Fractures of the Distal Humerus

Dr. Edgar Villegas Robles

Objectives

Background: Anatomy & Epidemiology

Clinical Evaluation

Classification

Approaches

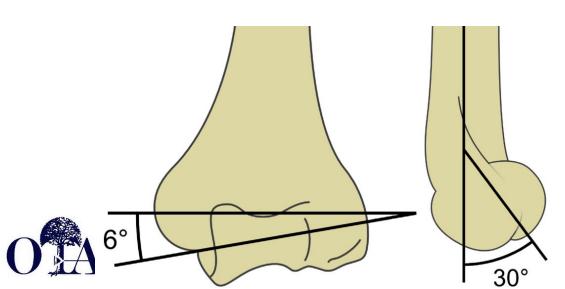
Conclusions

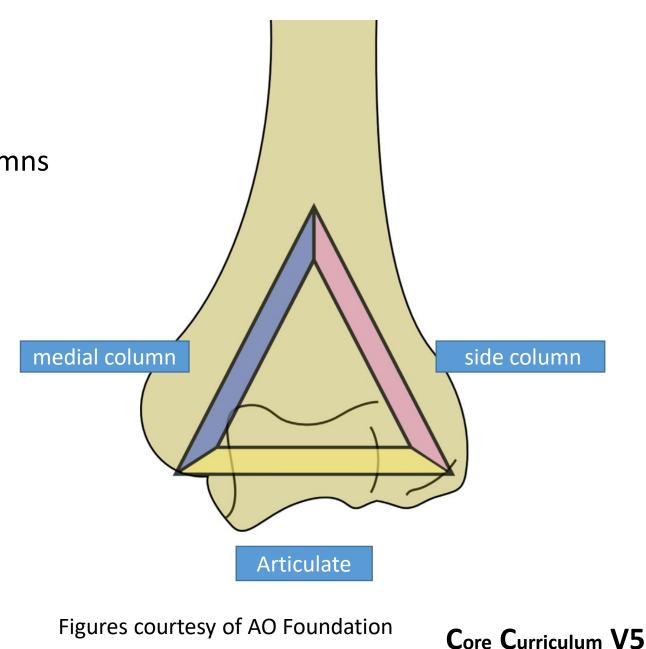
1. Background: Anatomy & Epidemiology

- 1950-1960 Mainly nonsurgical management
- Difficult injury to manage due to:
- a. Complex anatomy
- b. Limited bone stock
- c. Proximity to neurovascular structures

Epidemiology

- 2-6% of all fractures
- 30% of elbow fractures
- Bimodal Distribution:
 - a. Young (men) high-energy injuries
 - b. Over 60 years (women) low-energy injuries

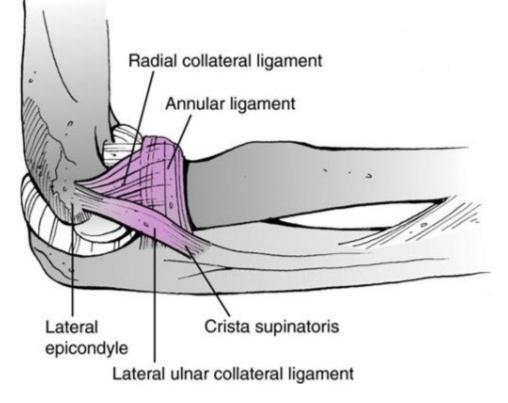

Broad Management Options

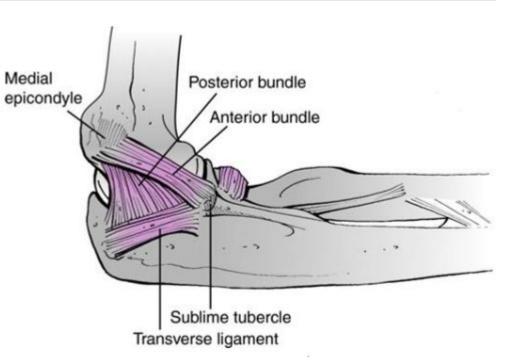

- Open reduction and internal fixation (ORIF) with plates and screws has been the preferred surgical option for most of these fractures.
- Elbow arthroplasty has emerged as an alternative surgical option for elderly patients.
- Nonoperative management "Bag of Bones" is an option for low demand, medically unwell patients

Anatomy

- Essential Architecture:
 - 3 columns forming a triangle.
 - Mechanical restoration of the columns and articular surface is essential
- Internal Rotation 5-7º
- Valgus 5-8º
- Recurvatum 30^o

Dynamic structures are important:


- Lateral epicondyle collateral ligament and muscles: supinators and extensors
- Medial epicondyle (most prominent) ulnar collateral ligament and muscles: pronators and flexors
- Normal ROM is 0⁰ extension to 140⁰ flexion
- Functional ROM is 30⁰ to 130⁰



Photos from Athwal GS and Raniga S. Distal Humerus Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019

Lateral View

Medial View

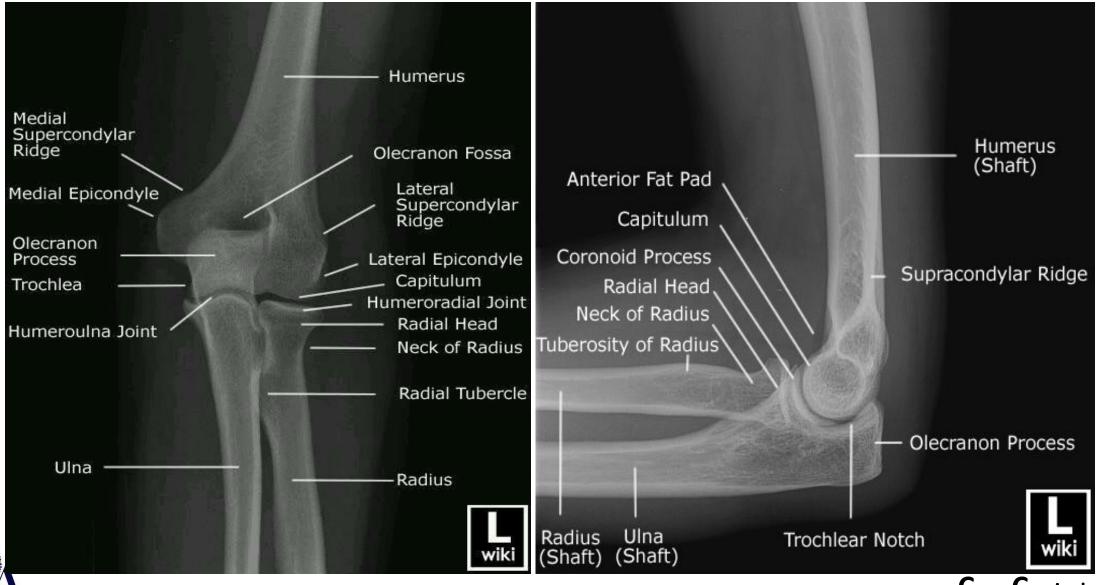
Illustrations from Athwal GS and Raniga S. Distal Humerus Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019

Clinical Evaluation

- History of trauma
- Deformity and pain
- Neurovascular exam: ulnar nerve
- Monitored for development of compartment syndrome: Pain with passive stretch, paleness, pulse and pressure

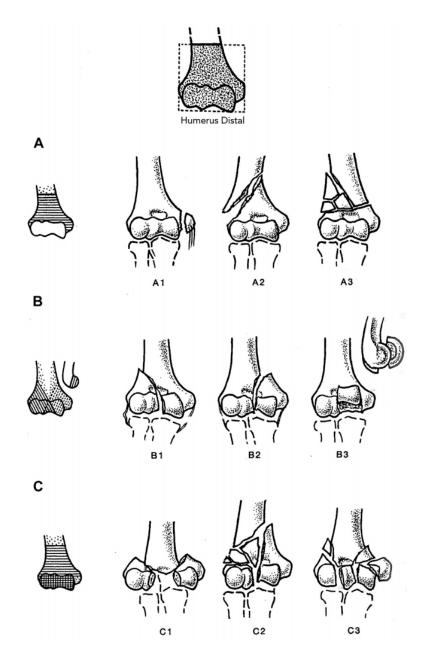
Images

- Xrays AP and Lateral
 - gold standard
- difficult on occasion because of the pain
- Traction Xray helps identify components
- CT scan assists with proper articular visualization



AP Xray

Lateral Xray



Core Curriculum V5

OTA/AO Classification

A. Extra Articular

- **B.** Partial Articular
 - Includes isolated capitellum and trochlea fractures
- C. Complete Articular
- C1 simple articular and metaphyseal
- C2 simple articular and multifragmentary metaphyseal
- C3 multifragmentary articular

OA

Core Curriculum V5

This fracture type is classified by the AO/OTA as 13A2.2.

AO. 13 A 2. 2

This fracture type is classified by the AO/OTA as 13A2.3.

Core Curriculum V5

Therapeutic Approach

This injury is often the result of high-energy accidents so it requires a comprehensive assessment ATLS

- I. Conservative Treatment
- Patients at high surgical risk
- Low physical demand (non-dominant arm)

Complications include:

- Loss of motion
- Chronic pain
- Nonunion
- Aesthetic issues

Nonoperative treatment

Indications

•Minimal/no displacement and stable fracture

- •No nerve or vessel injury
- •Unacceptable surgical risk
 •Supracondylar humeral fractures in children type 1

Contraindications

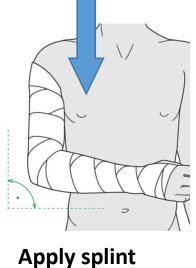
Noncompliant patient

•Displacement

Advantages

• Avoid surgical risks

Disadvantages


- Risk of secondary displacement
- Immobilization
- Subsequent joint stiffness
- Patient discomfort

Closed Reduction and Splinting

For pediatric supracondylar humerus fractures, or in situations where operative treatment is not a possibility for adult patients

Immobilize the elbow in 90° flexion and the forearm in neutral rotation. Follow up

The patient should be seen weekly for follow-up examination and x-rays for 4 weeks, and thereafter every 4-6 weeks, until union is secure and full functional range of motion and strength have returned. **Load bearing**

Minimum of 6-8 weeks after the fracture.

Figures courtesy of surgeryreference.aofundation.org.

Surgical

- Indications Most fractures:
 - Difficult to reduce
 - Difficult to maintain by external means
 - Frequently articular

Key points

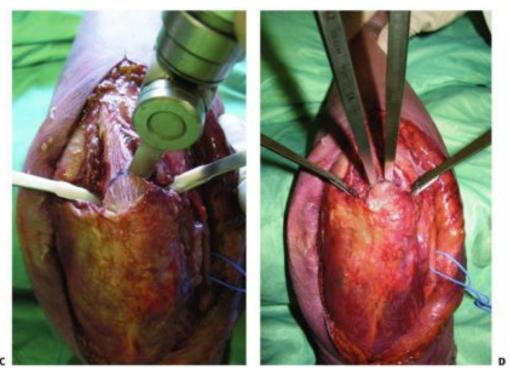
- a. Anatomic reduction
- b. Stable fixation
- c. Early mobilization

Lateral Positioning

- Regional anesthesia may be employed, for the management of post-surgical pain
- Lateral beanbag, elbow in flexion
- C-arm
- Arm over bolster allows gravity to assist in maintaining reduction ligamentotaxis
- A mayo stand cover may be used to collect drainage

Prone Positioning

- Allows easier access with C-arm for imaging
- Gravity ligamentotaxis
- In general less favored by anesthesia
- Facilitates bilateral surgery

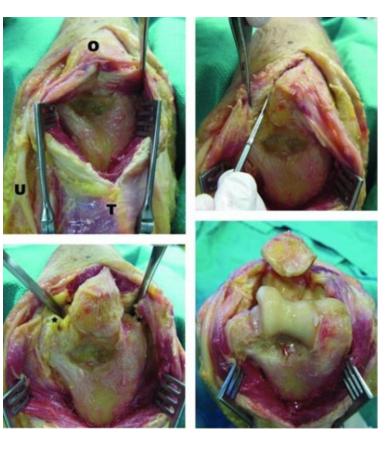

ORIF

a. Olecranon Osteotomy (Chevron).

- View 57% of articular surface
- Reintervention 8-13% for nonunion
- Useful in type B3 and C, especially when articular surface is multifragmentary
- Finishing cut with an osteotome creates more irregular ends to allow for interdigitation

Complications:

- Nonunion
- Prominent hardware


Inraoperative images from Athwal GS and Raniga S. Distal Humerus Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019

b. Triceps Split

Advantages

- 1. Does not disrupt extensor mechanism
- 2. Preserve bone
- 3. Avoids the possibility of prominent osteotomy fixation

Disadvantages

- 1. More limited view than osteotomy
- 2. May limit ability to perform osteotomy if needed

McKee et al (*JBJS Br* 2000) : The use of a triceps-splitting approach did not compromise the quality of the reduction

Inraoperative images from Athwal GS and Raniga S. Distal Humerus Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019

Approaches

- Wilkinson (Wilkinson JM, Stanley D 2001) reported no differences in functional outcome after treatment of closed intra-articular fractures of the distal humerus through either of these approaches
- In some open fracture, it seems logical that incorporating the defect in the triceps into the surgical approach may involve less trauma and give a better functional outcome than compromising the extensor mechanism further by performing an olecranon osteotomy.
- Triceps-splitting procedures are simpler to perform but critics suggest that they offer a limited exposure
- Whatever approach is used, the ulnar nerve must be dissected free to prevent injury.

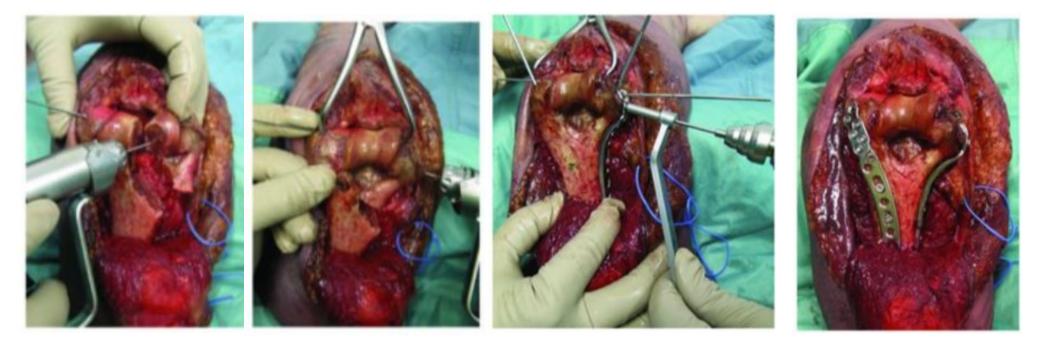
What to do with the ulnar nerve?

- Identify and protect
- Decompress and release
- Translate: Controversial! doing so is decided intraoperatively
- Chen reports up to 33% neuritis in those that don't translate
- No difference if the patient had no symptoms pre-operatively
- In a large RCT, the Ulnar Nerve Entrapment Score, the Mayo Elbow Performance Score (MEPS), VAS and 2-point discrimination were not significantly different at any time point between patients who underwent did and did not undergo anterior transposition,

Dehghan et at, J Orthop Trauma, 2021

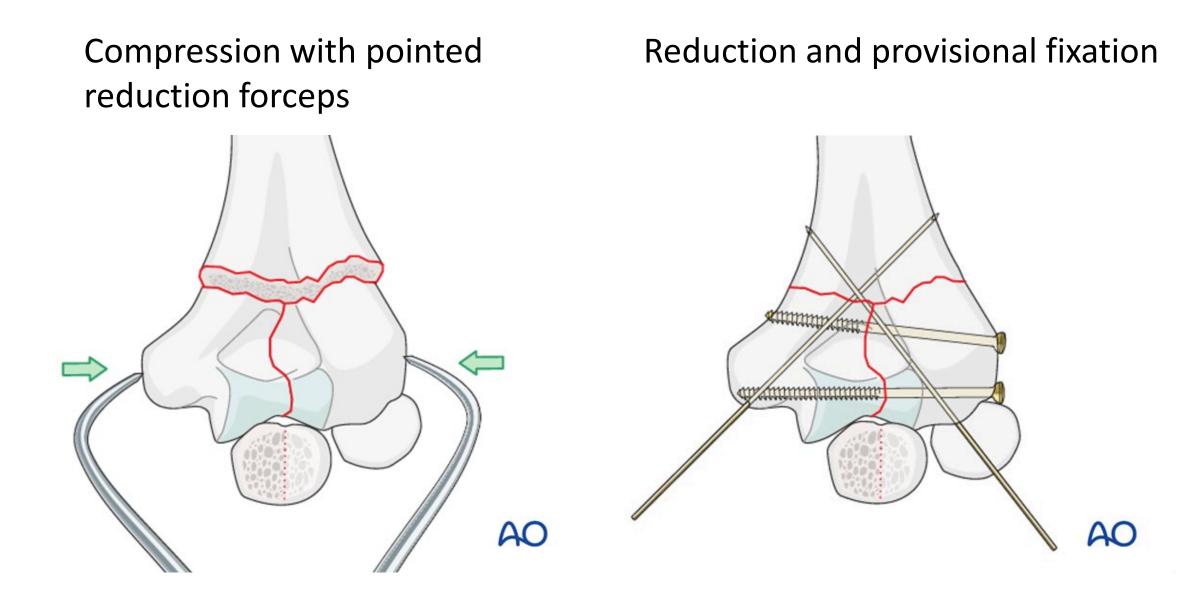
Inraoperative image from Athwal GS and Raniga S. Distal Humerus Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019

Operative Technique


Identify the anatomy and mechanism of the fracture

- The most important thing is joint congruence (remembering anatomy)
- Gentle handling of soft tissues and ulnar nerve
- Provisional reduction and stabilization of articular block with k wires and/or clamps
- May further stabilize articular block with 2.0 and 2.7mm that do not interfere with planned plate placement

Next, re-establish columns, and attach articular block

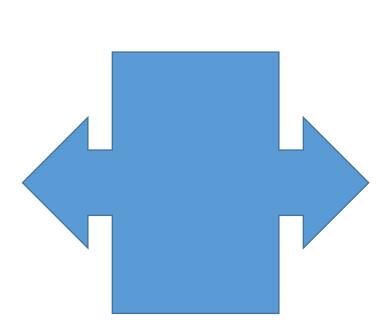

Fragments can be used as a graft that increases stability but beware of shortening, which may lead to limitation in extension

Inraoperative images from Athwal GS and Raniga S. Distal Humerus Fractures. In: Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019

Implant

Plate

Anatomic: allows more screws in distal segment Reconstruction: easier to mold DCP 3.5: difficult to shape



Figures courtesy of AO Foundation

Surgery

Consensus in surgical management is dual column plates The optimal plate configuration has been controversial. The two proposed constructs are parallel and orthogonal (perpendicular) plating

Parallel configuration

- Demonstrates more biomechanical stability (Douglas et al. JOT 2016)
- More stable to rotation

Perpendicular configuration

 May be useful in fractures with coronal plane fracture of the lateral components (i.e. capitellum fracture)

OA

Plate Configuration

Remember the personality of the fracture It's not a cookbook recipe

Both configurations are uesful when applied thoughtfully

Post surgery

- Early motion is important!
- Some surgeons Will place in splint at 60° of flexion for 10 – 14 days
- Gradual mobilization 2-6 weeks
- Xrays: no clear evidence
 6 week
 12 week

Complications

61% at 15 months (Nydick et al. 2020)

- 1. heterotopic ossification, beware especially in patients with head injury
- 2. Nerve injury (Ulnar 38% Ilyas et al. 2012)
- 3. Contracture: key to prevention is early mobilization
- 4. Prominent hardware usually in cases of olecranon osteotomy and fixation
- 5. Infection rare
- 6. Nonunion osteotomy nonunion is rare with proper technique (2% in Ring's series (JOT 2004))



Total Elbow Replacement

- Indication: Elderly, low functional demand patients with unreconstructable joint
- Average age 72 years, arthritis 65 years
- Elderly patients have an increased baseline DASH score and appear to accommodate to objective limitations in function with time.

McKee et al, JSES 2009

CONCLUSIONS

- 1. Young people (average 35 years) 92% excellent results
- 2. ORIF has worse outcome in those >65 consider prosthesis in complex articular injuries
- 3. Difficult injury to manage due to complex anatomy and complex articular injuries
- 4. Dual plating is the gold standard for fixation
- 5. With other exposures, olecranon osteotomy may be avoided in most cases

6. Anatomic plate may help by using as template for reduction and for more points of fixation in distal fragments

- 7. Fracture personality guides plate orientation
- 8. Release and protect ulnar nerve do not transpose routinely

• THANK YOU

Basic References

- Robinson CM, Hill RM, Jacobs N, Dall G, Court-Brown CM (2003) Adult distal humeral metaphyseal fractures: epidemiology and results of treatment. J Orthop Trauma 17:38–47
- Charalampos G. Zalavras & Efthymios Papasoulis. (2018) Intra-articular fractures of the distal humerus—a review of the current practice. International Orthopaedics https://doi.org/10.1007/s00264-017-3719-4
- Wilkinson JM, Stanley D (2001) Posterior surgical approaches to the elbow: a comparative anatomic study. J Shoulder Elb Surg 10:380–382
- Ramsey ML, Bratic AK, Getz CL, et al.(2006) Open reduction and internal fixation of distal humerus fractures. Tech Shoulder Elbow Surg :44–51.
- Webb L. Fractures of the distal humerus. In: Rockwood CA Jr, Gree DP, Bucholz RW, et al, editors. Fractures in adults. Philadelphia: Lippincott-Raven; 2001. p. 953–72
- Mark A. Mighell, Brent Stephens, Geoffrey P. Stone, Benjamin J. Cottrell, (2015). Distal Humerus Fractures Open Reduction Internal Fixation
- Pollock JW, Athwal GS, Steinmann SP. (2008) Surgical exposures for distal humerus fractures: a review. Cliin Anat:757–68
- J. Korner, H. Lill, L.P. Muller, P.M. Rommens, E. Schneider, B. Linke, The LCPconcept in the operative treatment of distal humerus fractures-biological, biomechanical and surgical aspects, Injury 34 (Suppl 2) (2003) B20-B30
- Xianbin Yu1, Linzhen Xie1, Jinwu Wang1, Chunhui Chen, Chuanxu Zhang, Wenhao Zheng (2019). Orthogonal plating method versus parallel plating method in the treatment of distal humerus fracture: A systematic review and meta-analysis. International Journal of Surgery 69. 49-60
- ATLS, Apoyo Vital Avanzado en Trauma 10. Manual para el alumno.
- Bustamante-Suárez de Puga D, Cebrián-Gómez R, Villegas-Robles E, Sanz-Reig J, Más-Martínez J, Verdú-Román CM, Morales-Santías M, Martínez-Giménez E (2017). Rigidez postraumática de codo: resultados a corto plazo de la artrólisis artroscópica Acta Ortopédica Mexicana 2017; 31(5): Sep.-Oct: 233-238
- Worden A, Ilyas AM. Ulnar neuropathy following distal humerus fracture fixation. Orthop Clin North Am 2012;43(4):509–14.
- Imagen 1, 2 <i frame src="https://assets.pinterest.com/ext/embed.html?id=397724210815399183" height="433" width="345" frameborder="0" scrolling="no" ></if rameborder="0" scrolling="no" scrolling="no"
- McKee MD, Kim J, Kebaish K, Stephen DJ, Kreder HJ, Schemitsch EH. Functional outcome after open supracondylar fractures of the humerus. The effect of the surgical approach. J Bone Joint Surg Br. 2000 Jul;82(5):646-51. doi: 10.1302/0301-620x.82b5.10423. PMID: 10963158.

