and

∼ 15000 km respectively. Thus, the typical zonal extent of the basin is assumed to be 12000 km.

The mean dimensions Lx and Ly for all the five WBCs in the world ocean are given by Table 1. The ‘error’ in Ly accounts320

for the variation between different references of the initiation and termination latitudes and the error in Lx is the deviation
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Table C1. Dimensions of the gyres that contain the five western boundary currents in the present-day world ocean.

Current Western edge of the basin Eastern edge of the basin Basin’s dimensions

Initiation Termination Initiation Termination Zonal (Lx) Meridional (Ly)

Gulf Stream 25◦ N 80◦ W 38◦ N 75◦ W 25◦ N 16◦ W 38◦ N 10◦ W 6000 ± 400 km 1500 ± 200 km

Kuroshio 13◦ N 125◦ E 35◦ N 140◦ E 13◦ N 92◦ W 35◦ N 121◦ W 12000 ± 3000 km 2500 ± 400 km

Madagascar-Agulhas 20◦ S 50◦ E 35◦ S 20◦ E 20◦ S 116◦ E 35◦ S 116◦ E 7500 ± 800 km 1700 ± 350 km

Brazil 21◦ S 40◦ W 35◦ S 54◦ W 21◦ S 13◦ E 35◦ S 19◦ E 6000 ± 400 km 1600 ± 500 km

East Australian 22◦ S 150◦ E 33◦ S 152◦ E 22◦ S 70◦ W 33◦ S 72◦ W 12500 ± 2000 km 1200 ± 250 km

of the measured zonal distances along initiation and termination latitude from the mean value. Based on these values of Lx

and Ly a range of parameters damping (α) and domain aspect ratio (δ) corresponding to every WBC was estimated and these

values of α and δ were employed it to distinguish between the five WBCs. Typical values of Lx and Ly for the ocean basins

that contain the WBCs were also estimated using the mean streamlines in the ocean as calculated by Maximenko et al. (2009)325

— these values were well within the range cited in Table C1.
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