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Reason for choosing a parallel architecture


• Performance - do it faster


• Throughput - do more of it in the same time


• Availability - do it without interruption


• Price / performance - do it as fast as possible for the given money


• Scalability - be able to do it faster with more resources


• Scavenging - do it with what I already have
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Machine Model


• First computers had fixed programs (electronic calculator)


•  von Neumann architecture (1945, for EDVAC project)


•  Instruction set used for assembling programs stored in memory


• Program is treated as data, which allows program exchange under program 
control and self-modification


•  von Neumann bottleneck
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Parallel Computers - Vocabulary
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• Pipelining

• Super-scalar

• VLIW

• Branch prediction

• ...


Uniprocessor System
 Multiprocessor System
 Multicomputer System
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RISC vs. CISC - Computer Architecture History


• CISC - Complex Instruction Set Computer 

• VAX, Intel X86, IBM 360/370, etc. 

• Large number of complex instructions

• Variable length instructions

• Extensive manipulation of low-level computational elements and events 

such as memory, binary arithmetic, and addressing


• RISC - Reduced Instruction Set Computer 

• MIPS, DEC Alpha, SUN Sparc, IBM 801 

• Small number of instructions

•  instruction size constant

• Fewer addressing modes

•  instructions that can be overlapped and made to execute in one machine 

cycle or less (pipelining)


• RISC designs lend themself to eploitation of instruction level parallelism

• Very Long Instruction Word – VLIW – Transmeta Crusoe

• Explicitely Parallel Instruction Set Computing – EPIC – Intel Itanium
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Instruction-Level Parallelism


• Processor hardware optimizes instruction stream execution


• Sub-steps of sequential instructions are executed in parallel (pipelining)


• Execution of multiple instructions in parallel (superscalar architecture)


• Re-arrangement of the order of instructions (out-of-order execution)


• Very Long Instruction Word (VLIW)


• Fisher et al., 1980‘s


• Compiler identifies instructions to be executed in parallel (code bloat)


• Less hardware complexity, higher compiler complexity


• VLIW processors usually designed as multiple RISC execution units


• Success with IA-64 (EPIC) and Transmeta Crusoe, embedded market 
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EPIC – Itanium architecture (X64)


• 64-bit register-rich explicitly-parallel architecture


•  implements predication, speculation, and branch prediction


• hardware register renaming for parameter passing


• parallel execution of loops


• Speculation, prediction, predication, and renaming controlled by compiler:


• Each 128-bit instruction word contains three instructions; stop-bits control 
parallel execution


•  fetch mechanism can read up to two instruction words per clock from the L1 
cache into the pipeline


• processor can execute six instructions per clock cycle


•  thirty functional execution units for particular subsets of instruction set in 
eleven groups. 


• each unit executes at a rate of one instruction per cycle unless execution 
stalls waiting for data


• common instructions can be executed in multiple units.

7


Itanium architecture – 30 functional units


•  Six general-purpose 
ALUs, two integer 
units, one shift unit


•  Four data cache units


•  Six multimedia units, 
two parallel shift 
units, one parallel 
multiply, one 
population count


•  Two 82-bit floating-
point multiply-
accumulate units, two 
SIMD floating-point 
multiply-accumulate 
units (two 32-bit 
operations each)[52]


•  Three branch units


8
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Computer Classification


single 
processor 

vector computer, 
array computer 

pipeline 
computer 

multiprocessor 
distributed 

system 
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Multiprocessor: Flynn‘s Taxonomy (1966)


• Classify multiprocessor architectures among instruction and data dimension
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Multiprocessor Systems


• Symmetric Multiprocessing (SMP)


• Set of equal processors in one system (more SM-MIMD than SIMD)


• Processors share access to main memory over one bus


• Demands synchronization and operating system support


• Today, every SMP application also works on a uniprocessor machine


• Asymmetric multiprocessing (ASMP)


• Specialized processors for I/O, interrupt handling or operating system "
(DEC VAX 11, OS-360, IBM Cell processor)


• Typically master processor with main memory access and slaves


• Large multiprocessor work with NUMA / COMA memory hierarchy 


12
ParProg | Hardware
 PT 2010


SMP for Scalability and Availability


• Advantages


• Performance increase by simple addition of processor card


• Common shared memory programming model


• Easy hardware partitioning, in-built redundancy possible


• Disadvantages


• Scale-up is limited by hardware architecture


• Complex tuning of the application needed


• Failover between partitions is solution-dependent


• Solves performance and availability problems rather in hardware & operating 
system than in software
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Classification by granularity 

Few powerful processor elements: 

   Coarse grain parallel computers: Cray Y-MP with 8-16 GFlop-Pes 

Many relatively weak processor elements: 

   Fine grain parallel computers: CM-2 (64k 1-bit-processors),  

MasPar MP-1 (up to 16344 4-bit PEs), C.mmp, KSR-1 

Less than 1000 workstation-class processor elements 

   Medium grain parallel computers: CM-5, nCUBE2, Paragon XP/S 

 Problem: many algorithms / implementations show 
limited amount of inherent parallelism 

Granularity   = 
t basic communication 

t basic computation 

SIMD Computers 
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SIMD  
Problems 
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SIMD Vector Pipelines


• Vector processors have high-level operations for data sets


• Became famous with Cray architecture in the 70‘s


• Today, vector instructions are part of the standard instruction set


• AltiVec


• Streaming SIMD Extensions (SSE)


• Example: Vector addition


vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;


movaps xmm0,address-of-v1          

(xmm0=v1.w | v1.z | v1.y | v1.x) 


addps xmm0,address-of-v2           

(xmm0=v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x)  


movaps address-of-vec_res,xmm0
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SIMD Pipelining
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SIMD Examples


• Good for problems with high 
degree of regularity, such as 
graphics/image processing


• Synchronous (lockstep) and 
deterministic execution


• Typically exploit data 
parallelism


• Today: GPGPU Computing, 
Cell processor, SSE, AltiVec
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Illiac IV


• Supercomputer for vector processing from University of Illinois (1966)


• One control unit fetches instructions 


• Handed over to a set of processing elements (PE‘s)


• Each PE has own memory, accessible by control unit


•  Intended for 1 GFLOPS, ended up with 100 MFLOPS at the end


• Main work on bringing the data to the SIMD machine


• Parallelized versions of FORTRAN language


• Credited as fastest machine until 1981


• Computational fluid dynamics (NASA)
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CM2 – Connection Machine


Hersteller:
 Thinking Machines Corporation, Cambridge, 
Massachusetts


Prozessoren: 
 65.536 PEs (1-Bit Prozessoren) 

Speicher je PE: 128 KB (maximal) 

Peak-Performance: 2.500 MIPS (32-Bit Op.) 

10.000 MFLOPS (Skalar,32Bit) 

5.000 MFLOPS (Skalar,64Bit)


Verbindungsnetzwerke:
 - globaler Hypercube 

-  4-faches, rekonfigurierbares Nachbarschaftsgitter 


Programmiersprachen:
 - CMLisp (ursprüngliche Variante)

-  *Lisp (Common Lisp Erweiterung) 

- C*(Erweiterung von C) 

- CMFortran (Anlehnung an Fortran 90) 

- C/Paris (C+Assembler Bibliotheksroutinen) 


20


CM2 at Computer Museum, Mountain View, CA


W. Daniel Hillis: The Connection Machine. "
1985 (MIT Press Series in Artificial Intelligence)"
 ISBN 0-262-08157-1
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MasPar MP-1


Hersteller:
 MasPar Computer Corporation, 

Sunnyvale, California


Prozessoren:
 16.384 PEs (4-Bit Prozessoren) 

Spei-cher je PE: 64 KB (maximal)

Peak-Performance: 

30.000 MIPS (32-Bit Op.)

1.500 MFLOPS (32-Bit)

 600 MFLOPS (64-Bit) 


Verbindungsnetzwerke:
 3-stufiger globaler crossbar switch (Router) 

8-faches Nachbarschaftsgitter (unabh.)


 Programmiersprachen
 -  MPL (Erweiterung von C)

- MPFortran (Anlehnung an Fortran 90


21


MasPar MP-1 Architecture


• Processor Chip contains 32 identical PEs


• PE is mostly data path logic, no instruction fetch/decode


22


Processor element
Interconnection structure
 Inside a PE


Nickolls, J.R.;  MasPar Comput. Corp., Sunnyvale, CA 

The design of the MasPar MP-1: a cost effective massively parallel computer

Compcon Spring '90. Intellectual Leverage. Digest of Papers. Thirty-Fifth IEEE Comp. Soc. Intl. Conf.. 
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Distributed Array Processor (DAP 610)


Hersteller:
 Active Memory Technology (AMT), Reading, England


Prozessoren:
 4.096 PEs (1-Bit Prozessoren + 8-Bit Koprozessoren) 
Speicher je PE: 32 KB 

Peak-Performance:

40.000 MIPS (1-Bit Op.) 

20.000 MIPS (8-Bit Op.) 

560 MFLOPS 


Verbindungsnetzwerk:
 -  4-faches Nachbarschaftsgitter 

-  (kein globales Netzwerk)


Programmiersprache:
 - Fortran-Plus (in Anlehnung an Fortran 90) 

23


The Distributed Array Processor (DAP) produced by International Computers Limited (ICL) was 
the world's first commercial massively parallel computer. The original paper study was 
complete in 1972 and building of the prototype began in 1974.


The ICL DAP had 64x64 single bit processing elements (PEs) with 4096 bits of storage per PE. 
It was attached to an ICL mainframe and could be used as normal memory. (from Wikipedia).


Early mainframe coprocessor...


Problems with synchronous parallelism:"
virtual processor elements


• Even thousands of PEs may not be sufficient…


24
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SIMD communication – programming is complex


• Activation of a group of PEs


• Selection of a previously defined connection network


• Pair-wise data exchange among active PEs


25


Permutations – arbitrary data exchange


26
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High Performance Fortran


27


Data distribution in HPF


!HPF$ PROCESSORS :: prc(5), chess_board(8, 8) 


!HPF$ PROCESSORS :: cnfg(-10:10, 5) 


!HPF$ PROCESSORS :: mach( NUMBER_OF_PROCESSORS() ) 


REAL :: a(1000), b(1000)


INTEGER :: c(1000, 1000, 1000), d( 1000, 1000, 1000)


!HPF$ DISTRIBUTE (BLOCK) ONTO prc :: a


!HPF$ DISTRIBUTE (CYCLIC) ONTO prc :: b


!HPF$ DISTRIBUTE (BLOCK(100), *, CYCLIC) ONTO cnfg :: c


!HPF$ ALIGN (i,j,k) WITH d(k,j,i) :: c 


28
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GPGPU Computing – SIMD + multithreading


• Pure SIMD approach, different design philosophy


• Driven by video / game industry development, recent move towards general 
purpose computations


• Offloading parallel computation to the GPU is still novel


(C) Kirk & Hwu


Programming Models #1:  
OpenCL, CUDA 

OpenCL – Open Computing Language 
CUDA – Compute Unified Device Architecture  

Open standard for portable, parallel programming of heterogeneous  
parallel computing CPUs, GPUs, and other processors  
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OpenCL Design Goals 


   Use all computational resources in system   

   Program GPUs, CPUs, and other processors as peers  

   Support both data- and task- parallel compute models  


   Efficient C-based parallel programming model  

   Abstract the specifics of underlying hardware  


   Abstraction is low-level, high-performance but device-portable  

   Approachable – but primarily targeted at expert developers 

   Ecosystem foundation – no middleware or “convenience” functions  


   Implementable on a range of embedded, desktop, and server 
systems  

   HPC, desktop, and handheld profiles in one specification  


   Drive future hardware requirements  

   Floating point precision requirements  

   Applicable to both consumer and HPC applications  

OpenCL Platform Model 


   One Host + one or more Compute Devices  

   Each Compute Device is composed of one or more Compute 

Units  

   Each Compute Unit is further divided into one or more 

Processing Elements  
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OpenCL Execution Model 

   OpenCL Program:  


   Kernels  

   Basic unit of executable code — similar to a C function  

   Data-parallel or task-parallel  


   Host Program  

   Collection of compute kernels and internal functions  

   Analogous to a dynamic library  


   Kernel Execution  

   The host program invokes a kernel over an index space called an 

NDRange  

   NDRange = “N-Dimensional Range”  

   NDRange can be a 1, 2, or 3-dimensional space  


   A single kernel instance at a point in the index space is called a 
work-item  

   Work-items have unique global IDs from the index space  


   Work-items are further grouped into work-groups  

   Work-groups have a unique work-group ID  

   Work-items have a unique local ID within a work-group  

Kernel Execution 


   Total number of work-items = Gx x Gy  

   Size of each work-group = Sx x Sy  

   Global ID can be computed from work-group ID and local ID  
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Contexts and Queues 


   Contexts are used to contain and manage the state of the “world”  

   Kernels are executed in contexts defined and manipulated by the 

host  

   Devices  

   Kernels - OpenCL functions  

   Program objects - kernel source and executable  

   Memory objects  


   Command-queue - coordinates execution of kernels  

   Kernel execution commands  

   Memory commands - transfer or mapping of memory object data  

   Synchronization commands - constrains the order of commands  


   Applications queue compute kernel execution instances 

   Queued in-order   

   Executed in-order or out-of-order  

   Events are used to implement appropriate synchronization of execution 

instances  

OpenCL Memory Model 


   Shared memory model  

   Relaxed consistency  


   Multiple distinct address spaces  

   Address spaces can be collapsed 

depending on the device’s memory 
subsystem  


   Address spaces  

   Private - private to a work-item  

   Local - local to a work-group  

   Global - accessible by all work-items 

in all work-groups  

   Constant - read only global space  


   Implementations map this hierarchy  

   To available physical memories  
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Multiple Instruction Multiple Data (MIMD)


• Most common parallel hardware architecture today 


• Example: All many-core processors, clusters, distributed systems


• From software perspective [Pfister]


• SPMD - Single Program Multiple Data


• Sometimes denoted as ,application cluster‘ 


• Examples: Load-balancing cluster or failover cluster for databases, web 
servers, application servers, ...


• MPMD - Multiple Program Multiple Data


• Multiple implementations work together on one parallel computation


• Example: Master / worker cluster, map / reduce framework


MIMD Classification


38
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Memory Architectures


Uniform Memory Access"
(UMA)


Non-Uniform Memory Access"
(NUMA)


Distributed Memory
 Hybrid
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Shared Memory vs. Distributed Memory System"

• Shared memory (SM) systems


• SM-SIMD: Single CPU vector processors


• SM-MIMD: Multi-CPU vector processors, OpenMP


• Variant: Clustered shared-memory systems (NEC SX-6, CraySV1ex)


• Distributed memory (DM) systems


• DM-SIMD: processor-array machines; lock-step approach; front processor 
and control processor


• DM-MIMD: large variety in interconnection networks 


• Distributed (Virtual) shared-memory systems 


• High-Performance Fortran, TreadMarks
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Shared Memory Architectures


• All processors act independently, access the same global address space


• Changes in one memory location are visible for all others


• Uniform memory access (UMA) system


• Equal load and store access for all processors to all memory


• Default approach for majority of SMP systems in the past


• Non-uniform memory access (NUMA) system


• Delay on memory access according to the accessed region


• Typically realized by processor interconnection network and local memories


• Cache-coherent NUMA (CC-NUMA), completely implemented in hardware


• About to become standard approach with recent X86 chips


NUMA Classification


42
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MIMD Computer Systems


• Sequent Balance


43


Sequent Symmetry


44


Sequent was bought by IBM in 1999. IBM produced several Intel-based servers based on 
Sequent’s later NUMA architecture…
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Caches – managing bus contention

• Effect of write-through and write-back cache coherency protocols on "

Sequent Symmetry


45


Intel Paragon XP/S


•  i860 RISC processor (64 bit, 50 MHz, 75 MFlops)


• Standard OS (Mach) on each node


• Cluster in a box


46
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Intel "
Paragon XP/S –"

interconnection 
network
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Intel Paragon XP/S - partitioning


48
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IBM SP/2
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Example: Intel Nehalem SMP System
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An Intel Nehalem Cluster:"
SMP + NUMA + Distributed Memory


Network
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CC-NUMA


• Still SMP programming model, but non-NUMA aware software scales poorly


• Different implementations lead to diffuse understanding of „node“, typical:


• Region of memory where every byte has the same distance from each 
processor 


• Tackles scalability problems of pure SMP architectures, while keeping the 
location independence promise


• Recent research tendency towards non-cache-coherent NUMA approach "
(Intel Single Chip Cloud Computer)


Processor A
 Processor B


Cache
 Cache


Memory


Processor C
 Processor D


Cache
 Cache


Memory

High-Speed

Interconnect
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Scalable Coherent Interface


• ANSI / IEEE standard for NUMA interconnect, used in HPC world


• 64bit global address space, translation by SCI bus adapter (I/O-window)


• Used as 2D / 3D torus


Processor A
 Processor B


Cache
 Cache


Memory


Processor C
 Processor D


Cache
 Cache


Memory

SCI Cache


SCI Bridge


SCI Cache


SCI Bridge


...


Experimental "
Approaches


Systolic Arrays


• Data flow architectures


• Problem: common clock – 
maximum signal path 
restricted by frequency


• Fault contention: single 
faulty processing element 
will break entire machine


54
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Another Taxonomy (Tanenbaum)


Multiprocessors

(shared memory)


Multicomputers

(private memory)


Bus
 Bus
 Switched


MIMD

Parallel and Distributed Computers


Switched


Transputer
Workstation
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Another Taxonomy (Foster)


• Multicomputer


• Number of von Neumann computers, connected by a network (DM-MIMD)


• Each computer runs own program and sends / receives messages


• Local memory access is less expensive than remote memory access


Interconnect
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Multicomputer Systems - Clusters


• Collection of stand-alone workstations/PC‘s connected by a local network


• Cost-effective technique to connect small-scale computers to a large-scale 
parallel computer


• Low cost of both hardware and software


• Users are builders, have control over their own system (hardware 
infrastructure and software), low costs as major issue


• Distributed processing as extension of DM-MIMD


• Communication between processors is orders of magnitude slower


• PVM, MPI as widely accepted programming standards


• Used with cheap LAN hardware
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Lowly Parallel Processing


• Current market for large-scale"
parallel systems is small


• High price, small amount of users


• Clusters provide cheap availability


• Parallel processing with small amount of standard systems


• Most coordination functionality realized by software, only feasible for 
coarse-grained parallel activities


Internet


Web Server


Web Server


Web Server


Web Server


Load 
Balancer


Clients

DB Server


DB Server


DB Server


Disk
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History


• 1977: ARCnet (Datapoint)


• LAN protocol, such as Ethernet, DATABUS programming language


• Single computer with terminals


• Transparent addition of ‚compute resource‘ and ‚data resource‘ computers


• May 1983: VAXCluster (DEC)


• Cluster of VAX computers, no single-point-of-failure


• Every component that could fail was duplicated


• High-speed message-oriented interconnect


• Distributed version of VMS operating system


• Distributed lock manager for shared resources
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NOW


• Berkeley Network Of Workstations (NOW) - 1995


• Building large-scale parallel computing system with COTS hardware


• GLUnix operating system


• Transparent remote execution, network PID‘s


• Load balancing


• Virtual Node Numbers (for communication)


• Network RAM - idle machines as paging device


• Collection of low-latency, parallel communication primitives - ‘active 
messages’


• Berkeley sockets, shared address space parallel C, MPI


61
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MareNostrum


• Peak Performance of 94,21 Teraflops


• 10.240 IBM Power PC 970MP processors at 2.3 GHz (2560 JS21 blades)


• 44 racks with 6 blade centers each, 120m2


• Each blade center with 28 blades, each blade with 2 processors


• 8 GB shared memory and local harddisk per blade card, standard Linux


• Operating system from network (Gigabit), Myrinet interconnect


(C
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Cluster System Classes


• High-availability (HA) clusters  -  Improvement of cluster availability


• Linux-HA project (multi-protocol heartbeat, resource grouping)


• Load-balancing clusters  -  Server farm for increased performance / availability


• Linux Virtual Server (IP load balancing, application-level balancing)


• High-performance computing (HPC) clusters  -  Increased performance by 
splitting tasks among different nodes


• Speed up the computation of one distributed job (FLOPS)


• High-throughput computing (HTC) clusters  -  Maximize the number of 
finished jobs 


• All kinds of simulations, especially parameter sweep applications


• Special case: Idle Time Computing for cycle harvesting
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Simple Queuing Management System


Utility 
Program


User
 Scheduler
 Dispatcher

Load 

Balancer


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


Compute 
Node


• Utility Program  -  Command line tool for the user


• Scheduler  -  Subsystem that services users requests 


• After user submits a job, scheduler queues job in its queue


• Makes decision based on scheduling policy


• Queue  -  Collection of jobs, order based on attributes/policy


• Dispatcher  -  Performs the submission of jobs in queue


• Load Balancer  -  Selects appropriate set of compute nodes, based on monitoring
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Clusters for Scalability and Availability


• Advantages


•  Intrinsic availability due to node independence


• Simple commodity hardware, low costs


• Application-level compatibility with uniprocessors


• Disadvantages


• Single system image mostly not possible, therefore explicit programming


• Complex administration


• Power consumption
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Multicomputer Systems -"
Massively Parallel Processing (MPP)


• Hierarchical SIMD / MIMD architecture with many interconnected processors


• Standard components (in contrast to mainframes)


• Host processor(s) / nodes, responsible for loading program and data to 
PE‘s


• High-performance interconnect (bus, ring, 2D mesh, hypercube, tree, ...)


• For embarrassingly parallel applications, mostly simulations"
(atom bomb, climate, earthquake, airplane, car crash, ...)


• Examples


• Distributed Array Processor (1979), 64x64 single bit processing elements


• Goodyear Massively Parallel Processor (1985), 128x128 single bit PE‘s


• Earth Simulator (2004), 640 nodes x 8 vector processors per node


• BlueGene/L (2007), 106.496 nodes x 2 PowerPC processors (700MHz)
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• Proprietary ASIC with 2 PowerPC 440 "
cores on a chip


• Proprietary communication networks "
organized as 3D torus (memory mapped)


• 596 TerraFLOPS, MTBF 6 days 


(C
) L

LN
L
Blue Gene/L
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MPP Properties


• Standard components (processors, harddisks, ...)


• Specific non-standardized interconnection network


• Low latency, high speed


• Distributed file system


• Specific packaging of components and nodes for cooling and upgradeability


• Whole system provided by one vendor (IBM, HP)


• Extensibility as major issue, in order to save investment


• Distributed processing as extension of DM-MIMD


• Single System View


• Common file system, central job scheduling
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MPP for Scalability and Availability


• Advantages


• Performance scalability only limited by application, and not by hardware


• Proprietary wiring of standard components as alternative to mainframes


• Disadvantages


• Specialized interconnect network


• Demands custom operating system and aligned applications


• No major consideration of availability


• Power consumption, cooling
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Cluster / MPP System Benchmarking


• TOP500.org


• Collection started in 1993, updated every 6 months


• 500 most powerful computers / clusters in the world


• Comparison through Linpack benchmark results


• Linpack


• Measures floating point rate of execution


• Solving of a dense system of linear equations, grown since 1979


• Compiler optimization is allowed, no changes to the code


• 3 tests: Linpack Fortran n=100, Linpack n=1000, Linpack Highly Parallel 
Computing Benchmark (used for TOP500 ranking)
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Top 500 - Clusters vs. MPP (# systems)
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Top 500 - Clusters vs. MPP (performance)
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MPP
 SMP
 Cluster
 Distributed


Number of nodes
 O(100)-O(1000)
 O(10)-O(100)
 O(100) or less
 O(10)-O(1000)


Node Complexity
 Fine grain

Medium or coarse 

grained
 Medium grain
 Wide range


Internode 
communication


Message passing / 
shared variables 

(SM)


Centralized and 
distributed shared 

memory

Message Passing


Shared files, RPC, 
Message Passing, 

IPC


Job scheduling

Single run queue on 

host

Single run queue 

mostly

Multiple queues but 

coordinated
 Independent queues


SSI support
 Partially
 Always in SMP
 Desired
 No


Address Space
 Multiple
 Single
 Multiple or single
 Multiple


Internode Security
 Irrelevant
 Irrelevant
 Required if exposed
 Required


Ownership
 One organization
 One organization

One or many 
organizations
 Many organizations


K. Hwang and Z. Xu, Scalable Parallel Computing: Technology, Architecture, Programming; WCB/McGraw-Hill, 1998
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Distributed System


• Tanenbaum (Distributed Operating Systems): "
„A distributed system is a collection of independent computers that appear to 
the users of the system as a single computer.“


• Coulouris et al.: "
„... [system] in which hardware or software components located at networked 
computers communicate and coordinate their actions only by passing 
messages.“


• Lamport: "
„A distributed system is one in which the failure of a computer you didn't even 
know existed can render your own computer unusable.”


• Consequences: concurrency, no global clock, independent failures


• Challenges: heterogeneity, openness, security, scalability, failure handling, 
concurrency, need for transparency




07.01.2013


38


75
ParProg | Hardware
 PT 2010


Grid Computing


•  „... coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations.“ "


 
     Foster, Kesselman, Tueke „The Anatomy of the Grid“, 2001


• Analogy to the power grid


• Request-driven usage of standardized services


• Reliable, high availability, low costs


•  Innovation was the coordinated distribution, not the power itself


• Resource coordination without central control


• Open standards (Open Grid Forum)


• Service quality (reliability, throughput, availability, security)
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SMP vs. Cluster vs. Distributed System


• Clusters are composed of computers, SMPs are composed of processors


• High availability is cheaper with clusters, but demands other software


• Scalability is easier with a cluster


• SMPs are easier to maintain from administrators point of view


• Software licensing becomes more expensive with a cluster


• Clusters for capability computing, integrated machines for capacity computing


• Cluster vs. Distributed System


• Both contain of multiple nodes for parallel processing


• Nodes in a distributed system have their own identity


• Physical vs. virtual organization
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Interconnection networks


Optimization criteria


• Connectivity – ideally direct links between any two stations


• High number of parallel connections


Cost model


• Production cost - # connections


• operational cost – distance among PEs 


• Bus networks, switching networks, point-to-point interconnects
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Bus network


• Optimal #connection per PE: 1


• Constant distance among any two PEs 


78
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Crossbar switch "
(Kreuzschienenverteiler)


• Arbitrary number of 
permutations


• Collision-free data 
exchange


• High cost, quadratic 
growth 


• n * (n-1) connection points
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Delta networks


• Only n/2 log n delta-
switches


• Limited cost


• Not all possible 
permutations 
operational in parallel


80
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Clos coupling 
networks


• Combination of delta 
network and crossbar


81


C.Clos, A Study of Nonblocking Switching Networks, "
Bell System Technical Journal, vol. 32, no. 2, "
1953, pp. 406-424(19)


Fat-Tree networks


• PEs arranged as leafs on a binary tree


• Capacity of tree (links) doubles on each layer


82
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Point-to-point networks: "
ring and fully connected graph


• Ring has only two connections per PE (almost optimal)


• Fully connected graph – optimal connectivity (but high cost)
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Mesh and Torus


• Compromise between cost and connectivity


84
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Cubic Mesh


• PEs are arranged in a cubic fashion


• Each PE has 6 links to neighbors
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Hypercube


• Dimensions 0-4, recursive definition


86
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Binary tree, quadtree


• Logarithmic cost


• Problem of bottleneck at root node
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Shuffle-Exchange network


• Logarithmic cost


• Uni-directional shuffle network + bi-directional exchange network


88
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Plus-Minus-Network


• PM 2i – 2*m-1 separate unidirectional interconnection networks


89


Comparison of networks


90
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Theoretical Models for Parallel Computers


• Simplified parallel machine model, for theoretical investigation of algorithms


• Difficult in the 70‘s and 80‘s due to large diversity in parallel hardware 
design


• Should improve algorithm robustness by avoiding optimizations to hardware 
layout specialities (e.g. network topology)


• Resulting computation model should be independent from programming model


• Vast body of theoretical research results


• Typically, formal models adopt to hardware developments
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(Parallel) Random Access Machine


• RAM assumptions: Constant memory access time, unlimited memory


• PRAM assumptions: Non-conflicting shared bus, no assumption on 
synchronization support, unlimited number of processors


• Alternative models: BSP, LogP


CPU


Input
 Memory
 Output


CPU
 CPU


Shared Bus


CPU


Input
 Memory
 Output
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PRAM Extensions


• Rules for memory interaction to classify hardware support of a PRAM algorithm


• Note: Memory access assumed to be in lockstep (synchronous PRAM)


• Concurrent Read, Concurrent Write (CRCW)


• Multiple tasks may read from / write to the same location at the same time


• Concurrent Read, Exclusive Write (CREW)


• One thread may write to a given memory location at any time


• Exclusive Read, Concurrent Write (ERCW)


• One thread may read from a given memory location at any time


• Exclusive Read, Exclusive Write (EREW)


• One thread may read from / write to a memory location at any time
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PRAM Extensions


• Concurrent write scenario needs further specification by algorithm


• Ensures that the same value is written 


• Selection of arbitrary value from parallel write attempts


• Priority of written value derived from processor ID


• Store result of combining operation (e.g. sum) into memory location


• PRAM algorithm can act as starting point (unlimited resource assumption)


• Map ,logical‘ PRAM processors to restricted number of physical ones


• Design scalable algorithm based on unlimited memory assumption, upper 
limit on real-world hardware execution


• Focus only on concurrency, synchronization and communication later
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PRAM 
extensions


95


PRAM write 
operations
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PRAM Simulation
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Example: Parallel Sum


int sum=0; 
for (int i=0; i<N; i++) { 
   sum += A[i]; 
} 

• General parallel sum operation works with any associative and commutative 
combining operation (multiplication, maximum, minimum, logical operations, ...)


• Typical reduction pattern


• PRAM solution: Build binary tree, with input data items as leaf nodes


•  Internal nodes hold the sum, root node as global sum


• Additions on one level are independent from each other


• PRAM algorithm: One processor per leaf node, in-place summation


• Computation in O(log2n)
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Example: Parallel Sum


for all l levels (1..log2n){ 
  for all i items (0..n-1) { 
    if (((i+1) mod 2^l) = 0) then 
      X[i] := X[i-2^(l-1)]+X[i] 
  } 
} 

• Example: n=8:


•  l=1: Partial sums in X[1], X[3], X[5], [7]


•  l=2: Partial sums in X[3] and X[7]


•  l=3: Parallel sum result in X[7]


• Correctness relies on PRAM lockstep assumption (no synchronization)
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Bulk-Synchronous Parallel (BSP) Model


• Leslie G. Valiant. A Bridging Model for Parallel Computation, 1990


• Success of von Neumann model


• Bridge between hardware and software


• High-level languages can be efficiently compiled based on this model


• Hardware designers can optimize the realization of this model


• Similar model for parallel machines


• Should be neutral about the number of processors


• Program are written for v virtual processors that are mapped to p physical 
ones, were v >> p -> chance for the compiler
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BSP
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Bulk-Synchronous Parallel (BSP) Model


• Bulk-synchronous parallel computer (BSPC) is defined by:


• Components, each performing processing and / or memory functions


• Router that delivers messages between pairs of components


• Facilities to synchronize components at regular intervals L (periodicity)


• Computation consists of a number of supersteps


• Each L, global check is made if the superstep is completed


• Router concept splits computation vs. communication aspects, and models 
memory / storage access explicitely


• Synchronization may only happen for some components, so long-running serial 
tasks are not slowed down from model perspective


• L is controlled by the application, even at run-time
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LogP


• Culler et al., LogP: Towards a Realistic Model of Parallel Computation, 1993


• Criticism on overly simplification in PRAM-based approaches, encourage 
exploitation of ,formal loopholes‘ (e.g. no communication penalty)


• Trend towards multicomputer systems with large local memories


• Characterization of a parallel machine by:


• P: Number of processors


• g: Gap: Minimum time between two consecutive transmissions


• Reciprocal corresponds to per-processor communication bandwidth


• L: Latency: Upper bound on messaging time from source to target


• o: Overhead: Exclusive processor time needed for send / receive operation


• L, o, G in multiples of processor cycles


LogP 
architecture 
model
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Architectures that map well on LogP:


—Intel iPSC, Delta, Paragon, 


—Thinking Machines CM-5, Ncube, 


—Cray T3D, 


—Transputer MPPs: MeikoComputing Surface, Parsytec GC. 
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LogP


• Analyzing an algorithm - must produce correct results under all message 
interleaving, prove space and time demands of processors


• Simplifications


• With infrequent communication, bandwidth limits (g) are not relevant


• With streaming communication, latency (L) may be disregarded


• Convenient approximation: Increase overhead (o) to be as large as gap (g)


• Encourages careful scheduling of computation, and overlapping of 
computation and communication


• Can be mapped to shared-memory architectures


• Reading a remote location requires 2L+4o processor cycles
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LogP


• Matching the model to real machines


• Saturation effects: Latency increases as function of the network load, sharp 
increase at saturation point - captured by capacity constraint


•  Internal network structure is abstracted, so ,good‘ vs. ,bad‘ communication 
patterns are not distinguished - can be modeled by multiple g‘s


• LogP does not model specialized hardware communication primitives, all 
mapped to send / receive operations


• Separate network processors can be explicitly modeled


• Model defines 4-dimensional parameter space of possible machines


• Vendor product line can be identified by a curve in this space


LogP – optimal broadcast tree
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LogP – optimal summation
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