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ABSTRACT 

New Zealand’s diadromous fish populations face vast networks of road culverts that 

often limit upstream dispersal as a function of efficient hydrological design. Migration 

barriers, such as perched pipe culverts, fragment and isolate viable stream habitat from 

recruitment by overcoming migratory adaptations of fish, inevitably eroding populations 

through genetic loss. This study addressed several concerns of conservation managers in 

the eastern Otago region through examination of impassable perched pipe culvert impacts 

on local fish distributions, as well as trialling perched migration barriers in the laboratory 

and field in order to protect a threatened non-migratory galaxiid population from an 

invasive species. The latter trial was found to have great promise as a freshwater 

conservation management tool. 

The interaction between poor road culvert design and fish dispersal has been 

examined across New Zealand’s differing landscapes. In eastern Otago, commercial 

forestry plantations provided homogenous land use type and pipe culvert design to examine 

perched pipe culvert prevalence and fish distribution in relation to pipe culverts as seen in 

Chapter Two. By using a unique approach identifying pipe culverts as passable or 

impassable a priori, based on previous fish passage understanding and research, the 

relationship between fish distribution and culverts could be examined despite inherently 

dynamic interactions between fish migratory adaptations and culvert characteristics. 

Surveys found just over fifty percent of pipe culverts were perched to some degree, and 

upon analysis that a negative relationship existed between species richness and fish 

abundance above versus below pipe culverts. The findings galvanise current understanding 

of the limiting effects of pipe culverts on upstream fish migration and identify the scale of 

perched culvert prevalence in commercial forestry plantations of the eastern Otago region. 

Abundance trends, although statistically inconclusive but scientifically supported, 

affirm that impassable pipe culverts likely have a limiting/barrier effect on the dispersal 

and migration of kōaro (Galaxias brevipinnis). The climbing migratory adaptations which 

kōaro rely on to navigate in-stream obstacles were examined in Chapter Three. The 

relationship between climbing success and juvenile kōaro size was trialled in a controlled 

environment and revealed a significant trend in the size of juvenile kōaro climbers that 

were successful at navigating a simulated migration barrier. Disrupting the wetted margin, 
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and thus hydrological connectivity, through the use of a perched barrier proved totally 

effective at halting juvenile kōaro climbing.  

Kōaro are considered an invasive threat to populations of the rare non-migratory 

dusky galaxias (Galaxias pullus) in several tributaries of the upper Waipori River in 

eastern Otago. Attempts by the Department of Conservation to install migration barriers on 

a research weir to limit kōaro recruitment into a dusky galaxias stronghold population had 

proven unsuccessful. Chapter Four documents the development and deployment of a 

perched aluminium migration barrier which continued to be extremely successful over a 

period of several years at halting juvenile kōaro recruitment as confirmed by electrofishing 

and kōaro relocation data pre and post installation. This system provides conservation 

managers with a tool to protect non-migratory galaxiids across New Zealand that are at risk 

of juvenile kōaro invasion, and for the protection of historic habitat for non-migratory 

galaxiid translocation. 

Investigation into kōaro migratory capabilities also raised new questions about the 

interactions between form and function of climbing adaptations and how these may have 

influenced the evolutionary ecology of ancestral climbing galaxiids in response to 

geological processes. Discussions regarding the complexity of kōaro migration as a 

dynamic process of timing, growth and distance are also presented. 

Understanding the mechanisms by which perched pipe culverts limit upstream fish 

migration, and on which migratory fish species rely, allows for conservation managers to 

improve fish passage or control invasive fish species encroachment, both with the purpose 

of conserving endangered species and in-stream habitats. Overall, critical thinking and 

understanding of fish migratory adaptations, both in a natural setting and a controlled 

environment, has proven a robust method in developing a useful conservation tool for 

endangered species isolation management while working closely alongside front line 

conservation managers. 
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CHAPTER ONE 

Introduction 

Migration has evolved separately in many animal groups; from birds, to mammals, 

and fishes (Alerstam et al. 2003). Migration is a distinct dispersal between one habitat and 

another, sometimes over great distances or obstacles (Harris et al. 2009). Strong innate forces 

are the drivers of migrants, which are often physically adapted to overcome significant 

challenges (Gwinner 1996); these traits shaping how migratory animals interact with their 

environment (Tøttrup et al. 2008). In some instances migratory animals are unable to avoid 

anthropogenic impacts along their migration paths (Pfister et al. 1992), especially where 

partial or complete “man-made” migratory barriers are encountered (Forman & Alexander 

1998; Henningsson & Alerstam 2005). The impacts of anthropogenic disturbance on the 

migratory dispersal of a species is in most cases detrimental to the population, associated 

communities and general ecosystem function (Trombulak & Frissell 2000; Stow et al. 2001; 

Tallmon et al. 2003; Driscoll 2004). Up to date research and well informed conservation 

strategies provide a necessary and beneficial measure to relieve these negative human 

impacts on animal migrations (Harris et al. 2009; Hodgson et al. 2009).  

Diadromous fishes epitomise animal movement between two distinctly different 

habitats (Lucas & Baras 2001); for diadromous fish spend essential parts of their lifetimes at 

sea before migrating up freshwater rivers to breed (McDowall 2000; McDowall 2001). 

Uninterrupted hydrological and longitudinal connectivity is the primary factor facilitating 

such diadromous fish migrations (McDowall 1998; Crook et al. 2009; Hall et al. 2011); hence 

any in-stream barriers, natural or human-made, can create obstacles for diadromous fish 

migration (MacDonald & Davies 2007; Branco et al. 2011). It is widely accepted that dams, 

weirs, and road culverts are the most widespread in-stream barriers of anthropogenic origin 

effecting diadromous fish migration today (Burford et al. 2009). These barriers have 

historically been designed for effective hydrological management, often with little or no 

regard for migrating diadromous fish populations (Solcz 2007). Road culverts, in particular, 

fragment stream habitats and are of major ecological concern worldwide (Jungwirth et al. 

2000; Morita & Yamamoto 2002; Copeland 2004; Gibson et al. 2005; Khan & Colbo 2008), 
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especially when considering their extensive use (Park et al. 2008). Road culverts that 

fragment fish assemblages (Rolls 2011) will over time lead to local and population scale 

declines eventuating in a loss of genetic potential, adaptive capabilities or extinction 

(Allendorf et al. 1987; Wofford et al. 2005; Bourne et al. 2011; Nislow et al. 2011). 

Crucially, momentum is gaining in the study of road culvert design efficaciousness and 

migratory fish life history and physiology, to ensure both hydrological and environmental 

functioning is maintained (Clark et al. 2014). 

Road culverts have historically been engineered to meet the requirements of efficient 

hydrological management, transport practices, low manufacturing costs and low installation 

costs (Johnson & Brown 2000; Jones et al. 2000; O’Hanley & Tomberlin 2005). Pipe culverts 

for example generally are smooth surfaced, facilitate high water velocities, are installed on 

steep gradients and are of long lengths to span beneath road surfaces (Bates et al. 2003; 

Bouska & Paukert 2010). Of particular significance, as a result of pipe culvert installation, is 

the ‘free-hanging’ or perching of pipe culvert outlets; a situation posing the greatest obstacle 

to many migratory fish species internationally (Kemp & O’Hanley 2010) and in New Zealand 

(McDowall 1984; Boubée et al. 1999; James & Joy 2008; Leathwick et al. 2008; Doehring et 

al. 2011).  

The prevalence of perched road culverts has been discussed by authors in certain 

localities across New Zealand such as the Manawatu (James & Joy 2008) and Auckland 

(Barnes 2004). The implications and impacts of perched culverts and other designs on New 

Zealand’s native migratory freshwater fish fauna (and exotic species) have been examined in 

depth by Boubée et al. (1999) for the National Institute of Water and Atmosphere (NIWA) 

and the Department of Conservation. Within the eastern Otago region steps have been taken 

to record natural barriers by the Department of Conservation (D Jack pers. comms 2011, 

unreferenced). However, surveys to identify perched pipe culverts within the region and 

analyses of associated fish communities are yet to be completed, despite the region being 

home to several threatened galaxiids which are likely impacted (Allibone & Barrier 2004). 

Perched road culverts are of great concern to conservation managers around the world 

with aims of protecting and facilitating fish migrations (Bourne et al. 2011). Authors such as 

Parker (2000) have published guidelines which can be used for the analysis of culvert 

characteristics to prioritise perched culvert removal or retrofitting in order to restore upstream 

fish passage and migration (Kemp & O’Hanley 2010). Conservation managers within New 
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Zealand have also addressed perched culvert issues; for example, authors such as David et al. 

(2009), from the Environment Waikato Council, have trialled retrofitting techniques to 

facilitate climbing galaxiid passage through perched road culverts.  

While perched road culverts have generally been considered a negative, the ability of 

a perched pipe culvert to block the upstream passage of an invasive species can have value. 

Internationally in-stream barriers are effectively used to limit dispersal of invasive fish 

species (Stainbrook et al. 2005; Dawson et al. 2006); however the use of perched migration 

barriers internationally for this purpose is uncommon. Investigation of perched migration 

barriers within New Zealand may prove to be a significant and positive tool for freshwater 

conservation managers looking to protect threatened freshwater fish populations from other 

invasive fish species (Allibone & McDowall 1997). 

Kōaro (Galaxias brevipinnis) (Fig 1.1) are found throughout New Zealand and, 

although a native, can be considered invasive when encroaching on threatened fish habitats 

(Allibone 1999). The invasive nature of kōaro is facilitated by its innate adept climbing 

ability as a juvenile; able to navigate significant in-stream obstacles and gradients (McDowall 

2010). The ability of kōaro to readily form landlocked populations [facultative diadromy; 

(McDowall 1998)] and the impoundment of natural water courses by humans, has allowed for 

the proliferation and migration of juvenile kōaro deeper into streams where they historically 

could not reach (Allibone 1999). Within eastern Otago, and since the damming of the 

Waipori River and subsequent formation of Lake Mahinerangi, the mass migration of 

juvenile kōaro into rare dusky galaxias (Galaxias pullus) (Fig 1.2) habitat is said to have had 

negative consequences (Allibone & McDowall 1997). Kōaro are thought to out-compete the 

less fecund dusky galaxias, whose numbers and distribution have drastically shrunk since the 

forming of Lake Mahinerangi (Jones & Closs 2016) and is of concern to conservation 

managers responsible for dusky galaxias protection. The opportunity therefore exists to 

design and trial perched migration barriers as a useful conservation tool to halt climbing 

kōaro juvenile invasion and in doing so potentially reverse the impacts of kōaro invasion on 

the dusky galaxias.  
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Fig. 1.1 A widespread ‘climbing expert’; the kōaro (Galaxias brevipinnis) (photo: Paddy Ryan1) 

 

 

 

 

 

 

 

 

Fig. 1.2 The threatened dusky galaxias (Galaxias pullus) from the eastern Otago region (photo: Simon Madill2) 

                                                 
 

1 https://teara.govt.nz/en/photograph/11114/koaro-galaxiasbrevipinnis 
2 https://www.doc.govt.nz/nature/native-animals/freshwater-fish/non-migratory-galaxiids/dusky-galaxias/ 

https://teara.govt.nz/en/photograph/11114/koaro-galaxiasbrevipinnis
https://www.doc.govt.nz/nature/native-animals/freshwater-fish/non-migratory-galaxiids/dusky-galaxias/
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General hypothesis 

To research migratory fish community interactions with perched road culverts, it is 

not only necessary to determine fish population distribution in relation to perched road 

culverts but also perched road culvert prevalence. To design an effective migration barrier as 

a conservation tool for excluding migratory fish species, it is imperative to understand the 

physical capabilities and limitations of the focal species (Crook et al. 2010), and by 

incorporating knowledge gained from previous attempts. 

The primary goal of this study is to design a useful conservation management tool to 

isolate endangered dusky galaxias populations from kōaro encroachment. This goal will be 

achieved in the following three steps: 1) by analysing the literature and the relationship 

between fish migration and perched culverts in a natural setting; 2) by testing the climbing 

ability of kōaro and migration barrier design and theory in a controlled setting; and 3) by 

adapting and testing migration barrier design in the field.  

This study will therefore: A) examine road culverts and freshwater fish populations within 

catchments of the eastern Otago region, B) examine the climbing morphology and behaviours 

of the kōaro and c) examine a migration barrier installed by the Department of Conservation. 

Below are the questions which this study aims to answer: 

1. What is the prevalence of perched road culverts in the eastern Otago region? (Chapter 

Two) 

2. Have perched road culverts shaped migratory freshwater fish distributions in the 

eastern Otago region? (Chapter Two) 

3. How does the morphology of a climbing migratory fish, the kōaro, influence its 

ability to climb successfully? (Chapter Three) 

4. Can a man-made perched migration barrier stop juvenile kōaro from migrating 

upstream in a controlled setting? (Chapter Three) 

5. Can a man-made perched migration barrier be used as a conservation management 

tool in streams to disrupt kōaro migration? (Chapter Four) 
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CHAPTER TWO 

 

The status of perched pipe culverts installed in exotic forestry road 

networks and associated freshwater fish communities within the eastern 

Otago region. 

2.1 Introduction 

Hydrological connectivity is a primary factor influencing migratory fish dispersal and 

ecology (Crook et al. 2009). Connectivity between freshwater environments and the sea, for 

example, is the key element enabling the life history of diadromous fishes (McDowall 1997); 

migrations between the sea and freshwater having shaped how diadromous fish evolved with 

their environment (Lucas & Baras 2001) both behaviourally (Leonard et al. 2012) and 

morphologically (Schoenfuss & Blob 2003). Man-made barriers along migration pathways 

that overcome behavioural and morphological adaptations severely restrict fish dispersal 

during upstream migrations (Burford et al. 2009; Branco et al. 2012). 

Road culverts are prime examples of widespread anthropogenic barriers (Park et al. 

2008) that limit fish dispersal and alter in-stream fish communities (Rolls 2011) by 

fragmenting habitats (Gibson et al. 2005; Khan & Colbo 2008). The negative impacts of 

hydrologically effective road culvert designs on upstream fish passage are often exacerbated 

as a function of their own design (Jones et al. 2000; Solcz 2007). For example, concentrated 

high water flows through pipe culverts frequently scour stream beds downstream leading to 

free hanging of pipe culvert outlets (perching) above nominal water flow levels (Gibson et al. 

2005; Kemp & O’Hanley 2010; Doehring et al. 2011). This creates a significant break in 

longitudinal connectivity within streams which can overcome fish migratory capabilities 

(Bourne et al. 2011). Perhaps the most cost effective and widely used road culvert style is that 

of pipe culverts (Gibson et al. 2005). 

The dynamics of fish dispersal within streams is highly complex with upstream 

migration reductions altering the basic “population equation” of a fish species (Nislow et al. 

2011). Essentially significant decreases in fish species immigration due to impassable 

perched pipe culverts can potentially lead to local extirpation of that species (Rolls 2011) and 

reduce the species richness in that locality (Nislow et al. 2011). A better understanding of fish 

abundance and species richness in relation to perched pipe culverts can provide insight into 
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the impacts these structures have on fish community structure and migration at a catchment 

scale (Nislow et al. 2011). An example of a perched pipe culvert running below a road can be 

seen in a photograph taken within the eastern Otago region, New Zealand (Fig 2.1). 

 

Fig. 2.1 A perched pipe culvert, Tokomairiro River tributary, Dunedin (photo: Josh Tabak) 

Globally the negative impacts of perched pipe culverts on fish communities are well 

documented (Park et al. 2008; Kemp & O’Hanley 2010). Within New Zealand the study of 

perched pipe culverts has also received significant attention with local councils (Barnes 2004; 

James & Joy 2008; Stevenson et al. 2008; Stevenson & Baker 2009: David & Hamer 2012) 

and various research institutes (Boubée et al. 1999; Baker & Boubée 2006; Doehring et al. 

2011) examining fish passage issues in detail. This research has been conducted to better 
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understand how culvert prevalence and design have impacted New Zealand’s freshwater fish 

fauna, a large proportion of which are migratory (McDowall 2000).  

The extent to which perched pipe culverts have structured fish and galaxiid 

communities within eastern Otago is not well understood and is an area of interest to the 

Department of Conservation (D Jack pers. comms 2011, unreferenced). Evaluating the 

prevalence of perched pipe culverts and fish community distribution will contribute to the 

understanding of the extent of habitat fragmentation effects on native and exotic fish species 

within the region, and help guide native fish conservation management strategies.  

Exotic forestry plantations are prevalent in the eastern Otago region where thousands 

of hectares of land are dedicated to pine (Pinus radiata) and douglas fir (Pseudotsuga 

menziesii) plantations. Significant tracts of threatened galaxiid habitat are found in these 

exotic forestry planations (Allibone & McDowall 1997), where the installation of roads and 

pipe culverts are an integral aspect of forestry operations (Pendly 2015), and may have 

altered the historic distribution of resident native fish communities (Allibone & McDowall 

1997). While assessments of road culverts and in-stream structures within New Zealand have 

surveyed pastoral (James and Joy 2008) and native forest (Barnes 2004) land use types, little 

published research has investigated culverts in exotic forestry plantations.  

Nislow et al. (2011) designed an at the time novel method to assess migration barriers 

and their impacts on fish communities by classifying culverts as impassable or passable a 

priori based on the degree to which culverts are perched. This method allowed fish 

abundance and species richness to be assessed upstream and downstream at a catchment scale 

and across numerous sites providing sufficient power to detect the effects of perched culverts 

as barriers (Nislow et al. 2011). Such a method is unique as it accounts for the substantial 

intrinsic variation of culverts and stream dynamics. This approach has not been trialled in 

New Zealand and could provide a simple method for examining the barrier effects of culverts 

on our native fish communities; of which diadromous migrations are a key life history for 

many (McDowall 2000). This chapter therefore aims to survey a sample of road crossings in 

exotic forestry plantations of eastern Otago, as well as the resident freshwater fish 

communities, aiming to quantify not only the extent of perched pipe culverts but any 

relationships relative to pipe culverts that local freshwater fish abundance and species 

richness may have. Of particular interest is the impact of perched pipe culverts on the 

upstream migration of galaxiids. 
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2.2 Methods and materials 

Culvert surveys  

This study focused on three localities within the eastern Otago region; Mahinerangi, 

Akatore and Tokomairiro (Fig 2.2). These areas were chosen as the catchment land use is 

predominantly exotic forestry plantations. Surveys within these forestry plantations allowed 

for ease of access to multiple culverts on a network of forestry roads. The forestry plantations 

are owned and administered by two companies, Wenita and City Forests Ltd. Permission, 

keys and permits were sought and granted for access to the road crossings.  

A four step process was first used to assess 180 road crossings across the three 

localities to find suitable culverts for use in the study [adapted from Parker (2000)]:  

1) The first step was to identify all potential road crossings (on a 1:50,000 topographical 

map of the three locations) on first, second, third and fourth order streams.  

2) The second step was to field visit the road crossings before proceeding with the following 

two steps.  

3) Step three was to evaluate if the crossing was indeed a pipe culvert crossing. Sites 

identified on the map during the first step may not have existed or were other forms of 

crossing, e.g. bridges or fords.  

4) Step four was to identify the channel or stream at the crossing as viable fish habitat. 

Culverts placed on crossings which had ill-defined stream channels, were completely 

vegetated, had no or very little water, or had no obvious habitat upstream were not 

surveyed. 

 

Of the 180 road crossings visited, a subset of culverts that met the criteria of steps 3 

and 4 above were chosen to study further (Figs 2.4, 2.5, 2.6). The chosen subset of 60 pipe 

culverts had the following information documented: 

 

1. Co-ordinates of the pipe culverts were taken with a hand held Global Positioning System 

unit (GPS). 

2. Numbered each pipe culvert according to topographic map location and co-ordinates. 

3. Recorded pipe culvert outfall drop and outfall length where a pipe culvert was above the 

water surface. 
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4. Recorded whether the culvert was impassable, passable or did not meet the criteria. 

Perched culverts with an outfall drop equal to or above 12cm in height and an outlet 

length equal to or greater than 5cm in length were predicted to be impassable (Nislow et 

al. 2011) by native freshwater fish for the purposes of this study (Fig 2.3). Culverts 

submerged were considered and recorded as passable. Culverts that were neither 

impassable nor passable were recorded as not meeting the criteria for analysis. 

 

 

Fig. 2.2 Culvert survey localities in the eastern Otago region. 
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Fig. 2.4 Mahinerangi catchment area with the number of perched and non-perched road culverts surveyed, and 
the qualifying culverts analysed in models to compare fish abundance and species richness either side of those 

culverts. Culverts were considered passable or impassable based on predetermined characteristics. 
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Fig. 2.5 Akatore catchment area with the number of perched and non-perched road culverts surveyed, and the 
qualifying culverts analysed in models to compare fish abundance and species richness either side of those 

culverts. Culverts were considered passable or impassable based on predetermined characteristics. 
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Fig. 2.6 Tributaries of the Tokomairiro river, Rocky Valley creek and Shagree creek with the number of perched 
and non-perched road culverts surveyed, and the qualifying culverts analysed in models to compare fish 

abundance and species richness either side of those culverts. Culverts were considered passable or impassable 
based on predetermined characteristics. 
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Culvert surveys commenced 1st November 2012 through until 31st March 2013. Assessing 

culverts using the above criteria at or near base flow conditions ensured that perched culverts 

were categorised correctly and that only permanent streams were sampled (Park et al. 2008); 

the assumption being that permanent streams would be more likely to hold stable fish 

populations (Rosenfeld et al. 2000).  

 
Fig. 2.3 Diagram of a perched pipe culvert with outlet measurements (Adapted from Nislow et al. 2011). 

 

Of the subset of sixty culverts identified, only 36 qualified for the data analysis based 

on culvert design and fish presence (Table 2.1). 

Table 2.1 Means (Standard Deviation) of the qualifying culverts’ design characteristics.  
Average stream order (1st – 4th order) is presented. 

 

 

 

 

N 

Stream 
Order 

(1-4) 

Culvert 

Outfall Drop 
(cm) 

Culvert 

Outfall 

Length (cm) 

Passable 19 2.21 0.26 (1.15) 1.89 (8.26) 

Impassable 17 1.82 78.37 (74.08) 38.01 (21.99) 

 

Fish surveys 

Spotlight fish surveys were completed after dusk by the author between 02 February 

and 28 March 2013. The spotlight method described by David et al. (2002) was used to 

survey the number and species of fish during surveys. This method was chosen as many 

native fish such as galaxiids are nocturnal (David et al. 2002) and it is a simpler and faster 

way of sampling many sites compared to electrofishing and fyke netting. This method 

involves slowly walking upstream searching for fish by scanning the stream with a spotlight 
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from bank to bank c. 2m upstream of the observer using a handheld spotlight and a 12v 

battery. Fifty meters of stream was surveyed both above and below each culvert, and 

completed only once for each culvert. This level of effort allows the observer to identify most 

species present within streams (Nislow et al. 2011).  

Spotlighting constraints 

 Fish abundance can be underestimated when spotlighting due to surface turbulence 

and water clarity obscuring fish (David et al. 2002). This constraint can be a limiting factor 

when measuring how fish abundance changes over several sites over time. As this study aims 

to examine if fish abundance is different at a single point in time, it was reasoned that 

proportionally any underestimation would be similar both upstream and downstream of a 

culvert.  

It was also acknowledged that some species can be hard to differentiate when 

spotlighting (David et al. 2002); but that species groups often share dispersal traits 

(McDowall 1990) and have similar interactions with perched culverts. For instance, both 

shortfin and longfin eels (Anguilla spp.) are hard to identify in-stream but both are excellent 

climbers as elvers (McDowall 1990). This reasoning was also applied for Gobiomorphus spp. 

that can look similar when small and share a relatively similar intermediate climbing ability 

(Boubée et al. 1999). It was reasoned interspecific differences in ability within these two 

family groups, to migrate past culverts, would be minimal and as such could be grouped 

together.  

Data analysis methods 

 Culverts in streams that did not meet design requirements or did not have fish present 

were excluded from further analysis (Nislow et al. 2011). Three generalised linear mixed 

models were used to test fish abundance and species richness of fish communities in relation 

to the 36 qualifying culverts predicted passable (n=19)  or impassable (n=17) (Nislow et al. 

2011). The dependent variables for the first two models performed were 1) total number of 

fish (fish abundance count) and 2) total number of species observed (species richness count). 

The fixed effects for the above two models were location (upstream or downstream from the 

culvert), culvert type (predicted passable or impassable), and an interaction between location 

and culvert type. The third model we performed used a zero-inflated Poisson linear mixed 

model for which the dependent variable was species-specific fish abundance (a count of the 

total number of fish for each species) and the fixed effects were location, culvert type, 
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species, and all possible two and three way interactions. The fixed effect “species” was 

included as an explanatory variable to see if the number of fish present at a location varied by 

species.  

The aim of this study and this analysis was to conclude whether the total number of 

fish counted differed above and below pipe culverts, whether this effect was dissimilar for 

predicted impassable and passable pipe culverts, and for different species (Nislow et al. 

2011). All models included site as a random effect. Model fitting and selection was 

performed using the glmmADMB package in program R (Fournier et al. 2012, Skaug et al. 

2016; https://www.R-project.org/). Model fitment was selected using Akaike information 

criteria [AIC] (Burnham & Anderson 2004). 

2.3 Results 

A total of 244 fish were identified at the 36 qualifying pipe culverts; four species and 

two genus’ were identified (Anguilla spp. and Gobiomorphus spp. were unable to be 

identified to species level and were grouped and treated as one “species”)(Table 2.2). Fish 

were observed upstream from the pipe culvert at 20 sites, downstream from the pipe culvert 

at 31 sites, and were observed both upstream and downstream from the pipe culvert at 15 

sites. Ten of the 16 sites that had no fish present upstream from the culvert had been 

predicted to be impassable prior to fish sampling. 

 

Table 2.2 Fish species collected from 36 sites during the summer of 2012-2013 within exotic forestry 
plantations in the eastern Otago region of New Zealand, organised by occurrence. 

Species Scientific Name Culverts 
Banded kokopu Galaxias fasciatus 17 
Kōaro Galaxias brevipinnis 14 
Brown trout Salmo trutta 8 
Eel Anguilla spp. 8 
Bully Gobiomorphus spp. 5 
Inanga Galaxias maculatus 5 

The first two models revealed that both fish abundance and species richness were 

lower, on average, upstream than downstream from pipe culverts (F1, 70 =6.445, p = 0.013; F1, 

70 = 4.876, p = 0.031). This trend was stronger at sites with impassable pipe culverts (Fig 2.7), 

but was not statistically significant. That is that the relationship between the total number of 

fish observed upstream and downstream of the pipe culvert at passable sites is approximately 
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0.4:1, while the relationship at impassable pipe culverts is weakly negative (F 1, 68 = 0.261, p 

= 0.61). Similarly, the relationship between species richness above and below pipe culverts 

classified as impassable is weakly negative while a positive trend appears for passable pipe 

culverts (F 1, 68 = 2.212, p = 0.14).  

 

 

Fig. 2.7 The a) total number of fish counted (fish abundance) and b) the total number of species counted 
(species richness) upstream from each of 36 (passable and impassable) pipe culverts by the fish abundance or 
species richness observed below the pipe culvert. Hollow circles represent culverts classified as impassable a 
priori. Solid circles represent culverts classified as passable a priori. The solid line represents the relationship 
for pipe culverts classified as passable, while the dashed line represents the relationship for those pipe culverts 

classified as impassable. Responses to the categorical variables “passable / impassable” are presented as a 
continuous variable to show relationships between downstream / upstream reaches within each stream.   
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The best model for local species-specific abundance included the type of pipe culvert 

(passable or impassable), the location (up or downstream), and the species, along with two 

and three way interactions (Table 2.3).  

Table 2.3 Model selection results for models of local species-specific fish abundance listed by the fixed effects, 
in which type represents whether the culvert was predicted impassable and location represents survey position 
upstream or downstream from culvert, with AIC (Akaike information criteria) and ΔAIC (difference between 

model AIC and AIC of the top model). 

 AIC ΔAIC 
Type*Location*Species 768.70 0.00 
Type+Location+Species 770.60 1.90 

Type*Species 773.10 4.40 
Location*Species 794.00 25.30 

Type*Location 798.50 29.80 
 

The model revealed that the interaction between culvert type, location and species 

was not significant (F 1, 480 = 624, p = 0.6818), and the observed patterns in species-specific 

abundance were also not statistically significant (Fig 2.8).  

 
Fig. 2.8 The species-specific fish abundance observed upstream from each of 36 surveyed pipe culverts by the 
species-specific fish abundance observed below the pipe culvert. Hollow circles represent culverts classified as 

impassable a priori. The solid line represents the relationship for culverts classified as passable, while the 
dashed line represents the relationship for those classified as impassable. Responses to the categorical variables 

“passable / impassable” are presented as a continuous variable to show relationships between downstream / 
upstream reaches within each stream. 
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2.4 Discussion 

It was found that just over half the pipe culverts assessed in exotic forestry plantation 

streams were perched at the time of surveys with seven fish groups identified. The observed 

trend was that fish abundance and species richness were reduced upstream of both impassable 

and passable pipe culverts. Broadly, these findings support the consensus that pipe culvert 

installation hinders upstream fish migration, river connectivity, and the abundance, species 

richness and distribution of freshwater fish communities. This result highlights the 

importance of fish-passage-friendly road crossing installation and the upstream limiting effect 

on fish migration of pipe culverts. 

The trend towards lower fish abundance and species richness upstream of the pipe 

culverts (relative to downstream) supports international (Bouska & Paukert 2010; Branco et 

al. 2012) and national evidence (David et al. 2014) that pipe culverts, in general, can be 

barriers to fish migration, regardless of being perched or not. In New Zealand for example, 

uniformly fast water velocities through pipe culverts can prevent native fishes passing 

through those culverts and accessing upstream habitat (Mitchell 1989; Tonkin et al. 2012). 

Although not statistically significant, the species-specific abundance trends showed that 

perched (impassable) pipe culverts may have a greater barrier effect compared to non-

perched (passable) pipe culverts for some native New Zealand fish species. Similar to overall 

fish abundance, for example, the relationship between fish abundance above and below the 

pipe culverts for both kōaro and inanga was positive at passable culverts and weak or 

negative at impassable pipe culverts. Due to the small sample size it is likely not enough data 

was available to statistically detect these trends, however, the trends and supporting 

international (Haro et al. 2004, MacDonald & Davies 2007) and national research (Doehring 

et al. 2011; David & Hamer 2012) do provide compelling evidence that a more thorough 

investigation is warranted, that species-specific interactions exist with pipe culverts, and that 

perched pipe culverts likely have a greater barrier effect for some New Zealand fish species 

than non-perched pipe culverts.  

The large percentage of perched pipe culverts found during this study is not unusual. 

The work of James and Joy (2008) for instance found that the majority [~90%] of in-stream 

structures surveyed in pastoral land in the Manawatu River catchment were box or pipe 

culverts with 66% of all structures being perched to some degree. A similar result was also 

found by Barnes (2004) with 54 in-stream structures being surveyed in the mostly native 
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forested Hunua and Waharau Regional Parks, of which 47 were culverts and 31 [~65%] were 

perched. This evidence reinforces that perching of pipe culverts through poor installation is a 

widespread occurrence, and that considerable stream habitat fragmentation and disruption to 

fish migration and communities has occurred across New Zealand, not only in exotic forestry 

plantations but across many land use types (Stevenson & Baker 2009). 

 Fish surveys of the Mahinerangi catchment did not record the presence of the 

rare Eldon’s galaxias (Galaxias eldoni). Populations of this non-migratory galaxiid species 

are known to inhabit streams that were surveyed (D Jack pers. comms 2011, unreferenced) 

and it is likely some Eldon’s galaxias were mistakenly identified as kōaro which are abundant 

in Lake Mahinerangi and its tributaries (Allibone & McDowall 1997). However, as with the 

New Zealand shortfin and longfin eel, these two galaxiids are both excellent climbers with 

similar morphological features, such as large pectoral and pelvic fins, which aid climbing 

(McDowall 1990). This suggests any negative trends regarding the barrier effect of pipe 

culverts on the upstream migration of kōaro would likely be similar for Eldon’s galaxias, and 

perhaps greater for other galaxiids.  

Although not statistically conclusive, the results of this study lend support to the  

theory that perched pipe culverts act as migration barriers to all galaxiids as kōaro and inanga 

abundance above and below passable pipe culverts shared a positive relationship but shared a 

weak or negative relationship with impassable pipe culverts. In other words kōaro, as the 

most capable galaxiid species at navigating in-stream obstacles (McDowall 1990), had the 

same negative relationship with perched pipe culverts as inanga, which are far less adapted 

and capable of navigating past obstacles during upstream migration (Doehring et al. 2011). 

Ultimately, this strengthens the notion that perched pipe culverts likely limit the upstream 

migration of all the galaxiid species of fishes in New Zealand. 

Brown trout were the only species whose abundance had a positive relationship with 

both impassable and passable pipe culverts. While brown trout may have been present 

upstream prior to culvert installation (and successfully persist above culverts); they are strong 

swimmers and will utilise plunge pools to leap and navigate past perched culverts when 

encountered (Holthe et al. 2005; Baker & Boubée 2006; Solcz 2007). This capability is 

contrary to the majority of New Zealand’s migratory native fish species which are not known 

to leap to navigate in-stream obstacles (Boubée et al. 1999), instead relying on being able to 

climb via wetted margins (McDowall 2000). Surpassing the climbing abilities of these fishes, 
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perched pipe culverts effectively break wetted margins and break upstream connectivity 

(David et al. 2012). Galaxiid and native freshwater fish populations that rely on migration for 

recruitment are thus at greater risk of habitat fragmentation than brown trout due to their 

differing migratory adaptations and life histories (Doehring et al. 2011).  

In this study, 6 of the 16 sites predicted to be impassable had fish present upstream, 

and modelling showed no particular relationship between passable or impassable pipe 

culverts with banded kokopu, Anguilla spp. or Gobiomorphus spp. and so could not account 

for their distribution relative to pipe culverts. A possible explanation for this was observed by 

Barnes (2004) who found that while fish species diversity was similar upstream and 

downstream of perched culverts during surveys, a distinct difference in some species’ age 

structures were observed. Barnes (2004) concluded that a perched culvert may be limiting 

galaxiid upstream immigration thus skewing age structure with larger individuals dominating 

upstream. A likely scenario across New Zealand is that previously installed pipe culverts may 

have overtime eroded the downstream channel, becoming perched to a point where 

immigration was no longer possible but individuals remained up and downstream of that 

perched culvert. Such circumstances would skew age structures and is particularly relevant 

for long lived species such as longfin and shortfin eels (McDowall 2010). Size was not 

assessed in this study, but could have clearly indicated whether migration into the stream 

networks had occurred prior to pipe culvert installation. However, given the longevity of 

longfin eels, it would take many years before population size structure became markedly 

skewed due to limited immigration. 

Overall the findings of this study align with similar research which documents the 

negative effect of culverts on New Zealand freshwater fish species (Boubée et al. 1999; 

Doehring et al. 2011). There were observable differences in fish communities above and 

below pipe culverts which suggest pipe culverts can be a barrier to upstream movement, and 

that barriers to upstream movement can influence the structure of fish communities. While 

this study focused on pipe culverts in exotic forestry plantation road networks, the evidence 

of perched culvert prevalence throughout New Zealand (Boubée et al. 1999) highlights the 

opportunity to restore freshwater fish communities across many land use types by removing 

culverts and migration barriers or modifying them to be fish passage friendly (Barnes 2004; 

James and Joy 2008). Ultimately, results from this study contribute to the growing body of 

knowledge on the migratory requirements of native freshwater fish, the importance of 
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maintaining in-stream connectivity, and the necessity for fish-passage-friendly road crossing 

installation. 

The results from this study also have important management applications for forestry 

plantation road networks and freshwater fish conservation. Firstly, to enhance fish passage, 

conservation managers must work with exotic forestry managers to ensure fish-passage-

friendly road crossings are installed or perched pipe culverts are remediated to ensure fish 

dispersal throughout stream networks in exotic forestry plantations. Secondly, it is also 

evident that perched pipe culvert designs could be used as migration barriers to limit invasive 

fish species migration where necessary [extra design considerations must be made as brown 

trout can navigate perched pipe culverts in some instances (Baker & Boubée 2006)].  Finally, 

conservation managers could use perched barriers or remediation of perched pipe culverts to 

either allow native fish access to historical habitats, or safeguard vulnerable translocated or 

resident populations of threatened native fish (Burford at al. 2009).  
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CHAPTER THREE 
 

The relationship between size, a perched alloy barrier, and the climbing 

success of kōaro (Galaxias brevipinnis) juveniles in laboratory trials. 

3.1 Introduction 

 Worldwide, diadromous fish populations are faced with in-stream barriers as they are 

migrating upstream (Jungwirth et al. 1998; Lasne et al. 2007; MacDonald & Davies 2007). 

These migrating fishes often display physical adaptations which allow them to overcome in-

stream barriers as they seek to migrate to their adult niche habitats upstream (Schoenfuss & 

Blob 2003). Fishes make excellent models for studies identifying relationships between body 

shape and migratory ability in a wide range of circumstances (Wainwright et al. 2002; 

Walker & Westneat 2002; Lauder et al. 2003; Blake 2004; Carroll et al. 2004; Higham et al. 

2005; Blake 2006; Domenici et al. 2008; Blake et al. 2009), and such studies provide 

understanding of the morphologies required for migratory success in in different 

environments (Blob et al. 2010). Often the more highly adapted diadromous fish are to 

navigating obstacles, the more complex or difficult in-stream migration barriers they face 

(Blob et al. 2010).  

The larval stages of several gobiid species, native to Hawaii and other oceanic islands 

(Berrebi et al. 2005), are diadromous and spend several months in saltwater before migrating 

upstream into freshwater habitats as juveniles (Maie et al. 2009). The rivers in Hawaii have 

high elevational origins, fast water flows, powerful discharges and numerous in-stream 

barriers, such as waterfalls, which must be navigated (Maie et al. 2007). Juveniles of gobiid 

species in the Hawaiian Islands use powerburst and inching climbing techniques (Maie et al. 

2009; Schoenfuss & Blob 2003), in conjunction with oral and fused pectoral fin ventral 

suckers to climb the wetted margins of these large in-stream obstacles (Blob et al. 2006). The 

Hawaiian gobies specifically rely on mechanical suction and also the surface tension or 

capillary action of fluid (Gorb 2008) that generates adhesive-like forces between the fish and 

any wetted surface (Baker & Boubée 2006).  The use of wetted margins to climb also avoids 

having to resist the forces of drag in the main flow (Schoenfuss & Blob 2003). Several 

studies have quantified the significance of Hawaiian goby morphological variation, including 
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allometric growth (Maie et al. 2007), to better understand goby climbing technique and its 

influence on their ecology (Maie et al. 2009; Blob et al. 2008). 

New Zealand streams, particularly on the west coast of New Zealand, are similar to 

those streams inhabited by the climbing goby fauna of Hawaii (Maie et al. 2009). Several 

galaxiids of New Zealand also share similarities with the Hawaiian gobiid species; they are 

diadromous and are known for their climbing ability as juveniles (Baker & Hicks 2003; 

Eikaas & McIntosh 2006). Juvenile kōaro (Galaxias brevipinnis) are considered to be the best 

climbers amongst the galaxiids. Kōaro are widespread around New Zealand with some 

juveniles migrating great distances and over large obstacles (McDowall 2003a). Kōaro 

juveniles may also be able  to take advantage of surface tension (Baker & Boubée 2006), by 

utilising their broad ventrally facing pelvic and pectoral fins and under-body surface area to 

adhere to wet surfaces in order to climb wetted margins (McDowall 2003b). In contrast to the 

Hawaiian goby species that use mechanical suction, kōaro are said to utilise the series of 

backward facing callus ridges on their pelvic and pectoral fins to provide extra purchase 

when climbing (McDowall 2003b). McDowall (2003b) also stated that the large pelvic and 

pectoral fins of kōaro juveniles may act as depressors due to water flow when submerged.  

Despite the adept climbing abilities of some New Zealand galaxiid species, various 

man-made barriers have altered the distributions of many galaxiid fish as their physiological 

and behavioural migratory adaptations cannot surpass these obstacles (James & Joy 2008; 

Doehring et al. 2011). Perched road culverts in particular are a barrier to migrating 

diadromous fish species (Kemp & Williams 2008; Burford et al. 2009; Perkin et al. 2010; 

Kilgore et al. 2010) because in most cases, they are impossible to pass, even for the most 

advanced fish climbers (Boubée et al. 1999). Perched culverts are therefore generally 

considered undesirable in terms of species conservation with reductions in habitat size and 

fish dispersal (Warren & Pardew 1998; Cote et al. 2005; Kemp & O’Hanley 2010), especially 

when the genetic and metapopulation dynamics are considered for affected species (Neraas & 

Spruell 2001; Wofford et al. 2005; Bourne et al. 2011). However, perched culverts can also 

act as a barrier to invasive fish which can be beneficial for species of conservation interest 

upstream of culverts (Allibone & McDowall 1997). The responsible use of perched structures 

by freshwater managers has been proven to be a valuable conservation tool (Lavis et al. 

2003). Although with respect to preventing “climbing fish” migrating upstream through the 

use of perched structures, little information or previous cases have been identified and studied 

outside of New Zealand.   



34 
 

Juvenile kōaro have been invading threatened non-migratory galaxiid habitats in 

Otago since the damming of the Waipori River over one hundred years ago (Allibone & 

McDowall 1997). Staff from the Department of Conservation in Otago had been exploring 

the use of perched structures to halt juvenile kōaro migration as when adults they either 

competitively exclude or predate upon dusky galaxias juveniles (Allibone 1999). Early 

attempts to limit kōaro migration have proven to be ineffective (Campbell 2011). Eliminating 

climbing juvenile kōaro migration into non-migratory galaxiid habitats will help protect non-

migratory galaxiid populations which are in decline (Allibone & McDowall 1997).  

While there are several studies (McDowall 1970; McDowall 1990; McDowall 2010) 

describing the excellent climbing abilities and climbing morphology of juvenile kōaro; there 

have been no quantitative trials completed to analyse and compare the variation in juvenile 

morphological climbing traits and styles. Doehring et al. (2011) wrote that there is an absence 

of information on the heights and gradients that New Zealand’s migratory galaxiids can 

traverse, and McDowall (2010) believed that understanding the climbing aptitude of galaxiids 

is important for understanding kōaro ecology. A controlled trial quantifying differences in 

kōaro juvenile size and the possible significance of these differences effecting climbing 

ability and success would be a novel approach to better the ecological understanding of 

kōaro. Research coupled with a controlled trial would also provide valuable insights into the 

design and success of perched barriers at disrupting juvenile kōaro climbing ability in a 

laboratory setting, which could then be translated into a useful conservation tool in the field. 

Armed with the knowledge of the threatened non-migratory galaxiid plight in Otago, 

and the need for a successful climbing fish exclusion tool by the Department of Conservation, 

this study aims to use a controlled laboratory experiment to test a) how factors of size in 

juvenile kōaro effects their climbing ability, and b) to test the concept that a perched barrier 

can stop juvenile kōaro from climbing an artificial weir.  

 

3.2 Methods and materials 

In February 2013, fresh-run transparent kōaro juveniles were sourced from the mouth 

of Mount Burke Creek (1301510.491E, 5061156.841N NZTM), which flows into Lake 

Hawea of the South Island, New Zealand. The juveniles were caught using a Kainga EFM300 

electrofishing machine and a stop net. Approximately 600 juvenile kōaro were collected and 

held in an oxygenated tank containing creek water while being transported back to the 
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laboratory. Transparency of the fish indicated all were fresh recruits into the stream 

(McDowall et al. 1994). Collection on the same day was assumed to ensure that individuals 

were within the same relative stage of development (Blob et al. 2010). The juveniles were 

acclimated for one week after transportation to the laboratory. Kōaro were observed feeding 

and mortality was approximately 1%, indicating that fish were not overly stressed by 

transportation (Schoenfuss & Blob 2003). Due to travel distance, time restraints and the 

seasonality of kōaro migration, only one collection of juveniles took place. 

Climbing ability in relation to body size  

A simulated concrete weir was erected in the laboratory and ‘seasoned’ for 6 weeks 

with living rock to start the nitrogen cycle (bacterial processing of nitrogen excreted by fish) 

within the tank and frequent water changes were made to ensure any chemical traces from 

construction and materials were flushed out, and (Fig 3.1). The simulated weir was made of a 

lower glass tank (500mm x 300mm x 400mm) and a plastic top chamber (300mm x 400mm x 

300mm), connected by a right angled, plaster/sand weir. The “vertical” weir face was 250mm 

wide and 500mm high above the lower tank waterline. The “horizontal” top section of the 

weir was of a ‘flat-bottom V’ shape and was 250mm wide by 300mm deep. The ‘V’ form 

sides were on 45 degree angles and were 200mm high. The ‘V’ form shape allowed a 

controlled and even stream of water to cascade over the weir face. The particular design of 

the weir was used for a number of reasons. Firstly, the weir design was used to imitate a 

‘climbable manmade barrier’ that would likely be found in the field and which could be 

retrofitted with a migration barrier. Secondly, the materials were used to mimic the rough 

nature of rocks as found in a natural setting, and the concrete used in weirs, to provide a 

suitable surface for kōaro to adhere too. Thirdly, the rough nature of the weir surface also 

increased the wetted margins of the weir, which kōaro (McDowall 2003b) and other climbing 

species (Schoenfuss & Blob 2003) use to navigate past fast flowing cascading water. Lastly, 

the V shape of the weir was used to ensure water recirculating down the weir face be kept in 

the middle to provide sufficient wetted margins either side for the kōaro to climb. These weir 

design specifications were to ensure the experiment tested the studies primary objectives. 
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Fig. 3.1 The concrete weir simulation in the laboratory (photo: Josh Tabak) 

 

An aquarium water pump (240v – Hailea HL-BT700) was used to deliver a constant 7 

litres of water per minute (42 gallons per hour) from the lower tank to the top chamber, from 

where the water was recycled and spilled over and down the weir face into the lower tank. A 

‘Gee minnow style’ trap was used to catch kōaro as they navigated over the weir in an 

‘upstream’ direction into the top tank, and to stop them returning to the bottom tank (David et 

al. 2009). A 25mm wide frame was used around the top perimeter of the bottom tank and top 

tank walls to deter kōaro from escaping over the sides of the tank. The recirculating design 

was beneficial as Baker and Hicks (2003) found that kōaro displayed a strong upstream drive 

in their experiments. It was assumed that the flow of water down the weir face would 

increase the likelihood that kōaro climbed the weir during experiments. Both tanks also had 

stones and rocks to provide cover for fish.  

Based on several test runs, and in order to expose all juveniles to the weir in a 

controlled, un-cramped manner, ten replicate seven day trials were conducted. A lighting 

timer was used to keep a diurnal cycle of 12 hours light to dark. Individual fish locations 

were recorded at the conclusion of each trial. Trials ran for seven days to a) ensure ample 
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time exposure of kōaro to the weir and b) to allow time for kōaro to recover from handling. 

Fish were used once in trials as experience can affect performances in experiments (Kemp et 

al. 2009). Thirty fish were used in each trial and were euthanized in ethanol (95%) at the end 

of each trial. Juvenile kōaro total length and weight were measured from specimens’ 

immediately after they had been euthanised in 95% ethanol so as to avoid any shrinkage 

which can occur after long periods of ethanol exposure (Maie et al. 2007). Climbing 

performance was graded as a success or failure depending on kōaro final location at the end 

of the experiment (Blob et al. 2010). Kōaro locations along the simulation were recorded as 

either the top tank (TT) or the bottom tank (BT) (David et al. 2009). Between each trial a 

water change of 90% was made to dilute odours and remove excess nitrogen. The water 

temperature within the simulation setup was monitored weekly during the trial period. 

Fish were held and maintained in a large tank (1500mm x 60mm x 50mm) for the 

duration of this study. Fish were non-selectively caught from this tank using a scoop net to 

ensure a random and broad variation in size for each trial. Over the duration of the 

experiment, being 15 weeks, fish size was expected to increase, which would give a wider 

range of sizes to trial. Kōaro juvenile size ranged from 32mm to 43mm total length (TL) 

when collected from Mount Burke creek to between 39 and 52mm TL by the end of the trials. 

They were fed using a small sized commercial fish feed daily to ensure they had sufficient 

energy levels to climb. Their tank was cleaned weekly. The freshwater in the tank was mixed 

with 5% seawater to help prevent microbial infections. On two occasions ‘Wunder White 

Spot Cure’ was used to control the spread of white spot infection. The fish used in each trial 

were caught randomly from this tank using a small scoop net. Ambient temperatures 

remained constant throughout the experiments. 

  

Perched barrier 

The same concrete weir setup and conditions, as pictured and described in the section 

above were used in this trial. This was because a) kōaro had shown that the weir was 

navigable and b) this allowed a controlled comparison of climbing success results against the 

effects a perched alloy barrier may have on the climbing success of kōaro. The perched 

barrier climbing experiment and non-perched barrier climbing experiment ran in alternate 

weeks. 

The perched alloy barrier in question was constructed using a 1mm thick aluminium 

plate. The 300mm wide aluminium barrier lip (150mm deep) was centralised and angled 120 
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degrees downwards from the vertical weir face. The barrier was installed 300mm above the 

water level in the bottom tank. This was to deter kōaro from leaping onto the barrier lip. The 

‘V’ form weir made for a controlled and even water flow over the barrier lip. A 0.5mm gap 

between the alloy barrier and the weir allowed a slight stream of water to wet the weir face 

beneath the barrier lip. This was to simulate a ‘splash zone’ to ensure the barrier and weir was 

entirely wetted. Five replicate seven day long trials were to be completed with the barrier 

installed. Twenty fish were used per trial. Individual fish were used once and euthanized in 

ethanol (95%) before total length and weight measurement. 

 

 
Fig. 3.2 Alloy barrier installed on the concrete weir (photo: Josh Tabak) 

 

Data analysis methods 

For the non-barrier trials, the effects of weight and total length on the probability of 

success of juvenile kōaro climbers was analysed separately using logistic regression models 

(Zar 1999) as they are likely correlated. To compare the simple logistic regression results of 

successful and unsuccessful kōaro climbers with more complex models, a model with weight 

and total length was analysed, as well as a model with weight, total length and an interaction 
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term (weight interaction with total length) (Zar 1999). The weight and length variables were 

centered prior to final model fitting to account for high multicollinearity as indicated by high 

variance inflation factors (weight VIF = 10.154, total length VIF = 10.154) that were initially 

generated. Both the more complex models were tested using a chi-squared test for best fit and 

a probability of success interaction plot of weight and total length was produced. Alpha (α) 

was set at 0.05 and data were analysed in program R (https://www.R-project.org/). 

The non-barrier trials were used as the control for the barrier fitted trials. The effect of 

the perched barrier on climbing success was tested against non-barrier climbing success using 

a chi-squared test of association (Baker and Hicks 2003). Baker and Hicks (2003) used a 

similar chi-square analysis to test odour preference significance in Inanga (Galaxias 

maculatus) and kōaro during laboratory experiments.  

The experiments relied upon a primary assumption; that all kōaro juveniles in this 

experiment attempted to climb and navigate the weir and either failed or succeeded in 

navigating above the weir. As has been used elsewhere (Holthe et al. 2005), video footage 

was taken during several trials to confirm if fish attempted, and were unable to navigate past 

and above the weir.  

 

3.3 Results 

In total 366 kōaro juveniles were trialled in the weir simulation experiment. Of the 

303 juvenile kōaro placed in the bottom tank of the experiment without the perched barrier 

fitted; only 82 were successful at navigating the weir over 10 different trial weeks. Within 

those ten trials, success rates of juvenile kōaro who navigated the weir varied from 17% to 

40%, with an overall average of 27%. Both successful and unsuccessful attempts to navigate 

the weir were captured on video1.  

Logistic regression models (1 and 2) demonstrate that there was a significant 

difference in the total length (Fig 3.3) and weight (Fig 3.4) of successful versus unsuccessful 

juvenile kōaro climbers during the non-barrier trials; with larger juvenile kōaro being more 

likely to successfully navigate the barrier when total length and weight were tested 

independently of each other (Table 3.1).  

                                                 
 

1 “Juvenile kōaro (Galaxias brevipinnis) climbing success” - https://youtu.be/lup5_GXuXz0  

https://youtu.be/lup5_GXuXz0
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Fig. 3.3 The difference in total length between unsuccessful and successful kōaro juveniles when attempting to 
navigate a simulated weir under laboratory conditions. 

 

Model 3 (Table 3.1) suggests the effects of weight and total length on climbing 

success is significant (weight p = .0038, total length p = 0.0001). Model 4 suggests that only 

total length and the interaction between weight and total length are statistically significant 

(Table 3.1).  

Table 3.1 Logistic regression model results showing the significance that total length, weight, and the weight 
interaction with total length term had for kōaro juveniles during a weir simulation in laboratory conditions. 
Positive coefficients indicate a positive correlation between the variable and the likelihood of successfully 

navigating the weir. 

Logistic Regression Model Factor Coefficient p-value 

1  Total length 0.11549     <1e-3 

2  Weight 2.6098      0.008 

3 Weight -10.0345      0.0038 

 Total length 0.3993      0.0001 

4 Weight 7.2138 0.0538     

 Total length 0.3489     0.0012 

 Weight*Total length -0.6605      0.0285 
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Fig. 3.4 The difference in weight between unsuccessful and successful kōaro juveniles when attempting to 
navigate a simulated weir under laboratory conditions. 

 

 A Chi-squared test showed that the fourth model had a better fit (p = 0.0231, Table 

3.2) than the third model. The fourth model was then used to produce a probability of success 

interaction plot of weight and total length for juvenile kōaro (Fig 3.5). 

 
Table 3.2 Analysis of deviance table. 

Model Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

3 300 329.30    

4 299 324.13 1 5.1613 0.0231 

 

The plot shows the predicted impact of weight for different total lengths of juvenile 

kōaro. It indicates that given a particular total length of a juvenile kōaro, a larger weight 

reduces the chances of that fish navigating the weir. The predictions of the interaction plot are 

indicative only because of the high level of multicollinearity between weight and total length. 
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Fig. 3.5 Interaction plot predicting the climbing success of juvenile kōaro with different weights and total 

lengths. 

The relationship between weight, total length and climbing success for juvenile kōaro 

can also be visualised in a scatterplot of weight versus total length (Fig 3.6). Several long, 

heavy kōaro failed to navigate the weir whilst long, lighter kōaro are successful. 

 

 

Fig. 3.6 Scatterplot showing the relationship between juvenile kōaro weight, total length and climbing success 
when navigating an experimental weir. 
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A total of 63 kōaro juveniles were used in trials with the perched barrier fitted to the 

experimental weir. In contrast to the non-barrier trials, no juvenile kōaro were successful in 

reaching the upper tank when the perched barrier was fitted (Table 3.3). It was decided after 

three trials to discontinue the barrier experiment as it was apparent that no fish were going to 

be able to navigate past the barrier. A chi-squared test revealed significantly fewer juvenile 

kōaro were able to navigate the weir when the barrier was fitted (p <1e-3).  

Table 3.3 Chi-squared test results showing kōaro climbing success in the absence and presence of a perched 
barrier. 

 Failed Success Total 

No Barrier 221 82 303 

Barrier 63 0 63 

Total 284 82 366 

 

Video observation revealed two climbing styles. Kōaro juveniles were seen to climb 

in rapid bursts and then rest on the wetted margin of the weir face in between bursts. Kōaro 

also demonstrated slower climbing motions to move forward while resting on the wetted 

margin. On several occasions, rapid burst climbers would swerve into the main flow of the 

water in the centre of the weir face and were forced backward before swerving onto the 

wetted margin to rest. Slow climbing appeared to occur only on the wetted margins and 

where the 90 degree angle at the top of the vertical weir face joined the horizontal weir 

section leading to the top tank. 

 

3.4 Discussion 

Climbing ability 

The results of this experiment demonstrate that juvenile kōaro climbing ability is 

influenced by morphology. Longer individuals with lesser body weight were more successful 

at navigating the weir relative to individuals that were as long, but heavier. The longer and 

lighter individuals may have been better equipped to navigate the weir because of a larger 

surface area to volume ratio (relative to the heavier unsuccessful individuals). Successful 

juvenile kōaro may have had a larger surface area perhaps due to larger pelvic or pectoral 

fins, increasing their ability to stay attached against the weir face when climbing. Linton et al. 

(2007) support this notion as they noted climbing eels benefit from a larger surface area to 
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volume ratio increasing adhesive surface tension forces. Lujan and Conway (2015) also 

suggest that large ventrally flat shaped paired fins can maximise mechanical substrate 

contact. Larger paired fins could also increase the hydrodynamic down force of kōaro in 

flowing water (McDowall 2003b) 

Compounding the benefits of comparatively larger pelvic and pectoral fins on 

climbing success is the associated increase in the size of the callused ridges on the fin 

(McDowall 2003b). These ridges are found only on the pectoral and pelvic fins of the 

climbing galaxiids, and are much reduced in non-climbing galaxiids, suggesting they play a 

significant role in climbing (McDowall 2003b). An increase in the size or area of these ridges 

would increase the overall ventral pelvic and pectoral fin surface area. In light of this it is 

likely that juvenile kōaro  equipped with larger paired fins, have an increased potential for 

hydrodynamic down force, mechanical traction and capillary adhesion on substrates when 

climbing wetted margins or in flowing water. Such an advantage would certainly increase 

migratory and climbing ability and the chances of success when navigating an in-stream 

obstacle. 

The success of juvenile kōaro climbers may have also been due, in part, to 

behavioural differences and approaches to navigating the weir. Video footage of juvenile 

kōaro climbing technique showed various combinations of distinct phases in climbing spells 

alongside periods of resting. Firstly juvenile kōaro juveniles demonstrated the ‘powerburst’ 

technique, similar to that described by Blob et al. (2006) when studying the specialised 

climbing behaviour of the Hawaiian gobiid fishes Awaous guamensis and Lentipes concolor. 

The powerburst technique involves fish using their pectoral (and pelvic in the case of kōaro) 

fins to push off surfaces as an initial force to begin a burst of axial undulation. Baker and 

Boubée (2006) described this climbing technique as a “wriggle” type movement when 

describing the climbing of banded kokopu and kōaro. The second climbing phase juvenile 

kōaro demonstrated was a slower version of this technique which could be described as 

‘edging’. The kōaro generated leverage by using their pelvic and pectoral fins to create slow 

deliberate axial undulations. Many combinations of powerburst climbing spells in and beside 

the main flow were observed along with spells of edging and re-adjusting along the wetted 

margins. Resting for a long duration during climbing has been strongly correlated with 

climbing success (Weinstein & Full 1998 - 1999; Edwards & Gleeson 2001) because rest 

periods allow for fatigue recovery, removal of performance reducing compounds, and 

restoration of metabolic fuels (Weinstein & Full 2000; Allen & Westerblad 2001).  
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Video footage observation showed kōaro juveniles struggling to powerburst climb in 

the main flow of the weir; the main flow pushing kōaro back down the weir face1. While a 

lack of rest time may account for kōaro juveniles being pushed back, other selective 

environmental forces in the form of drag and gravity can influence climbing success and 

ultimately morphology and behaviour (Maie et al. 2007). Selection often favours 

morphological features such as fusiform body shapes or lighter bodies, for example, which 

help to minimise water drag (Lujan & Conway 2015) and minimise the effects of gravity 

(Maie et al. 2007). In this study, the longer successful juvenile kōaro climbers may have been 

more hydrodynamically suited to climbing compared to the shorter heavier juveniles who 

were unsuccessful at climbing. Locomotor behaviours also interact with these environmental 

forces. Powerburst climbers for example, where climbing primarily occurs along the edges of 

water currents, are more likely to be exposed to water drag than climbers who use wetted 

margins outside the reach of flowing water (Blob et al. 2006) which eliminates water flow 

force and drag (Schoenfuss & Blob 2003). The larger successful climbers may have been 

more efficient powerburst climbers along with being better equipped to utilise surface tension 

to minimise energy use and recovery time.  

Fish are met by different environmental challenges simply as a function of their own 

growth (Maie et al. 2007). With regards to climbing fishes, pectoral fins were shown to grow 

allometrically in area and length relative to body length and mass in the Hawaiian goby S. 

stimpsoni, which form territories in pools upstream instead of continuously migrating (Maie 

et al. 2007). It is likely kōaro display some level of allometric growth during their migrations 

which may influence their climbing aptitude as they age; suggesting that allometric growth 

and general increases in size are likely to place an age or size limit on kōaro climbing ability. 

A decrease in climbing aptitude could thus provide a likely explanation for territory 

formation in climbing galaxiid adults.    

While the experiment highlighted the effects of size on climbing success, the result is 

only indicative of the specific physical demands the experimental weir design placed on the 

kōaro juveniles in this trial. In a natural setting, physical demands may differ. In streams,  the 

body shape differences of juvenile kōaro such as length, narrowness, flatness, pelvic and 

pectoral fin shape, size and callus ridges are likely to influence their ability to climb different 

                                                 
 

1 “Juvenile kōaro (Galaxias brevipinnis) climbing” -  https://youtu.be/PPUU8wxOfnA 

https://youtu.be/PPUU8wxOfnA
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obstacles based on the local conditions such as substrate type, water velocity and wetted 

margin type (Blob et al. 2008; Blob et al. 2010).  

Perched barrier 

Perched migration barriers have been successfully used by conservation managers 

across the Great Lakes region of the United States (Lavis et al. 2003). These perched 

migration barriers, which create a vertical drop of 30cm, overcome the behavioural and 

physical limits of lamprey climbing ability during migration events (Lavis et al. 2003). 

Similarly, the results of the trials in this study clearly demonstrate that an appropriately 

designed perched barrier can block the upstream migration of juvenile kōaro and could 

therefore be used to a) remediate weirs that represent likely barriers within the natural habitat 

of kōaro (and other climbing galaxiids), and b) to block the upstream migration of kōaro into 

streams sustaining populations of threatened non-migratory Galaxias species.  

The perched aluminium barrier used in these trials exceeded the physical and 

behavioural limits of juvenile kōaro climbing ability, blocking their upstream migration. 

Baker and Boubée (2006) found that kōaro climb by ensuring their fins keep constant contact 

with the substrate. However, the design of the thin perched barrier lip effectively breaks the 

contact of juvenile kōaro fins and body surface area with the substrate when trying to 

navigate around the 360 degree angle of the lip. The break in contact is a similar observation 

to that of Jellyman (1977) who noted that climbing eel elvers in New Zealand could not pass 

over surfaces that had large breaks in them, or where a substantial break in contact between 

the substrate and eel body surface occurred. Video observation of the weir experiment 

showed juvenile kōaro struggled to maintain body and fin contact with the weir (where the 

vertical face met the top horizontal section of the weir at a 90 degree angle) being pushed 

backward by the water flow. The perched aluminium barrier experiment therefore highlights 

the potential for such a perched barrier to prevent juvenile kōaro climbing. Perched barriers 

may therefore be a potential conservation tool that can be used to halt kōaro juvenile 

migration into streams beyond their natural range.  

Future research 

Extreme environments impart severe selective forces that govern the physiological 

performance limits of individuals (Waterman 1999 - 2001), and this is particularly the case 

for climbing fish (Lujan & Conway 2015). Navigating waterfalls and difficult in-stream 

barriers exerts strong selective forces upon migrating Hawaiian goby juveniles, for example, 
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limiting the upstream distance they can travel and habitats they can access in streams (Blob et 

al. 2006). Constant environmental selective pressures that govern juvenile kōaro migration 

combined with the findings of the experiment suggest intraspecific variation in individual 

body types may also influence the abilities of some juvenile kōaro to access certain stream 

habitats. McDowall (2010) referred extensively in his book to the importance of life history, 

as the greatest driver of non-diadromous galaxiid speciation in New Zealand; but could 

intraspecific variation in climbing ability of a galaxiid common ancestor have contributed at 

some level to this process? This is a very complex and difficult question to answer, but as 

McDowall (2010) suggested, a greater understanding of galaxiid climbing ability and limits 

will elucidate more details regarding kōaro ecology. 

The climbing success experiment relied upon basic and unsophisticated 

representations of juvenile kōaro morphology by testing total length, weight, and the 

interaction of total length and weight. Other approaches to testing climbing ability, such as 

digitally photographing lateral and ventral views of kōaro juveniles while climbing, may help 

to determine more specific morphological traits that influence juvenile kōaro climbing 

success -such as pectoral and pelvic fin size, and specific surface area ratios (Blob et al. 

2010). Schoenfuss and Blob (2003) and Kemp et al. (2009) described methods to film and 

photograph fish climbing and locomotor kinematics using clear plexiglass. Recent 

photographic work by Ingram and Bennington (2018) has shown modest body shape 

differences between lake and stream populations of kōaro using morphometric measurement 

analysis of body shape. Perhaps a similar method could be used to assess galaxiid climbing 

morphology and behaviour with respect to size and age in more detail. Baker (2003) has 

already undertaken novel trials in this field by studying two New Zealand diadromous fish 

species and finding that the age and size of the common bully (Gobiomorphus cotidianus) 

and inanga (Galaxias maculatus) influenced their success when attempting to navigate 

through different weir designs. Testing the maximum size of juvenile kōaro climbing success 

may also be insightful given that potential allometric growth changes in kōaro may be similar 

to the processes seen in Hawaiian gobiid species’ which limits their adult territories and 

shapes their ecology (Maie et al. 2007).  

Conclusions 

Climbing ability in juvenile kōaro appears to be influenced by intraspecific variation 

in juvenile kōaro body size and behaviour. Morphological differences that exploit surface 

tension with differing degrees of success perhaps influence juvenile kōaro climbing ability. 
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Differences in pelvic and pectoral fin size (surface area) and callus ridge rays for example 

may improve capillary adhesion to surfaces and impart greater hydrodynamic downforce 

when climbing. Differences in individual climbing style, resting behaviour to minimise 

energy loss, and body shape drag efficiency may also affect individual climbing ability. 

Increasing juvenile kōaro age and allometric growth during migration is also likely to impact 

on climbing ability, performance and final dispersal of adult populations.  

The success of the perched aluminium barrier at halting kōaro from climbing 

introduces a possible new isolation concept to be explored by conservation managers for 

controlling invasive climbing fish in New Zealand. A successful perched aluminium barrier 

in the field would allow conservation mangers to protect rare non-migratory galaxiids within 

New Zealand from migratory invaders. 
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CHAPTER FOUR 

 

Assessment of a perched migration barrier as a conservation tool: 

separating dusky galaxias (Galaxias pullus) from the invasive kōaro 

(Galaxias brevipinnis) in a Waipori River tributary. 

4.1 Introduction 

New Zealand's flora and fauna have evolved alongside a turbulent geological history 

(Wallis & Trewick 2009). Native freshwater fishes, bound by water, have been subjected in 

part to several geological processes as uplift and erosion shapes where and how water flows 

across the land (Craw 2013; Waters & Wallis 2000). New Zealand's native galaxiid fishes in 

particular display differing life histories (McDowall 1990). The life history and ecology of 

isolated non-migratory galaxias are at the mercy of changes in water flow, exposed to periods 

of riverine “inter and dis” connectivity (Waters et al. 2006).  

The extent of isolated non-migratory galaxias forms are still being revealed today. For 

example, the once overarching description of the common river galaxias (Galaxias vulgaris) 

in the South Island of New Zealand (Allibone & McDowall 1997) has now, through genetic 

analysis and morphological comparison, been divided into the Galaxias vulgaris species 

complex which describes several distinct non-migratory galaxias species (Allibone et al. 

1996; Waters et al. 2010). Two galaxias of the vulgaris complex (Allibone & Townsend 

1997), Eldon’s galaxias (Galaxias eldoni) and Dusky galaxias (Galaxias pullus) described in 

1996 (McDowall & Wallis 1996), are confined only to eastern Otago (McDowall 2010). 

Dusky galaxias and Eldon’s galaxias are present in the Waipori River catchment, with 

smaller populations scattered throughout the upper tributaries of the Tuapeka, Waitahuna and 

Taieri Rivers (McDowall 2000-2010). Jones and Closs (2016a, 2016b) more recently have 

described the early life history traits, dispersal mechanisms, metapopulation structure and 

threats to these upland galaxiid species. 

Humans have also played a hand in governing how, where and when water flows 

across the land. Engineering feats to redirect rivers and the building of dams for hydropower 

has seen many natural river catchments altered. Lake Mahinerangi, as a prime example, was 

formed following movements by the Dunedin City Council beginning in 1907 to dam the 

Waipori River to generate electricity (Beeche 1950). McDowall and Allibone (1994) 
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suggested that the impoundment of the Waipori River had led to ecological change in the 

upper catchment. McDowall and Allibone (1994) reasoned that new stream invaders such as 

brown trout (Salmo trutta) and particularly kōaro (Galaxias brevipinnis), a native fish which 

were never very abundant in the upper Waipori River catchment, had been encroaching upon 

non-migratory galaxias habitat in headwater streams. 

 Kōaro are usually amphidromous, breeding and laying eggs in freshwater habitats, 

with larval fish migrating out to sea for several months before migrating back to freshwater 

as juveniles (McDowall et al. 1994). However, amphidromy in kōaro is facultative, and large 

freshwater bodies can serve as nursery habitats for young (McDowall 1998). The formation 

of Lake Mahinerangi gave kōaro a recruitment site 40 kilometres inland (McDowall 1998). 

From here juvenile kōaro could begin to migrate upstream, further than ever before, into the 

headwaters of the Waipori River catchment (McDowall 1998; Ravenscroft 2006). Allibone 

and McDowall (1997) highlighted the threat of kōaro invasion on dusky galaxias populations. 

Kōaro are suggested to predate upon and/or competitively exclude non-migratory galaxias, 

and are one of the likely reasons for dusky galaxias decline in the upper Waipori River 

catchment (Allibone 1999).  Kōaro also have much higher fecundity and recruitment rates 

than dusky galaxias, at least in streams close to downstream impoundments (Jones & Closs 

2016b).  

McDowall and Allibone (1994) first proposed dusky galaxias populations could be 

protected through the use of perched barriers. Allibone and McDowall (1997) later detailed 

the extent of at-risk dusky galaxias populations in the upper Waipori River catchment that 

would benefit from conservation management. The Forest Research Institute had previously 

installed hydrological research weirs (Fahey & Watson 1991) where two dusky galaxias 

populations had been identified in two adjacent tributaries of the upper Waipori River 

catchment. These structures provided the platform for conservation efforts that started in 

1998 to try and stop kōaro recruitment into both tributaries by retrofitting short lengths of 

railway iron to act as migration barriers (Ravenscroft 2006). The Department of Conservation 

(DOC) hypothesised these measures would help reduce the invasion pressure of kōaro on 

these vulnerable dusky galaxias populations.  

Allibone and Barrier (2004) wrote the “New Zealand non-migratory galaxiid fishes 

recovery plan 2003-2013” for the DOC years after these early dusky galaxias conservation 

efforts had been made. As a statement of intentions and strategic guidance for freshwater 
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conservancy teams, the new recovery plan laid out broad goals, specific actions and 

objectives to conserve at-risk non-migratory galaxiid populations. The dusky galaxias, 

labelled as conservation dependant in 2002 (Hitchmough 2002), featured prominently in the 

recovery plan. The plan stated that: 1) as key dusky galaxias sites, the tributaries were to be 

protected from kōaro invasion by assessing, maintaining or improving in-stream barriers, and 

2) through the continuation of the DOC kōaro removal project which began in 2002 

(Campbell 2011).  

Conservation managers have successfully used isolation management in streams 

internationally to control invasive fish migrations (Novinger & Rahel 2003). Isolation 

management involves migration barrier installations followed by invasive species removal 

and then native species re-colonisation (Rahel 2004). Fausch et al. (2009) highlights barriers 

to invasive fish species are often critical to the survival of headwater fish species, which 

usually lack competitors and predators. For instance, at-risk native cutthroat trout 

(Oncorhynchus clarki) populations in headwater streams of Wyoming were being isolated 

from competition with other invasive trout species, using migration barrier installations 

(Kruse et al. 2001). Rahel (2004) suggested repurposing natural and manmade structures 

within catchments as migration barriers, on a case-by-case basis, to get the best isolation 

management conservation outcomes possible for afflicted native species.  

Access issues meant a comprehensive electrofishing programme was conducted in 

only one of the dusky galaxias tributaries (Campbell 2011). Electrofishing surveys showed 

that the railway iron barrier did not halt juvenile kōaro recruitment. This prompted the DOC 

to trial a stainless steel migration barrier design in 2008. However, continued surveys after its 

installation showed this design also did not halt juvenile kōaro recruitment. Discussions with 

the DOC Dunedin suggested another new migration barrier design was needed to isolate the 

dusky galaxias population. 

Perched culverts are known to be effective barriers to diadromous galaxiid migration 

(Boubée et al. 1999) and perched migration barriers have been used successfully in the 

United States to halt diadromous migrations of invasive climbing lamprey (Lavis et al 2013). 

In light of the need for improved conservation outcomes for the endangered dusky galaxias, 

this chapter aims to trial a new perched migration barrier design as an isolation management 

tool. The objective of the trial is to examine if the new perched migration barrier design can 

halt juvenile kōaro recruitment past a research weir in order to isolate the dusky galaxias 
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population living above. This chapter will also evaluate the existing migration barriers used 

by the DOC, and explain the design and installation of the new perched migration barrier.  

 

4.2 Methods and materials 

Study location 

In 1981, the Forest Research Institute built two hydrological research weirs in the 

upper Waipori River catchment to study water discharge differences between a native tussock 

tributary and an adjacent tributary that was to be planted in pines (Fahey & Watson 1991). 

The tributaries have nearly identically sized catchments and are typical of dusky galaxias 

habitat. The tributaries consist of first and second order streams around 1m in width, with 

alluvium and quartzo-feldpathic schist substrates (Campbell 2011). This chapter focuses on 

the native tussock tributary where the DOC chose to conduct electrofishing surveys and 

migration barrier trials. The DOC continues to monitor the kōaro and dusky galaxias 

populations in the tributary (Fig 4.1).  

 

Fig. 4.1 A map that pictures the location of two research weirs (~480m above sea level) installed by the Forest 
Research Institute on two tributaries that drain into the Waipori River. The dusky galaxias population in 

tributary G1 is monitored by the DOC and is where migration barrier trials have occurred. The contour lines 
depict the elevations of typical dusky galaxias habitat. (Map adapted from Fahey and Watson 1991)  
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Perched migration barrier design 

The new perched migration barrier (Fig 4.2) was custom made in three sections using 

3mm thick aluminium sheets. The cost to have this migration barrier custom manufactured by 

Otago Sheetmetal and Engineering Ltd was $251.85 (including G.S.T).  Each section of the 

migration barrier was formed into a perched lip and backing plate by longitudinally bending 

the 225mm wide aluminium sheets to form a 120 degree internal angle. The perched lip being 

175mm wide and the backing plate 50mm high. The lip of each section was braced against 

the backing plate using triangular supports welded into place. The backing plate was drilled 

with ten evenly spaced 10mm holes for use when fixing to the concrete weir. The middle 

section was 3m in length with four evenly spaced braces; the two end braces being drilled 

with two holes each to act as flanges for joining the end sections. The left and right end 

sections had drilled braces acting as flanges to join flush with the middle section. The left and 

right sections equipped with end caps that were 175mm high and 175mm wide. Beyond the 

end cap the lip extends by 100mm. Overall length of the barrier when assembled was 5.5 

metres. 

 

 
Fig. 4.2 Schematic drawing of the aluminium migration barrier and its dimensions. 
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Perched migration barrier installation 

The new migration barrier was installed on the 22nd February 2013 (Fig 4.3). The 

three sections were transported to site and bolted together with aluminium bolts. A black 

bitumen based sealer called “Sika Blackseal – 1” was used between the joining flanges. The 

new barrier was placed as high as possible on the weir face without the water landing on the 

lip (approx. 600mm above the splash pad). The barrier was kept level along its length and 

was fixed to the weir using 10mm x 100mm galvanised “Ramset Dynabolts”. The concrete 

weir face was drilled using a 10mm “Irwin” masonry bit. The barrier backing plate was 

sealed against the concrete weir using “Sika Blackseal – 1”, except where the concrete was 

wet. A special two part epoxy designed for underwater application, called “Manus Bond Flex 

Weld 15” (purchased from Trademax in Dunedin), was used to seal behind and over the 

barrier backing plate where the concrete was wet. The barrier was monitored for two hours 

after installation then inspected one week later.  

 

 
Fig. 4.3 A new perched migration barrier design to stop climbing juvenile kōaro (photo: Josh Tabak) 

 

Electrofishing surveys and kōaro relocation 

This chapter compares DOC permanent monitoring site (PMS) data (2005-2012) and 

relocation data (2002-2012) pre and post the new migration barrier installation in 2013. Four 

electrofishing surveys were completed post barrier installation in 2013 (2014-2017) during 

the month of February. The sampling method employed by the DOC included the use of a 

“Kainga EFM3000” backpack electrofishing machine, by an experienced operator, to sweep 

3m lengths of stream bed upstream of a 2mm mesh screen net held submerged to collect fish 

(Campbell 2011). Sections of stream over 1.5m wide had both margins fished. The set PMS 

covered three 50m reaches that were all fished 2 to 4 times during annual sampling trips. 
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Sampling sites were considered to be properly fished when a pass of the reach returned at 

least 90% less fish than the first pass. Fish were collected during each pass and kept in 

buckets before being measured for length and weight. Dusky galaxias were returned to the 

PMS reach where they had been collected while kōaro were relocated to below the research 

weir. Further kōaro capture and relocation work was completed alongside PMS sampling 

over the first kilometre of the stream above the research weir. Kōaro equal to or less than 

70mm in length were classed as juveniles (O’Connor & Koehn 1998) and a dusky galaxias 

juvenile is defined as being equal to or less than 55mm in length (Cadwallader 1975) for the 

purposes of this study.  

Sub-adult dusky galaxias can be difficult to differentiate from kōaro to the untrained 

eye. The most reliable method of distinction is to undertake principal tail fin ray counts 

(McDowall 2000), but this is difficult in the field (Allibone & McDowall 1997). During the 

electrofishing surveys identification of dusky galaxias relied on experienced DOC staff 

familiar with the body shape, colouration and patterning unique to dusky galaxias (Allibone 

& McDowall 1997, McDowall 2000).  

Electrofishing survey effort varied noticeably since surveys began, from as low as 68 

minutes effort in 2010 to 525 minutes effort in 2011. The timing of electrofishing surveys 

also varied each year; with surveys taking place between the months September and May.  

Data analysis methods 

In order to make more informed conclusions about recruitment and population sizes, 

this study examined kōaro and dusky galaxias abundance counts, fish lengths, and 

electrofishing effort of fish surveys, pre and post the new migration barrier installation in 

2013.  To visually compare any changes in captured kōaro and dusky galaxias length, pre and 

post barrier installation, frequency histograms were first produced (Allibone & McDowall 

1997). Linear models were then used for kōaro and dusky galaxias separately to examine 

captured fish lengths with year as a co-variate and the barrier installation in 2013 as the 

intervention (Quinn & Keough 2002). Generalised linear models (GLM) were then used to 

examine captured kōaro and dusky galaxias abundance counts separately, pre and post barrier 

installation, by comparing yearly captured fish counts while accounting for electrofishing 

effort (Hilbe 2011). Model selection and fitting was performed using program R (R Core 

Team 2019; https://www.R-project.org/). Negative Binomial GLM’s were selected based on 

Akaike information criteria [AIC] (Burnham & Anderson 2004). 



62 
 

4.3 Results 

By February 2017, no juvenile kōaro had been caught upstream of the new migration 

barrier post installation (Fig 4.4). This follows 15 years of successful juvenile kōaro 

navigation past the weir during which time the railway iron and stainless steel barriers 

previously installed by the DOC were fitted. Prior to the new migration barrier installation, 

585 kōaro were measured and 340 dusky galaxias were measured. Since the new migration 

barrier was installed, 33 kōaro and 105 dusky galaxias have been caught upstream [by 

February 2017] (Fig 4.4). 

Kōaro average size upstream of the barrier increased to 172mm in 2017 which is the 

largest average size since sampling began in 2002 (Fig 4.4). There has been a significant 

increase in the length of kōaro captured upstream since the new perched migration barrier 

was installed in 2013 (P < 1e-3). The smallest captured kōaro upstream, post new barrier 

installation, was 87mm, caught in 2016. Prior to the new barrier installation, the smallest 

kōaro captured upstream was 41mm in late January 2008; three other kōaro juveniles less 

than 50mm were also caught upstream during late January surveys pre 2013 (Fig 4.4).  

Juvenile dusky galaxias have been caught upstream pre and post the new migration 

barrier installation (Fig 4.4), and there has been no significant change in dusky galaxias 

length post installation (P = 0.133). The average size of upstream captured dusky galaxias 

fluctuated yearly between 61 - 90mm (range of 29mm) pre the new migration barrier 

installation, and has reduced to 59 - and 69mm (range of 10mm) post installation. This 

difference was not statistically significant. 

The GLM analyses show that there has been a significant reduction in the number of 

kōaro caught upstream per year post the new migration barrier installation (P = 0.00132), 

while no significant change in the number of dusky galaxias captured upstream per year was 

observed post installation (P = 0.703).  
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4.4 Discussion 

As at 1st February 2017, no juvenile kōaro less than 70mm have been found upstream 

of the new migration barrier which suggests kōaro immigration past the weir has been halted. 

The new perched migration barrier design and its method of installation appear to be effective 

and its success strengthens speculation about the migratory kōaro and resident dusky galaxias 

populations above the barrier.  

The capture rate of kōaro following installation of the new migration barrier has fallen 

to its lowest level since the DOC electrofishing and relocation programme began, with the 

average size of individuals increasing to its largest length (Fig 4.4). Similar results have been 

seen by Thompson and Rahel (1998) who used electrofishing to remove invasive brook char 

which significantly reduced their numbers over several years. The kōaro being caught above 

the barrier are probably larger residents that have evaded capture since electrofishing surveys 

began. It is expected that the average size of kōaro being caught upstream of the barrier will 

continue to increase each year as the population ages without recruitment.  

The smallest kōaro caught in electrofishing surveys post the new barrier installation 

was 87mm; caught on the 2nd of May 2016. The age of this individual was unknown; 

however, sizes of immigrating juvenile kōaro prior to the new migration barrier trial and the 

growth rates of non-migratory galaxias suggest its presence upstream of the weir before 

barrier installation. Juvenile kōaro migration was observed in the focal tributary during the 

months of January and February with individuals less than 50mm long and as small as 41mm 

being recorded upstream (Department of Conservation unpublished data). Making assertions 

about landlocked kōaro growth rates is difficult as this information is unknown, but higher 

altitude streams often have reduced water temperatures (McDowall 2010) typically 

correlating with a decrease in stream productivity and growth rate (O’Connor & Koehn 1998; 

Jones & Closs 2016a). Low temperatures were apparent during electrofishing surveys, with 

January water temperatures averaging 10.95 degrees from 2008 – 2012 (Department of 

Conservation unpublished data). Dusky galaxias growth data from long term DOC fish 

recapture tagging, has shown juvenile dusky galaxias growth rates vary considerably in a 

proximate high altitude tributary (Ravenscroft et al. 2015), from as low as 3mm per year to 

23mm per year (averaging 12.8mm). Considering the juvenile growth data of dusky galaxias, 

as a close genetic relative of kōaro (Waters et al. 2010), and noting the local stream 

temperatures and productivity, the 87mm long kōaro with 3 years of growth at 12.8mm per 
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year, could have measured ~50mm in January or February 2013. This suggests it is most 

likely that this kōaro migrated above the weir just before the new migration barrier 

installation on the 22nd February 2013.   

Laboratory experiments suggest it is extremely unlikely for kōaro to navigate past a 

perched barrier lip (Chapter Three). While inferring that the 87mm kōaro passed upstream 

before the new migration barrier installation, other means for its presence upstream of the 

weir should not be discounted. For instance, during its larval phase this individual may not 

have emigrated downstream of the weir. Larval kōaro are noted to remain close to the 

benthos when emigrating downstream (McDowall & Suren 1995) and Jones and Closs 

(2016b) also report that lowered water velocity in-stream provides refuges for larval non-

migratory galaxiids. Because the hydrological weir dams the Waipori tributary, although 

undocumented, it may be possible that the larval kōaro reared within the pool immediately 

upstream of the weir structure.  

Other possibilities are that the 87mm kōaro navigated through the weir itself or 

around the weir via overland flow. For example, a migration barrier trial by Thompson & 

Rahel (1998) found invasive trout were able to navigate upstream through artificial rock weir 

migration barriers, and Dunn and O’Brien (2006) have referenced several Galaxias species 

accessing interstitial spaces, suggesting juvenile kōaro may be able to navigate through 

interstitial spaces or cracks in migration barriers. The formation of interstitial spaces may 

have occurred where a rubber gasket seals a large steel plate over a water bypass at the foot 

of the concrete research weir. Banded kokopu have also been observed using wetted tree 

roots to navigate in-stream obstacles (David et al. 2009), and it may be possible that juvenile 

kōaro could use other vegetation forms to navigate past in-stream obstacles. Bowden et al. 

(2001) examined the same tributary as this study and noted rain readily flowed overland 

through moss blankets. Stream or overland flow through moss or vegetation during large rain 

events could provide connectivity for kōaro migration either side of the perched migration 

barrier. If further electrofishing surveys in the coming years confirm that juvenile kōaro are 

being found above the weir, these scenarios should be explored. It is also recommended 

migration barrier design take these into account.  

The results indicate that dusky galaxias have maintained recruitment and their 

population size since the electrofishing programme began, with no significant increases in 

numbers or significant changes in size since the new migration barrier installation. Although 
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the results cannot confirm an increase in survival rates of dusky recruits, an observed 

decrease in dusky galaxias average size suggests it is likely survival rates have increased to 

some extent post installation. It seems reasonable to accept that this is either a result of 

decreased predation by kōaro and/or a decrease in competitive exclusion (Allibone 1999). 

Certainly now that kōaro numbers are significantly reducing in the tributary upstream of the 

new migration barrier, the dusky galaxias population will likely expand and individuals will 

start occupying stream positions previously filled by kōaro.  

Lessons from Chapter Two 

A particular ‘chain of events’ enable migratory fish to negotiate natural migration 

barriers; artificial migration barriers must sever these links to be effective. The more links 

broken, the more robust the barrier. Artificial migration barriers designed to stop invasive 

fish migrations must be able to a) overcome the physical capabilities of the fish (Kilgore et al. 

2010), b) overcome the fishes intrinsic drive and strategies to negotiate barriers (Kilgore et al. 

2010) and c) successfully operate under all environmental conditions. As water is the 

physical medium that links stream networks, hydrological connectivity is generally the 

primary critical link that needs to be broken (Pringle 2003; Branco et al. 2011).  

The climbing behaviour and morphology of kōaro allows them to utilise wetted 

margins (McDowall 2003) to navigate in-stream obstacles and realise hydrological 

connectivity. The large surface area to volume ratio of juvenile kōaro, with large pectoral and 

pelvic fins, exploits the surface tension forces of water on rough surfaces and allows them to 

propel themselves up obstacles with an anguilliform-like motion (Baker & Hicks 2003). Any 

wetted margin forming on the weir face must be severed in order to eliminate the surface 

tension and capillary adhesion of fish to the weir face being climbed. The use of a perched 

aluminium lip in laboratory trials was shown to stop juvenile kōaro from climbing over an 

experimental weir (Chapter Three).  

Perched migration barrier design must be able to cope with environmental stresses 

and events. Streams not only provide downstream transport for fauna but also transport 

sediments, nutrients, and organic debris (Julius et al. 2005). Artificial barriers must not hinder 

these transport processes, nor should these processes affect the functioning of the barrier. 

This is necessary to ensure maintenance-free function of barriers and minimise the expense of 

maintaining them. Maintaining uninterrupted water flow, transport of vegetation, sediments 

and invertebrates is also necessary to ensure proper ecosystem functioning (Julius et al. 



67 
 

2005). Flooding is an issue which must be considered carefully (Rahel 2004) when designing 

a migration barrier. It is often during these times when mass transport of sediment and 

vegetation occur which can damage or bridge perched migration barriers. If a flood is large 

enough, it is possible the migration barrier could be drowned out, opening up stream margins 

which will once again allow upstream passage for fish such as kōaro. It may only take one 

event to reconnect the chain for invasive fish to overcome the migration barrier. 

Within New Zealand’s context, when designing a perched migration barrier to protect 

non-migratory galaxiids, it is necessary to consider how trout migration into these 

populations can be mitigated. The work by Jones and Closs (2016b) demonstrates the 

importance of excluding trout from non-migratory galaxiid habitats as trout quickly decimate 

headwater galaxias populations. One design feature is the inclusion of splash pads, which 

mitigate trout migration past barriers (Novinger & Rahel 2003). Concrete splash pads prevent 

the formation of plunge pools, which can provide enough resting and jumping space enabling 

trout to circumvent migration barriers (Thompson & Rahel 1998). However, splash pads 

generally create large splash zones, and therefore wetted margins for kōaro to climb, and 

must be factored into kōaro migration barrier design.  

The Department of Conservation  

The DOC office Dunedin has led efforts to conserve dusky galaxias populations 

through the use of migration barriers. Early prototypes had proven unsuccessful but paved the 

way for this field of research. The DOC Dunedin freshwater team who installed and 

monitored the stainless barrier ascertained that it did not completely sever hydrological 

connectivity. Examination of the stainless barrier and the weir showed that a wetted margin 

was still seen either side of the barrier, with water tracking along the top of the barrier and 

spilling down either side. The freshwater team also highlighted the significant costs with 

using stainless steel as a barrier and tools required to install a barrier in an isolated area.  

A field inspection revealed another design oversight with the stainless barrier lip 

being supported from underneath with side support panels. This negated the perched lip 

effect, as water would track along the top and down the side support panels and weir face. 

Juvenile kōaro could climb the side supports and the weir face, and follow the wetted margin 

around the top of the barrier.  
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Fig. 4.5 The stainless steel migration barrier installed by the DOC in 2008 (photo: Josh Tabak) 

The rigid stainless steel barrier also did not sit flush to the concrete weir because the 

weir itself was not square. A tough thick rubber gasket was installed to seal any gaps between 

the barrier and concrete weir, and a silicone based sealant was used around the perimeter. The 

silicone sealant appeared to have been used to glue, seal and block remaining gaps between 

the gasket and the concrete weir. However, in the five years since application, the silicone 

sealant had swelled, perished and disintegrated to leave small openings between the gasket 

and concrete weir. This could have provided passage for juvenile kōaro to bypass the 

barrier. The adhesion of the silicone sealant and/or running water may have also contributed 

to the erosion of concrete observed behind the barrier as exposed aggregate was visible.  

The thick rubber gasket also provided a flat level resting spot for juvenile kōaro which 

would have helped their metabolic recovery (Weinstein & Full 2000; Allen & Westerblad 

2001) during the climb. This resting spot would also have “caught” juvenile kōaro that 

dislodged during climbing attempts to navigate the weir v notch which would have increased 

the likelihood of climbing success (Weinstein & Full 1998 - 1999; Edwards & Gleeson 

2001). 
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Perched migration barrier 

The new perched migration barrier final design was the culmination of previous 

barrier trials, the literature and problem solving. The lip depth and internal angle, between the 

backing plate and the perched lip, was chosen for three reasons. Firstly a downward angle 

helps shed water, limiting how far water can track either side of the barrier. Secondly the 

smaller the depth of the lip, the less leverage that is placed upon that lip by water, sediment or 

debris. This would lessen the chance of weakening the attachment of the barrier to the weir. 

Thirdly, a greater internal lip angle would increase the depth of the lip needed to ensure the 

perched end still remained some distance from the weir face. The new barrier was designed to 

be as wide a perched lip as possible on the weir face. The braces were placed on the top of 

the lip to ensure a flat underside was presented to climbing juvenile kōaro beneath; this was 

to ensure no structures were present that may help juvenile kōaro rest or navigate around the 

lip. Large end caps were predicted to stop water tracking outwards and would be useful at 

disrupting the wetted margin during high flows when splash zone size increases. 

 Ramset Dynabolts were used to attach the barrier backing plate to the weir face. As 

the barrier was retrofitted to the weir face, battery powered drills and Dynabolts were 

considered the best option to solidly secure the barrier. Dynabolts are a tried and tested means 

of fastening materials to concrete surfaces. The bitumen sealer was used only on dry concrete 

to seal the top and joints of the barrier. As the weir faces north, and bitumen stays flexible, it 

would move with the barrier as it expands and contracts with the sun and heat. Bitumen 

sealer also has extremely good adhesive properties and does not perish in the sun. A two part 

epoxy sealant specifically designed for application underwater was used where the concrete 

was wet. It adhered to the weir and barrier well and was applied generously. The epoxy was 

suggested to stop water eroding the concrete from behind the barrier attachment, potentially 

opening up new passages for juvenile kōaro.  

Aluminium was chosen as the construction material for the new perched migration 

barrier for several reasons. Firstly it is lightweight, allowing for ease of transport and 

installation in the field. Secondly it is strong and highly corrosion resistant, so will last in the 

field for decades without needing to be replaced. Thirdly it is cheaper to buy than stainless 

steel, which minimises cost for multiple barriers and if the barrier is damaged and needs 

replacement or repair. The use of 3mm aluminium sheet was decided as it is very rigid while 

still maintaining a thin edge.  
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Like many rare non-migratory fish populations, the dusky galaxias population is in a 

very remote location; conservation efforts carried out in the stream requires a great dedication 

of time and resources. Any artificial migration barrier installed in the field must function year 

round without the need for routine maintenance.  Overall maintenance of the new barrier was 

considered and as a feature requires minimal attention. It is still recommended that prior to 

the main kōaro migration in spring, a check of the barrier is made to ensure it is functioning 

correctly ensuring no mass kōaro migration into the tributary. 

Conservation outcomes 

 Novinger and Rahel (2003) suggest that while isolation management holds short term 

benefits by stopping invasive threats to a species, the need to sustain or enhance gene flow 

between isolated populations is critical to long term conservation. Using the dusky galaxias 

as an example, the current fragmented populations are at risk from inbreeding depression and 

potential genetic bottlenecks which may lead to population collapses (Jones & Closs 2016b) 

if not reconnected. However, because dusky galaxias are slow growing, long lived and have 

limited self-dispersal ability as a function of their life history, this makes genetic dispersal 

and self-recolonisation of habitat unlikely (Jones & Closs 2016b), and may call for 

conservation interventions. Allibone and McDowall (1997) suggested translocation of dusky 

galaxias to increase overall population security, and this approach may prove an efficient way 

to improve genetic exchange.  

While translocation of dusky galaxias individuals for the species’ genetic maintenance 

would be beneficial, it does not go without risks. Allibone and McDowall (1997) 

acknowledged that translocation, particularly to re-establish very small populations or 

historical habitat, would require significant numbers of dusky galaxias to be translocated. 

This would need to reoccur over successive years and as such may place current populations 

at risk of depletion or collapse (Allibone & McDowall 1997). However, reinforcing current 

dusky galaxias populations in situ, by increasing downstream habitat through perched 

migration barrier installation and kōaro and trout removal, would increase the likelihood that 

these populations could withstand removal for establishing new populations. The dusky 

galaxiid tributary in this study, for example, is now on its way to become a true stronghold 

and source population for future translocation efforts.  
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Fig. 4.6 Modified waterfall in Burnt Creek, Otago, NZ (photo: Daniel Jack) 

Burnt Creek is another upper Waipori River tributary with the same potential to offer 

a dusky galaxias donor stronghold population (Allibone & McDowall 1997). It has one of the 

largest known populations of dusky galaxias, confirmed by DOC electrofishing surveys 

(Ravenscroft et al. 2015). An 11 metre waterfall in the creek midsection stops trout and kōaro 

invasion into the headwaters; however, the lower section has several significant waterfalls 

which do not impede trout or kōaro recruitment. Electrofishing surveys reveal few dusky 

galaxias remain in the bottom section compared with the mid and upper sections (Ravenscroft 

et al. 2015).  Placement of a perched migration barrier on one of the modified waterfalls in 

the lower section of Burnt Creek, could allow dusky galaxias colonisation downstream (Fig 

4.9). This is supported by the work of Lintermans (2000) who found mountain galaxias 

(Galaxias olidus) was able to recolonise downstream habitats after the removal of trout above 

an enhanced trout barrier which was also shown to stop trout re-invading. Jones and Closs 

(2016b) note that larval dusky galaxias are capable of surviving dispersal downstream over 

large waterfalls. 

Threatened stronghold and source populations of non-migratory galaxias could be 

safeguarded against kōaro invasion using the redesigned perched migration barrier. The 

lowland longjaw galaxias (Galaxias cobitinis) and bignose galaxias (Galaxias macronasus) 

of Fraser Spring near Twizel are examples of non-migratory galaxias populations that may 

benefit from kōaro exclusion (S Bowie 2017 pers. comms; unreferenced). Fitted to manmade 
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or natural in-stream structures which take advantage of height, the new perched migration 

barrier could be a passive conservation tool that stops kōaro immigration and allows kōaro 

populations to naturally decline upstream. The new barrier used in conjunction with 

electrofishing relocation or other fish removal techniques could provide a faster means to 

protect at-risk galaxias populations. Perched migration barriers may also be used to 

rehabilitate historical habitats for the reintroduction of non-migratory galaxiids (Allibone & 

McDowall 1997). 

Conclusions 

The kōaro is a diadromous native galaxiid species (McDowall 1998) capable of 

forming self-sustaining landlocked populations in large freshwater bodies. Kōaro can be 

considered invasive when river impoundments provide larval habitat and allow juvenile 

dispersal outside of their otherwise normal range (Allibone 1999). Non-migratory galaxiid 

populations, such as those of the dusky galaxias, are affected by kōaro invasion through 

predation and/or competitive exclusion (Allibone 1999) and have suffered range contractions 

as a result. Isolation from the continuing kōaro invasion will secure a promising future for 

dusky galaxias populations. 

Early migration barrier trials by the DOC identified key aspects of kōaro exclusion 

and improvements to migration barrier design which have paved the way for further research. 

Careful consideration must be given to perched migration barrier design and installation in 

order to overcome the migratory adaptations and behaviours of kōaro in all environmental 

conditions. After more than a decade of kōaro relocation effort and four years trialling the 

new perched migration barrier, results from electrofishing surveys indicate a reduction in 

kōaro numbers caught above the barrier and an increase in the size of captured kōaro post 

installation. It seems the perched migration barrier can limit kōaro recruitment completely, 

and if the incursion of any juvenile kōaro should occur in future, other strategies to restore 

the barrier should be investigated. The mitigation of kōaro recruitment and on-going kōaro 

relocation work will keep reducing the predation and/or competitive exclusion (Allibone 

1999) burden on this dusky galaxias population.  

Perched migration barriers to limit kōaro invasion can now be considered a valuable 

conservation tool for freshwater fish managers. The perched migration barrier design in this 

study could be adapted for installation in other streams, on man-made or even natural rock 

features. The use of a perched migration barrier has many benefits for protecting non-
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migratory galaxias populations and other threatened and at risk native fish species throughout 

New Zealand and more broadly wherever koaro occur (e.g. Australia (O’Connor & Koehn 

1998)). Used at key sites, perched migration barrier installation, even without invasive 

migratory fish removal upstream, would begin the passive process of reclaiming stream 

habitat for fish species at risk of extirpation. 
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CHAPTER FIVE  

General Discussion 

Perched road culverts are found extensively throughout New Zealand and negatively 

affect New Zealand’s native freshwater fish fauna (Boubée et al. 1999). Perched culverts 

disrupt in-stream connectivity which prevents fish migration, thus fragmenting fish 

populations and restructuring native fish communities (Stevenson & Baker 2009). In the 

eastern Otago region, little targeted information on the prevalence of perched culverts and 

associated impacts on freshwater fish populations had been available to conservation 

managers (Allibone et al. 2010) up until now.  

Survey results from this study revealed perched pipe culvert prevalence within exotic 

forestry plantations of the eastern Otago region was about fifty percent in 2013. This finding 

is consistent nationally (Barnes 2004; James & Joy 2008) and suggests many fish 

communities have likely been impacted and restructured by perched culvert migration 

barriers (Boubée et al. 1999). Modelling results revealed fish abundance and species richness 

certainly were lower above pipe culverts than below, and although statistically inconclusive, 

but with the support of international evidence and research from within New Zealand, that 

perched pipe culverts are greater migration barriers for some New Zealand fish species.  

One constraint of the fish survey methodology was it failed to allow for age structure 

identification within fish communities observed. However, Barnes (2004) found that large 

galaxiids dominated above a perched culvert as recruitment had been compromised. The 

perching of the culvert and the halting of recruitment poses a significant problem for the 

continuation of that galaxiid population upstream, with the potential for emigration and 

deaths to outweigh immigration (see Nislow et al. 2011). This would eventually lead to the 

loss of those mature breeding fish over time from viable habitat (Wofford et al. 2005). 

Galaxiids can live for long periods of time. For example, aging studies suggest Banded 

kokopu can live up to 15 years (West et al. 2005). As such, the effects of poor road culvert 

installation or the perching of a pipe culvert may not be fully realised for some time until an 

aging breeding population collapses. Careful attention must furthermore be paid to the 

presence of juvenile fish species to confirm viable recruitment through. New road culverts 

must also be designed and installed so as not to become perched in the future. 
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Contributing to the impact of pipe culvert perching on fish migration in exotic 

forestry plantations in New Zealand had been a lack of nationally consistent guidelines 

regulating pipe culvert installation with respect to providing for fish passage (Pendly 2015). 

Pendly (2015) established that significant inconsistencies existed between permitted activity 

rules and best management practices implemented by regional councils which suggested that 

streams and fish populations were subjected to differing environmental impacts in exotic 

forestry plantations across New Zealand. While the Otago region had published guidelines 

for fish-friendly culvert installation (Pendly 2015), given the age of some forestry plantation 

road networks, it is perhaps not surprising that over fifty percent of pipe culverts were 

perched. However, moving forward, new national environmental standards1 were introduced 

to guide exotic forestry plantation managers when maintaining pipe culverts or installing road 

crossings. It is expected therefore that the percentage of perched pipe culverts in these 

catchments will, in time, drop as they are replaced or remediated with fish-passage-friendly 

designs. Ensuring fish passage in existing and new exotic forestry plantations through 

appropriate culvert installation will undoubtedly benefit local fish communities by increasing 

and ensuring access to historic habitat in those catchments.  

The national environmental standards for plantation forestry regulations (see footnote) 

are a positive step toward ensuring fish passage in exotic forestry plantations. However, 

given reporting requirements and the detrimental effects of perched pipe culverts on fish 

passage, discretion ultimately falls on forestry managers to install and remediate pipe culverts 

and road stream crossings correctly. Regional councils must in that case ensure monitoring 

and the maintenance of fish passage to truly benefit the protection of fish communities in 

exotic forestry plantations. This will also serve to provide assurance to conservation 

managers that fish species can maintain healthy populations and communities in exotic 

forestry plantations. 

The presence of perched culverts within exotic forestry plantations has been identified 

as one of the contributing factors which are threatening galaxiid populations in New Zealand 

(Allibone 2000; Hanchet 1990; Joy 2009; Rowe et al. 1999, Rowe et al. 2000). For example, 

the endangered dusky galaxias (Galaxias pullus) had 65% of its habitat and distribution 
                                                 
 

1 Which define road crossings “that provide for fish passage by maintaining river bed material in any structure 
that would be in place of the river bed” as permitted activities. Section 40(2) – Resource Management (National 
Environmental Standards for Plantation Forestry) Regulations 2017.  
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overlapping with exotic forestry plantation boundaries and perched culverts were identified 

as a significant dispersal problem (Allibone & McDowall 1997). However, while logging 

operations and road crossing installations in exotic forestry plantations are identified as a 

threat to dusky galaxias, it was proposed that exotic forestry plantations could also provide 

areas of refuge for the species (Allibone & McDowall 1997). Strategic perched pipe culvert 

installation used for invasive kōaro and salmonid restriction was suggested as a means to 

facilitate dusky galaxias population recovery and cement their survival in critical stream 

habitats (Allibone & McDowall 1997). This study, building on previous experience and 

knowledge (Ravenscroft et al. 2015), has since confirmed the use of a perched migration 

barrier as being extremely effective in excluding kōaro from dusky galaxias populations. 

Therefore the combination of exotic forestry perched culvert remediation, the use of perched 

migration barriers, and the removal of salmonids and kōaro could see strategic sites become 

recolonised by dusky galaxiids both naturally or through translocation (Allibone & 

McDowall 1997).  

McDowall & Allibone (1994) first expressed the idea that a perched culvert could 

provide a means of kōaro exclusion. Having demonstrated their effectiveness within the 

short-medium term, expanding the use of perched barriers as a conservation tool could also 

help protect key non-migratory galaxiid core refuges and historical stream habitat. Strategic 

placement of perched migration barriers would help to expand source populations and reverse 

the downward trajectory of threatened non-migratory galaxiids toward extinction (Allibone et 

al. 2010). Similar strategies could also be implemented where other New Zealand fish 

populations are identified as under threat from kōaro and salmonid encroachment (Bowie et 

al. 2018).  

 

Climbing Success and Migration Barriers 

Before the construction of Lake Mahinerangi it was considered likely that sparse 

populations of kōaro lived in the upper Waipori River, although this cannot be confirmed 

(McDowall & Allibone 1994). However, evidence to support their existence in the upper 

Waipori River does exist in that kōaro are significant diadromous migrants that are capable of 

migrating tens of kilometres inland, as seen in large river systems such as the Buller and Grey 

Rivers (Hicks 2012). Tributaries of the Taieri River, another large river system, which 

happen to be home to non-migratory galaxiids (McDowall 2010), also hold small numbers of 

kōaro which are recorded rarely and intermittently, it is said, at the very upper limits of their 
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distribution in these headwater reaches (McDowall & Allibone 1994). While providing 

evidence that diadromous kōaro likely would have accessed the upper Waipori River, these 

examples further highlight that a complex relationship exists between migratory distances, 

river system characteristics, migration barriers and kōaro migratory adaptations, as seen by 

the limits of dispersal in diadromous and landlocked kōaro populations. The dynamics of this 

relationship even more complex when considering allometric growth and the time and place 

migration barriers are encountered as juveniles or in the right circumstances where river 

system characteristics allow upstream migration of adults. 

The findings of this study certainly suggest a relationship exists between climbing 

ability and juvenile kōaro body shape, with some individuals better equipped to climb wetted 

margins and navigate in-stream obstacles than others. The climbing ability of juvenile kōaro 

is also likely to change as a factor of allometric growth over time, with a decrease in surface 

area to volume ratio and the ability to climb steep gradients as weight overcomes the forces 

of surface tension that aids juvenile kōaro adherence to wet surfaces. A similar relationship 

between individual migratory success and body shape is observed in the gobiid species of 

Hawaii (Blob et al. 2006). Intraspecific variation and allometric growth has been found to 

regulate the dispersal of individuals during upstream migration (Blob et al. 2008; Maie et al. 

2007). This intraspecific variation between gobiid individuals and the likelihood of climbing 

success is also influenced by intraspecific behaviour, adding another layer of dynamism that 

defines the climbing performance of individuals and their dispersal (Blob et al. 2006). When 

applied to juvenile kōaro, allometric growth and intraspecific variations in body shape and 

behaviours are therefore likely to limit the migratory distances and distribution of individuals 

within stream networks and would likely account for kōaro distribution patterns [prior to the 

introduction of trout (Townsend & Crowl 1991)].   

When examining kōaro migration in light of intraspecific variation in migratory 

ability, inferences can be made as to the interactions individuals may have with migration 

barriers and how this may impact kōaro distribution. For example, juvenile kōaro with more 

efficient body shapes for climbing are better able to navigate larger in-stream obstacles than 

less efficient climbers, allowing them to penetrate further upstream in time into headwater 

reaches before allometric growth limited their climbing efficiency (Blob et al. 2006). This 

may be reflected with measurable differences in juvenile kōaro body shape over elevational 

distributions, and where larger in-stream obstacles can be navigated past or higher elevations 

attained when in closer proximity, in terms of distance and time, to larval rearing sites when 
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kōaro body size is most climbing proficient. However such a relationship has not yet been 

identified and could be explored. Evidence of an elevational/migratory distance relationship 

would also help to confirm that only sparse numbers of kōaro likely occupied the upper 

Waipori catchment prior to the formation of Lake Mahinerangi (McDowall & Allibone 

1994). 

Sparse numbers of kōaro in the upper Waipori catchment would suggest that low rates 

of habitat overlap existed between kōaro and those non-migratory galaxiids, as seen in the 

upper Taieri catchment (McDowall & Allibone 1994). This lends weight to the accepted 

theory that kōaro numbers have increased in the upper Waipori catchment placing dusky 

galaxias, for example, under greater competitive or predatory pressure since the building of 

the Lake Mahinerangi Dam. The fact populations of dusky galaxias have survived in the 

wake of increased kōaro numbers for the last 100 years is surely an indication that dusky 

galaxias were able to or had coexisted alongside some level of kōaro presence prior to kōaro 

insurgence. This perhaps indicates a level of in-stream niche difference between kōaro and 

dusky galaxias and that kōaro are not completely dominant over their non-migratory dusky 

galaxias cousins (McDowall 2010).  

Genetic work by Waters et al. (2010) has recently revealed that a single loss of 

diadromy in a common ancestor of the kōaro, has led to the possible vicariant speciation of 

the non-migratory Galaxias vulgaris complex (including the dusky galaxias) since. However, 

this is an area McDowall (2010) stated needs further clarification, as how the biogeography 

of non-migratory galaxiids in the region came to be is highly complex. While the cause for 

this loss of diadromy and speciation within the Galaxias vulgaris complex is yet unknown, it 

seems highly likely that geological processes have played a major role (McDowall 2010). As 

interactions between diadromous galaxiid migration and episodic geological events are 

explicitly linked as a function of their life history (Waters & Wallis 2000), it seems likely that 

newly created migration barriers arising from these events would have been faced by 

migrating individuals (Ingram & Bennington 2018). Blob et al. (2006) suggests intraspecific 

variation in climbing ability might play an important role in determining not only dispersal 

along stream continuums, but which individuals will breed together along that stream 

continuum. Could intraspecific differences in juvenile morphology and climbing ability, in 

response to a geological event, such as a sudden uplift or a landslide, have played a role in the 

evolutionary history of the kōaro and the Galaxias vulgaris complex?  
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Jones and Closs (2016) have shown that larvae of the different species within the 

Galaxias vulgaris complex generally maintain interspecific variation in morphology during 

development and have varying levels of swimming ability, with the higher headwater species 

being larger post-hatch. Although little information is available for post-larvae of these 

species, given the findings for juvenile kōaro, testing the morphological and behavioural 

adaptations of juvenile non-migratory galaxiids of the Galaxias vulgaris complex may also 

highlight differences in interspecific and intraspecific climbing abilities and behaviour. The 

work of Ingram and Bennington (2018) has shown a weak but parallel divergence for kōaro 

in adjacent but differing habitats in the South Island, New Zealand. So it appears possible that 

intraspecific differences in climbing ability and/or behaviour could differ in their response to 

geological processes and may have played a role alongside vicariant speciation in the 

Galaxias vulgaris complex (McDowall 2010).  

 Supposition aside, one certainty is that migration barriers do impart selective 

pressures on New Zealand’s diadromous freshwater fish populations which can ultimately 

shape fish abundance and distribution through stream networks. Over the past century, since 

the installation of vast road networks with poorly installed pipe culverts, the abundance and 

distribution of New Zealand’s native fish communities have suffered significantly with vast 

losses in historic habitat. However, given the research, new understanding, new legislation 

and new developments regarding fish-passage-friendly road crossings and culvert 

installations, the future for re-establishing historic fish habitats and populations looks 

promising. Considering that restoration and maintenance of fish passage is increasingly 

expected, and given the important work of others, and the findings of this study, that attention 

can shift away from proving the negative effects of poor culvert installation into facilitating 

fish-passage-friendly culvert and road crossing installation or remediation. To contribute to 

this growing body of research, efforts in the future to further understand New Zealand native 

fish migratory ability and adaptations will help guide the development of novel fish passage 

structures. Efforts should also prioritise the remediation or implementation of fish passage 

barriers to secure vulnerable and endangered fish species’ populations in the short term, prior 

to examining fish species and populations of lower conservation concern.  
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