
07.01.2013

1

Parallel Programming Concepts"

Parallel Computing Hardware / "
Models / Connection Networks

Peter Tröger + Andreas Polze

Sources:

Clay Breshears: The Art of Concurrency, Chapter 6

Blaise Barney: Introduction to Parallel Computing

Culler, David E. et al.: LogP: Towards a Realistic Model of Parallel Computation.

Valiant, Leslie G.: A bridging model for parallel computation. In: Commun. ACM
33 (1990), Nr. 8, S. 103-111

Andreas Polze; Vorhersagbares Rechnen in Multicomputersystemen

Habilitationsschrift an der Mathematisch-Naturwissenschaftlichen Fakultät der

Humboldt-Universität zu Berlin, November 2001.

ParProg | Hardware
 PT 2010

Reason for choosing a parallel architecture

• Performance - do it faster

• Throughput - do more of it in the same time

• Availability - do it without interruption

• Price / performance - do it as fast as possible for the given money

• Scalability - be able to do it faster with more resources

• Scavenging - do it with what I already have

CPU 1, Node 1

CPU 2, Node 1

CPU 3, Node 1

CPU 4, Node 2

CPU 5, Node 2

CPU 6, Node 2
S
ca

lin
g

U
p

Scaling Out

07.01.2013

2

3

Central Unit

ParProg | Hardware
 PT 2010

Machine Model

• First computers had fixed programs (electronic calculator)

•  von Neumann architecture (1945, for EDVAC project)

•  Instruction set used for assembling programs stored in memory

• Program is treated as data, which allows program exchange under program
control and self-modification

•  von Neumann bottleneck

Memory
 Control Unit

Arithmetic Logic Unit
Input

Output
 B
us

4
ParProg | Hardware
 PT 2010

Parallel Computers - Vocabulary

Process
Process
Process
Process
Process

Processor

Process
Process
Process
Process
Process

Process
Process
Process
Process
Process

Processor

Processor

Processor

Memory

Node

N
et

w
or

k

• Pipelining

• Super-scalar

• VLIW

• Branch prediction

• ...

Uniprocessor System
 Multiprocessor System
 Multicomputer System

07.01.2013

3

RISC vs. CISC - Computer Architecture History

• CISC - Complex Instruction Set Computer

• VAX, Intel X86, IBM 360/370, etc.

• Large number of complex instructions

• Variable length instructions

• Extensive manipulation of low-level computational elements and events

such as memory, binary arithmetic, and addressing

• RISC - Reduced Instruction Set Computer

• MIPS, DEC Alpha, SUN Sparc, IBM 801

• Small number of instructions

•  instruction size constant

• Fewer addressing modes

•  instructions that can be overlapped and made to execute in one machine

cycle or less (pipelining)

• RISC designs lend themself to eploitation of instruction level parallelism

• Very Long Instruction Word – VLIW – Transmeta Crusoe

• Explicitely Parallel Instruction Set Computing – EPIC – Intel Itanium

5

6
ParProg | Hardware
 PT 2010

Instruction-Level Parallelism

• Processor hardware optimizes instruction stream execution

• Sub-steps of sequential instructions are executed in parallel (pipelining)

• Execution of multiple instructions in parallel (superscalar architecture)

• Re-arrangement of the order of instructions (out-of-order execution)

• Very Long Instruction Word (VLIW)

• Fisher et al., 1980‘s

• Compiler identifies instructions to be executed in parallel (code bloat)

• Less hardware complexity, higher compiler complexity

• VLIW processors usually designed as multiple RISC execution units

• Success with IA-64 (EPIC) and Transmeta Crusoe, embedded market

07.01.2013

4

EPIC – Itanium architecture (X64)

• 64-bit register-rich explicitly-parallel architecture

•  implements predication, speculation, and branch prediction

• hardware register renaming for parameter passing

• parallel execution of loops

• Speculation, prediction, predication, and renaming controlled by compiler:

• Each 128-bit instruction word contains three instructions; stop-bits control
parallel execution

•  fetch mechanism can read up to two instruction words per clock from the L1
cache into the pipeline

• processor can execute six instructions per clock cycle

•  thirty functional execution units for particular subsets of instruction set in
eleven groups.

• each unit executes at a rate of one instruction per cycle unless execution
stalls waiting for data

• common instructions can be executed in multiple units.

7

Itanium architecture – 30 functional units

•  Six general-purpose
ALUs, two integer
units, one shift unit

•  Four data cache units

•  Six multimedia units,
two parallel shift
units, one parallel
multiply, one
population count

•  Two 82-bit floating-
point multiply-
accumulate units, two
SIMD floating-point
multiply-accumulate
units (two 32-bit
operations each)[52]

•  Three branch units

8

07.01.2013

5

Computer Classification

single
processor

vector computer,
array computer

pipeline
computer

multiprocessor
distributed

system

10
ParProg | Hardware
 PT 2010

Multiprocessor: Flynn‘s Taxonomy (1966)

• Classify multiprocessor architectures among instruction and data dimension

S
in

g
le

 In
st

ru
ct

io
n,
"

S
in

g
le

 D
at

a
(S

IS
D

)

(C
) B

la
is

e
B

ar
ne

y

S
in

g
le

 In
st

ru
ct

io
n,
"

M
ul

ti
p

le
 D

at
a

(S
IM

D
)

M
ul

ti
p

le
 In

st
ru

ct
io

n,
"

S
in

g
le

 D
at

a
(M

IS
D

)

M
ul

ti
p

le
 In

st
ru

ct
io

n,
"

M
ul

ti
p

le
 D

at
a

(M
IM

D
)

07.01.2013

6

11
ParProg | Hardware
 PT 2010

Multiprocessor Systems

• Symmetric Multiprocessing (SMP)

• Set of equal processors in one system (more SM-MIMD than SIMD)

• Processors share access to main memory over one bus

• Demands synchronization and operating system support

• Today, every SMP application also works on a uniprocessor machine

• Asymmetric multiprocessing (ASMP)

• Specialized processors for I/O, interrupt handling or operating system "
(DEC VAX 11, OS-360, IBM Cell processor)

• Typically master processor with main memory access and slaves

• Large multiprocessor work with NUMA / COMA memory hierarchy

12
ParProg | Hardware
 PT 2010

SMP for Scalability and Availability

• Advantages

• Performance increase by simple addition of processor card

• Common shared memory programming model

• Easy hardware partitioning, in-built redundancy possible

• Disadvantages

• Scale-up is limited by hardware architecture

• Complex tuning of the application needed

• Failover between partitions is solution-dependent

• Solves performance and availability problems rather in hardware & operating
system than in software

07.01.2013

7

Classification by granularity

Few powerful processor elements:

   Coarse grain parallel computers: Cray Y-MP with 8-16 GFlop-Pes

Many relatively weak processor elements:

   Fine grain parallel computers: CM-2 (64k 1-bit-processors),

MasPar MP-1 (up to 16344 4-bit PEs), C.mmp, KSR-1

Less than 1000 workstation-class processor elements

   Medium grain parallel computers: CM-5, nCUBE2, Paragon XP/S

 Problem: many algorithms / implementations show
limited amount of inherent parallelism

Granularity =
t basic communication

t basic computation

SIMD Computers

07.01.2013

8

SIMD
Problems

16
ParProg | Hardware
 PT 2010

SIMD Vector Pipelines

• Vector processors have high-level operations for data sets

• Became famous with Cray architecture in the 70‘s

• Today, vector instructions are part of the standard instruction set

• AltiVec

• Streaming SIMD Extensions (SSE)

• Example: Vector addition

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

movaps xmm0,address-of-v1

(xmm0=v1.w | v1.z | v1.y | v1.x)

addps xmm0,address-of-v2

(xmm0=v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x)

movaps address-of-vec_res,xmm0

07.01.2013

9

SIMD Pipelining

17

18
ParProg | Hardware
 PT 2010

SIMD Examples

• Good for problems with high
degree of regularity, such as
graphics/image processing

• Synchronous (lockstep) and
deterministic execution

• Typically exploit data
parallelism

• Today: GPGPU Computing,
Cell processor, SSE, AltiVec

IL
LI

A
C

 IV
 (1

97
4)

C
ra

y
Y-

M
P

Th
in

ki
ng

 M
ac

hi
ne

s"
C

M
-2

 (1
98

5)

Fe
rm

i G
P

U

07.01.2013

10

19
ParProg | Hardware
 PT 2010

Illiac IV

• Supercomputer for vector processing from University of Illinois (1966)

• One control unit fetches instructions

• Handed over to a set of processing elements (PE‘s)

• Each PE has own memory, accessible by control unit

•  Intended for 1 GFLOPS, ended up with 100 MFLOPS at the end

• Main work on bringing the data to the SIMD machine

• Parallelized versions of FORTRAN language

• Credited as fastest machine until 1981

• Computational fluid dynamics (NASA)

(C
) W

ik
ip

ed
ia

CM2 – Connection Machine

Hersteller:
 Thinking Machines Corporation, Cambridge,
Massachusetts

Prozessoren:
 65.536 PEs (1-Bit Prozessoren)

Speicher je PE: 128 KB (maximal)

Peak-Performance: 2.500 MIPS (32-Bit Op.)

10.000 MFLOPS (Skalar,32Bit)

5.000 MFLOPS (Skalar,64Bit)

Verbindungsnetzwerke:
 - globaler Hypercube

-  4-faches, rekonfigurierbares Nachbarschaftsgitter

Programmiersprachen:
 - CMLisp (ursprüngliche Variante)

-  *Lisp (Common Lisp Erweiterung)

- C*(Erweiterung von C)

- CMFortran (Anlehnung an Fortran 90)

- C/Paris (C+Assembler Bibliotheksroutinen)

20

CM2 at Computer Museum, Mountain View, CA

W. Daniel Hillis: The Connection Machine. "
1985 (MIT Press Series in Artificial Intelligence)"
 ISBN 0-262-08157-1

07.01.2013

11

MasPar MP-1

Hersteller:
 MasPar Computer Corporation,

Sunnyvale, California

Prozessoren:
 16.384 PEs (4-Bit Prozessoren)

Spei-cher je PE: 64 KB (maximal)

Peak-Performance:

30.000 MIPS (32-Bit Op.)

1.500 MFLOPS (32-Bit)

 600 MFLOPS (64-Bit)

Verbindungsnetzwerke:
 3-stufiger globaler crossbar switch (Router)

8-faches Nachbarschaftsgitter (unabh.)

 Programmiersprachen
 -  MPL (Erweiterung von C)

- MPFortran (Anlehnung an Fortran 90

21

MasPar MP-1 Architecture

• Processor Chip contains 32 identical PEs

• PE is mostly data path logic, no instruction fetch/decode

22

Processor element
Interconnection structure
 Inside a PE

Nickolls, J.R.; MasPar Comput. Corp., Sunnyvale, CA

The design of the MasPar MP-1: a cost effective massively parallel computer

Compcon Spring '90. Intellectual Leverage. Digest of Papers. Thirty-Fifth IEEE Comp. Soc. Intl. Conf..

07.01.2013

12

Distributed Array Processor (DAP 610)

Hersteller:
 Active Memory Technology (AMT), Reading, England

Prozessoren:
 4.096 PEs (1-Bit Prozessoren + 8-Bit Koprozessoren)
Speicher je PE: 32 KB

Peak-Performance:

40.000 MIPS (1-Bit Op.)

20.000 MIPS (8-Bit Op.)

560 MFLOPS

Verbindungsnetzwerk:
 -  4-faches Nachbarschaftsgitter

-  (kein globales Netzwerk)

Programmiersprache:
 - Fortran-Plus (in Anlehnung an Fortran 90)

23

The Distributed Array Processor (DAP) produced by International Computers Limited (ICL) was
the world's first commercial massively parallel computer. The original paper study was
complete in 1972 and building of the prototype began in 1974.

The ICL DAP had 64x64 single bit processing elements (PEs) with 4096 bits of storage per PE.
It was attached to an ICL mainframe and could be used as normal memory. (from Wikipedia).

Early mainframe coprocessor...

Problems with synchronous parallelism:"
virtual processor elements

• Even thousands of PEs may not be sufficient…

24

07.01.2013

13

SIMD communication – programming is complex

• Activation of a group of PEs

• Selection of a previously defined connection network

• Pair-wise data exchange among active PEs

25

Permutations – arbitrary data exchange

26

07.01.2013

14

High Performance Fortran

27

Data distribution in HPF

!HPF$ PROCESSORS :: prc(5), chess_board(8, 8)

!HPF$ PROCESSORS :: cnfg(-10:10, 5)

!HPF$ PROCESSORS :: mach(NUMBER_OF_PROCESSORS())

REAL :: a(1000), b(1000)

INTEGER :: c(1000, 1000, 1000), d(1000, 1000, 1000)

!HPF$ DISTRIBUTE (BLOCK) ONTO prc :: a

!HPF$ DISTRIBUTE (CYCLIC) ONTO prc :: b

!HPF$ DISTRIBUTE (BLOCK(100), *, CYCLIC) ONTO cnfg :: c

!HPF$ ALIGN (i,j,k) WITH d(k,j,i) :: c

28

07.01.2013

15

29
ParProg | Hardware
 PT 2010

GPGPU Computing – SIMD + multithreading

• Pure SIMD approach, different design philosophy

• Driven by video / game industry development, recent move towards general
purpose computations

• Offloading parallel computation to the GPU is still novel

(C) Kirk & Hwu

Programming Models #1:
OpenCL, CUDA

OpenCL – Open Computing Language
CUDA – Compute Unified Device Architecture

Open standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

07.01.2013

16

OpenCL Design Goals

   Use all computational resources in system

   Program GPUs, CPUs, and other processors as peers

   Support both data- and task- parallel compute models

   Efficient C-based parallel programming model

   Abstract the specifics of underlying hardware

   Abstraction is low-level, high-performance but device-portable

   Approachable – but primarily targeted at expert developers

   Ecosystem foundation – no middleware or “convenience” functions

   Implementable on a range of embedded, desktop, and server
systems

   HPC, desktop, and handheld profiles in one specification

   Drive future hardware requirements

   Floating point precision requirements

   Applicable to both consumer and HPC applications

OpenCL Platform Model

   One Host + one or more Compute Devices

   Each Compute Device is composed of one or more Compute

Units

   Each Compute Unit is further divided into one or more

Processing Elements

07.01.2013

17

OpenCL Execution Model

   OpenCL Program:

   Kernels

   Basic unit of executable code — similar to a C function

   Data-parallel or task-parallel

   Host Program

   Collection of compute kernels and internal functions

   Analogous to a dynamic library

   Kernel Execution

   The host program invokes a kernel over an index space called an

NDRange

   NDRange = “N-Dimensional Range”

   NDRange can be a 1, 2, or 3-dimensional space

   A single kernel instance at a point in the index space is called a
work-item

   Work-items have unique global IDs from the index space

   Work-items are further grouped into work-groups

   Work-groups have a unique work-group ID

   Work-items have a unique local ID within a work-group

Kernel Execution

   Total number of work-items = Gx x Gy

   Size of each work-group = Sx x Sy

   Global ID can be computed from work-group ID and local ID

07.01.2013

18

Contexts and Queues

   Contexts are used to contain and manage the state of the “world”

   Kernels are executed in contexts defined and manipulated by the

host

   Devices

   Kernels - OpenCL functions

   Program objects - kernel source and executable

   Memory objects

   Command-queue - coordinates execution of kernels

   Kernel execution commands

   Memory commands - transfer or mapping of memory object data

   Synchronization commands - constrains the order of commands

   Applications queue compute kernel execution instances

   Queued in-order

   Executed in-order or out-of-order

   Events are used to implement appropriate synchronization of execution

instances

OpenCL Memory Model

   Shared memory model

   Relaxed consistency

   Multiple distinct address spaces

   Address spaces can be collapsed

depending on the device’s memory
subsystem

   Address spaces

   Private - private to a work-item

   Local - local to a work-group

   Global - accessible by all work-items

in all work-groups

   Constant - read only global space

   Implementations map this hierarchy

   To available physical memories

07.01.2013

19

37
ParProg | Hardware
 PT 2010

Multiple Instruction Multiple Data (MIMD)

• Most common parallel hardware architecture today

• Example: All many-core processors, clusters, distributed systems

• From software perspective [Pfister]

• SPMD - Single Program Multiple Data

• Sometimes denoted as ,application cluster‘

• Examples: Load-balancing cluster or failover cluster for databases, web
servers, application servers, ...

• MPMD - Multiple Program Multiple Data

• Multiple implementations work together on one parallel computation

• Example: Master / worker cluster, map / reduce framework

MIMD Classification

38

07.01.2013

20

39
ParProg | Hardware
 PT 2010

Memory Architectures

Uniform Memory Access"
(UMA)

Non-Uniform Memory Access"
(NUMA)

Distributed Memory
 Hybrid

40
ParProg | Hardware
 PT 2010

Shared Memory vs. Distributed Memory System"

• Shared memory (SM) systems

• SM-SIMD: Single CPU vector processors

• SM-MIMD: Multi-CPU vector processors, OpenMP

• Variant: Clustered shared-memory systems (NEC SX-6, CraySV1ex)

• Distributed memory (DM) systems

• DM-SIMD: processor-array machines; lock-step approach; front processor
and control processor

• DM-MIMD: large variety in interconnection networks

• Distributed (Virtual) shared-memory systems

• High-Performance Fortran, TreadMarks

07.01.2013

21

41
ParProg | Hardware
 PT 2010

Shared Memory Architectures

• All processors act independently, access the same global address space

• Changes in one memory location are visible for all others

• Uniform memory access (UMA) system

• Equal load and store access for all processors to all memory

• Default approach for majority of SMP systems in the past

• Non-uniform memory access (NUMA) system

• Delay on memory access according to the accessed region

• Typically realized by processor interconnection network and local memories

• Cache-coherent NUMA (CC-NUMA), completely implemented in hardware

• About to become standard approach with recent X86 chips

NUMA Classification

42

07.01.2013

22

MIMD Computer Systems

• Sequent Balance

43

Sequent Symmetry

44

Sequent was bought by IBM in 1999. IBM produced several Intel-based servers based on
Sequent’s later NUMA architecture…

07.01.2013

23

Caches – managing bus contention

• Effect of write-through and write-back cache coherency protocols on "

Sequent Symmetry

45

Intel Paragon XP/S

•  i860 RISC processor (64 bit, 50 MHz, 75 MFlops)

• Standard OS (Mach) on each node

• Cluster in a box

46

07.01.2013

24

Intel "
Paragon XP/S –"

interconnection
network

47

Intel Paragon XP/S - partitioning

48

07.01.2013

25

IBM SP/2

49

50
ParProg | Hardware
 PT 2010

Example: Intel Nehalem SMP System

Core
 Core

Core
 Core

Q

P

I

Core
 Core

Core
 Core

Q

P

I

Core
 Core

Core
 Core

Q

P

I

Core
 Core

Core
 Core

Q

P

I
 L3

 C
ac

he

L3
 C

ac
he

L3
 C

ac
he

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

L3
 C

ac
he

M
em

or
y

C
on

tr
ol

le
r

I/O
 I/O

I/O
I/O

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

07.01.2013

26

51
ParProg | Hardware
 PT 2010

An Intel Nehalem Cluster:"
SMP + NUMA + Distributed Memory

Network

52
ParProg | Hardware
 PT 2010

CC-NUMA

• Still SMP programming model, but non-NUMA aware software scales poorly

• Different implementations lead to diffuse understanding of „node“, typical:

• Region of memory where every byte has the same distance from each
processor

• Tackles scalability problems of pure SMP architectures, while keeping the
location independence promise

• Recent research tendency towards non-cache-coherent NUMA approach "
(Intel Single Chip Cloud Computer)

Processor A
 Processor B

Cache
 Cache

Memory

Processor C
 Processor D

Cache
 Cache

Memory

High-Speed

Interconnect

07.01.2013

27

53
ParProg | Hardware
 PT 2010

Scalable Coherent Interface

• ANSI / IEEE standard for NUMA interconnect, used in HPC world

• 64bit global address space, translation by SCI bus adapter (I/O-window)

• Used as 2D / 3D torus

Processor A
 Processor B

Cache
 Cache

Memory

Processor C
 Processor D

Cache
 Cache

Memory

SCI Cache

SCI Bridge

SCI Cache

SCI Bridge

...

Experimental "
Approaches

Systolic Arrays

• Data flow architectures

• Problem: common clock –
maximum signal path
restricted by frequency

• Fault contention: single
faulty processing element
will break entire machine

54

07.01.2013

28

55
ParProg | Hardware
 PT 2010

Another Taxonomy (Tanenbaum)

Multiprocessors

(shared memory)

Multicomputers

(private memory)

Bus
 Bus
 Switched

MIMD

Parallel and Distributed Computers

Switched

Transputer
Workstation

56
ParProg | Hardware
 PT 2010

Another Taxonomy (Foster)

• Multicomputer

• Number of von Neumann computers, connected by a network (DM-MIMD)

• Each computer runs own program and sends / receives messages

• Local memory access is less expensive than remote memory access

Interconnect

07.01.2013

29

57
ParProg | Hardware
 PT 2010

Multicomputer Systems - Clusters

• Collection of stand-alone workstations/PC‘s connected by a local network

• Cost-effective technique to connect small-scale computers to a large-scale
parallel computer

• Low cost of both hardware and software

• Users are builders, have control over their own system (hardware
infrastructure and software), low costs as major issue

• Distributed processing as extension of DM-MIMD

• Communication between processors is orders of magnitude slower

• PVM, MPI as widely accepted programming standards

• Used with cheap LAN hardware

58
ParProg | Hardware
 PT 2010

Lowly Parallel Processing

• Current market for large-scale"
parallel systems is small

• High price, small amount of users

• Clusters provide cheap availability

• Parallel processing with small amount of standard systems

• Most coordination functionality realized by software, only feasible for
coarse-grained parallel activities

Internet

Web Server

Web Server

Web Server

Web Server

Load
Balancer

Clients

DB Server

DB Server

DB Server

Disk

07.01.2013

30

59

60
ParProg | Hardware
 PT 2010

History

• 1977: ARCnet (Datapoint)

• LAN protocol, such as Ethernet, DATABUS programming language

• Single computer with terminals

• Transparent addition of ‚compute resource‘ and ‚data resource‘ computers

• May 1983: VAXCluster (DEC)

• Cluster of VAX computers, no single-point-of-failure

• Every component that could fail was duplicated

• High-speed message-oriented interconnect

• Distributed version of VMS operating system

• Distributed lock manager for shared resources

07.01.2013

31

61
ParProg | Hardware
 PT 2010

NOW

• Berkeley Network Of Workstations (NOW) - 1995

• Building large-scale parallel computing system with COTS hardware

• GLUnix operating system

• Transparent remote execution, network PID‘s

• Load balancing

• Virtual Node Numbers (for communication)

• Network RAM - idle machines as paging device

• Collection of low-latency, parallel communication primitives - ‘active
messages’

• Berkeley sockets, shared address space parallel C, MPI

61

62
ParProg | Hardware
 PT 2010

MareNostrum

• Peak Performance of 94,21 Teraflops

• 10.240 IBM Power PC 970MP processors at 2.3 GHz (2560 JS21 blades)

• 44 racks with 6 blade centers each, 120m2

• Each blade center with 28 blades, each blade with 2 processors

• 8 GB shared memory and local harddisk per blade card, standard Linux

• Operating system from network (Gigabit), Myrinet interconnect

(C
) b

sc
.e

s

07.01.2013

32

63
ParProg | Hardware
 PT 2010

Cluster System Classes

• High-availability (HA) clusters - Improvement of cluster availability

• Linux-HA project (multi-protocol heartbeat, resource grouping)

• Load-balancing clusters - Server farm for increased performance / availability

• Linux Virtual Server (IP load balancing, application-level balancing)

• High-performance computing (HPC) clusters - Increased performance by
splitting tasks among different nodes

• Speed up the computation of one distributed job (FLOPS)

• High-throughput computing (HTC) clusters - Maximize the number of
finished jobs

• All kinds of simulations, especially parameter sweep applications

• Special case: Idle Time Computing for cycle harvesting

64
ParProg | Hardware
 PT 2010

Simple Queuing Management System

Utility
Program

User
 Scheduler
 Dispatcher

Load

Balancer

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

• Utility Program - Command line tool for the user

• Scheduler - Subsystem that services users requests

• After user submits a job, scheduler queues job in its queue

• Makes decision based on scheduling policy

• Queue - Collection of jobs, order based on attributes/policy

• Dispatcher - Performs the submission of jobs in queue

• Load Balancer - Selects appropriate set of compute nodes, based on monitoring

07.01.2013

33

65
ParProg | Hardware
 PT 2010

Clusters for Scalability and Availability

• Advantages

•  Intrinsic availability due to node independence

• Simple commodity hardware, low costs

• Application-level compatibility with uniprocessors

• Disadvantages

• Single system image mostly not possible, therefore explicit programming

• Complex administration

• Power consumption

66
ParProg | Hardware
 PT 2010

Multicomputer Systems -"
Massively Parallel Processing (MPP)

• Hierarchical SIMD / MIMD architecture with many interconnected processors

• Standard components (in contrast to mainframes)

• Host processor(s) / nodes, responsible for loading program and data to
PE‘s

• High-performance interconnect (bus, ring, 2D mesh, hypercube, tree, ...)

• For embarrassingly parallel applications, mostly simulations"
(atom bomb, climate, earthquake, airplane, car crash, ...)

• Examples

• Distributed Array Processor (1979), 64x64 single bit processing elements

• Goodyear Massively Parallel Processor (1985), 128x128 single bit PE‘s

• Earth Simulator (2004), 640 nodes x 8 vector processors per node

• BlueGene/L (2007), 106.496 nodes x 2 PowerPC processors (700MHz)

07.01.2013

34

67
ParProg | Hardware
 PT 2010

• Proprietary ASIC with 2 PowerPC 440 "
cores on a chip

• Proprietary communication networks "
organized as 3D torus (memory mapped)

• 596 TerraFLOPS, MTBF 6 days

(C
) L

LN
L
Blue Gene/L

68
ParProg | Hardware
 PT 2010

MPP Properties

• Standard components (processors, harddisks, ...)

• Specific non-standardized interconnection network

• Low latency, high speed

• Distributed file system

• Specific packaging of components and nodes for cooling and upgradeability

• Whole system provided by one vendor (IBM, HP)

• Extensibility as major issue, in order to save investment

• Distributed processing as extension of DM-MIMD

• Single System View

• Common file system, central job scheduling

07.01.2013

35

69
ParProg | Hardware
 PT 2010

MPP for Scalability and Availability

• Advantages

• Performance scalability only limited by application, and not by hardware

• Proprietary wiring of standard components as alternative to mainframes

• Disadvantages

• Specialized interconnect network

• Demands custom operating system and aligned applications

• No major consideration of availability

• Power consumption, cooling

70
ParProg | Hardware
 PT 2010

Cluster / MPP System Benchmarking

• TOP500.org

• Collection started in 1993, updated every 6 months

• 500 most powerful computers / clusters in the world

• Comparison through Linpack benchmark results

• Linpack

• Measures floating point rate of execution

• Solving of a dense system of linear equations, grown since 1979

• Compiler optimization is allowed, no changes to the code

• 3 tests: Linpack Fortran n=100, Linpack n=1000, Linpack Highly Parallel
Computing Benchmark (used for TOP500 ranking)

07.01.2013

36

71
ParProg | Hardware
 PT 2010

Top 500 - Clusters vs. MPP (# systems)

72
ParProg | Hardware
 PT 2010

Top 500 - Clusters vs. MPP (performance)

07.01.2013

37

73

MPP
 SMP
 Cluster
 Distributed

Number of nodes
 O(100)-O(1000)
 O(10)-O(100)
 O(100) or less
 O(10)-O(1000)

Node Complexity
 Fine grain

Medium or coarse

grained
 Medium grain
 Wide range

Internode
communication

Message passing /
shared variables

(SM)

Centralized and
distributed shared

memory

Message Passing

Shared files, RPC,
Message Passing,

IPC

Job scheduling

Single run queue on

host

Single run queue

mostly

Multiple queues but

coordinated
 Independent queues

SSI support
 Partially
 Always in SMP
 Desired
 No

Address Space
 Multiple
 Single
 Multiple or single
 Multiple

Internode Security
 Irrelevant
 Irrelevant
 Required if exposed
 Required

Ownership
 One organization
 One organization

One or many
organizations
 Many organizations

K. Hwang and Z. Xu, Scalable Parallel Computing: Technology, Architecture, Programming; WCB/McGraw-Hill, 1998

74
ParProg | Hardware
 PT 2010

Distributed System

• Tanenbaum (Distributed Operating Systems): "
„A distributed system is a collection of independent computers that appear to
the users of the system as a single computer.“

• Coulouris et al.: "
„... [system] in which hardware or software components located at networked
computers communicate and coordinate their actions only by passing
messages.“

• Lamport: "
„A distributed system is one in which the failure of a computer you didn't even
know existed can render your own computer unusable.”

• Consequences: concurrency, no global clock, independent failures

• Challenges: heterogeneity, openness, security, scalability, failure handling,
concurrency, need for transparency

07.01.2013

38

75
ParProg | Hardware
 PT 2010

Grid Computing

•  „... coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations.“ "

 Foster, Kesselman, Tueke „The Anatomy of the Grid“, 2001

• Analogy to the power grid

• Request-driven usage of standardized services

• Reliable, high availability, low costs

•  Innovation was the coordinated distribution, not the power itself

• Resource coordination without central control

• Open standards (Open Grid Forum)

• Service quality (reliability, throughput, availability, security)

76
ParProg | Hardware
 PT 2010

SMP vs. Cluster vs. Distributed System

• Clusters are composed of computers, SMPs are composed of processors

• High availability is cheaper with clusters, but demands other software

• Scalability is easier with a cluster

• SMPs are easier to maintain from administrators point of view

• Software licensing becomes more expensive with a cluster

• Clusters for capability computing, integrated machines for capacity computing

• Cluster vs. Distributed System

• Both contain of multiple nodes for parallel processing

• Nodes in a distributed system have their own identity

• Physical vs. virtual organization

07.01.2013

39

Interconnection networks

Optimization criteria

• Connectivity – ideally direct links between any two stations

• High number of parallel connections

Cost model

• Production cost - # connections

• operational cost – distance among PEs

• Bus networks, switching networks, point-to-point interconnects

77

Bus network

• Optimal #connection per PE: 1

• Constant distance among any two PEs

78

07.01.2013

40

Crossbar switch "
(Kreuzschienenverteiler)

• Arbitrary number of
permutations

• Collision-free data
exchange

• High cost, quadratic
growth

• n * (n-1) connection points

79

Delta networks

• Only n/2 log n delta-
switches

• Limited cost

• Not all possible
permutations
operational in parallel

80

07.01.2013

41

Clos coupling
networks

• Combination of delta
network and crossbar

81

C.Clos, A Study of Nonblocking Switching Networks, "
Bell System Technical Journal, vol. 32, no. 2, "
1953, pp. 406-424(19)

Fat-Tree networks

• PEs arranged as leafs on a binary tree

• Capacity of tree (links) doubles on each layer

82

07.01.2013

42

Point-to-point networks: "
ring and fully connected graph

• Ring has only two connections per PE (almost optimal)

• Fully connected graph – optimal connectivity (but high cost)

83

Mesh and Torus

• Compromise between cost and connectivity

84

07.01.2013

43

Cubic Mesh

• PEs are arranged in a cubic fashion

• Each PE has 6 links to neighbors

85

Hypercube

• Dimensions 0-4, recursive definition

86

07.01.2013

44

Binary tree, quadtree

• Logarithmic cost

• Problem of bottleneck at root node

87

Shuffle-Exchange network

• Logarithmic cost

• Uni-directional shuffle network + bi-directional exchange network

88

07.01.2013

45

Plus-Minus-Network

• PM 2i – 2*m-1 separate unidirectional interconnection networks

89

Comparison of networks

90

07.01.2013

46

91
ParProg | Hardware
 PT 2010

Theoretical Models for Parallel Computers

• Simplified parallel machine model, for theoretical investigation of algorithms

• Difficult in the 70‘s and 80‘s due to large diversity in parallel hardware
design

• Should improve algorithm robustness by avoiding optimizations to hardware
layout specialities (e.g. network topology)

• Resulting computation model should be independent from programming model

• Vast body of theoretical research results

• Typically, formal models adopt to hardware developments

92
ParProg | Hardware
 PT 2010

(Parallel) Random Access Machine

• RAM assumptions: Constant memory access time, unlimited memory

• PRAM assumptions: Non-conflicting shared bus, no assumption on
synchronization support, unlimited number of processors

• Alternative models: BSP, LogP

CPU

Input
 Memory
 Output

CPU
 CPU

Shared Bus

CPU

Input
 Memory
 Output

07.01.2013

47

93
ParProg | Hardware
 PT 2010

PRAM Extensions

• Rules for memory interaction to classify hardware support of a PRAM algorithm

• Note: Memory access assumed to be in lockstep (synchronous PRAM)

• Concurrent Read, Concurrent Write (CRCW)

• Multiple tasks may read from / write to the same location at the same time

• Concurrent Read, Exclusive Write (CREW)

• One thread may write to a given memory location at any time

• Exclusive Read, Concurrent Write (ERCW)

• One thread may read from a given memory location at any time

• Exclusive Read, Exclusive Write (EREW)

• One thread may read from / write to a memory location at any time

94
ParProg | Hardware
 PT 2010

PRAM Extensions

• Concurrent write scenario needs further specification by algorithm

• Ensures that the same value is written

• Selection of arbitrary value from parallel write attempts

• Priority of written value derived from processor ID

• Store result of combining operation (e.g. sum) into memory location

• PRAM algorithm can act as starting point (unlimited resource assumption)

• Map ,logical‘ PRAM processors to restricted number of physical ones

• Design scalable algorithm based on unlimited memory assumption, upper
limit on real-world hardware execution

• Focus only on concurrency, synchronization and communication later

07.01.2013

48

PRAM
extensions

95

PRAM write
operations

96

07.01.2013

49

PRAM Simulation

97

98
ParProg | Hardware
 PT 2010

Example: Parallel Sum

int sum=0;
for (int i=0; i<N; i++) {
 sum += A[i];
}

• General parallel sum operation works with any associative and commutative
combining operation (multiplication, maximum, minimum, logical operations, ...)

• Typical reduction pattern

• PRAM solution: Build binary tree, with input data items as leaf nodes

•  Internal nodes hold the sum, root node as global sum

• Additions on one level are independent from each other

• PRAM algorithm: One processor per leaf node, in-place summation

• Computation in O(log2n)

07.01.2013

50

99
ParProg | Hardware
 PT 2010

Example: Parallel Sum

for all l levels (1..log2n){
 for all i items (0..n-1) {
 if (((i+1) mod 2^l) = 0) then
 X[i] := X[i-2^(l-1)]+X[i]
 }
}

• Example: n=8:

•  l=1: Partial sums in X[1], X[3], X[5], [7]

•  l=2: Partial sums in X[3] and X[7]

•  l=3: Parallel sum result in X[7]

• Correctness relies on PRAM lockstep assumption (no synchronization)

100
ParProg | Hardware
 PT 2010

Bulk-Synchronous Parallel (BSP) Model

• Leslie G. Valiant. A Bridging Model for Parallel Computation, 1990

• Success of von Neumann model

• Bridge between hardware and software

• High-level languages can be efficiently compiled based on this model

• Hardware designers can optimize the realization of this model

• Similar model for parallel machines

• Should be neutral about the number of processors

• Program are written for v virtual processors that are mapped to p physical
ones, were v >> p -> chance for the compiler

07.01.2013

51

BSP

101

102
ParProg | Hardware
 PT 2010

Bulk-Synchronous Parallel (BSP) Model

• Bulk-synchronous parallel computer (BSPC) is defined by:

• Components, each performing processing and / or memory functions

• Router that delivers messages between pairs of components

• Facilities to synchronize components at regular intervals L (periodicity)

• Computation consists of a number of supersteps

• Each L, global check is made if the superstep is completed

• Router concept splits computation vs. communication aspects, and models
memory / storage access explicitely

• Synchronization may only happen for some components, so long-running serial
tasks are not slowed down from model perspective

• L is controlled by the application, even at run-time

07.01.2013

52

103
ParProg | Hardware
 PT 2010

LogP

• Culler et al., LogP: Towards a Realistic Model of Parallel Computation, 1993

• Criticism on overly simplification in PRAM-based approaches, encourage
exploitation of ,formal loopholes‘ (e.g. no communication penalty)

• Trend towards multicomputer systems with large local memories

• Characterization of a parallel machine by:

• P: Number of processors

• g: Gap: Minimum time between two consecutive transmissions

• Reciprocal corresponds to per-processor communication bandwidth

• L: Latency: Upper bound on messaging time from source to target

• o: Overhead: Exclusive processor time needed for send / receive operation

• L, o, G in multiples of processor cycles

LogP
architecture
model

104

07.01.2013

53

Architectures that map well on LogP:

—Intel iPSC, Delta, Paragon,

—Thinking Machines CM-5, Ncube,

—Cray T3D,

—Transputer MPPs: MeikoComputing Surface, Parsytec GC.

105

106
ParProg | Hardware
 PT 2010

LogP

• Analyzing an algorithm - must produce correct results under all message
interleaving, prove space and time demands of processors

• Simplifications

• With infrequent communication, bandwidth limits (g) are not relevant

• With streaming communication, latency (L) may be disregarded

• Convenient approximation: Increase overhead (o) to be as large as gap (g)

• Encourages careful scheduling of computation, and overlapping of
computation and communication

• Can be mapped to shared-memory architectures

• Reading a remote location requires 2L+4o processor cycles

07.01.2013

54

107
ParProg | Hardware
 PT 2010

LogP

• Matching the model to real machines

• Saturation effects: Latency increases as function of the network load, sharp
increase at saturation point - captured by capacity constraint

•  Internal network structure is abstracted, so ,good‘ vs. ,bad‘ communication
patterns are not distinguished - can be modeled by multiple g‘s

• LogP does not model specialized hardware communication primitives, all
mapped to send / receive operations

• Separate network processors can be explicitly modeled

• Model defines 4-dimensional parameter space of possible machines

• Vendor product line can be identified by a curve in this space

LogP – optimal broadcast tree

108

07.01.2013

55

LogP – optimal summation

109

