Subaxial Cervical Spine Trauma

Pooria Salari, MD

Assistant Professor Of Orthopaedics Department of Orthopaedic Surgery St. Louis University School of Medicine St. Louis, Missouri, USA

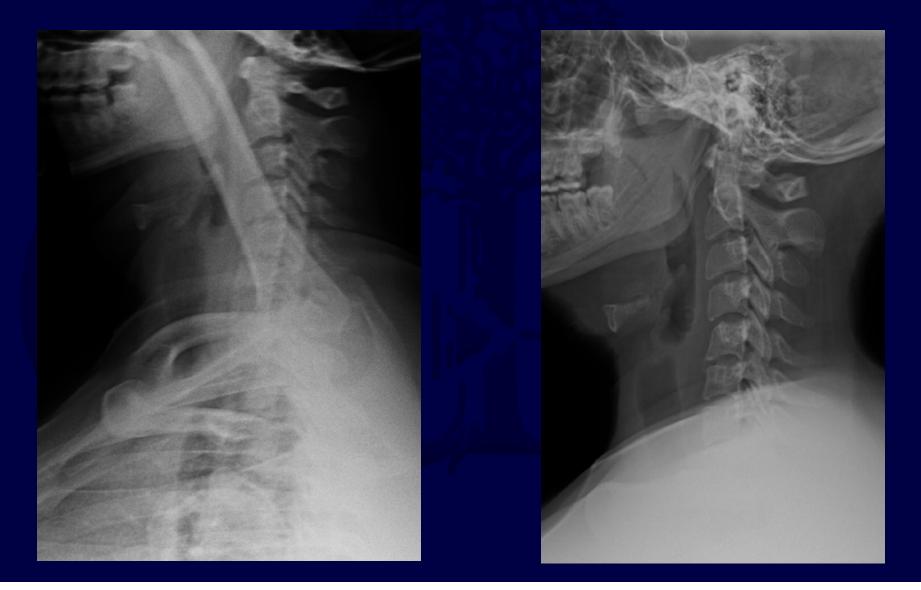
Initial Evaluation

A, B, C: Airway, Breathing, Circulation

- Control Airway
- Stabilize & Immobilize Neck
- Nasal or Fiber Optic Intubation

Physical exam

Palpation

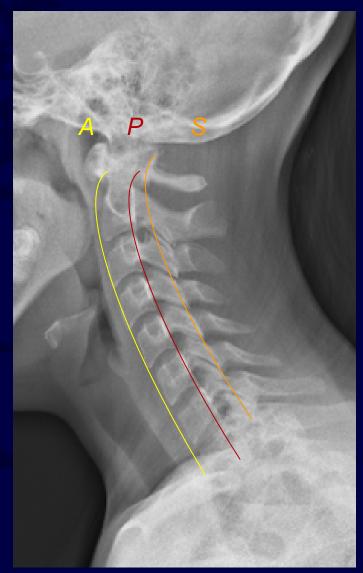

- Neck pain
 - 84% patients with a clinical exam and fracture have midline neck pain
 - Step off between spinous processes
 - Crepitus
- Range of motion
- Detailed neurologic exam (RECTAL!)

Radiographic Evaluation

- Lateral C-spine to include C7-T1
- BEWARE with changing standards (most centers get CT)
- Bony anatomy
- Helpful to have baseline XR for comparison at clinic follow ups
- Soft tissue detail
- Don't forget T-L spine

Must See C7-T1, get Swimmer's lateral view

Missed Injuries


 The presence of a single spine fracture does not preclude the inspection of the rest of the spine!

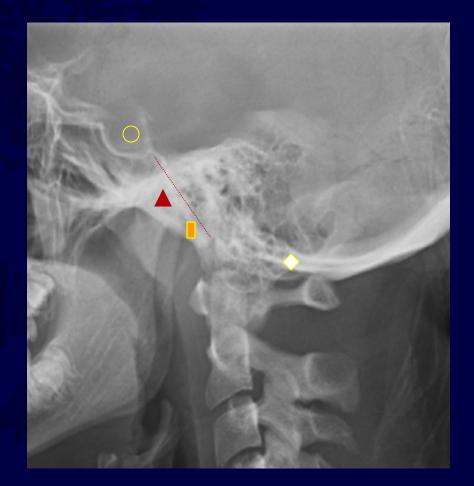
Lines

Check for Alignment

- Anterior Vertebral Line
 Posterior Vertebral Line
- Posterior Vertebrar Lina
- Spino-laminar Line

Soft Tissue Shadows

- *Max: 6 mm at C2*
- 2 cm at C6
- (6 at 2 & 2 at 6)

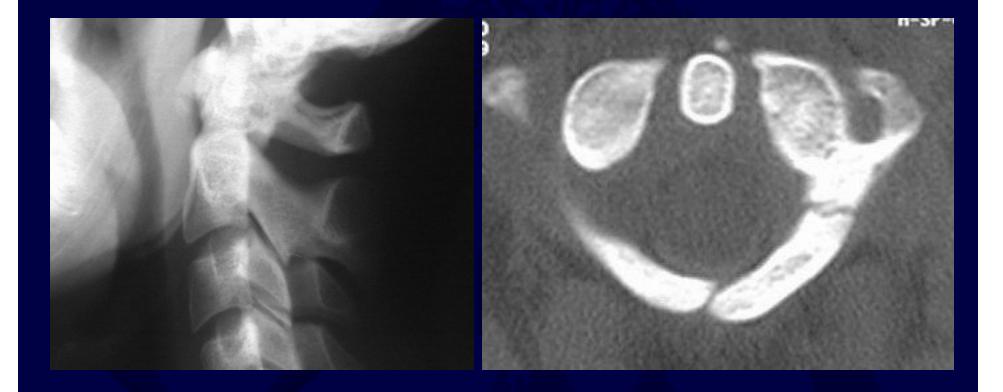

Radiologic Assessment

Facet
Lateral Mass
Lamina
Spinous Process

Radiologic Assessment

Sella Tursica
Clivus
Basion
Opisthion

Additional Radiographs


• AP

- Open-mouth odontoid
- Oblique
- AP & Lat. of entire spine
 - T-L-S spine: injured 5-10%

CT Scans

- Subtle bone injuries
- Facet abnormalities
- Sagittal reconstructions
- O-C2 & C7-T1

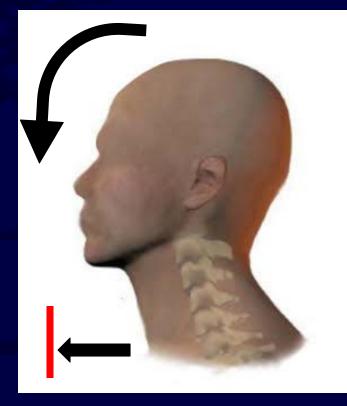
CT Scan

Can detect subtle fractures undetectable on plain films

MRI

All injuries w/ Neuro deficit

- Spinal cord integrity
- Space available for cord
- Disc herniation
- Posterior ligamentous injuries

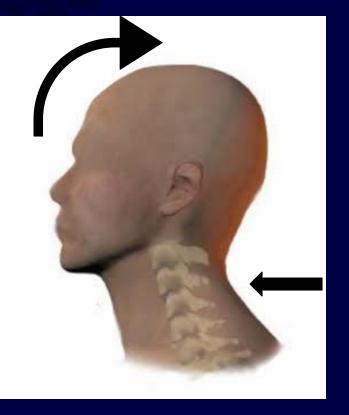


Mechanism of Injury

- Hyperflexion
- Axial Compression
- Hyperextension

Hyperflexion

- Distraction creates tensile forces in posterior column
- Can result in compression of body (anterior column)
- Most commonly results from MVC and falls



Compression

- Result from axial loading
- Commonly from diving, football, MVA
- Injury pattern depends on initial head position
- May create burst, wedge or compression fx's

Hyperextension

- Impaction of posterior arches and facet compression causing many types of fx's
 - lamina
 - spinous processes
 - pedicles
- With distraction get disruption of ALL
- Evaluate carefully for stability
- CENTRAL CORD SYNDROME



Classification

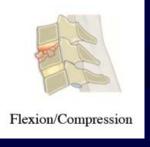
- Multiple Classification System
- Most are based on mechanism of injury
 - Harris et al OCNA 1986
 - Anderson Skeletal Trauma 1998
 - Stauffer and MacMillan Fractures 1996
 - <u>Allen and Ferguson Spine 1982</u>
 - AO/OTA Classification
 - <u>Sub-axial Cervical Spine Injury Classification</u> (SLIC)

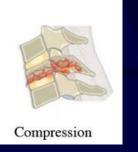
Allen and Ferguson

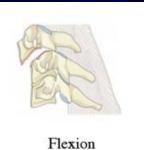
- **Mechanical** \bullet
- Based on static radiographs \bullet
- Categories 0
 - Compressive flexion
 - Vertical compression
 - Distractive flexion
 - Compression extension
 - Distractive extension
 - Lateral flexion

Distraction

Distraction/Extension






Extension

Extension/Compression

AOSpine Classification Systems (Subaxial, Thoracolumbar) Klaus J. Schnake, MD, Gregory D. Schroeder, MD, Alexander R. Vaccaro, MD, PhD, MBA, and Cumhur Oner, MD, PhD, J Orthop Trauma Volume 31, Number 9 Supplement, September 2017

AO/OTA Classification

- Mechanical
- Multiple subgroups and modifiers
 - Type A
 - Compression injuries
 - Type B
 - Distraction injuries
 - Type C
 - Translational injuries

Subaxial Cervical Spine Injury Classification (SLIC)

Spine (Phila Pa 1976). 2007 Oct 1;32(21):2365-74.

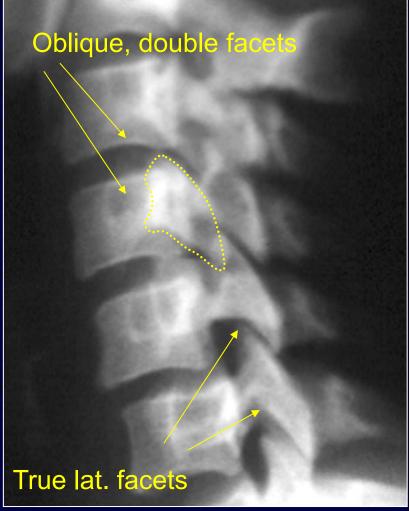
The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex.

Vaccaro AR¹, Hulbert RJ, Patel AA, Fisher C, Dvorak M, Lehman RA Jr, Anderson P, Harrop J, Oner FC, Arnold P, Fehlings M, Hedlund R, Madrazo I, Rechtine G, Aarabi B, Shainline M; Spine Trauma Study Group.

- Three major components
 - Injury Morphology
 - Compression
 - Distraction
 - Translation/Rotation
 - Discoligamentous status
 - Neurological status
- Point system

Subaxial Cervical Spine Injury Classification (SLIC)

				Neuro status	Points
Injury Morphology	Points	DLC status	Points	Intact	0
Compression Burst	1 1	Intact	0	Nerve root Deficit	1
Distraction	3	Intermediate		Complete Cord injury	2
Translation/ Rotation	4	Disrupted	2	Incomplete Cord Injury	3
Total	Max 4	Total	Max 2	Add-on: Persistent compression or stenosis with deficit	1
				Total	Max 4


Subaxial Cervical Spine Injury Classification (SLIC)

Recommended treatment based on points

- Score > 4 \rightarrow Operative
- Score < 4 \rightarrow No operative
- Score = $4 \rightarrow$ Surgeons choice

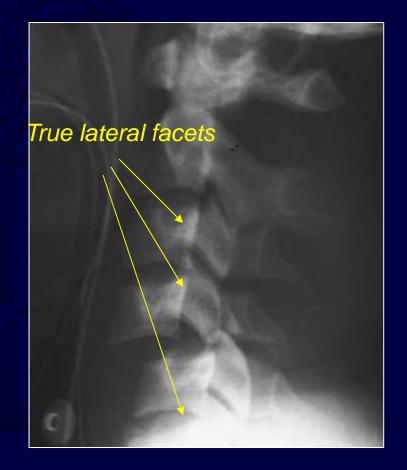
Unilateral Facet Dislocation

- Flexion/distraction injury ± rotation
- Painful neck
- 70% radiculopathy, 10% SCI
- Easy to miss-supine position can reduce injury!
- "Bow tie" sign: both facets visualized, not overlapping

Unilateral Facet Dislocation

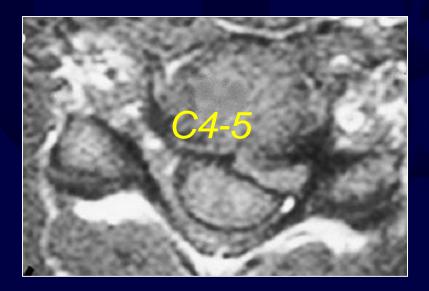
"Empty Facet" on CT Scan Rotated vertebra

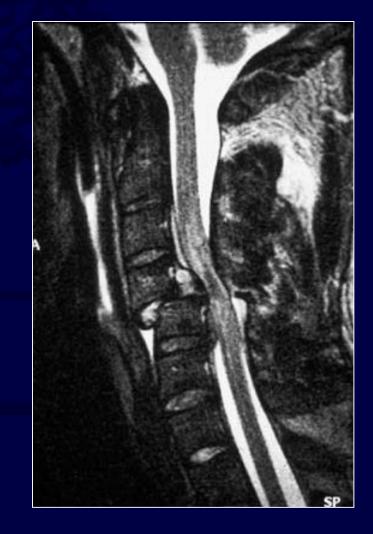
Unilateral Facet Dislocation


- Reduce to minimize late pain, instability
- Manual reduction
 - Gradually increase axial traction with the addition of weights
 - Some cervical flexion can facilitate reduction
 - Serial neurologic exams and plain radiographs is critical

Unilateral Facet Dislocation Treatment

- Non operative
 - Cervicothoracic brace or halo x 12 weeks
 - Need anatomic reduction
- OR approach and treatment depends on pathology
 - Anterior diskectomy and fusion
 - Posterior foraminotomy and fusion


Bilateral Facet Dislocation


- Vertebral body displaced at least 50%
- Injury to cord is common
- 10-40% herniated disk into canal

HNP With Facet Dislocation

- Reduction drags disc back
- Quadriplegia
- Classic paper to know
 - Eismont, et al, JBJS

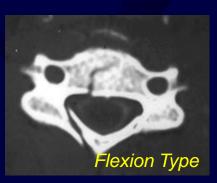
Bilateral Facet Dislocation

- Timing for reduction and pre reduction MRI controversial
 Spinal cord injury may be reversible at 1-3 hours
- Awake reduction then MRI vs. MRI before reduction in all
 - If significant cord deficits, reduce prior to MRI
 - If during awake reduction, paresthesias or declining status
 - Difficult closed reduction
 - If neurologically stable, perform MRI prior to operative treatment
- Obtain or repeat MRI before operating

Bilateral Facet Dislocation

- Definitive treatment requires surgical stabilization
 - Anterior decompression and fusion
 - If poor bone quality, consider posterior segmental stabilization
 - Occasional anterior & posterior stabilization

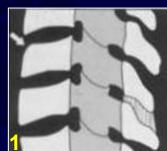
Facet fractures

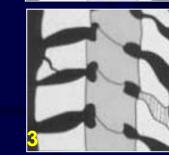

- Stability depends on ligamentous complex
 - SLIC 0
 - Can be rotationally unstable
- Most commonly involves superior articular process (80%)
- Can have late pain and disability
- Late arthrodesis is an option
- Be aware of "fracture separation" of lateral mass

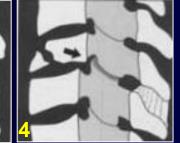
Teardrop Fracture

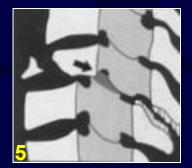
- Extension (upper cervical spine)
 - Usually benign
 - Avulsion type

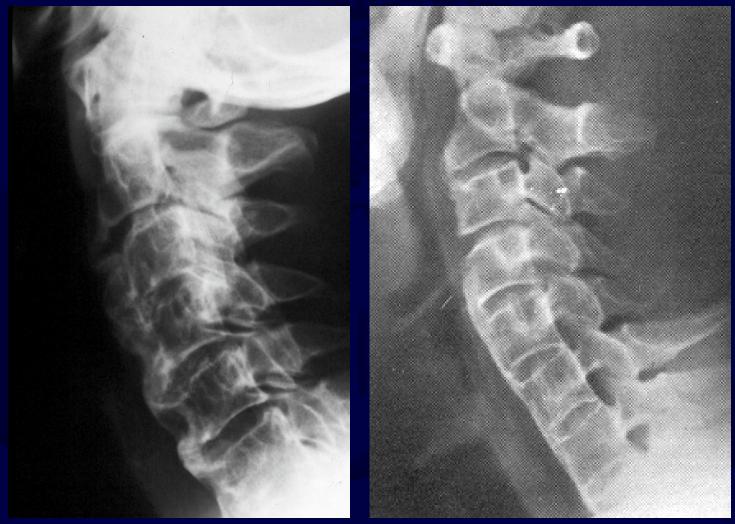
Flexion (lower cervical spine)


 Anterior wedge or <u>quadrangular fragment</u>




Teardrop Fracture (Flexion Type)


- High energy flexion, compressive force
- Complex A/P injuries
- Often posterior element disruption
 - Unstable injury
- Routinely requires surgery
 - Corpectomy, A/P recons



Lateral Mass Fractures

- Lateral mass fracture involves ipsilateral lamina and pedicle
- Extension type injury?
- Understand the anatomy
- Usually surgical treatment
 - 2 level surgical stabilization

DISH

AS

CAUTION!

- Beware:
 - Ankylosing spondylitis
 - If neck pain, treat as fracture \rightarrow MRI
 - Obese patients
 - Poorly imaged patients
 - Distracting injuries
 - Rotational injuries

 The fused spine that fractures behaves more like a long bone

Do not underestimate the instability of such fractures!!

Long lever arm concentrates forces

71 y.o. hits head
Central cord syndrome
DISH throughout TL spine

Take advantage of all imaging modalities

C6/7 fracture in DISH (extension-distraction)

C6/7 facet dislocation (flexion-distraction)

These C6/7 discs are not the same

Pitfall in managing extensiondistraction injuries:

 When performing anterior discectomy and fusion, avoid large grafts that "overstuff" the disc space and induce further distraction!!


Treatment Guidelines

Anterior Approach

- Burst fx w/SCI
- Disc involvement
- Significant compression of anterior column

- Posterior Approach
 - Ligamentous injuries
 - Lateral mass Fx
 - Dislocations

Occasionally you need circumferential approach!

Anterior Surgery

Advantages

- Anterior decompression
 - Trend towards improved neuro outcome
- Atraumatic approach
- Supine position
 - Acute polytrauma

- Disadvantages
 - Limited as to number of motion segments included
 - Potential for increased morbidity
 - Poor access to CT transition zone

Posterior Surgery

Advantages

- Rigid fixation
- Foraminal decompression
- Deformity correction
- May extend to occiput and CT transition zones
- Implant choices

- Disadvantages
 - Minimal anterior cord decompression
 - Prone positioning
 - Trend towards increased blood loss

Non-operative Care

Rigid collars

- Conventional collars offer little stability to subaxial spine and transition zones
- May provide additional stability with attachments
- Good for post-op immobilization
- Halo
 - Many complications
 - Better for upper cervical spine injuries
 - Subaxial "snaking"

Sternal-Occipital-Mandibular immobilizer (SOME)

Minerva

Thank You