
1

1

mbed NXP LPC11U24
Hello World!

Agenda

• Introduction to mbed

• mbed registration and Hello World

• Lab 1: Basic IO

• Lab 2: Interrupts and timing

• Lab 3: Local File system and file handling

• Lab 4: Saving Energy with Sleep and Deepsleep

• Lab 5: USB Device

Resources and electronic copies of these slides available from:
http://mbed.org/users/chris/notebook/mbed-nxp-lpc11u24-hello-world/

2

3

Introduction to mbed

mbed NXP LPC11U24
Hello World!

What’s happening in Microcontrollers?

• Microcontrollers are getting cheap
– 32-bit ARM Cortex-M3 Microcontrollers @ $1

• Microcontrollers are getting powerful
– Lots of processing, memory, I/O in one package

• Microcontrollers are getting interactive
– Internet connectivity, new sensors and actuators

• Creates new opportunities for microcontrollers

3

Rapid Prototyping

• Rapid Prototyping helps industries create new products
– Control, communication and interaction increasingly define products

– Development cycles for microelectronics have not kept pace

3D Moulding 3D Printing 2D/3D Design Web Frameworks

mbed Rapid Prototyping Platform

• Complete Hardware, Software and Web 2.0 Solution

Lightweight Online Compiler

Prototyping Form-Factor

Dedicated Developer Website

High-level Peripheral APIs

4

mbed NXP LPC11U24 Features

• Based on the NXP LPC11U24 MCU
– 50 MHz 32-bit ARM Cortex-M0, 8KB SRAM, 32 KB Flash

– Full Speed USB 2.0 device controller

– SPI, I2C, UART, ADC, GPIO

8

mbed NXP LPC11U24
Hello World!

mbed registration and hello world!

5

Registration

• mbed microcontroller enumerates
as a USB disk

• Double-click the mbed.htm file on
the mbed USB disk

• Log in or sign up for a new account

• The mbed microcontroller
contains your license to the
compiler

Enable beta mode!

• While the mbed NXP LPC11U24 is in beta trials, you will need
to enable “betamode”

• Follow this link :

http://mbed.org/betamode

• Click here

6

Getting Started

• Useful resources linked
from the first page,
including very clear links
to “Hello World” and the
Getting Started guide

• Compiler linked from
front page

Getting Started

• While mbed NXP LPC11U24 is in beta, do not use the “new”
button, instead import the default project :
– http://mbed.org/users/chris/programs/m0-helloworld/latest

• Develop code in the text editor

• Save and compile

• Compiler outputs
– Errors and warnings

– -or-

– A downloadable binary

• Save to the USB flash disk

7

Getting Started

• Once the file has saved to the flash disk, it needs to be
programmed into the microcontroller

• Press the button on the mbed module

• Your code will start running!

14

Lab 1
Basic IO

mbed NXP LPC11U24
Hello World!

8

DigitalOut and Analog Input

• In the hello world session, we simply compiled the Hello
World program, but we didn't take too much notice of the
code

• It was simple, it set up a digital output (DigitalOut) called
“myled” and run a loop forever turning it on and off.

• Lets see if we can expand on this, and use other interfaces.

What IO is there?

• Take another look at your compiler window. In your default
project there the mbed library with a “+” box. Try expanding
this, and exploring the libraries.

• Note that these are libraries that relate to the microcontroller
on chip hardware.

• We’ll be using the AnalogIn and BusOut objects, so take time
to have a look at their APIs

9

DigitalOut and Analog Input

• The AnalogIn object returns a normalised float between 0.0
(0.0v) and 1.0 (3.3v)

• The BusOut object groups multiple DigitalOuts, and enables
them to be updated simultaneously

Challenge: BusOut and AnalogIn

• Write a program to display the voltage on an AnalogIn on the
four LEDs
– http://mbed.org/users/chris/programs/m0-AnalogIn/latest

#include "mbed.h"

BusOut leds(LED1,LED2,LED3,LED4);
AnalogIn ain(p20);

int main () {
while (1) {

leds = 0xF * ain.read();
}

}

• A normalised float is
returned by the read
function, and is used to
scale the full scale value
of the 4 bit bus.

10

19

Lab 2
Interrupts and Timing

mbed NXP LPC11U24
Hello World!

Interrupts and timing

• As a microcontroller application grows in complexity, the use
of interrupts often becomes inevitable

• This is most commonly for scheduling software tasks, or for
external hardware to request attention

• These example shows how timing and hardware interrupt
might be used concurrently in a program.

• Open the mbed library tree in the online compiler and
familiarise yourself with “InterruptIn” and “Ticker”

11

Using wait() and the Ticker object

• Write a program to toggle LED2 from a ticker
– http://mbed.org/users/chris/programs/m0-Ticker/latest

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led2(LED2);
Ticker tick;

void tick_handler () {
led2 = !led2;

}

int main () {

tick.attach(&tick_handler,0.3);

while (1) {
led1 = !led1;
wait(0.2);

}
}

• As the ticker handler
executes very fast, there is
no impact on the loop that
toggles led1

Using InterruptIn

• Write a program to toggle LED3 on each rising edge of pin 14
– http://mbed.org/users/chris/programs/m0-InterruptIn/latest

#include "mbed.h"

DigitalOut led3(LED3);
InterruptIn din(p14);

void int_handler () {
led3 = !led3;

}

int main () {

din.rise(&int_handler);

while (1) {
// do nothing

}

}

• Notice the need for switch
debouncing may mean it
doesn't quite work as
reliably as expected

12

Challenge: Interrupt, Ticker and more

• As a final challenge, combine the previous two programs, so
that LED1, LED2 and LED3 are all toggling, from different
sources

• For interest :
– http://mbed.org/users/chris/programs/m0-TickerInterruptIn/latest

24

Lab 3
Local File system and file handling

mbed NXP LPC11U24
Hello World!

13

Example : Data Logging

• Applications often include data logging capabilities, and
access to the data often involves bespoke software and
interface cables.

• This example shows how standard methods and interfaces can
be used to display, save and retrieve data from an application

• For the purposes of the experiment, we will be displaying and
logging noise from an unconnected ADC. Touching the pin will
influence the noise, it is a demonstration, imagine it is real
data!

Example : Data Logging

• The mbed Flash disk is
accessible using the
LocalFileSystem object

• Standard C file handling
techniques apply

• fscanf for reading files

• fprintf for writing files

• This example logs 100
samples to a CSV file

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led2(LED2);

AnalogIn ain(p20);

LocalFileSystem fs("fs");

int main () {

FILE *fp = fopen("/fs/data.csv","w");

for (int i=0; i < 100; i++) {
fprintf(fp,"%.2f\n",ain.read());
wait(0.05);
led2 = !led2;

}

fclose(fp);
led1=1;

}

http://mbed.org/users/chris/programs/m0-Filesystem/latest

14

Data quickly visible to a PC

Logging to a CSV file means
Excel can open the file and
interpret, manipulate or
plot the data.

While the program executes the
flash drive disappears from the
PC, and returns when the file is
closed

GND
MISO – p6
SCL - p7
Vcc
MOSI – p5
nCS - p8

Extend it to store lots of data (Theory)

• Perhaps a final system might want to store lots of data
– SD cards are ideal, ubiquitous and recognisable by everyone

• Hardware for an SD Card is minimal
– SPI Port connection using simple breakout

• As before, mbed keeps it simple

15

Extend it to store lots of data (Theory)

• An SDFileSystem Library has been
published in the community

• Reusing the library is simple
– Import the SDFile system library

– Include the SDFileSystem header

– Swap LocalFileSystem for SDFileSystem

– Everything else remains the same

• Using standard C file handling
techniques keeps it simple

30

Lab 4
Saving Energy with Sleep and Deepsleep

mbed NXP LPC11U24
Hello World!

16

LPC11U24 Low Power modes

• The LPC11U24 has four power saving modes; sleep, deep
sleep, power down and deep power down

• The sleep modes retain internal and IO state, and so can
simply wake up and resume

• The power down modes offer greater savings, but the loss of
state makes them a little more complex to use

• For prototyping, sleep modes are a good compromise

Using sleep()

• This program uses sleep()

• When powering from VB, the
sleep current is 10mA

• This compares with 50mA for
the whole mbed

• Peripheral interrupts can be
used to exit sleep mode

• This example uses a ticker to
regularly wake up

#include "mbed.h"

BusOut leds(LED1,LED2,LED3,LED4);

Ticker wakeup;

void dostuff() {
for (int i=0; i<5; i++) {

leds = 1 << i;
wait(0.25);

}
}

int main () {

wakeup.attach(NULL, 3.0);

while (1) {
dostuff();
sleep();

}

}

http://mbed.org/users/chris/programs/m0-sleep/latest

17

Using deepsleep()

• This program uses deepsleep()

• When powering from VB, the
deep sleep current is 1mA

• This compares with 50mA for
the whole mbed

• An external interrupt is
required to exit deep sleep

• An rising edge InterruptIn is
used in this example

#include "mbed.h"

BusOut leds(LED1,LED2,LED3,LED4);

InterruptIn wakeup(p14);

void dostuff() {
for (int i=0; i<5; i++) {

leds = 1 << i;
wait(0.25);

}
}

int main () {

wakeup.rise(NULL);

while(1) {
dostuff();
deepsleep();

}

}

http://mbed.org/users/chris/programs/m0-deepsleep/latest

34

Lab 5
USB Device

mbed NXP LPC11U24
Hello World!

18

LPC11U24 USB Device

• The mbed NXP LPC11U24 has a USB device interface, enabling
HID (Keyboard, mouse), Mass Storage, Audio,

• All required filters and circuits are present, only an external
USB connect is needed

• Most operating systems have support for these devices built
in, and so generic implementations can be very portable

USB Device – Keyboard

• This program implements a
USB keyboard

• It is pre-programmed with
Credit Card details, which it
can automatically type

• The tab (“\t”) key is used to
move between fields

• The return key (“\n”) is
used to submit the form

• The program could be used
to type a strong password

#include "mbed.h"
#include "USBKeyboard.h"

USBKeyboard key;

DigitalIn din(p14);
DigitalOut led1(LED1);

int main(void) {
while (1) {
if (din) {

led1 = !led1;
key.printf("Mr A N Other\t");
key.printf("4929780506391234\t");
key.printf("0611\t");
key.printf("0513\t");
key.printf("123\t");
wait(1);
key.printf("\n");
wait(1);
}

}
}

http://mbed.org/users/chris/programs/m0-USBKeyboard/latest

19

USB Device – Mouse

• This program implements a
USB relative mouse

• The pointer can be located
to any x,y position

• Floating point calculations

• Trigonometric functions
from the C math library

• Moves the mouse pointer
in a circle

#include "mbed.h"
#include "USBMouse.h"
#include <math.h>

USBMouse mouse;

int main(void) {

int16_t x = 0;
int16_t y = 0;
int32_t radius = 10;
int32_t angle = 0;

while (1) {
x = cos((double)angle*3.14/180.0)*radius;
y = sin((double)angle*3.14/180.0)*radius;
mouse.move(x, y);
angle += 3;
wait(0.001);
}

}

http://mbed.org/users/chris/programs/m0-USBMouse/latest

38

Summary

mbed NXP LPC11U24
Hello World!

20

Summary

• There is huge opportunity for microcontroller applications
– A major barrier to adoption is simple experimentation

• mbed helps with getting started and rapid prototyping
– Fast turnaround of experiments and prototyping new ideas

– Try out new technology and new ideas

• Makes the technology very accessible
– Demo showed a start to finish prototyping example

– From getting a user started to enabling an application experiment

• Use at as a tool when you need to experiment!

Summary

• A solution focused on prototyping has a broad appeal

• Engineers new to embedded applications
– Enables experimentation and testing product ideas for the first time

– Create designs where electronics and MCUs are not the focus

• Experienced engineers
– Provides a way to be more productive in the proof-of-concept stages

– Introduce 32 bit microcontroller technology to existing designs

• Marketing, distributors and application engineers
– Provides a consistent platform for demonstration, evaluation, support

– Make promotion of MCUs more effective and efficient

