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Abstract 
 

Previous research has shed some light on what phylogenetic and ecological factors 

may be important determinants of tapeworm parasite diversity in elasmobranchs 

(sharks, skates and rays). However, several potentially key factors for tapeworm 

transmission, including the breadth and composition of host’s diets, have been 

recognised as crucial gaps in our understanding.  

 

The main objective of this research was to investigate the relative importance of 

sharks’ diets for the structure and diversity of their tapeworm assemblages. First, the 

literature was searched for information on tapeworms and host features for a large 

subset of different shark species, and aspects of shark’s diets (including their diet 

breadth, diet composition and trophic level) were assessed for their relative 

importance as predictors of tapeworm diversity. Second, literature records were used 

to conduct a comprehensive analysis of the relationship between shark’s diet 

compositions and tapeworm compositions. Finally, the importance of host diet was 

examined as a potential encounter filter for restricting tapeworm diversity in a model 

shark species, Cephaloscyllium isabellum.  

 

The results of this study revealed diet breadth to be a key predictor of tapeworm 

richness in sharks, indicating that sharks with broader diets generally harbour more 

tapeworm species. The composition of tapeworms infecting a shark species was found 

to be related to its diet composition, and moreover, certain tapeworm taxa were found 

to be useful indicators of the host species' ecology and evolutionary history. The 

research on C. isabellum here offered only limited insights into the potential 

importance of diet as an encounter filter for the shark, but provided some new 

important data on both the diet and parasites of this species.  

 

Ultimately, the observational studies carried out within this research emphasise that 

aspects of sharks’ diets can have important implications for their tapeworm parasite 

assemblages. Further exploration of these patterns with experimental research may be 

able to validate the influence of these patterns in nature. 
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1.1. General introduction  

Parasites comprise an extremely diverse group of organisms and account for a large 

portion of our total global biodiversity (Dobson et al. 2008; Poulin & Morand 2014). 

Traditionally, parasites have been viewed as a massive burden to our environment. 

We have sought, and in many cases, we have succeeded in their eradication (see 

Bowman 2006). Nevertheless, many ecological studies have shown that parasites are 

a critical part of ecosystems, serving an important role in the regulation of food webs 

and host populations, and mediating energy flow through trophic levels (Lafferty et 

al. 2006; Lafferty et al. 2008; Amundsen et al. 2009). Recent notions in parasite 

ecology have also highlighted the potential consequences of parasite loss from our 

ecosystems, indicating that the influence of parasites on overall communities and 

ecosystems may often be underestimated (Holt 2010; Wood & Johnson 2015). With 

these points in mind, there is a clear need for further research to better describe the 

parasite diversity in our ecosystems, and likewise, to determine what factors govern 

parasite diversity.  

 

Determining what host features influence parasite species richness has been the 

subject of a broad range of ecological studies, conducted in different ecosystems and 

animal groups. A recent meta-analysis looking at parasite richness across animal, 

plant and fungal hosts found that three features of hosts, namely body size, population 

density and geographical range, could be generally considered as universal predictors 

of parasite species richness (Kamiya et al. 2014). However, notwithstanding the 

general significance of these features, their relative influence on parasite diversity can 

vary considerably among different studies, and in many cases, other less prominent 

variables may be better predictors of parasite richness among host species e.g. 

temperature (Poulin & Rohde 1997), anthropogenic changes to land (Mitchell et al. 

2010), diet breadth and vulnerability of hosts to predators (Locke et al. 2014). The 

significance, direction and strength of predictors may largely depend on what type of 

hosts and parasites are involved (Lindenfors et al. 2007; Poulin & Morand 2014). It is 

also worth noting that several host features with potentially large impacts on parasite 

diversity are seldom included in studies looking at determinants of parasite diversity. 

For instance, it is difficult to evaluate the predictive strength of host diet, home range 

size or metabolic rate on parasite richness, because they have rarely been taken in 
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account in comparative studies (Kamiya et al. 2014). To gauge the generality of these 

factors, more emphasis must be put on their inclusion in research going forward.   

 

Sharks are important apex predators in all of the world’s oceans and are distributed 

across a broad range of depths, latitudes and habitats (Froese & Pauly 2017). Their 

exploitation over the past few decades has left many sharks vulnerable and 

endangered, producing unpredictable and ecosystem-wide consequences (Stevens et 

al. 2000; Ward & Myers 2005, Myers et al. 2007; Ferretti et al. 2010). Sharks present 

an important system for studying determinants of parasite diversity, due not only to 

their importance as apex predators and integral role in food webs, but also because 

their associated tapeworms are an extremely diverse and significant group of parasites 

(Caira & Healy 2004). These parasites may offer key insights from an evolutionary 

perspective given that elasmobranchs have been hosts of tapeworms for an estimated 

270 million years, and they represent the earliest fossil record of tapeworm parasitism 

of vertebrates (Dentzien-Dias et al. 2013). Previous records show there are about one 

thousand tapeworm species so far described from elasmobranchs (Caira & Jensen 

2014), with thousands more to be described (Randhawa & Poulin 2010). These 

parasites hold additional importance in marine ecosystems in that they are all 

trophically transmitted through food webs and affect an array of other marine species 

as larvae (Caira & Jensen 2017). Hundreds of intermediate hosts have already been 

described for elasmobranch tapeworms, including various species of teleost fishes, 

cephalopods, crustaceans and reptiles (Palm 2004; Caira & Jensen 2017). 

 

Previous research has begun to shed some light on what phylogenetic and ecological 

factors may be important determinants of tapeworm infections in elasmobranchs 

(McVicar & Fletcher 1970; Randhawa et al. 2007; Randhawa & Burt 2008; 

Randhawa & Poulin 2010). A recent study found that host size, latitude and depth 

may each influence tapeworm diversity in elasmobranchs (Randhawa & Poulin 2010). 

However, the influence of these factors clearly depends on the type of elasmobranch 

host involved (shark or batoid), and after correcting for phylogenetic influences in 

sharks, only host size has been demonstrated to significantly impact tapeworm 

richness (Randhawa & Poulin 2010). Notably, there are still many factors that remain 

to be comparatively tested for their influence on tapeworm diversity. It has been 
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pointed out that host diet breadth and composition especially warrant further 

investigation (Randhawa & Poulin 2010). 

 

The aim of this thesis is to assess what factors govern the structure and diversity of 

tapeworm parasite assemblages in sharks, with particular reference to the importance 

of host diet. Two main approaches will be used to achieve this. The first will be to 

look at records from the literature across many shark species and their prey to 

determine whether aspects of host diet are strong predictors of tapeworm diversity 

and composition in comparison with other relevant host features. This approach will 

serve to tell us whether factors such as diet breadth, diet composition and trophic level 

appear to be generally important barriers for tapeworm establishment in sharks. The 

second approach will complement the first approach by more specifically analysing 

the importance of diet for parasite composition in a local shark species, the 

draughtsboard shark Cephaloscyllium isabellum. This species could be a good model 

for investigating what factors restrict parasite establishment in sharks because it is 

known to have a broad diet (Horn 2016), but has fewer tapeworm species than would 

be expected for a shark of its size (Randhawa 2014, unpublished data; see also Poulin 

et al. 2011b). Thus, it can be investigated whether its diet is a large factor restricting 

encounters with different tapeworm parasites, or alternatively, whether strong 

compatibility filters in the species prevent parasite associations. Notably, this 

investigation could also provide valuable biological information on the shark, which 

is currently scarce (Horn 2016).  

1.2. Host specificity and barriers to parasite establishment 

As described in the above introduction, testing what factors predict parasite richness 

among host species can help us to understand patterns of parasite biodiversity. For a 

complementary approach to understanding these patterns of diversity, we can look at 

a trait known as "host specificity" and analyse what factors act as barriers to infection 

for certain parasites. Host specificity is a fundamental property of parasites (Kosoy et 

al. 1997; Dyer et al. 2007; Poulin 2011). Although there are many definitions for this 

property (see Poulin & Mouillot 2005; Poulin et al. 2011a), it can generally be 

defined as the extent to which different host species are used by a parasite (Combes 

2001). Host specificity exhibits great variation among different species and groups of 
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parasites. At one end of the spectrum, we have parasites which infect only one 

species. Most monogenean ecto-parasites of fish, for example, are restricted to a 

single host species (Ǘimková et al. 2006). On the other end, some parasites infect a 

multitude of different hosts. For instance, the Asian tapeworm Bothriocephalus 

acheilognathi has been described from more than a hundred different fish species 

(Salgado Maldonado & Pineda-López 2003).   

  

Understanding what ecological and evolutionary factors determine parasite-host 

specificity is a common goal for research in parasitology. On the theoretical side, 

knowing what factors prevent a parasite from expanding its host range is key to 

learning about the community structure of parasites and host-parasite co-evolution 

(Poulin et al. 2011a). On the practical side, knowing what ecological and evolutionary 

factors underpin host specificity may guide scientists towards better prediction and 

control of the transmission of infectious diseases (Poulin 1992; Taraschewski 2006; 

Lootvoet et al. 2013). Of course, the ability of a parasite to successfully spread and 

establish in a new area largely depends on what ecological or phylogenetic barriers 

may prevent the parasite from establishing and spreading to alternative hosts 

(Taraschewski 2006; Dunn 2009).   

 

Euzet and Combes’ filter paradigm offers a simple but effective illustration of what 

factors determine the host specificity of a parasite (Euzet & Combes 1980). The idea 

is that there is a two-step filter for parasite-host compatibility. The first step is an 

‘encounter filter’, which excludes hosts from a parasite’s potential host spectrum that 

don’t come in physical contact with the parasite (illustrated by circles in Figure 1.1). 

A host may not be encountered by a parasite either because they live in different 

ecosystems, or alternatively, because host behaviours such as diet and niche 

segregation prevent contact with infective stages of the parasite (Combes 2001). The 

second step of the filter paradigm is a ‘compatibility filter’, which excludes any hosts 

from a parasite’s potential host spectrum that are incompatible with the parasite 

(illustrated by triangular section in Figure 1.1). Hosts may be incompatible either 

because they do not provide adequate spatial or metabolic resources for the parasite, 

or because immunological or other defense mechanisms of the host kill the parasite 

(Combes 2001). Upon consideration of each of these filters, it is clear that the range 

of hosts actually used by a parasite represents only a small subset of their potential 
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host species (small shaded triangular area in Figure 1.1).  

 

                                       

 

The compatibility filter concept has been applied in research over the past few 

decades as a basic tool for understanding determinants of host specificity (Kuris et al. 

2007; Randhawa & Burt 2008; Lagrue et al. 2011). A handful of studies have shown 

that the high specificity of tapeworms in elasmobranchs is, to some extent, the result 

of compatibility filters. For example, immune response in elasmobranchs has been 

demonstrated to cause mortality for certain tapeworm species (McVicar & Fletcher 

1970; Randhawa & Burt 2008). Attachment site morphology in elasmobranch host 

mucosa may also determine whether some tapeworm species can live in the host 

(Williams 1960, 1966, 1968). Although it has been suggested that attachment site 

morphology is more of a determinant for attachment site specificity rather than for 

host specificity (Randhawa and Burt 2008). These studies clearly demonstrate that 

compatibility filters have an influence in restricting the host specificity of 

elasmobranch tapeworms. However, the role of these compatibility filters in 

comparison with encounter filters is unclear.  

 

Figure 1.1: Diagram illustrating the filter paradigm of host-parasite specificity. (adapted  

  ĨƌŽŵ CŽŵďĞƐ ϮϬϬϭͿ͘ A ƉĂƌĂƐŝƚĞ͛Ɛ ŚŽƐƚ ƐƉĞĐƚƌƵŵ ;ƌĂŶŐĞ ŽĨ ŚŽƐƚƐ ŝƚ ƵƐĞƐͿ  
  represents a small subset of its potential host species (small shaded area) that  

  are encountered (within the small inner circle) as well as compatible (within the  

  triangular area). 
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It is unknown whether encounter filters (e.g. diet) are as restrictive for tapeworm 

establishment in elasmobranchs as parts of the compatibility filters (e.g. immune 

response). This is an important gap in knowledge since some encounter filters, such as 

host substrate preference and diet, have been suggested as potentially important 

ecological determinants of host specificity (Randhawa et al. 2008). It is likely that 

both filters play key roles as barriers to parasite establishment, but by assessing the 

relative importance of each filter we may be able to better predict the consequences of 

ecological changes on the transmission of these parasites to other hosts in future.  

1.3. The influence of host diet on parasite diversity 

Helminth parasites with complex life cycles rely on trophic interactions for 

transmission to their final host (Simkova et al. 2001; Cirtwill et al. 2016).  

Thus, the diversity of these parasites is unlikely to be randomly distributed in food 

webs, but is rather expected to be concentrated in parts of a food web that favour 

transmission (Locke et al. 2014). Following from this, it would make sense that hosts 

diets have a large influence on their acquisition of parasites, and consequently, the 

diversity of their parasite assemblages. Many previous studies support this notion, 

showing that variation in diet breadth and trophic positions among host species can 

explain a large amount of interspecific variation in the richness of their trophically-

transmitted parasites (Klimpel et al. 2006; Chen et al., 2008; Poulin & Leung, 2011; 

Locke et al., 2014).  

 

Diet breadth could be one of the most important factors in determining the diversity 

of fish parasites. In theory, a fish species that feeds on many different prey species 

should be exposed to a greater range of larval parasites compared to a host species 

with a restricted or specialised diet. Because of this, fish species with broad diets 

could accumulate a larger variety of trophically transmitted adult parasites (Kennedy 

et al. 1986; Lo et al. 1998; Locke et al. 2014). The trophic level of a host might be 

similarly important, since fish occupying higher trophic positions have access to more 

prey, and parasites tend to exploit host species that are highly connected (Chen et al. 

2008). The diet composition of a host may also play a large role in its accumulation of 

different parasites. Trophically transmitted parasites typically infect a limited number 

of intermediate hosts, meaning that the variety of parasites in the final host may 
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depend on whether these intermediate hosts are an important component of the 

definitive host’s diet (Kennedy et al. 1986; Marques et al. 2011).  

 

The influence of dietary factors on the diversity of tapeworms infecting sharks is 

currently unknown (Randhawa & Poulin 2010). There is good reason, however, to 

think that diet may be an important factor for tapeworms in elasmobranchs, since all 

tapeworm species are acquired by elasmobranchs via trophic transmission from 

intermediate or paratenic hosts (Willams 2002).  

1.4. Life cycles of shark tapeworms 

From what is currently known of tapeworms infecting sharks, the life cycles of these 

parasites are typically complex and involve several invertebrate and vertebrate 

intermediate hosts (Sakanari & Moser 1989; Palm 2004; Randhawa 2011; Caira & 

Jensen 2017). In general, these parasites are highly host specific as adults (i.e. are 

restricted to one or a few host species), but show considerably lower host specificity 

in intermediate hosts (Palm & Caira 2008; Jensen & Bullard 2010). There also 

appears to be considerable variation in life cycles among different tapeworm species, 

where some species use many more intermediate and paratenic hosts than others 

(Palm 2004).  

 

To get an idea of a general shark tapeworm life cycle, we can look at one of the 

earliest described examples involving the trypanorhynch tapeworm Lacistorhynchus 

dollfusi infecting the leopard shark Triakis semifasciata. Adult tapeworms live in the 

spiral intestine of its definitive elasmobranch host (Figure 1.2a), and once mature, 

pass eggs out through the shark’s faeces (Figure 1.2b-c). These eggs are then 

consumed by a first intermediate host, which is often a small crustacean such as a 

copepod or amphipod (Palm 2004) (Figure 1.2d). The first intermediate host is 

consumed by a second, larger intermediate host, such as a teleost fish, where the 

tapeworm develops from a procercoid to a plerocercoid larva (Figure 1.2e). The 

tapeworm then completes its life cycle once the shark host eats the plerocercoid-

infected fish (Figure 1.2). Life cycles of tapeworms can be more complex than the 

one described above, and prey other than crustaceans and fish, including reptiles, 

mammals and cephalopods, have also been identified as intermediate hosts (Palm 
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2004; Randhawa 2011; Caira & Jensen 2017). Moreover, there are variations in life 

cycles where the second intermediate host is not a fish, and is instead another larger 

invertebrate like a shrimp or crab (Palm 2004).  

 

An overwhelming majority of the life cycles of elasmobranch tapeworms are still 

unknown or poorly described (Caira & Reyda, 2005; Jensen & Bullard 2010). The 

main reason for this is the difficulty of identifying larval stages, since most 

tapeworms have larvae that don’t look like the adult based on morphology 

(trypanorhynchs are an exception) (Jensen & Bullard 2010). This difficulty has 

sparked the need for alternative approaches to identify tapeworm larvae, including 

molecular tools (Poulin & Keeney 2008; Jensen & Bullard 2010; Randhawa 2011) 

and in-vitro growth (e.g. Presswell et al. 2012). These alternatives to morphological 

identification could be pivotal for researchers aiming to better understand the ecology 

and evolution of tapeworm life cycles in future (Palm & Caira 2008). 

 

Figure 1.2: Diagram illustrating the life cycle of a shark trypanorhynch tapeworm: 

  Lacistorhynchus dollfusi infecting the leopard shark Triakis semifasciata  

  (Modified from Sakanari & Moser (1989)). (a) Adult tapeworms live in the spiral 

  valve of the definitive shark host. (b) gravid proglottids pass out in shark faeces, 

  releasing eggs. (c) Ciliated coracidia hatch from operculated eggs and are 

  consumed by copepods (d), where they develop into procercoid larvae. 

  Copepods are eaten by teleosts such as white croakers (e), and the procercoids 

  develop into plerocerci inside blastocysts. When infected fish is consumed by the 

  shark host, the tapeworm lifecycle is completed.  
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1.5. Biology of the model species: Cephaloscyllium isabellum                             

The draughtsboard shark Cephaloscyllium Isabellum (Bonnaterre, 1788) is a 

scyliorhinid catshark species, of the Order Carcharhiniformes, that is thought to be 

endemic to New Zealand (Cox & Francis 1997) (Figure 1.3). This species is 

sometimes referred to as the New Zealand carpet shark, but it is not a member of the 

carpet shark Order Orectolobiformes. To avoid confusion, the species will be 

hereafter referred to as the draughtsboard shark or C. isabellum.  

 

 

Like other members of the Cephaloscyllium genus, C. isabellum is oviparous (Dulvy 

& Reynolds 1997), and is it thought to have year-round reproduction (Horn 2016). 

Individuals of this species generally range from 20cm in length as juveniles up to a 

metre in length as adults, with male sharks generally not growing as large as females 

(Cox & Francis 1997; Horn 2016). Draughtsboard sharks live around New Zealand 

coasts in shallow depths out to around 200 metres, but also occur (mostly as larger 

individuals) in deeper waters out to 500 metres (Francis et al. 2002; Horn 2016). They 

are known to be demersal hunter and scavenger, and feed on a variety of prey 

including fishes, crustaceans, molluscs and other invertebrates (Horn 2016). 

Cephaloscyllium species can detect weak bioelectric fields of prey (Tricas 1982), 

which likely assists them in their ambush predation and scavenging. Like other 

species of this genus, C. isabellum is thought to forage mainly at night, whilst taking 

refuge in caves or reefs during the day (Nelson & Johnson, 1970; Awruch et al. 2012; 

Horn 2016).  

 

Several endoparasite species have been described in C. isabellum; two digenean 

trematodes (in the stomach), three nematodes (in the stomach and sometimes 

intestine), and one tapeworm species, Calyptrobothrium chalarosomum (in the spiral 

Figure 1.3: Image of the New Zealand draughtsboard shark (Cephaloscyllium  

 isabellum). Image credit: Chris 2012, http://www.surfcaster.co.nz/ 
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intestine) (Hewitt & Hine 1972; Hine et al. 2000). Cephaloscyllium isabellum has a 

notably low diversity of intestinal tapeworms (one) compared to other sharks, which 

on average, are infected by around 6 different tapeworm species (Randhawa and 

Poulin 2010). This shark species has also been identified as a cold spot in shark 

tapeworm diversity, which means that it has fewer tapeworm species than would be 

expected for a shark of its size (Poulin et al. 2011b). This is surprising given that the 

species demonstrates a broad diet (Horn 2016), and it could potentially encounter 

many tapeworm larvae in different prey. It is unknown, however, whether many 

different tapeworm larvae are present in its favoured prey. The above points indicate 

that C. isabellum should be a useful model for looking at determinants of tapeworm 

host specificity. Its diet may be a large factor restricting encounters with different 

tapeworm parasites, or alternatively, there are perhaps strong compatibility filters in 

the species preventing parasite establishment. This poses a key question: Which filter 

is more restrictive of parasite establishment in C. isabellum? 

 

1.6. Study location 

 

All samples for this research were obtained between the Otago Peninsula region of 

Dunedin, and Curio Bay in Southland, New Zealand (Figure 1.4). Draughtsboard 

sharks and their prey were sampled from between Curio Bay and Taiaroa Head, 

Dunedin. Lab work, including most measurements and dissections, was conducted at 

Portobello Marine Lab, which is in close proximity to the sampling sites (Figure 1.4). 

However, some practical work, primarily the identification of shark prey items, also 

took place in the University of Otago Botany Department.  
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1.7. Aims, objectives and hypotheses 

The overall aim of this research was to provide insights into what factors govern the 

composition and diversity of tapeworm parasites in sharks, with particular reference 

to the influence of host diet. This aim was explored on a large scale by using 

published literature to conduct comparative analyses across a broad range of different 

shark species. In addition, this aim was examined on a smaller scale, by testing links 

between the diet and tapeworms of a model shark species (C. isabellum).  

 

The objective of the comparative analyses was to determine whether certain aspects 

of host diet (such as diet breadth, composition or trophic level) are important 

predictors of tapeworm diversity or composition, particularly in comparison with 

other host variables. Additionally, larval shark tapeworm records in the literature were 

investigated to ascertain whether intermediate hosts of shark tapeworms show strong 

links with the diet of their shark hosts. These objectives were carried out by compiling 

comprehensive datasets on diet and other features of shark species from the literature 

and testing the variables of interest for their predictive strength on measures of 

tapeworm diversity among host species (e.g. tapeworm richness).  

Figure 1.4: Map of the Otago region displaying the sampling site locations; Curio Bay to  

  Nugget Point to Taiaroa Head, and the sites for lab work; Portobello Marine Lab 

  and the University of Otago Botany Department.  
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The objective of research on the model species Cephaloscyllium isabellum was to find 

out what factors act to restrict parasite establishment in the species, something which 

may also be relevant for other sharks. Moreover, this part of the study attempted to 

elucidate parts of the life cycle of the shark’s only known tapeworm 

(Calyptrobothrium chalarosomum). To complete these objectives, a number of 

individual sharks were examined for their diets and parasite fauna, and their known 

prey items were surveyed for parasite larvae to determine their potential as 

intermediate hosts. This was done to give some indication of how many larval 

parasites are likely to be encountered via their diet, and thus, whether there are 

mechanisms other than diet (e.g. host immune response) that heavily restrict parasite 

establishment.  

 

1.8. Overview of thesis chapters 

 

This thesis is presented in five chapters; a general introduction (this chapter), three 

chapters devoted to three individual studies, and a general discussion chapter. 

 

Chapter two investigated aspects of host diet as determinants of tapeworm diversity in 

sharks. Data was obtained from the literature on the diet breadth, trophic level and 

diet composition of as many shark species as possible in order to test whether these 

variables are strong predictors of tapeworm diversity. The importance of these factors 

were also assessed relative to many other potentially significant host features (e.g. 

host size and phylogeny).  

 

Chapter three examined the influence of diet on the composition of shark tapeworm 

assemblages. Similarly to chapter two, this involved compiling data from the 

literature on the diet composition of different sharks. However, this chapter analysed 

what factors may shape shark tapeworm compositions rather than analysing which 

factors are important for general tapeworm diversity. This chapter also examined 

larval shark tapeworm records in the literature to determine whether known 

intermediate hosts of shark tapeworms show a strong presence in the diets of their 

definitive shark hosts. 
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Chapter four focused on the model species C. isabellum, and primarily investigated 

whether this shark’s diet is an important factor restricting its encounters with potential 

tapeworm parasites. This involved a look at both the parasites and diet of this shark 

species, and an examination of larval parasites in its known prey items, which could 

serve as potential intermediate hosts.   

 

The final chapter summarised key findings from all of these thesis chapters, discussed 

their implications, and provided suggestions for further research.
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Chapter 2: Host diet as a determinant of 

tapeworm diversity in sharks
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2.1. Introduction  

The diversity of parasite species in a host, like the diversity of free-living species in 

an ecosystem, is shaped by a range of different ecological and evolutionary features. 

Exploring how these features relate to parasite diversity is fundamental to our 

understanding of why particular host species evolve with richer or more diverse 

parasite faunas than others (Poulin 2004). Research over the past several decades has 

already identified several widely important host features that can influence the 

diversity of parasite assemblages, including body size, lifespan, population density, 

geographical range and diet (Morand et al. 2000; Vitone et al. 2004; Kamiya et al. 

2014). A few of these features; body size, population density and geographical range, 

have even been recognised as ‘universal’ determinants of parasite species richness 

(Kamiya et al. 2014). Despite the general significance of these few host features, 

however, their relative importance is known to vary considerably among different 

host-parasite systems (e.g. Poulin et al. 2011). Depending on what hosts and parasites 

are involved, other less-generalised factors may also have a large influence on 

parasite diversity. For instance, in anthropoid primates, parasite species richness is 

influenced largely by social group size (Vitone et al. 2004). In addition, a number of 

host features, which could potentially have a significant impact on parasite diversity, 

are often left out of studies looking at determinants of parasite diversity. For example, 

host basal metabolic rate (BMR) is potentially a very important factor for parasite 

diversity. Higher BMRs are associated with higher rates of energy processing and 

resource availability, and consequently, animals with a high BMR may be able to 

support richer parasite assemblages (Brown et al. 2004). However, since BMR has 

been scarcely included as a factor in comparative analyses of parasite diversity, it is 

difficult to assess its predictive strength and relative importance compared to other 

factors (Kamiya et al. 2014). Likewise, host diet breadth may be an important 

predictor of parasite diversity because species with broad diets can encounter a greater 

range of parasite species from different prey (Locke et al. 2014). Yet, diet breadth has 

been rarely included in comparative analyses of parasite diversity, making it difficult 

to know how important diet breadth is for parasite diversity on a larger scale (Kamiya 

et al. 2014). In light of these issues, there remains a need for research to assess the 

relative importance of many different host features in various host-parasite systems to 
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better understand emerging diseases and their transmission dynamics.  

 

Sharks and their tapeworm species assemblages provide a useful system for looking at 

large-scale patterns of parasite diversity for a number of reasons. First, the tapeworm 

parasites of these elasmobranchs show substantial diversity and exhibit high host 

specificity. They are the most diverse group of parasites infecting elasmobranchs, 

with 977 different species and 201 genera known from nine established orders (Caira 

and Healy 2004; Caira and Jensen 2014). Based on the number of host species 

sampled for parasites to date, it is also estimated that an astounding 3600 tapeworm 

species in described elasmobranchs have yet to be recorded (Randhawa and Poulin 

2010). Almost all tapeworm species exhibit a high degree of host specificity in sharks, 

with most being restricted to a single host species or a few closely related hosts (Caira 

and Jensen 2014). However, it is also worth noting that these tapeworms are generally 

less specific in intermediate hosts and can have consequences for thousands of marine 

species other than elasmobranchs, including a broad range of teleost fishes, molluscs, 

crustaceans, mammals, reptiles and other invertebrates (Palm and Caira 2008; Jensen 

2009). Second, sharks are a group of animals that have features with broad and easily 

measurable variation across species. Shark species display a broad range of sizes, are 

found at nearly all marine habitats, depths and latitudes, and show marked variation in 

the breadth of their depth and latitudinal distributions (Froese and Pauly 2015). There 

is also considerable variation in diet and trophic level among different species (Cortés 

1999). Third and finally, sharks are apex predators of marine ecosystems and they, 

along with their many parasites, exert considerable influences throughout marine 

food-webs. Thus, sharks and their parasites stand as an important model for 

understanding determinants of marine diversity.   

 

From previous research looking at tapeworm diversity in sharks, several host features, 

including latitude, depth, and habitat, appear to have little influence on their parasite 

diversity (Randhawa and Poulin 2010). Host size has been identified as a significant 

predictor, but no other ecological or host biological features examined so far have 

demonstrated significant effects on shark tapeworm diversity (Randhawa and Poulin 

2010). Additionally, it has been shown that shared host evolutionary history, i.e. shark 

phylogeny, outweighs ecological variables as a predictor of tapeworm diversity in 

sharks (Poulin et al. 2011). Nevertheless, there are a number of potentially important 
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host features that have yet to be examined for their influence on tapeworm diversity. 

Host population density is a feature of likely importance, but data on population 

density is generally unavailable for different shark species, making it difficult to 

investigate its influence on parasite diversity. Of the features for which data are 

available, aspects of host diet are arguably the prominent features warranting 

investigation. Host diet hasn’t previously been assessed as a determinant of shark 

tapeworm diversity, but it is likely to have a large impact considering that all 

tapeworm species in elasmobranchs are acquired via ingestion of infected prey (which 

are intermediate or paratenic hosts) (Williams et al. 1994). Essentially, the number of 

tapeworm species that infect a shark species should directly depend on what prey, and 

ultimately how many different prey, a shark consumes as part of its regular diet.  

 

2.1.1. Objectives of chapter 2 

 

The main aim of this chapter was to examine whether three major aspects of host diet; 

(1) breadth of diet, (2) trophic level, and (3) diet composition, influence the species 

diversity of tapeworm assemblages in sharks. Although all three of these factors 

convey information on the diet of sharks, each is distinctly different in what it tells us. 

Breadth of diet is a general measure of how many different prey are consumed by a 

shark species. It was hypothesised that shark species with broader diets (diets 

including more different prey taxa) would harbour a greater diversity of tapeworm 

species than those with restricted diets. This was based on the fact that they would 

encounter more tapeworm intermediate hosts through their diet, and thus, could come 

in contact with a greater diversity of parasites. Trophic level is a measure of a species’ 

position in food webs, and indicates overall what type of ecological groups are most 

important in their diet (see Cortés 1999). It was hypothesised that shark species 

occupying higher trophic levels would harbour more diverse tapeworm assemblages 

than those occupying lower trophic levels, since they have access to more trophic 

links and additional intermediate hosts from higher trophic levels. Diet composition is 

a measure of what specific taxa are the most dominant in the diet of a host species. In 

contrast to trophic level, which reflects the position of a shark’s prey in the food web, 

diet composition tells us which specific taxonomic groups of prey (e.g. teleosts, 

cephalopods, crustaceans) comprise most of the diet. I predicted that shark species 

feeding predominantly on teleost fishes would have more tapeworm species than 
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other groups because most currently described intermediate hosts for marine 

tapeworms are teleost fishes (Palm 2004; Jensen 2009). Overall, it was predicted that 

each of these measures of host diet would have more significant, higher magnitude 

impacts on tapeworm diversity than host features examined in previous studies. 

 

2.2. Methods 

 

2.2.1. Tapeworm data collection 

All tapeworm species diversity data used in this study were compiled by revising and 

updating a comprehensive elasmobranch tapeworm dataset made available by 

Randhawa and Poulin (2010). This original data set obtained tapeworm richness 

estimates for a large range of shark species by searching through Zoological Records 

on ISI Web of Knowledge and compiling available data from 1864 to 2008. To ensure 

that the data set would be accurate and up to date, the original data set was revised by 

changing tapeworm richness estimates to include all new shark-tapeworm records 

published in Zoological Records from 2008 to 2017. Notably, a number of shark 

species were included in the present data set for which tapeworm species records had 

become available since 2008. Using the same method as Randhawa and Poulin 

(2010), new tapeworm records for each host species were found by searching the 

shark taxa (Latin name plus all known synonyms) combined with keywords ‘‘Parasit* 

OR disease OR pathog*’’. 

 

 Since measures of parasite diversity are often greatly influenced by sampling/study 

effort (Walther et al. 1995), correcting for sampling effort can give a more accurate 

measure of diversity (Poulin 2004; Luque and Poulin 2007). An ideal measure of 

parasite diversity sampling effort would be the sum of host individuals examined for 

parasites, but unfortunately, these data are seldom available from studies describing 

parasite records. As such, sampling effort for parasite diversity of each host species 

was measured as the total number of references obtained by searching the host’s 

tapeworm records on ISI Web of Knowledge (using the search parameters defined 

above). Compared with other estimates of sampling effort, this measure has been 

previously demonstrated as a stronger correlate with tapeworm richness (Randhawa 

and Poulin 2010).  
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To complement tapeworm species richness as a measure of parasite diversity, the 

average taxonomic distinctness (TD) of tapeworm assemblages was also calculated 

for each shark species. This index is used to measure the average taxonomic distance 

between the parasite species of an assemblage, with greater TD values indicating 

greater average taxonomic difference between species in the assemblage (Luque et al. 

2004). TD is a different measure of diversity to richness in that is thought to be more 

sensitive to host ecology (Luque et al. 2004, Luque and Poulin 2008). It is measured 

as the average number of steps up the taxonomic hierarchy (Phylum, Class, Order, 

Family, Genus, and Species) in order to reach a taxonomic level common to two 

species, and is calculated for all pairs of species in the assemblage being examined 

(Warwick and Clarke 2001). Variance in TD was computed to accompany the 

measure of average TD for each shark species. Variance in TD can be used to provide 

information on the taxonomic heterogeneity among host species, basically showing 

how even the distribution of taxa across the taxonomic tree is (Warwick and Clarke 

2001). Tapeworm TD was calculated (with the associated variance) for each host 

species harbouring at least 3 tapeworm species, using the programme ‘Taxobiodiv 

1.2’ (available at <www.otago.ac.nz/ zoology/downloads/poulin/ TaxoBiodiv1.2>). 

 

2.2.2. Host features data collection 

For all shark species with an available estimate of tapeworm richness, a number of 

important host features were recorded: (1) diet breadth, measured as the total number 

of prey families in a shark’s diet; (2) diet TD, measured as the average taxonomic 

distance between all prey families in a shark’s diet; (3) trophic level, measured as the 

number of energy-transfer steps to the shark’s food chain position; (4) diet 

composition, given as the taxonomic prey category composing most of the diet (of 

nine groups: teleost fishes, cephalopods, crustaceans, mammals, chondrichthyan 

fishes, reptiles, birds, other molluscs, other invertebrates); (5) habitat, given as which 

zone of the ocean a shark species is most associated with inhabiting (of seven 

categories: reef-associated, demersal, pelagic-oceanic, pelagic-neritic, benthopelagic, 

bathypelagic, bathydemersal); (6) host total length (cm); (7) latitudinal range, 

measured by the number of degrees of latitude spanning the shark’s geographic 

distribution; (8) depth range, measured as the distance in metres between shallowest 

and deepest points at which they occur; (9) depth mid-point, measured as the mid-
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point of the shark’s preferred depth distribution; and (10) phylogeny, represented by 

the Genus, Family and Order of the host.  It is worth noting that many of these host 

characteristics (host length, latitudinal range, depth range, depth mid-point, and 

habitat) have been previously assessed as predictors of tapeworm diversity 

(Randhawa and Poulin 2010), and were also included in the present data set to 

determine their relative importance compared with the dietary features of primary 

interest here. 

 

Data on most host features (phylogeny, trophic level, host length, latitudinal range, 

depth range, depth mid-point, and habitat) were obtained directly from recent species 

records listed on FishBase in March 2017 (Froese and Pauly 2017). In cases where 

data on one or more of these host features were not available for a species, the shark 

species was excluded from the data set. For all data on host diet, a comprehensive 

dataset was compiled from ISI Web of Knowledge. To do this, the taxa of each shark 

was searched (Latin name plus all known synonyms) combined with keywords ‘‘diet* 

OR feed* OR prey*’’ on ISI Web of Knowledge (all databases) and all available 

references from 1864 to 2017 were compiled (Searches were conducted April 2017). 

Every reference listed was searched for information on the diet of sharks, and out of 

2,081 references listed across all species, 361 had relevant data on diet that could be 

included in this study (see references in Table A.1 in Appendix).  

 

Unsurprisingly, the level of taxonomic definition for prey varied among studies; 

where some sharks had prey recorded mostly to Family or Order level, others had 

prey items known to the level of species. Considering this potential bias in records, it 

was decided that the best measure of diet breadth would be at the taxonomic level of 

Family. At this level there were records for most species that had tapeworm diversity 

estimates and there was also a large range of taxonomic groups (603 different families 

of prey) to give a good measure of variability in diet breadth among sharks. To ensure 

further accuracy in diet breadth comparisons, the final data set was also restricted to 

only include host species with at least one family of prey recorded (n = 91). Every 

family of prey identified for each shark species was recorded from each reference. 

Notably, some diet records were old, and taxonomic changes had been made to 

certain prey taxa since their publication. To address this, all prey taxa were checked in 
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the World Register of Marine Species (WoRMS) database and updated to their current 

taxonomical nomenclature (WoRMS Editorial Board 2017).  

 

Similarly to measures of parasite diversity, measures of diet breadth may be 

substantially affected by sampling effort (Randall and Myers 2001). Diet breadth is 

likely to increase as more individual hosts are examined for diet contents. Correcting 

for this influence of sampling effort should therefore provide a better measure of host 

diet (Cortés 1999). In contrast to studies describing parasites from sharks, the standard 

protocol for dietary studies is to include the number of hosts examined. Thus, it was 

possible to measure diet sampling effort as the sum of stomachs containing food (i.e. 

the number of non-empty stomachs) examined across all diet records for each shark 

species. For a few references, the number of non-empty stomachs examined was not 

provided, and therefore had to be excluded from further analyses. All the references 

were checked thoroughly in the methods and results sections to make sure that diet 

information was not duplicated among studies. In cases where studies gave duplicate 

data, the data was cited from the original reference only, and the number of hosts 

examined was only included for the original reference to avoid overestimation of 

sampling efforts. 

 

Taxonomic distinctness (TD) of diet was calculated to complement number of prey 

families as a measure of diet breadth. This was measured as the average number of 

steps up the taxonomic hierarchy in order to reach a taxonomic level common to two 

prey families, and was calculated for all prey family pairs in a shark’s prey 

assemblage. Similarly to the TD calculations for tapeworm assemblages, TD of prey 

family assemblages and associated variance were computed for each shark species 

with at least 3 families of prey in their diet, using ‘Taxobiodiv 1.2’. For information 

on diet composition, the percentage composition of nine different prey groups was 

recorded from each reference (teleost fishes, cephalopods, crustaceans, mammals, 

chondrichthyan fishes, reptiles, birds, other molluscs, other invertebrates). The overall 

composition of these groups for each shark species was then calculated by taking the 

average compositions across all studies, weighted by the number of non-empty 

stomachs examined for diet. Similar to the approach of Cortés (1999), compound 

indices were used to estimate composition where available (e.g. the index of relative 

importance %IRI), and otherwise, single indices, such as percent frequency of 
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occurrence (%O), percent number (%N) percent weight (%W), or percent volume 

(%V) were used individually. Where two of these single indices were available, an 

average was calculated (e.g. %O + %W/2). Plant materials, detritus and non-organic 

materials were not included in composition estimates as the present study was only 

interested in prey which are potential intermediate hosts for shark tapeworms.  

 

2.2.3. Data analysis 

 

All statistical tests were carried out in the R environment (R Development Core Team 

2012). Prior to analysing relationships between measures of tapeworm diversity and 

recorded host features, regressions were run to determine the influence of sampling 

effort on measures of tapeworm diversity and diet breadth. As expected, for both 

tapeworm richness and diet breadth, the relationships between diversity and sampling 

effort were best characterized by positive curves where diversity increased with 

increasing sampling effort, slowing towards an asymptote at higher effort values. To 

determine the significance of the associations, simple quadratic regressions were run 

for each diversity measure on their associated measures of sampling effort.  Host-

parasite sampling effort was found to have a significant influence on tapeworm 

species richness (r2 = 0.539, p < 0.001), but not on tapeworm TD (r2 = 0.007, p 

=0.825). To correct for this influence in further analyses, tapeworm richness was from 

here on measured by residuals for its quadratic regression on host-parasite sampling 

effort (a plot of this regression can be seen in Appendix Figure A.1.). Diet breadth 

was also influenced by sampling effort. The number of stomachs sampled for diet 

showed a strongly positive association with number of recorded prey families (r2 = 

0.601, p < 0.001), although not with prey family TD (r2 = 0.047, p = 0.272). Thus, 

there was a need to correct diet breadth, but not diet TD, in further analyses. From this 

point forwards, diet breadth (prey family richness) was measured by residuals for its 

quadratic regression on diet sampling effort (see regression plot for diet breadth and 

associated study effort in Appendix Figure A.2.). 

 

Linear mixed-effects models (LMMs) were used to analyse relationships between 

measures of tapeworm diversity and all recorded host features, each with identity link 

functions and Gaussian error distribution. The first main LMM looked at the influence 

of host features on tapeworm richness (response variable). This model included seven 
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continuous (fixed) predictor variables (diet breadth, diet TD, trophic level, host 

length, depth mid-point, depth range, and latitudinal range) and three categorical 

(random) predictor variables (habitat type, dominant diet group, and host phylogeny 

[which was measured as host genus nested within host family, nested within host 

order]). The second main LMM looked at tapeworm TD as a response with the same 

predictors as the above model. To supplement the analysis of tapeworm TD, a model 

was also run where tapeworm TD and prey TD variables were replaced with 

associated variances in TD. This was done to gauge the taxonomic ‘evenness’ among 

host species. In addition to these LMMs, a “tips” analysis was performed, which 

involved re-running each model with the random effects removed. This analysis 

serves as an approach to examining differences to the importance of predictor 

variables when the phylogenetic relationships among hosts are not considered (See 

Figure 2.1 for species phylogeny). 
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Figure 2.1: Phylogenetic tree displaying relationships among hosts included in this  

  study (taken from Rasmussen and Randhawa 2017, submitted). The shark 

  phylogeny was generated using Bayesian Inference from which contrasts were 

  derived for phylogenetic independent contrast analyses (Rasmussen &  

  Randhawa 2017, submitted). Numbers next to species names correspond to 

  GenBank accession numbers for individual NADH2 sequences. Nodal support  

  is expressed as posterior probabilities/bootstrap support; *, 100% posterior  

  probability; **100% bootstrap support. 
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LMMs were each analysed in detail using the “MuMIn” package in R (Barton 2013).  

Corrected Akaike’s information criterion (AICc) and Akaike model-averaged weights 

(w+(i)) were calculated for all possible linear regression models (models with all 

possible combinations of the predictors), and used to determine the best models as 

well as the rank and relative importance of each individual predictor in each model. 

Model averaged parameter estimates and 95% confidence intervals were also 

calculated for each variable using methods summarised in Anderson (2008). To 

determine the interaction terms to be included in each model, a priori sets of second 

order interactions were selected for combinations of predictor variables that were 

thought to be relevant based on biological and ecological principles. For instance, 

there is a known association between host size and trophic level that should be 

accounted for (Poulin and Leung 2011). AICc values were compared between models 

including these sets and the models with only combinations of individual predictors to 

determine whether the inclusion of the interaction terms significantly improved 

models. All other potential interactions between predictors were assessed in the same 

way to make sure that no important interactions were missed. From these analyses it 

was decided that four interaction terms were to be included in the model predicting 

tapeworm richness (habitat & depth mid-point, diet breadth & diet TD, diet breadth & 

trophic level, trophic level & host size) and three were to be included in the model 

predicting tapeworm TD (diet breadth & diet TD, host size & trophic level, latitudinal 

range & depth range). 

 

2.3. Results 

Across the 91 different shark species analysed in the present data set, there was a total 

of 570 tapeworm-host associations. Based on the raw data, shark species harboured 

6.26 tapeworm species on average (± 6.00 SD, range = 1 to 24) (Figure 2.2), and the 

average TD (taxonomic distinctness) and variance in TD of tapeworm assemblages 

was 3.39 (± 0.39 SD, range = 1.90 to 4.17) and 0.74 (± 0.51 SD, range = 0.00 to 2.53) 

hierarchical steps, respectively. Host species were commonly infected by a single 

tapeworm species and there was a positive skew in the number of tapeworm species 

infecting sharks (frequency of shark species decreased with increasing tapeworm 

richness) (Figure 2.2). In total, the host-parasite study effort across the 91 shark 
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species included 2068 records, which equated to 22.73 mean records per host (± 35,67 

SD). 

 

 

A total of 603 families of prey (within 163 orders; 39 classes; 16 phyla) were 

recorded in the data set. Shark species had records, on average, of 39.49 families of 

prey (± 34.16 SD, range = 1 to 145) (Figure 2.3), and the average TD and variance in 

TD of prey family assemblages was 2.81 (± 0.56 SD, range = 0 to 4.00) and 1.12 (± 

0.42 SD, range = 0 to 2.05) hierarchical steps, respectively. As illustrated by Figure 

2.3, diet breadth (prey family richness) was distributed with a positive skew across the 

shark species examined. In total, the number of stomachs examined across all shark 

species was more than 170,000, with 110,005 stomachs containing food. Notably, the 

number of stomachs with food examined was highly variable among species (mean = 

1208.85 ± 4502.72 SD), and the spiny dogfish Squalus acanthias on its own had data 

from 40,698 stomachs containing food. The average trophic level of sharks in this 

dataset was 4.14 (± 0.34 SD, range = 3.20 to 4.94).  

Figure 2.2. Frequency distribution of the number of shark species infected with different 

  numbers of tapeworm species (n=91). 
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2.3.1. Determinants of tapeworm richness 

 

In the LMM analysis looking at tapeworm richness, it was found that random effects 

explained a total of 19.1% of observed variation in tapeworm richness, with the 

interaction of habitat and depth mid-point explaining 13.26%, host phylogeny 

explaining 5.84%, but habitat and diet composition each did not explain any variation 

(Table 2.1). The top AIC model explaining variation in shark tapeworm richness 

(AICc = 508.59) included a combination of only three fixed predictors, diet breadth, 

diet TD and trophic level. The top five best AICc models were very close (∆AICc < 

1), and included various combinations of diet breadth, diet TD, trophic level and the 

interaction effect of diet breadth and diet TD. The model-averaged Akaike weights 

analysis also showed that these diet related variables were the best predictors of 

tapeworm richness. The factor with the highest relative variable weight was diet 

breadth (w+(i) = 0.99), followed by diet TD (w+(i) = 0.71), trophic level (w+(i) = 

0.59), and the interaction between diet breadth and diet TD (w+(i) = 0.37) (Table 2.1). 

It was interesting to note that although the association between diet breadth and 

tapeworm richness was positive (tapeworm increased with increasing diet breadth), 

the association between diet TD and tapeworm richness was negative (diet TD 

Figure 2.3. Frequency distribution of the number of shark species consuming various  

  quantities of prey families (n=91). 
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decreased with increasing tapeworm richness) (Table 2.1). Most other variables, 

including latitudinal range, depth mid-point, depth range and host size, were generally 

poor predictors of tapeworm richness in comparison (all w+(i) ≤ 0.01).  

 

Table 2.1. Summary of host features as predictors for tapeworm species richness in sharks.  
The relative importance of predictors is compared by model-averaged weights (w+(i)s), 

ranks, parameter estimates, and 95% confidence intervals (CIs). 95% CIs in bold indicate 

statistical significance. 
 

Random effects  

Variable                                                      Number of levels       Variance explained (%) 

Host Phylogeny (Genus/Family/Order) 

Habitat 

Diet composition 

Habitat*Depth Mid-Point 

(n=40)

(n=7) 

(n=6) 

(n=81) 

5.84% 

0.00% 

0.00% 

13.26% 

Fixed effects                          

variable                                            w+(i)       Rank      Parameter estimate     95% CI 

Diet Breadth  

Diet TD  

Trophic Level 

Diet Breadth*Diet TD  

Diet Breadth*Trophic Level 

Latitudinal Range  

Depth Range 

Host Size  

Depth Mid-Point 

Host Size*Trophic Level 

0.99 

0.71 

0.59 

0.37 

0.14 

0.01 

<0.01 

<0.01 

<0.01 

<0.01 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

  0.288 

 -2.047 

0.806 

 -0.124 

 -0.115 

0.005 

-0.001 

-0.003 

-0.001 

0.000 

 (-0.332, 0.909) 

(-4.705, 0.611) 

(-1.758, 3.369) 

(-0.213, -0.037) 

 (-0.211, -0.019) 

(-0.020, 0.031) 

(-0.002, -0.000) 

(-0.007, 0.002) 

(-0.004, 0.001) 

(-0.000, 0.000) 

 

Three predictors had significant effects on tapeworm richness, the interaction between 

diet breadth and diet TD, the interaction between diet breadth and trophic level, and 

depth range (their 95% confidence intervals were all bounded away from “0”) (Table 

2.1). However, it should be noted that the effect size for depth range was small and it 
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was only marginally significant (95% CI = (-0.002, -0.000), p = 0.044) (Table 2.1). 

The relationship between diet breadth and tapeworm richness was further analysed to 

determine the strength of the association. From a plotted linear regression (see Figure 

2.4) it can be seen that there is a significant positive correlation between the variables 

with a moderate amount of variability surrounding the linear trend line (r2 = 0.220, 

p<0.001). When the analysis was repeated with phylogeny and the other random 

effects removed, diet breadth, diet TD, the interaction between diet breadth and diet 

TD, and the interaction between diet breadth and trophic level all became highly 

significant predictors of tapeworm richness (p <0.001, Table 2.2). In contrast, depth 

range became non-significant (p = 0.276, Table 2.2).  

 

Table 2.2. “ƵŵŵĂƌǇ ŽĨ ͞ƚŝƉƐ͟ ĂŶĂůǇƐŝƐ ĂƐƐĞƐƐŝŶŐ ƉƌĞĚŝĐƚŽƌƐ ŽĨ ƚĂƉĞǁŽƌŵ ƌŝĐŚŶĞƐƐ ;ƌĂŶĚŽŵ 
effects of main models are excluded in this analysis). The relative importance of predictors is 

compared by model-averaged weights (w+(i)s), ranks, parameter estimates, and 95% 

confidence intervals (CIs). 95% CIs in bold indicate statistical significance. 
 

Tapeworm Richness Fixed effects                          

variable                                        w+(i)       Rank      Parameter estimate      95% CI 

Diet Breadth  

Diet TD  

Diet Breadth*Diet TD 

Trophic Level  

Diet Breadth*Trophic Level  

Depth Range 

Depth Mid-Point 

Host Size 

Latitudinal Range 

Host Size*Trophic Level 

1.00 

0.98 

0.94 

0.89 

0.84 

0.71 

0.30 

0.29 

0.28 

0.06 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

  0.926 

 -3.046 

-0.124 

 0.283 

 -0.109 

-0.001 

0.000 

0.000 

0.002 

0.000 

 (0.279, 1.574) 

(-5.118, -1.115) 

(-0.219, -0.043) 

(-2.074, 2.714) 

 (-0.221, -0.039) 

(-0.002, 0.000) 

(-0.003, 0.004) 

(-0.017, 0.017) 

(-0.017, 0.034) 

(-0.010, 0.008) 
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2.3.2. Determinants of tapeworm TD 

 
In the LMM analysis looking at predictors of tapeworm taxonomic distinctness (TD), 

it was found that random effects overall accounted for 26.91% of the variation in 

tapeworm TD, and host phylogeny explained a much larger proportion of variation in 

tapeworm TD (20.15%) compared to tapeworm richness (Table 2.3). The top AIC 

model explaining variation in tapeworm TD (AICc = 71.75) was the null model 

(model including none of the fixed predictors in the data set). Notably, the null model 

was considerably better than all other AIC models (all others ∆AICc >2). Diet TD and 

trophic level were the best predictors of tapeworm TD included in the model, with the 

highest relative variable weights across all models (diet TD (w+(i) = 0.23) and trophic 

level (w+(i) = 0.10)). However, these model weights were still low, and ultimately, all 

variables included in the analysis were poor predictors of tapeworm TD. In addition, 

no variables demonstrated statistical significance for tapeworm TD (Table 2.3).  

 

 

 

 

Figure 2.4. Scatter plot showing the association between tapeworm richness (measured 

  as the residuals for the quadratic regression of number of tapeworm species on 

  parasite sampling effort) and shark diet breadth (measured as the residuals for  

  the quadratic regression of number of prey families on prey sampling effort).  

  Solid line shows linear regression between the variables (r2 = 0.220, p<0.001). 
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Table 2.3. Summary of various host features as predictors for tapeworm species taxonomic 

distinctness (TD) in sharks. Relative importance of these predictors is compared by model-

averaged weights (w+(i)s), ranks, parameter estimates, and 95% confidence intervals (CIs). 

95% CIs in bold indicate statistical significance. 
 

Random effects  

Variable                                                     Number of levels       Variance explained (%) 

Host Phylogeny (Genus/Family/Order) 

Habitat 

Diet composition 

  (n=29) 

(n=6) 

(n=5) 

20.15% 

2.25% 

4.51% 

Fixed effects                          

variable                                          w+(i)         Rank    Parameter estimate    95% CI 

Diet TD  

Trophic Level  

Diet Breadth 

Latitudinal Range 

Host Size 

Depth Mid-Point 

Depth Range 

Diet Breadth*Diet TD  

Host Size*Trophic Level 

Latitudinal range*Depth Range 

0.23 

0.10 

<0.01 

<0.01 

<0.01 

<0.01 

<0.01 

0.00 

0.00 

0.00 

1 

2 

3 

4 

5 

6 

7 

8 

8 

8 

  -0.210 

 0.012 

0.001 

 -0.001 

 0.000 

0.000 

-0.000 

0.000 

0.000 

0.000 

 (-0.447, 0.027) 

(-0.331, 0.356) 

(-0.004, 0.005) 

(-0.004, 0.002) 

 (-0.001, -0.001) 

(-0.000, 0.001) 

(-0.000, 0.000) 

(-0.000, 0.000) 

(-0.000, 0.000) 

(-0.000, 0.000) 

 

When the analysis was repeated with phylogeny and the other random effects 

removed, Latitudinal range (w+(i) = 0.45) and depth range (w+(i) = 0.41) became the 

best predictors of tapeworm TD (Table 2.4). However, all variables remained poor 

predictors of tapeworm TD overall, and none of the host features included 

demonstrated significance in this analysis (Table 2.4). 
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Table 2.4. “ƵŵŵĂƌǇ ŽĨ ͞ƚŝƉƐ͟ ĂŶĂůǇƐŝƐ ĂƐƐĞƐƐŝŶŐ ƉƌĞĚŝĐƚŽƌƐ ŽĨ ƚŚĞ ĂǀĞƌĂŐĞ TD ŽĨ ƐŚĂƌŬ 
tapeworm assemblages (random effects of main models are excluded in this analysis). The 

relative importance of predictors is compared by model-averaged weights (w+(i)s), ranks, 

parameter estimates, and 95% confidence intervals (CIs). 95% CIs in bold indicate statistical 

significance. 
 

Tapeworm TD Fixed effects                          

variable                                          w+(i)         Rank    Parameter estimate    95% CI 

Latitudinal Range  

Depth Range  

Depth Mid-Point 

Trophic Level  

Diet TD  

Host Size 

Diet Breadth 

Latitudinal range*Depth Range 

Host Size*Trophic Level 

Diet Breadth*Diet TD  

0.45 

0.41 

0.36 

0.33 

0.32 

0.27 

0.26 

0.15 

0.03 

0.03 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

  -0.003 

 -0.000 

0.000 

 -0.151 

 -0.097 

-0.000 

-0.001 

0.000 

0.001 

0.006 

 (-0.009, 0.002) 

(-0.001, 0.000) 

(-0.000, 0.001) 

(-0.548, 0.246) 

 (-0.355, 0.162) 

(-0.003, 0.002) 

(-0.021, 0.018) 

(-0.000, 0.000) 

(-0.001, 0.002) 

(-0.008, 0.020) 

 
 

The model looking at determinants of variance in tapeworm TD was similar to the 

LMM for TD, with the null model being favoured. A large portion of variation 

(58.64%) in variance of TD was explained by host phylogeny (no other random 

effects explained variance), but all fixed variables were non-significant and poor 

predictors of variance in TD (Table 2.5). When the analysis was repeated with 

random effects removed, all factors remained poor predictors of variance in tapeworm 

TD (Table 2.6).  
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Table 2.5. Summary of host features as predictors for variance in the taxonomic distinctness 

(TD) of tapeworm assemblages in sharks. The relative importance of predictors is compared 

by model-averaged weights (w+(i)s), ranks, parameter estimates, and 95% confidence 

intervals (CIs). 95% CIs in bold indicate statistical significance. 

Random effects  

Variable                                                     Number of levels       Variance explained (%) 

Host Phylogeny (Genus/Family/Order) 

Habitat 

Diet composition 

  (n=29) 

(n=6) 

(n=5) 

58.64% 

0.00% 

0.00% 

Fixed effects                          

variable                                           w+(i)          Rank     Parameter estimate    95% CI 

Trophic Level  

Variance in Diet TD 

Diet TD  

Latitudinal Range 

Diet Breadth 

Host Size 

Depth Mid-Point 

Depth Range 

Diet Breadth*Diet TD  

Host Size*Trophic Level 

Latitudinal range*Depth Range 

0.22 

0.10 

0.09 

<0.01 

<0.01 

<0.01 

<0.01 

<0.01 

0.00 

0.00 

0.00 

1 

2 

3 

4 

5 

6 

7 

8 

9 

9 

9 

  -0.270 

 0.046 

-0.061 

 -0.003 

 0.002 

-0.000 

-0.000 

-0.000 

0.000 

0.000 

0.000 

 (-0.661, 0.121) 

(-0.292, 0.385) 

(-0.365, 0.243) 

(-0.008, 0.002) 

 (-0.004, 0.008) 

(-0.001, 0.000) 

(-0.001, 0.000) 

(-0.000, 0.000) 

(-0.000, 0.000) 

(-0.000, 0.000) 

(-0.000, 0.000) 
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Table 2.6. “ƵŵŵĂƌǇ ŽĨ ͞ƚŝƉƐ͟ ĂŶĂůǇƐŝƐ ĂƐƐĞƐƐŝŶŐ ƉƌĞĚŝĐƚŽƌƐ ŽĨ ǀĂƌŝĂŶĐĞ ŝŶ TD ŽĨ ƐŚĂƌŬ 
tapeworm assemblages (random effects of main models are excluded in this analysis). The 

relative importance of predictors is compared by model-averaged weights (w+(i)s), ranks, 

parameter estimates, and 95% confidence intervals (CIs). 95% CIs in bold indicate statistical 

significance. 
 

Variance in TD Fixed effects                          

variable                                          w+(i)         Rank    Parameter estimate    95% CI 

Depth Range  

Trophic Level 

Latitudinal Range 

Diet Breadth  

Diet TD  

Depth Mid-Point 

Host Size 

Variance in Diet TD 

Latitudinal range*Depth Range 

Diet Breadth*Diet TD  

Host Size*Trophic Level 

0.39 

0.33 

0.27 

0.27 

0.26 

0.25 

0.25 

0.24 

0.04 

0.03 

0.02 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

  0.000 

 -0.172 

-0.000 

 0.004 

 0.029 

0.000 

0.000 

-0.066 

0.000 

-0.010 

-0.000 

 (-0.000, 0.001) 

(-0.618, 0.274) 

(-0.006, 0.006) 

(-0.022, 0.031) 

 (-0.312, 0.371) 

(-0.001, 0.001) 

(-0.002, 0.002) 

(-0.312, 0.371) 

(-0.000, 0.000) 

(-0.028, 0.009) 

(-0.002, 0.001) 

 

 

2.4. Discussion  
 

The main objective of this study was to determine what host features influence the 

diversity of tapeworm assemblages in sharks, with focus on the influence of certain 

aspects of host diet, such as diet breadth, composition, and trophic level. In 

accordance with this, it was found that the breadth of a shark’s diet, measured by its 

diversity of prey families, was a better predictor of tapeworm richness than any other 

host feature examined to date (Table 2.1). This outcome was robust with both parasite 

richness and diet breadth corrected to prevent confounding by their associated 

sampling efforts. Moreover, diet breadth showed a highly significant positive 

association with tapeworm richness after adjusting data to account for phylogenetic 

relationships between shark species (Table 2.2). Thus, the findings here support the 

hypothesis that shark species with broader diets encounter and subsequently acquire 

more tapeworm species than those with restricted diets. So far only a few empirical 
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studies in other host-parasite systems have shown diet breadth to be important for the 

diversity of trophically-transmitted parasites (e.g. Chen et al. 2008; Locke et al. 

2014). However, it is also worth noting that other studies looking at determinants of 

parasite diversity have rarely included diet breadth, and in fact, too few comparative 

studies have involved diet for meta-analysis to sufficiently assess its strength as a 

predictor of parasite richness (Kamiya et al. 2014). In such cases, there is an eminent 

need for more research into the diet of hosts. Where diet records are available, on the 

other hand, it is suggested that future studies involving trophically-transmitted 

parasites should consider finding ways to analyse diet breadth as a potential predictor 

of parasite richness among host species.  

 

Using the average taxonomic distinctness (TD) of species assemblages to complement 

simpler measures of species diversity (i.e. species richness) has been a common 

practice in ecological studies for the past couple of decades (Von Euler & Svensson 

2001; Heino et al. 2005; Winter et al. 2013). But despite its potential application as a 

measure for diversity in species diets, to my knowledge TD has only been 

implemented as a measure of diet breadth in one recent diet study involving the diet 

of turtles (Stringell et al. 2016). In the present study it was found that diet TD (the 

taxonomic distinctness among prey families in the diet) was the second most 

important predictor of tapeworm species richness in sharks following diet breadth 

(prey family richness). Interestingly, diet TD displayed a negative estimate in the 

LMM of tapeworm richness, entailing a net decrease in tapeworm richness with 

increasing diet TD. In addition, there was a significant negative interaction between 

diet breadth and diet TD. These results are somewhat peculiar given that prior to the 

analyses I predicted that tapeworm richness would increase with both the general diet 

breadth and diet TD of sharks. One possible reason for this discrepancy could be that 

most of these shark tapeworms have a high host specificity (Palm & Caira 2008), and 

from an evolutionary perspective, these tapeworms are likely to exploit a narrower 

(more closely related) range of intermediate hosts than other more generalist parasites. 

Thus, if transmission of tapeworms is generally limited to more closely related 

intermediate hosts (low diet TD), perhaps parasite speciation has also been favoured 

more in closely related hosts, leading to infection with multiple congeners in these 

hosts (i.e. high tapeworm richness within low diet TD). This could mean that certain 
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taxonomic groups are generally devoid of tapeworm larval stages and may inflate 

prey TD to be higher in certain sharks that eat them, despite not being relevant for 

tapeworm transmission. Nevertheless, without knowing the relative importance of 

these taxonomic groups as intermediate hosts for tapeworms, reasons for the 

discrepancy found between diet breadth and diet TD here can only be speculated. 

Importantly, for many elasmobranch tapeworm species, intermediate hosts are 

completely unknown (Palm 2004; Jensen & Bullard 2010; Caira & Jensen 2014), and 

further research on the life cycles of these tapeworms could be key towards better 

understanding the relative importance of these diet aspects for tapeworm richness in 

sharks.  

 

Large-scale food web analyses have previously highlighted trophic level as an 

important aspect of host diet that can drive patterns of parasite richness (Lafferty et al. 

2006; Chen et al. 2008). Trophic level was found to be the third best predictor of 

shark tapeworm richness in this study (Table 2.1), but unlike measures of diet breadth, 

trophic level did not have a significant effect when data were adjusted to account for 

phylogenetic relationships between hosts (Table 2.2). It is worth noting, however, that 

trophic level and diet breadth had a significant interaction in the model, indicating that 

although these variables measure different diet aspects (trophic level reflects the 

position of a shark’s prey in the food web, where general diet breadth does not), they 

are related on some level, and may both gauge how broad a shark’s diet is. When 

considering this, one could posit that tapeworm richness in sharks is determined more 

by the breadth of different prey in a host species’ diet than by the position of these 

prey in food webs. A study of other marine fishes has also observed trophic level to 

have less impact on parasite richness compared with breadth of diet (Locke et al. 

2014). Even so, there is a question of why trophic level has shown to be a key driver 

of parasite richness in network studies, while appearing to be of less importance here. 

Locke et al. (2014) have offered a few plausible explanations: (1) trophic level is less 

relevant in the context of a fish community because it varies much less than in larger 

networks of species, and (2) links found between parasite richness and trophic level in 

other studies may reflect their association with diet breadth, meaning that diet breadth 

may actually be the underlying predictor of significance for parasite richness. It is also 

worth considering that trophic level may not appear as important in vertebrates where 

species at higher trophic levels have their parasite faunas restricted by more complex 
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and effective immune responses (Benesh et al. 2014). There may be some truth to 

each of these explanations. In any case, further research will be necessary to fully 

understand the relative influences of diet breadth and trophic level on parasite 

richness, and considering the results here, it is recommended that such studies look 

simultaneously at both factors as predictors of parasite richness (and account for their 

interaction). 

 

All variables other than host diet breadth, trophic level, and diet TD were 

comparatively poor predictors of tapeworm species richness in this study. However, it 

is worth pointing out that when the effect of phylogeny was removed from the 

analyses, many factors became more important (Table 2.2). The depth range of a 

shark species was a poor predictor of tapeworm richness (despite being marginally 

significant), but became considerably more important when data were adjusted to 

remove host phylogeny. Little is known about how depth factors regulate parasite 

diversity in the marine environment, but it has been suggested that depth-driven 

temperature gradients could influence tapeworm richness in elasmobranchs 

(Randhawa & Poulin 2010). Prior to this study, I also thought that differences in depth 

might reflect differences in habitat or diet among hosts. Yet, the results here showed 

conversely that although there was an interaction between habitat and the mid-point of 

shark depth ranges, habitat itself did not explain any variation in tapeworm richness. 

Likewise, diet composition, which was represented by the shark’s preferred 

taxonomic group of prey, did not account for any variation in tapeworm richness 

(Table 2.1). As such, despite measures of diet breadth demonstrating large influences 

on tapeworm species richness in sharks, the importance of the sharks’ preferred prey 

and habitats appeared to be negligible (Table 2.1). 

 

Prior to this study, it was predicted that shark species feeding predominantly on 

teleost fishes would have more tapeworm species than sharks feeding mainly on other 

prey groups because most currently described intermediate hosts for tapeworms are 

teleost fishes (Palm 2004; Jensen 2009). With the present results running counter to 

this proposal, there is a question of why the dominant prey group of sharks does not 

appear to be a major determinant of tapeworm richness. One thing worth noting is that 

crustaceans and cephalopods (the two most commonly dominant prey groups of 

sharks other than teleosts) have been described as intermediate hosts for many 
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tapeworms, but are generally less studied for parasites than teleost fishes, meaning 

that they likely harbour larval stages of substantially more species of tapeworms than 

have been currently described (Jensen 2009). Another possibility is that the lack of 

importance for diet composition reflects the limitations of simplifying composition 

into such large taxonomic groups. Perhaps more specific diet composition involving 

comparisons at the species or genus level could more accurately reflect differences in 

tapeworm richness. Analysing diet composition at this level would prove extremely 

challenging, however, since a large portion of studies on shark diets do not provide 

composition for individual species, genera, families, or even orders, and instead only 

estimate the full composition of major taxonomic groups. The importance of habitat 

for tapeworm richness may similarly be limited by the simplification of shark’s 

ecologies. Although habitat categories such as “Demersal” and “Bentho-pelagic” 

summarise the areas where these sharks are distributed, there can be substantial 

differences in the foraging behaviours, dietary preferences and distributions of sharks 

living in these same habitats.  

 

The lack of importance of host size for parasite richness in this study was surprising 

given that host size is a key predictor of parasite richness for a vast range of taxa 

(Kamiya et al. 2014). Larger host species generally provide more space and a greater 

diversity of niches for parasites to exploit (Kuris et al. 1980; Poulin & Morand 2004). 

Interestingly, however, Randhawa and Poulin (2010) have found host size to be a 

non-significant predictor of tapeworm richness in sharks, but found that it became a 

highly significant predictor when using Phylogenetic Independent Contrasts analyses 

to control confounding of host’s phylogenetic relationships (Randhawa & Poulin 

2010). Here a different method was used to examine the importance of variables 

without the influence of phylogeny (a “tips” analysis to remove phylogeny from the 

LMM), but host size was still non-significant for tapeworm richness (Table 2.2). This 

inconsistency highlights the difference between these methods to adjust for 

phylogenetic relationships. Phylogeny in the analysis here was measured by host 

genus nested within family, nested within order, and this assumes that species in these 

groups are equally related. On the other hand, the PIC method uses a phylogenetic 

tree which accounts for the genetic differences within each of these taxonomic groups 

(see Figure 2.1). Based on this, perhaps one could say that host size is probably a key 

predictor of tapeworm richness after accounting for phylogeny, because the 
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Phylogenetic Independent Contrasts result corrects for the effects of phylogeny using 

more precise data. However, it must be also be noted that Phylogenetic independent 

contrasts analyses are more sensitive to phylogeny due to the assumptions of accurate 

branch lengths and correct topology (Felsenstein 1985, Ackerly 2000), so any taxon 

bias or phylogenetic uncertainty, e.g. polytomies, might lead to questionable results 

that should be interpreted with caution (Ackerly & Reich 1999). In any case, 

increased sampling of shark diets and parasite assemblages across all shark orders 

should provide further insight into the importance of phylogeny and host size for 

tapeworm richness.   

 

Like host size, geographical range is generally known to be a key predictor of parasite 

richness for a broad range of taxa (Kamiya et al. 2014), but latitudinal range was 

found to be of little importance for tapeworm richness in sharks here. It was thought 

that shark species spanning greater ranges of latitude would likely encounter more 

prey taxa, and consequently encounter a greater diversity of parasite species than 

sharks with covering limited ranges in latitude. Yet, given that diet breadth, but not 

latitudinal range, had a significant influence on tapeworm richness, perhaps latitudinal 

range is not a good predictor since latitude indicates only one dimension of a shark’s 

distribution, whereas the diversity of prey taxa encountered by a shark would also 

vary with their longitudinal and depth distributions, in addition to their temporal 

patterns in foraging. Some other measures may be much better proxies for total 

geographical range of shark species (e.g. total area distribution). However, 

information on these other aspects of geographical range are unknown for many 

sharks, and would need to become available for further analysis. 

 

 The LMM looking at predictors of the average taxonomic distinctness (TD) of 

tapeworm assemblages found that no factors included in this study were good 

predictors of tapeworm TD (Table 2.3). This was somewhat surprising given that a 

few of the same variables (especially diet breadth) were considerably more important 

predictors of tapeworm species richness (Table 2.1), but as previous research has 

illustrated, parasite richness and average TD of parasite assemblages are sensitive to 

different host features (Luque et al. 2004; Heino et al. 2005; Luque & Poulin 2008; 

Randhawa & Poulin 2010). It is possible that diet breadth has much less influence on 

tapeworm TD than tapeworm richness because the distinctness of tapeworm 
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assemblages is driven more by other factors that were not accounted for in this study. 

For instance, tapeworm TD may be driven more by the compatibility of tapeworms 

with shark hosts. From an evolutionary perspective, hosts are more likely to be 

compatible with closely related tapeworm species, and as such, a shark could have a 

broad diet and encounter many tapeworm species, but only tapeworms within a 

limited range of taxa may actually be able to exploit the shark i.e. they could have 

species rich parasite assemblages with overall low TD consisting of many congener 

species. Notably, immune response has already been demonstrated to prevent 

infection by certain cestode species in elasmobranchs (McVicar & Fletcher 1970; 

Randhawa & Burt 2008). However, the importance of host compatibility in 

determining the taxonomic diversity of tapeworms in sharks warrants further 

investigation. In line with the results for average tapeworm TD, there were no good 

predictors observed for variance in tapeworm TD. This indicates that the taxonomic 

evenness of tapeworm assemblages in sharks is unlikely to be influenced by the 

factors examined. However, the present dataset including variance in tapeworm TD 

was considerably more restricted (n= 57 species) and this variable may be worth 

revisiting in future when more shark tapeworm records are described.  

 

2.4.1. Conclusions 

 

A total of 91 different shark species were examined in this study, which is less than a 

fifth of all described shark species known to date (Randhawa et al. 2015). However, a 

more complete analysis of diet’s influence on tapeworm richness would require host 

diet and tapeworm records to become available for many more shark species which 

are currently data deficient. The present study is the first to examine the influence of 

host diet and trophic level on parasite diversity in elasmobranchs, and to my 

knowledge, is the most comprehensive analysis of parasite diversity in sharks thus far. 

This gives credence to the key finding that the diet of a shark species, and particularly 

the breadth of its diet, has important consequences for the diversity of its trophically 

transmitted parasites. The intricacies of this link between host diet breadth and 

tapeworm diversity in sharks warrant deeper exploration. Despite having records of 

prey for the shark species examined here, the parasites of these prey items are 

generally unknown, and it remains uncertain whether these prey are actually 

intermediate hosts contributing to shark tapeworm richness. Indeed, several studies 
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have pointed out that there are major gaps in our knowledge of the life cycles of 

elasmobranch tapeworms (Palm 2004; Jensen & Bullard 2010; Randhawa & Brickle 

2011; Caira & Jensen 2014). These life cycles will need to be elucidated for a more 

in-depth understanding of diet breadth’s influence on tapeworm diversity.  
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Chapter 3: Linking the diet composition of 

sharks to their tapeworm compositions and 

use of prey as intermediate hosts 
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3.1. Introduction  

In the past few decades parasites have gained increased appreciation as a vital 

component of food webs (Marcogliese and Cone 1997; Lafferty et al. 2008; Dunne et 

al. 2013). The collective biomass of parasites distributed throughout a food web has 

been shown to exceed that of top predators in certain ecosystems (Kuris et al. 2008) 

and contribute substantially to energy flow through species networks (Johnson et al. 

2010; Goedknegt et al. 2012; Thieltges et al. 2013). Moreover, parasites can largely 

influence the structure of free-living communities and impact the strength of trophic 

links among species (Marcogliese 2003; Thompson et al. 2005; Lefèvre et al. 2009; 

Poulin 2010). For instance, larval trematode parasites have been shown to induce 

behavioral changes in their intermediate hosts that increase their susceptibility to bird 

definitive hosts, consequently strengthening the link between these different animals 

(Lafferty & Morris 1996). This is one of many examples of this type of influence 

(Aeby 1991; Thomas and Poulin 1998; Thomas et al. 2010; Bakker et al. 2017). On 

the flip side of these interactions, the structure of food webs may shape the ecology of 

these parasites, and their ability to strengthen trophic links may have ultimately arisen 

from selection pressures on parasites to reach their definitive hosts (Lafferty 1999; 

Lefèvre et al. 2009). Food web structure especially may have implications for the 

ecology of parasites with highly complex life cycles that depend on several different 

interactions among free-living species to reach their definitive hosts.  

 

Certain prey in food webs provide better routes than others for trophically-transmitted 

parasites to the definitive hosts (Thompson et al. 2013). For trophically-transmitted 

parasites, infecting intermediate hosts that are closely linked with their desired 

definitive hosts should increase the probability of completing their life cycle. 

Therefore, we might expect larval stages of trophically-transmitted parasites to occur 

more frequently in intermediate hosts that are abundant, high in biomass, or constitute 

a large proportion of their definitive host’s diet (Cirtwill et al. 2017). However, 

parasites also face phylogenetic constraints that limit which prey are suitable 

intermediate hosts (Euzet and Combes 1980; Combes 2001). Acanthocephalan 

parasites, for instance, are restricted to using arthropod intermediate hosts to reach 

their vertebrate definitive hosts (Near 2002). In some cases, host evolutionary history 

may be even more important in determining the range of intermediate hosts used by 
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parasites than the strength of their trophic links to the definitive host (Cirtwill et al. 

2017). Nevertheless, the importance of ecology and host evolutionary history for 

intermediate host-use may vary considerably among different parasites and hosts, and 

is yet to be investigated in many ecosystems. 

 

Tapeworms infecting elasmobranchs (sharks, skates and rays) represent an incredibly 

diverse and speciose group of marine parasites (Caira and Healy 2004; Caira and 

Jensen 2014). These parasites all have complex life-cycles and use a range of 

different invertebrate and vertebrate prey as intermediate (or paratenic/non-obligate) 

hosts, including, but not limited to, a variety of teleost and elasmobranch fishes, 

crustaceans, and molluscs (Palm 2004; Caira and Jensen 2017). In general, these 

tapeworms are highly host specific as adults, living in the spiral intestines of their 

definitive elasmobranch hosts, but show much lower specificity as larval stages in 

their respective intermediate hosts (Palm & Caira 2008; Jensen & Bullard 2010). 

Several cosmopolitan elasmobranch tapeworm species with lower host specificity 

may be exceptions to this, but these species also show considerably lower specificity 

in intermediate hosts (Palm & Caira 2008). Tentacularia coryphaenae, for instance, 

has been described as adults from more than 10 different elasmobranch species. Their 

larval stages have been described from more than 80 different intermediate host 

species in more than 40 different taxonomic families (Palm & Caira 2008). From 

what is currently known of elasmobranch tapeworm life cycles, different taxonomic 

groups of the parasites may use distinctly different types of intermediate hosts (Palm 

2004; Palm & Caira 2008). For example, certain trypanorhynch tapeworms in the 

families Eutetrarhynchidae and Aporhynchidae are known to use almost exclusively 

crustaceans (e.g. crabs and shrimps) as their second intermediate hosts, whereas 

trypanorhynch tapeworms of the family Lacistorhynchidae seem to use generally 

teleost fishes as their second intermediate hosts (Palm 2004). These patterns have 

been established from limited information on certain species, however, and until 

further research is done to elucidate the life cycles of more tapeworms, it cannot be 

said whether these patterns of intermediate host use are consistent within taxonomic 

groups (Palm 2004). Notably, the life cycles of different elasmobranch tapeworms 

have been poorly described, and in many cases their intermediate hosts are completely 

unknown (Caira & Reyda 2005; Jensen & Bullard 2010).  
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Ongoing research in parasitology is continuing to reveal new records for 

elasmobranch tapeworms in both intermediate and definitive hosts (Caira and Jensen 

2017). However, there remain significant gaps in knowledge regarding what factors 

underpin these patterns of host use. Questions remain as to which described 

intermediate hosts may represent “dead ends” for the parasites (ecological sinks), and 

which hosts are likely to transmit parasites to suitable paratenic or definitive hosts 

(ecological links) (Jensen and Bullard 2010). Likewise, it is unknown whether 

intermediate host use by these parasites is strongly linked to the diets of their 

definitive elasmobranch hosts, or alternatively, whether the links between 

intermediate and definitive hosts are dynamically weak as has been observed in other 

food webs (Cirtwill et al. 2017). Palm et al. (2017) have provided some recent 

insights, showing that the depth, diet, and habitat of sharks are major factors 

influencing the composition of their trypanorhynch tapeworm assemblages. Yet, the 

influence of diet has only been examined at a very coarse level (between vertebrate 

and invertebrate feeding sharks) (Palm et al. 2017), and many questions remain about 

how more specific taxonomic groups of prey in shark diets might influence their 

tapeworm compositions. Answering these questions may be critical towards better 

understanding and predicting the life cycles of these important marine parasites. 

 

3.1.1. Objectives of chapter 3 

 

In chapter two of this thesis, it was found that the dominant prey group in shark diets 

(e.g. crustaceans, cephalopods or teleosts) had little bearing on the overall diversity of 

their tapeworm assemblages. Diet composition may be substantially more important 

for the composition of their respective tapeworm assemblage, however, since as noted 

above, tapeworms in different taxonomic groups may use different types of 

intermediate hosts (i.e. some tapeworms may only use crustaceans as second 

intermediate hosts whereas others may use cephalopods or teleosts). The objective of 

this chapter was to investigate association between the diet and tapeworm 

composition of sharks. The first part of this chapter involved the use of ordination 

methods to map known tapeworm and prey taxa across different shark species. These 

methods served to analyse whether similarities in diet composition among sharks are 

correlated with their similarities in tapeworm composition, and more specifically, 

whether tapeworm assemblages show distinct differences among different feeding 
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groups of sharks (e.g. teleost-feeding and cephalopod-feeding sharks). The second 

part of this chapter looked more specifically at whether intermediate host use by 

tapeworm species is associated with their contribution to shark diets i.e. whether 

families of prey that harbour many different tapeworms are also important 

contributors to the diets of sharks that the tapeworms infect as adults. This entailed 

searching the literature for tapeworm records in families of intermediate hosts that 

could be compared with shark diet records for the same animal families. Only 

trypanorhynch tapeworms (Order Trypanorhyncha) were examined for their larval 

records in this part because unlike other tapeworms, they have consistent morphology 

between larval stages and adults, and thus, have been more consistently identified 

from intermediate hosts (Palm 2004; Jensen & Bullard 2010). Intermediate host 

records for other tapeworms are rare due to their reliance on molecular tools for 

identification, making it difficult to be explore their life cycle patterns based on 

current records (Jensen & Bullard 2010). In any case, patterns of intermediate host 

use by trypanorhynchs especially warrant investigation because the Order 

Trypanorhyncha is a basal tapeworm group of elasmobranchs and is the most speciose 

tapeworm Order in elasmobranchs known to date (Mariaux & Olson 2001; Hoberg & 

Klassen 2002; Caira & Jensen 2017; Palm et al. 2017).  

 

3.2. Methods 

3.2.1. Data collection of shark diets and tapeworms 

 

All data on tapeworms infecting sharks were compiled from a revised dataset of 

tapeworms in elasmobranchs that is publicly available from Randhawa and Poulin 

(2010). The final dataset included tapeworm species records for more than a hundred 

different shark species listed in Zoological Records on ISI Web of Knowledge from 

1864 to 2017 (see methods in 2.2.1 for more detail). Searches for tapeworm records 

were conducted for each shark species on ISI Web of Knowledge by searching its 

Latin name and all known synonyms combined with keywords ‘‘Parasit* OR disease 

OR pathog*’’. All data on prey families of sharks were compiled in a similar fashion; 

for each shark species which had tapeworm records, prey records were obtained from 

all published records listed across all databases on ISI Web of Knowledge from 1864 

to 2017. Diet records were obtained for individual shark species by searching its Latin 

name and all known synonyms combined with keywords ‘‘diet* OR feed* OR 
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prey*’’. The final dataset included all known prey families for each of 91 different 

shark species (for a list of prey families for each of the sharks see Table A.1 in 

Appendix). Given that many diet studies were published decades ago and taxonomic 

changes had been made to certain prey taxa since their publication, all prey taxa 

recorded were checked in the World Register of Marine Species (WoRMS) database 

and updated to reflect their currently accepted taxonomical nomenclature (WoRMS 

Editorial Board 2017). For information on the dominant prey groups of each shark 

species, the percentage composition of nine different prey groups were recorded from 

each diet reference (teleost fishes, cephalopods, crustaceans, mammals, 

chondrichthyan fishes, reptiles, birds, other molluscs, other invertebrates). The overall 

composition of these groups for each shark species was calculated by taking the 

average compositions across all studies, weighted by the number of non-empty 

stomachs examined for diet (See 2.2.2 for details on how composition was 

quantified). Overall diet composition was also recorded for the five families of prey 

most dominant in each shark species’ diet (this was relevant for later analyses linking 

intermediate hosts of trypanorhynch tapeworms to shark prey; see 3.2.4.). 

 

 In preparation for ordination analyses, tapeworm and diet data were formatted into 

presence/absence matrices in Microsoft Excel. For tapeworm data, a binary matrix 

was constructed giving the presence/absence of tapeworm families for each shark 

species (shark species x tapeworm families), where presence of a tapeworm family 

was indicated by “1” and absence of a tapeworm family was indicated by “0”. 

Tapeworm composition was analysed at the family level since tapeworms are highly 

host specific in elasmobranchs and, consequently, there is generally low overlap of 

tapeworms among different shark species (Caira and Jensen 2008). There is 

considerably more overlap of tapeworm families among sharks, allowing more 

meaningful comparisons in composition among hosts. Presence/absence of tapeworm 

families was used to represent composition rather than the species richness per family 

because the main interest of the present study was to explore the influence of diet on 

tapeworm composition in sharks, rather than tapeworm diversity which was already 

explored in detail within chapter two of this thesis. Only shark species with at least 

two available adult tapeworm records were included in the final matrix (akin to the 

methodology of Palm et al. 2017). This restriction was made to ensure more reliable 

comparisons in the ordination since species with fewer than two tapeworm records 
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could have just been poorly studied for parasites. Based on this minimum criterion, 

the analysis of tapeworm composition included a total of 272 host/tapeworm family 

records, involving 22 different tapeworm families recorded across 61 different shark 

species. 

 

 For diet data, a binary matrix was constructed giving the presence/absence of prey 

families for each shark (shark species x prey families), where presence of a prey 

family was indicated by “1” and absence of a prey family was indicated by “0”. 

Consistent with the tapeworm data, only shark species with at least two prey families 

described were included in the final matrix. This restriction was made because shark 

species with fewer than two prey family records may have been poorly studied for 

diet, and thus, removing them ensured more reliable comparisons in the ordination. 

Based on this minimum criterion, the analysis of diet composition included a total of 

2,793 shark/prey family records, involving 398 different families of prey recorded 

across 61 different shark species (importantly, these 61 shark species were the same 

species analysed for tapeworm composition). 

 

3.2.2. Analysis of diet vs. tapeworm composition 

All statistical tests were carried out in the R environment (R Development Core Team 

2012). Prey and tapeworm family matrices were uploaded into R and the package 

“betapart” (Baselga & Orme 2012) was used to transform each presence-absence 

matrix into a distance matrix of pair-wise dissimilarities among shark species. The 

Jaccard similarity index was used to generate dissimilarities. This index was selected 

for its simplicity and widespread application to presence/absence data, and for this 

study, it specifies the number of prey (or tapeworm) families shared by two shark 

species divided by the total number of prey (or tapeworm) families found across both 

shark species. Similarity measures are usually not independent of richness gradients 

among sites (in the case of this research, similarity would not be independent of 

gradients in prey and tapeworm family richness among shark species), meaning that 

differences in composition among sites can be obscured by differences in richness 

among sites (Baselga et al. 2007; Carvalho et al. 2012). One method that has been 

proposed to resolve this issue is to quantify dissimilarities by two different 

components; nestedness and turnover (Baselga 2010). The nestedness component of 
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dissimilarity accounts for differences in composition that are due to species loss 

between sites (in this case, prey/tapeworm family loss between shark species), 

whereas the turnover component, which is independent of potential differences in 

richness between sites, reflects replacement of species between sites (in this case, the 

replacement of prey/tapeworm families by other families between sharks) (Koleff et 

al. 2003; Baselga 2010; Baeten et al. 2012). For this study, both prey and tapeworm 

distance matrices were partitioned into nestedness and turnover components of 

dissimilarity using the “betapart” package (Baselga & Orme 2012), and since the 

main interest was in quantifying differences in tapeworm composition among sharks 

(not differences in richness), further analyses of prey and tapeworm composition were 

conducted specifically on turnover dissimilarities. 

 

The “metaMDS” function of the “vegan” package in R (Oksanen 2013) was used to 

generate two-dimensional nMDS ordinations plotting dissimilarities in tapeworm and 

prey composition among shark species. Both prey and tapeworm nMDS ordinations 

found global solutions within 20 runs. Initial ordinations displayed the species names 

for each shark, but they were subsequently re-plotted with two factors (dominant diet 

group and shark order) superimposed on the plot to show composition differences 

among sharks with different dominant prey groups and different orders (each shark 

species was coded with a symbol to represent its associated group). To test for 

significant differences in composition among sharks with different dominant prey 

groups and sharks with different orders, the “adonis” function was used to run non-

parametric (permutational) MANOVAs for both factors (999 permutations). Pairwise 

dissimilarities among the groups were calculated by re-running the function on each 

individual pair of groups (e.g. for the difference among two shark orders, the data was 

adjusted to include only sharks from those two orders). In instances where significant 

differences were seen between groups, SIMPER analyses (Clarke 1993) were 

performed to explore which prey families, or which tapeworm families, contributed 

most to compositional differences. In these analyses prey and tapeworm families were 

ordered by increasing contribution (%) to the total dissimilarity observed between 

groups. To determine overall correlation between the tapeworm and prey 

dissimilarities of sharks, the Mantel statistic was used (function “mantel” in the 

“vegan” package).  
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3.2.3. Data collection on intermediate host families 

 

A list of trypanorhynch tapeworm species was compiled for the 91 shark species with 

recorded diet information (only tapeworms known to infect spiral valves of these 

sharks as adults). Intermediate host records were obtained for each species from Palm 

(2004), which provides a comprehensive list of intermediate hosts described for 

trypanorhynchs up until 2004. Additional records published after 2004 (between 2004 

and 2017) were compiled from all databases of ISI Web of Knowledge. References 

were found on Web of Knowledge by searching the taxa of each tapeworm (Latin 

name plus all known synonyms) combined with keywords “larva* OR plerocerc* OR 

merocerc* OR procerc* OR cysticerc* OR "intermediate host"” (searches were all 

conducted in September 2017). Overall, 186 different animal families were recorded 

as intermediate hosts across 74 of the 139 trypanorhynch species infecting the 91 

included shark species (see hosts and associated references in Appendix Table A.2). 

 

The occurrence of animal families as intermediate hosts to trypanorhynch tapeworms 

is likely to be substantially influenced by each family’s sampling effort for parasites. 

Considering this, a measure of sampling effort was obtained for each animal family 

from ISI Web of Knowledge by searching each family name and all its described 

genera (all currently accepted genera described on WoRMS) combined with 

keywords ‘‘Parasit* OR disease OR pathog*’’. Several different genera were 

synonymous with taxa from unrelated families. In light of this potential error in 

searches, the list of taxa returned for each search was checked to make sure all 

included species and genera were part of the family in question. Where taxa were not 

part of the family, the search was refined to exclude them and their associated 

references. Families of terrestrial mammals recorded from shark diets were not 

included due to their potential inflation of sampling effort, and their unlikelihood to 

serve as intermediate hosts to shark tapeworms.  

 

3.2.4. Analysis of intermediate host importance 

All statistical tests were conducted in the R environment. To investigate the 

relationship between intermediate host use by trypanorhynch tapeworms and 

importance to shark’s diets, a linear mixed model (LMM) was run with trypanorhynch 

richness of animal families as a response. To correct for the influence of sampling 
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effort, trypanorhynch richness was measured by the residuals for its quadratic 

regression on sampling effort (a plot of this regression can be seen in Appendix 

Figure A.3). Prey phylogeny was included as a random effect in the model (measured 

as prey order, nested within prey class, nested within prey phylum). Two fixed 

predictors were included; (1) the overall occurrence of the animal family as prey 

across the 91 shark’s diets, and (2) the occurrence of the animal family as important 

prey across the 91 shark’s diets (important prey families were defined as those within 

a shark’s top five prey families by overall composition). The interaction between 

these fixed effects was included in the model since common prey families are also 

likely to be important in shark’s diets.  

 

To determine whether sharks feeding on trypanorhynch-rich prey had more 

trypanorhynch tapeworms as adults, the average trypanorhynch richness across a 

shark’s top five prey families by composition (adjusted for sampling effort as stated 

above) was plotted against its richness of adult trypanorhynchs (measured as residuals 

for the quadratic regression of richness on sampling effort (regression plot available 

in Appendix, Figure A.4). Significance was determined by a linear regression 

between these variables. 

 

3.3. Results 

3.3.1. The ŝŶĨůƵĞŶĐĞ ŽĨ ƐŚĂƌŬƐ͛ ĚŝĞƚƐ ŽŶ ƚŚĞŝƌ ƚĂƉĞǁŽƌŵ ĐŽŵƉŽƐŝƚŝŽŶƐ 

The 61 different shark species included in the analyses comparing diet and tapeworm 

compositions (Figures 3.1 & 3.2) showed considerable bias towards shark species 

with certain diets. Sharks with diets dominated by teleost fishes were by far the most 

frequent in the data (n=38), followed by sharks with diets dominated by crustaceans 

(n=14), and sharks with diets dominated by cephalopods (n=5). Sharks with diets 

dominated by other groups were poorly represented in comparison (chondrichthyan 

fishes (n=2) and other invertebrates (n=2)). The species were also biased towards 

certain taxonomic orders. Notably, more than two thirds of the sharks included were 

of the Order Carcharhiniformes (n=41). Lamniformes (n=7) and Squaliformes (n=6) 

were reasonably well represented, but all other orders (Hexanchiformes, 

Heterodontiformes, Orectolobiformes and Squatiniformes) were poorly represented, 

each with three or fewer species included.  
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There was a significant difference in prey family compositions among sharks with 

different dominant prey groups (ADONIS; R2=0.188, p<0.001) (Figure 3.1B). 

Pairwise comparisons indicated that there was a notably large difference in prey 

family composition between crustacean-feeding and teleost-feeding sharks (ADONIS; 

R2=0.124, p<0.001), and between crustacean-feeding and cephalopod-feeding sharks 

(ADONIS; R2=0.191, p=0.002). However, prey composition was not significantly 

different between teleost-feeding and cephalopod-feeding sharks (ADONIS; 

R2=0.035, p=0.161) (Figure 3.1B), indicating substantial overlap in the families of 

prey consumed between sharks feeding primarily on teleosts and sharks feeding 

primarily on cephalopods.   

 

Prey family composition showed a significant difference among sharks’ taxonomic 

orders (ADONIS; R2=0.179, p<0.001) (Figure 3.1C). Pairwise comparisons revealed 

significant differences in prey family composition between squaliform and lamniform 

sharks (ADONIS; R2=0.141, p=0.032), between carcharhiniform and squaliform 

sharks (ADONIS; R2=0.082, p<0.001), and between carcharhiniform and lamniform 

sharks (ADONIS; R2=0.044, p=0.021), (comparisons for other orders were not 

included due to their small sample sizes). SIMPER analysis determined that the five 

prey families contributing most to dissimilarity between lamniform and squaliform 

sharks were teleost fish families Macrouridae (cumsum=0.015, p<0.001), 

Myctophidae (cumsum=0.027, p=0.017), and Callionymidae (cumsum=0.061, 

p=0.005), and the cephalopod families Histioteuthidae (cumsum=0.050, p=0.031) and 

Sepiolidae (cumsum=0.039, p=0.003). All five of these families were significantly 

more common in the diets of squaliform sharks (in 100%, 100%, 66.7%, 100% and 

66.7%, respectively) than in the diets of lamniform sharks (in 14.3%, 28.6%, 0.0%, 

42.9% and 0.0%, respectively). The five prey families contributing most to 

dissimilarity between carcharhiniform and squaliform sharks were the teleost fish 

families Macrouridae (cumsum=0.014, p<0.001), Myctophidae (cumsum=0.038, 

p=0.002), and Gadidae (cumsum=0.057, p=0.008), and the cephalopod families 

Histioteuthidae (cumsum=0.026, p=0.002) and Sepiolidae (cumsum=0.048, p=0.003). 

All five of these families were significantly more common in the diets of squaliform 

sharks (in 100%, 100%, 66.7%, 100% and 66.7%, respectively) than in the diets of 

carcharhiniform sharks (in 12.2%, 22.0%, 19.5%, 42.9% and 19.5%, respectively). 
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The five families contributing most to dissimilarity between carcharhiniform and 

lamniform sharks were the teleost fish families Merlucciidae (cumsum=0.011, 

p<0.001), Sebastidae (cumsum=0.022, p<0.001), Sciaenidae (cumsum=0.041, 

p=0.084) and Paralepididae (cumsum=0.050, p=0.004), and the crustacean family 

Penaeidae (cumsum=0.032, p=0.196). The teleost families (Merlucciidae, Sebastidae, 

Sciaenidae and Paralepididae) were more common in the diets of lamniform sharks 

(in 85.7%, 71.4%, 71.4% and 57.1%, respectively) than in the diets of 

carcharhiniform sharks (in 26.8%, 7.3%, 51.2% and 2.4%, respectively). Conversely, 

Penaeidae was present more in the diets of carcharhiniform sharks (68.3%) than in 

lamniform sharks (42.9%).  
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Figure 3.1. Non-metric multidimensional scaling (nMDS) plots displaying the similarity in diet  

  (prey family) composition among shark species (n=61), grouped by shark species (A),  

  shark diet composition (B), and shark Order (C). Distances are based on Jaccard  

  similarities of spatial turnover among shark species. In B and C, 95% CI ellipses are  

  displayed to compare groups.  
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The tapeworm family assemblages of sharks were substantially different among 

dominant prey groups (ADONIS; R2=0.167, p<0.001) (Figure 3.2B). However, 

pairwise comparisons revealed that there was only a significant difference in 

tapeworm composition between crustacean-feeding and teleost-feeding sharks 

(ADONIS; R2=0.430, p<0.001), and not between crustacean-feeding and cephalopod-

feeding sharks (ADONIS; R2=0.099, p=0.162), or teleost-feeding and cephalopod-

feeding sharks (ADONIS; R2=0.022, p=0.487). These differences can be clearly seen 

in the associated nMDS plot (Figure 3.2B), which shows relatively distinct groupings 

for teleost-feeding and crustacean-feeding sharks, with cephalopod-feeding sharks in-

between and overlapping both groups. Notably, the two chondrichthyan-feeding 

sharks overlapped with teleost-feeding sharks in their tapeworm composition, 

whereas the two sharks feeding on other invertebrates were closest to crustacean-

feeding sharks (Figure 3.2B).  

  

 SIMPER analysis revealed that the five tapeworm families contributing most to 

dissimilarity between teleost-feeding and crustacean-feeding sharks were the 

diphyllidean family Echinobothriidae (cumsum=0.116, p<0.001), the trypanorhynch 

families Lacistorhynchidae (cumsum=0.212, p=0.245) and Tentaculariidae 

(cumsum=0.300, p=0.728), the phyllobothriidean family Phyllobothriidae 

(cumsum=0.388, p=0.682), and the onchoproteocephalidean family Onchobothriidae 

(cumsum=0.473, p=0.771). Echinobothriidae was particularly common in the 

tapeworm assemblages of crustacean-feeding sharks (harboured by 71.4% of 

crustacean-feeding sharks) but completely absent from assemblages of teleost feeding 

sharks. Tentaculariidae and Phyllobothriidae were also more common in crustacean-

feeding sharks (harboured by 71.4% and 85.7% of crustacean-feeding sharks, 

respectively) than in teleost-feeding sharks (harboured by 57.9% and 55.2%, 

respectively). On the other hand, Lacistorhynchidae and Onchobothriidae were more 

common in teleost-feeding sharks (harboured by 71.1% and 44.7%, respectively) than 

in crustacean-feeding sharks (each harboured by 42.9% of crustacean-feeding sharks). 

 

Tapeworm family composition showed a significant difference among shark orders 

(ADONIS; R2=0.319, p<0.001) (Figure 3.2C). Pairwise comparisons demonstrated 

that tapeworm compositions were significantly different between carcharhiniform and 

lamniform sharks (ADONIS; R2=0.145, p<0.001), and between carcharhiniform and 



57 

 

 

 

squaliform sharks (ADONIS; R2=0.122, p<0.001), but not between lamniform and 

squaliform sharks (ADONIS; R2=0.132, p=0.203). SIMPER analysis revealed that the 

five tapeworm families contributing most to dissimilarity between carcharhiniform 

and lamniform sharks were all trypanorhynch families; Sphyriocephalidae 

(cumsum=0.110, p<0.001), Tentaculariidae (cumsum=0.200, p=0.331), 

Lacistorhynchidae (cumsum=0.289, p=0.388), Otobothriidae (cumsum=0.374, 

p=0.260) and Gymnorhynchidae (cumsum=0.452, p<0.001). Sphyriocephalidae and 

Gymnorhynchidae were significantly more common in lamniform sharks (71.4% and 

57.1%, respectively) compared with carcharhiniform sharks (each harboured by only 

2.4% of carcharhiniform sharks). Conversely, Tentaculariidae, Lacistorhynchidae and 

Otobothriidae were all more common in the assemblages of carcharhiniform sharks 

(73.2%, 65.9% and 51.2%, respectively) than in the assemblages of lamniform sharks 

(42.9%, 42.9% and 14.3%, respectively). SIMPER analysis determined that the five 

tapeworm families contributing most to tapeworm dissimilarity between 

carcharhiniform and squaliform sharks were the trypanorhynch families 

Tentaculariidae (cumsum=0.116, p=0.002), Lacistorhynchidae (cumsum=0.216, 

p=0.023), Sphyriocephalidae (cumsum=0.313, p=0.004) and Otobothriidae 

(cumsum=0.405, p=0.045), and the phyllobothriidean family, Phyllobothriidae 

(cumsum=0.492, p=0.216). Tentaculariidae, Lacistorhynchidae and Otobothriidae 

were all more common in carcharhiniform sharks (73.2%, 65.9%, and 51.2%, 

respectively) than in squaliform sharks (16.7%, 33.3%, and 0.0%, respectively). In 

contrast, Sphyriocephalidae and Phyllobothriidae were more common in squaliform 

sharks (50.0% and 66.7%, respectively) than in carcharhiniform sharks (2.4% and 

63.4%, respectively). 
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Figure 3.2. Non-metric multidimensional scaling (nMDS) plots displaying the similarity in  

  tapeworm family composition among shark species (n=61), grouped by shark species  

  (A), shark diet composition (B), and shark order (C). Distances are based on Jaccard  

  similarities of spatial turnover among shark species. In B and C, 95% CI ellipses are  

  displayed to compare groups.  
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Overall, dissimilarity in tapeworm family composition was significantly positively 

correlated with dissimilarity in prey family composition (Mantel R2=0.118, p<0.001, 

permutations=999). In other words, tapeworm family assemblages were more similar 

in composition between sharks with similar diets (Figure 3.3).

 
Figure 3.3. Scatter plot showing the relationship between similarity in diet composition  

  (prey family assemblages) and similarity in tapeworm composition (tapeworm family  

  assemblages) among sets of shark species (n=61 sharks, 3721 comparisons).  

  Dissimilarities were derived using the Jaccard index and specifically reflect spatial  

  turnover. Solid line shows linear regression between the two variables. 
 
3.3.2. Linking trypanorhynch intermediate hosts with shark diet composition  

Data on diet and tapeworm composition was obtained for a total of 91 different shark 

species and across these shark species there were 139 different trypanorhynch 

tapeworm species described as adults from spiral valves. Seventy-four (53.2%) of 

these trypanorhynch species had one or more families of marine animals described as 

their intermediate hosts in the literature. Overall, these trypanorhynch larvae were 

recorded across 186 different families of marine animals (Appendix Table A.2). Most 

of these intermediate host families were teleost fishes (n=134), and the remainder 

were comprised of families of chondrichthyan fishes (n=23), crustaceans (n=16), 

cephalopods (n=7), other molluscs (n=3) and reptiles (n=3). After cross referencing 

trypanorhynch intermediate host families with families recorded from the diets of the 

91 shark host species analysed, a sum of 613 animal families could be compared for 
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their use as intermediate hosts of shark trypanorhynchs and their use as prey by 

sharks.  

 

The number of trypanorhynch species described to infect prey families as larval 

stages ranged from 0 in most families, up to more than 20 species in some families of 

teleost fishes. Once this number was corrected by each family’s associated sampling 

effort (using residuals for the quadratic regression of trypanorhynch species richness 

on sampling effort), it was revealed that the families with the most trypanorhynch 

species larvae described per sampling effort were teleost fishes of the Order 

Perciformes (Figure 3.4A). In fact, of the 20 families with the highest species richness 

of shark trypanorhynch larvae (per sampling effort), 13 families were perciform 

fishes, five were families of teleost fishes from other orders, and only two families 

were of other taxonomic groups (elasmobranchs and cephalopods, respectively) 

(Figure 3.4A). There was considerable overlap between the most trypanorhynch-rich 

intermediate hosts and the most common prey of sharks (Figure 3.4B). Seven of the 

20 families most rich in shark trypanorhynch tapeworm larvae (Carangidae, 

Sciaenidae, Scombridae, Trichiuridae, Serranidae, Merlucciidae, and 

Ommastrephidae) were also observed among the twenty most common prey families 

recorded from the diets of sharks (Figures 3.4A & 3.4B). Similarly, there was 

considerable overlap between the most trypanorhynch-rich families and the families 

most commonly comprising important shark prey (important prey families were 

defined as one of the five prey families with overall highest composition in a shark’s 

diet) (Figures 3.4A & 3.4C). In contrast with the 20 families most rich in shark 

trypanorhynch tapeworm larvae, there was more variation in taxonomy among the 20 

families most common as shark prey and important shark prey, with several families 

of cephalopods and crustaceans being much more common as shark prey than as 

intermediate hosts to their trypanorhynch tapeworm larvae (Figure 3.4). 
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Figure 3.4: Frequency distributions showing the twenty animal families with (A) the most described larval trypanorhynch tapeworm species  

  known to infect 91 different shark species as adults (adjusted to show highest numbers of trypanorhynch tapeworm species described  

  per sampling effort), (B) the highest total occurrence as prey across the same 91 shark species, and (C) the highest occurrence as  

  important prey across the same 91 shark species, defined by their frequency as one of the top five prey families by overall composition in 

   ƐŚĂƌŬ͛Ɛ ĚŝĞƚƐ͘ LĞgend (lower right) gives the higher taxonomic groupings of prey families. 
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For the LMM looking at factors influencing richness of shark trypanorhynch 

tapeworm larvae, the full model (AICc = 2600.139) was considerably better than the 

null model (AICc = 2817.743) and the model including the random effect only (AICc 

= 2740.764). The evolutionary history of intermediate host families (measured as prey 

order nested within prey class nested within prey phylum) was found to explain a 

considerable amount of the variance in richness (11.39%). Of the fixed effects, 

occurrence as shark prey had a significant positive influence on trypanorhynch 

richness (t448 = 8.315, P<0.001), but occurrence as important shark prey, and the 

interaction between the fixed effects, were both statistically non-significant (Table 

3.1).  

 
Table 3.1: Summary of Linear mixed model (LMM) showing the effects of variables on the 

number of shark Trypanorynch tapeworm species (corrected for sampling effort) known to 

infect various families of marine animals as larval stages. Frequency of shark prey is the 

overall number of occurrences of an animal family across the diets of 91 different shark 

species, and frequency as important shark prey represents the number of occurrences in the 

top five prey families of sharks by composition. The model estimates, t-values, degrees of 

freedom (df) and p-values are shown for each variable.  
 

Random effect  

Variable                                                      Number of levels       Variance explained (%) 

Prey Phylogeny (Order/Class/Phylum) (n=162) 11.39% 

Fixed effects                          

Variable Estimate t-value df p-value 

Occurrence as shark prey 0.138 8.315 448 <0.001 

Occurrence as important shark prey 0.010 0.099 448 0.921 

Fixed effects interaction 0.000 0.086 448 0.932 

 
 

It was found that the average trypanorhynch tapeworm richness across a shark’s most 

important prey (top 5 prey families by composition) was positively associated with 
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the overall richness of trypanorhynch tapeworms known to infect the shark (t69=2.592, 

P=0.012) (Figure 3.5). In other words, sharks infected by high numbers of 

trypanorhynch species as adults appeared to feed often on families of prey harbouring 

more trypanorhynch species as larval stages. However, it must be noted that this 

association was relatively weak overall (R2=0.089), and there was considerable 

variation among sharks (Figure 3.5).

 
Figure 3.5. Scatter plot showing the relationship between number of trypanorhynch  

  tapeworm species infecting shark species and number of trypanorhynch tapeworm  

  species infecting their important prey families as larval stages (important prey  

  families are defined as families that are in the top five families by overall  

  composition in tŚĞ ƐŚĂƌŬ͛Ɛ ĚŝĞƚͿ͘ BŽƚŚ ŵĞĂƐƵƌĞƐ ŽĨ ƚƌǇƉĂŶŽƌŚǇŶĐŚ ƚĂƉĞǁŽƌŵ  
  richness represent the residuals for their quadratic regressions on sampling effort.  

 

3.4. Discussion  

 

The results of this study reveal some important links between the diet of sharks and 

their tapeworm assemblages. First, tapeworm families were found to have 

substantially more overlap between shark species with similar diets. This pattern was 

demonstrated by a significantly positive correlation between shark similarities in 

tapeworm composition and similarities in diet composition (Figure 3.3). Additionally, 

nMDS analyses revealed distinct differences in shark species’ tapeworm compositions 

depending on what taxonomic group of prey was dominant in their diets (Figure 

3.2B). Taken together, these findings support the notion that tapeworms may be 
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useful indicators of the feeding ecology of their definitive shark hosts, and vice versa 

(Palm et al. 2017). However, these findings must also be viewed in light of host 

evolutionary histories. Tapeworm compositions showed significant differences among 

sharks of different taxonomic orders (Figure 3.2C), and shark diets were also largely 

dependent on their evolutionary history (Figure 3.1C). These relationships make it 

difficult to decipher the relative impacts of host ecology and evolutionary history on 

the structure of shark tapeworm assemblages. Ultimately, tapeworm assemblages may 

be similar between related shark species partly due to their shared evolutionary 

history with tapeworms, and partly due to the fact that they feed on the same type of 

intermediate hosts. Nevertheless, host ecology is evidently more important in some 

cases. In the present study, for example, there was substantial variation in tapeworm 

families among different lamniform shark species, and some lamniform sharks were 

shown to have tapeworm compositions closer to those of some squaliform shark 

species with similar feeding ecologies than those of other lamniform sharks. 

Likewise, other research has found that trypanorhynch tapeworms show substantial 

overlap among ecologically similar shark species even when they are 

phylogenetically-distant hosts (Palm et al. 2017). These instances likely reflect the 

occurrence of host switches between shark species with different evolutionary 

histories (Palm et al. 2017). Phylogenetic research of trypanorhynch tapeworms 

suggests that host switches have occurred for tapeworms even between exceptionally 

different elasmobranchs e.g. host switches between sharks and rays (Palm et al. 

2009).  

 

ϯ͘ϰ͘ϭ͘ TŚĞ ŝŶĨůƵĞŶĐĞ ŽĨ ƐŚĂƌŬƐ͛ ĚŝĞƚƐ ŽŶ ƚŚĞŝƌ ƚĂƉĞǁŽƌŵ ĐŽŵƉŽƐŝƚŝŽŶƐ  

Tapeworm families were observed to be remarkably different between crustacean-

feeding and teleost-feeding sharks in this study (Figure 3.2B). This pattern is likely 

the result of life-cycle differences among tapeworm families, since some tapeworm 

taxa appear to exclusively use crustaceans as second intermediate hosts, whereas 

others may only use teleosts as second intermediate hosts (see Palm 2004). For 

illustration, the trypanorhynch family Lacistorhynchidae was observed to be much 

more common among teleost-feeding shark species than crustacean-feeding species, 

which is consistent with previous findings that tapeworms of this family generally use 

teleosts as their second intermediate hosts (Palm 2004; Jakob & Palm 2006; Jensen 
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2009; see also Appendix Table A.2). In contrast, diphyllidean tapeworms of the 

family Echinobothriidae were observed to be very common in crustacean-feeding 

shark species, but completely absent from teleost-feeding sharks. A majority of the 

echinobothriid tapeworms infecting sharks in this study were of the genus 

Coronocestus, for which intermediate hosts are completely unknown. In other genera 

of echinobothriid tapeworms, crustaceans and molluscs have been described as 

second intermediate hosts (Vivares 1971; Cake 1976; Tyler 2006), and based on 

findings here, it is likely that Coronocestus species also use these invertebrates as 

second intermediate hosts. Phyllobothriid tapeworms were also more common in 

crustacean-feeding sharks than teleost-feeding sharks. However, larval stages of 

phyllobothriid tapeworms have been recorded from a range of different marine fauna 

including crustaceans (Vivares 1971), mammals (Aznar et al. 2007), teleost fishes, 

and molluscs (cephalopods and bivalves) (Jensen 2009; Jensen & Bullard 2010; 

Randhawa & Brickle 2011). Notably, these records from different fauna involve 

different phyllobothriid genera, indicating that different taxa within this family could 

have very different life cycles. Certain phyllobothriid genera may typically use crabs 

as second intermediate hosts (Vivares 1971), whereas others infecting primarily 

lamniform sharks (e.g. Clistobothrium) use squid as second intermediate hosts 

(Randhawa & Brickle 2011). However, further research is needed to elucidate their 

poorly studied life cycles. 

 

 The families Tentaculariidae and Onchobothriidae showed minor differences in their 

presence between teleost-feeding and crustacean-feeding sharks (tentaculariids were 

present more in crustacean-feeders, whereas onchobothriids were slightly more 

common in teleost-feeders), and overall both families were relatively common 

amongst sharks of both feeding types. This is perhaps unsurprising for tentaculariid 

tapeworms, which generally use teleosts as second intermediate hosts, but show 

cosmopolitan distributions across a range of other marine animals including 

cephalopods, other molluscs, chondrichthyans and reptiles (Palm 2004; Palm & Caira 

2008; Jensen 2009; see also Appendix Table A.2). Some genera within 

Tentaculariidae are probably more host specific than others, but most members of this 

family have low host specificity, and some species (e.g. Tentacularia sp.) appear to 

have flexible life cycles with many potential paratenic hosts (Palm 2004; Palm & 

Caira 2008). The typically low host specificity of these species perhaps explains why 
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they are common across shark species with very different feeding habits. 

Interestingly, onchobothriid tapeworms are characterised by a high degree of host 

specificity (Caira & Jensen 2001; Caira et al. 2001), but are also common across 

sharks with different feeding habits. As described above for Phyllobothriidae, it is 

likely that different genera within this family have contrasting life-cycles. For 

example, the genus Acanthobothrium is found in crustacean-feeding carcharhiniform 

sharks (Mustelus and Scyliorhinus spp.), and some species in this genus have been 

found to commonly use benthic molluscs (gastropods and bivalves) as intermediate 

hosts (although it must be noted that there is a paucity of information on the life 

cycles of most Acanthobothrium species) (Cake 1976; Holland & Wilson 2009; 

Jensen 2009). Sharks with diets dominated by crustaceans are generally benthic 

foragers that often eat families of bivalves and gastropods (see Mustelus and 

Scyliorhinus species in Appendix Table A.1 for examples), and thus, crustacean-

feeding sharks are likely to also frequently encounter tapeworm larval stages from 

these mollusc intermediate hosts. On the other hand, the onchobothriid genus 

Phoreiobothrium is known from teleost-feeding carcharhiniform sharks (e.g. 

Carcharhinus and Sphyrna spp.) and has been recorded to generally utilise teleost 

second intermediate hosts (Jensen & Bullard 2010). Based on these different 

associations, the feeding ecology of shark hosts could provide useful insights for 

onchobothriid genera with completely unknown life cycles. For instance, intermediate 

hosts have not been described for tapeworms of the genus Platybothrium (Healy 

2003), but given that tapeworms of this genus are common in teleost-feeding sharks 

(e.g. Carcharhinus spp. and Sphyrna spp.) and are frequently found in co-infections 

with species of Phoreiobothrium (Caira et al. 2017), they most likely use teleosts as 

intermediate hosts. 

 

The nMDS analyses revealed that tapeworm families of cephalopod-feeding sharks 

were not distinctly different from those of either teleost-feeding or crustacean-feeding 

sharks (Figure 3.2B). This pattern may be in part due to the low sample size here for 

sharks feeding primarily on cephalopods (n = 5). However, there was also strong 

overlap in the prey families of cephalopod-feeding and teleost-feeding sharks (Figure 

3.1B), indicating that sharks with these different dominant prey groups have very 

similar diets overall. This pattern was also anecdotally supported by the diet 

composition data obtained for this study, which showed that the diet of sharks feeding 
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mainly on cephalopods typically had high overall compositions of teleost fishes (15-

30%). Pelagic cephalopods are commonly intermediate hosts to trypanorhynch 

tapeworms that also use teleost second intermediate hosts (Palm 2004; Appendix 

Table A.2), and many studies suggest that cephalopods are frequent paratenic hosts 

for these trypanorhynch tapeworms (Stunkard 1977; Brickle et al. 2001; Shukhgalter 

& Nigmatullin 2001; Palm et al. 2017). Hence, tapeworm assemblages may not be 

distinctly different between cephalopod-feeding and teleost-feeding sharks since 

cephalopods are often used as second intermediate hosts (facultative or obligate) and 

paratenic hosts in the same life-cycles as teleost fishes. Notably, this would not 

explain why no significant difference was observed in tapeworm compositions 

between cephalopod-feeding and crustacean-feeding sharks. The diet composition 

data showed that cephalopod-feeding sharks had variable, but generally lower diet 

compositions of crustaceans (0-15%), compared to teleosts (15-30%). Based on this, 

there is less support for cephalopods and crustaceans being intermediate or paratenic 

hosts in the same life cycles. However, given the current paucity of information on 

marine tapeworm life cycles, further investigation is needed.  

 

Tapeworm families showed strong distinctions among the different shark Orders, with 

significant differences observed between carcharhiniform and lamniform sharks, as 

well as between carcharhiniform and squaliform sharks. The analyses revealed that 

carcharhiniform sharks were characterised by the trypanorhynch tapeworm families 

Tentaculariidae, Lacistorhynchidae and Otobothriidae. These findings mirrored those 

of Palm et al. (2017), who found that genera within these and other trypanorhynch 

families could be useful indicators of the ecology of carcharhiniform shark hosts. For 

example, the genera Tentacularia and Heteronybelinia (Tentaculariidae), 

Otobothrium (Otobothriidae), Callitetrarhynchus, Floriceps and Dasyrhynchus 

(Lacistorhynchidae) are all typical of pelagic teleost-feeding carcharhiniform sharks, 

whereas the genera Dollfusiella and Trigonolobium (Eutetrarhynchidae), 

Lacistorhynchus and Diesingium (Lacistorhynchidae) are all typical of benthic 

invertebrate-feeding carcharhiniform sharks (Palm et al. 2017). Although these 

disparities are also underpinned by further phylogenetic differences within the Order 

e.g. sharks of the Family Carcharhinidae are typically teleost-feeding sharks, whereas 

sharks of the Family Triakidae are typically invertebrate-feeding sharks (Palm et al. 

2017), these tapeworm genera could clearly be very useful for predicting the general 
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feeding habits of a host species. To illustrate this, there is a paucity of information on 

the feeding habits of the triakid shark Mustelus mento (Fishbase 2017), but this 

species is known to harbour tapeworms of the trypanorhynch genera Lacistorhynchus 

(Gibson et al. 2005) and Dollfusiella (Alves et al. 2017), which both suggest that this 

shark has a diet dominated by benthic invertebrates. In a similar vein, the feeding 

habits of a shark host could be used for making inferences about their tapeworm 

assemblages. For example, to my knowledge the carcharhinid shark Rhizoprionodon 

longurio has not yet been studied for tapeworm parasites, but it is known to feed 

mainly on pelagic teleost fishes (Márquez-Farías et al. 2005). From this we could 

infer that the tapeworm assemblage of this shark is likely to include tapeworms of the 

aforementioned genera common to teleost-feeding carcharhiniform sharks.  

 

Both squaliform and lamniform sharks were characterised by the trypanorhynch 

tapeworm family Sphyriocephalidae (which was rare in carcharhiniform sharks). The 

common occurrence of this family across both lamniform and squaliform sharks may 

at least partially explain why tapeworm compositions were overall not significantly 

different among sharks of these orders. Tapeworms of this family are known to use 

teleost fishes, elasmobranchs, and cephalopods as intermediate or paratenic hosts 

(Jensen & Bullard 2010; Dallarés et al. 2017; Appendix Table A.2). Interestingly, 

sphyriocephalid tapeworms have also been described from many of the same 

intermediate host species as tapeworms characteristic of carcharhiniform sharks 

(species of tentaculariids, lacistorhynchids and otobothriids) (see Appendix Table 

A.2). Considering this overlap in intermediate hosts, one might ask why 

sphyriocephalid tapeworms are not common in carcharhiniform shark species too. 

One possibility is that these tapeworms might be incompatible with carcharhiniform 

sharks due to differences in immune response (McVicar & Fletcher 1970; Randhawa 

& Burt 2008) or other filters that have yet to be examined in this host-parasite system. 

However, this can only be speculated without further investigation. Importantly, the 

patterns of host use established here are based on small subsets of shark species from 

all orders other than Carcharhiniformes, and may become much clearer with larger 

sample sizes. This will require increased sampling of sharks’ diets and parasite 

assemblages across different orders in future.  
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3.4.2. Linking trypanorhynch intermediate hosts with shark diet composition  

One of the primary aims of this study was to investigate links between intermediate 

host use by trypanorhynch tapeworms and the diets of their definitive shark hosts. The 

present study demonstrated considerable overlap between the most trypanorhynch-

rich families of intermediate hosts and the most common prey families of sharks 

(Figure 3.4). Moreover, the occurrence of animal families as shark prey was overall 

statistically significant and positively correlated with the number of trypanorhynch 

species known to infect them (adjusted by the family’s sampling effort for parasites) 

(Table 3.1). Based on these findings, trypanorhynch tapeworms of sharks appear to 

use intermediate hosts which have a high likelihood of being consumed by shark 

definitive hosts. From an evolutionary standpoint, this could suggest that these 

tapeworms increase the probability of completing their life cycles by infecting 

intermediate hosts which have strong trophic links to suitable definitive hosts 

(Cirtwill et al. 2017). However, this is not to say that trypanorhynch tapeworms 

specifically target prey with strong trophic links to their definitive shark hosts. 

Notably, many of the families of marine animals that are important hosts of 

trypanorhynch larvae are also some of the most common, speciose, and widespread 

animals across marine ecosystems (e.g. Scombridae and Sciaenidae (Nelson et al. 

2016)), and consequently, are likely to be frequently encountered by sharks. Thus, it 

is possible that the links observed between intermediate host use in trypanorhynch 

tapeworms and shark’s diets are a product of the wide distribution and abundance of 

these prey families (see Cirtwill et al. 2017).  

 

The evolutionary history of an animal has an important influence on its use by 

trypanorhynch tapeworm species (Table 3.1). In line with previous records, families 

of teleost fishes were by far the most common intermediate hosts for shark 

trypanorhynch tapeworms (Palm 2004; Jensen & Bullard 2010), and made up more 

than two thirds of all described intermediate host families in the present study. Fishes 

of the Order Perciformes were particularly important intermediate hosts (Figure 3.4a, 

which as noted above, may partly be a consequence of the size, abundance and wide 

distributions of members within the Order. Families of perciform fishes could also be 

more suitable intermediate hosts for phylogenetic reasons e.g. they may provide more 

adequate resources for larval development. Although most trypanorhynch tapeworms 
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exhibit low host specificity as larval stages, some species (e.g. Gymnorhynchus gigas) 

appear to have higher host specificity as larvae, perhaps due to such phylogenetic 

constraints (Palm & Caira 2008). Nevertheless, trypanorhynch tapeworm patterns of 

host use in teleosts are almost certainly more influenced by the ecology, rather than 

the phylogeny, of their intermediate hosts (Jakob and Palm 2006). Based on the 

comparative findings here it is difficult to establish the extent to which phylogenetic 

constraints might influence patterns of host use, and further insights would require 

experimental infection studies which could test compatibility of larval tapeworms 

among different potential intermediate hosts. To my knowledge, no such studies have 

been conducted to date. 

 

The average richness of trypanorhynch tapeworms (larval stages) across a shark’s 

preferred families of prey was found to be positively associated with the richness of 

adult trypanorhynch tapeworm species known to infect the shark (Figure 3.5). 

However, it must also be cautioned that the overall association between these factors 

was relatively weak (r2 = 0.089), and there was a large amount of variation among 

different species. Many factors might account for this variation, including all the 

factors analysed within chapter two of this thesis (e.g. the phylogeny, size, trophic 

level, and overall diet breadth of the shark), as well as factors which have not yet been 

examined, such as host-parasite compatibility. It is also possible that some of this 

variability is the result of limitations in the diet records obtained for this study. The 

overall diet compositions of shark species here reflect the sum of their feeding habits 

across all examined individuals for a species, regardless of their sex, size and locality. 

Unfortunately, many further diet studies of shark species would be required to assess 

the influence of these factors because a substantial amount of currently published 

records have not provided data on shark’s feeding habits for each of these sub-

populations. Furthermore, it is very uncommon for studies of elasmobranch stomach 

contents to include information on the intestinal parasites of individuals (see the 

following for some notable exceptions; Klimpel et al. 2003; Gracan et al. 2014; Isbert 

et al. 2015). 

 

 

3.4.3. Conclusions  
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The present study revealed several important links between the diets of shark species 

and their tapeworm parasite assemblages. Firstly, there was substantial overlap found 

between the tapeworm families infecting a shark species and the prey families 

comprising their diet. Second, it was established that certain tapeworm lineages may 

serve as useful indicators of the feeding habits and evolutionary history of shark host 

species. Finally, it was observed that trypanorhynch tapeworm species that mature in 

sharks often use intermediate hosts which are commonly preyed upon by shark hosts. 

As a whole these findings demonstrate that both evolutionary history and ecology 

have important influences in shaping the tapeworm parasite assemblages of shark 

species. Importantly, the patterns of host use established here are conspicuously 

biased towards shark species of the Order Carcharhiniformes. Sharks of this order are 

generally the most well-studied and are arguably some of the most important, 

abundant and widespread species inhabiting our oceans (Compagno 2001). However, 

to further our understanding of the evolution of parasitic life cycles in sharks, it is 

recommended that sampling of diets and parasite assemblages prioritise shark species 

across more different Orders in future. 
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Chapter 4: Analysing host diet and parasites 

in a model species; the draughtsboard shark 

Cephaloscyllium isabellum
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4.1. Introduction  

Parasite species demonstrate substantial heterogeneity in their distributions among 

host species, and consequently, certain hosts harbour disproportionately more parasite 

species than others (Poulin 2011). This heterogeneity in parasite diversity among host 

species is underpinned by a number of ecological and phylogenetic factors, which act 

to restrict the range of hosts that can be used by parasite species i.e. their host 

specificity (Combes 2001; Poulin 2011; Poulin et al. 2011a). In 1980, Euzet and 

Combes proposed that these determinants of host use can be thought of as two types 

of “filters”; namely encounter filters, which are factors that prevent physical contact 

between hosts and parasites, and compatibility filters, which are factors that prevent 

parasites from forming an association with hosts, even if they do come in contact 

(Euzet & Combes 1980; Combes 2001). Testing the relative strength of encounter and 

compatibility filters has since become a common feature of studies aiming to 

understand patterns of host use by different parasites (Kuris et al. 2007; Lagrue et al. 

2011; Medeiros et al. 2013). By assessing the relative importance of these filters, 

researchers may gain key insights towards understanding, predicting and controlling 

outbreaks of infectious diseases in the future (Poulin 1992; Taraschewski 2006; 

Lootvoet et al. 2013). 

 

A common method used to test the relative importance of compatibility and encounter 

filters is to control for the encounter filter via experimental infection of a host with a 

parasite it does not naturally encounter (Komar et al. 2003; Perlman & Jaenike 2003; 

Kuris et al. 2007; Dick et al. 2009; Van Oosten et al. 2016). A number of studies 

employing this method have established the importance of encounter filters, showing 

that many parasites are compatible with hosts that they don’t normally come in 

contact with (Komar et al. 2003; Perlman & Jaenike 2003; Dick et al. 2009). 

However, this is not to say compatibility filters are less important in preventing 

parasite infections. Studies have also demonstrated substantial variation in the 

compatibility of parasites among different host species, with compatibility suggested 

to depend heavily on the taxonomic distance between hosts (Komar et al. 2003; 

Perlman & Jaenike 2003; Medeiros et al. 2013). Unfortunately, assessing the 

importance of encounter and compatibility filters relative to each other has proven 

more challenging, largely due to the difficulty of quantifying host-parasite encounters 
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(Combes 2001). Although the natural distribution of parasites in different hosts gives 

some clue as to how many parasites are encountered by a host, the full extent of 

encounters cannot be estimated without knowing how many parasites are encountered 

that fail to infect the host (Kuris et al. 2007). Researchers must address this issue and 

look for ways to reliably measure host-parasite encounters in order to gain a better 

understanding of the relative roles of encounter and compatibility filters in different 

ecosystems. 

 

Tapeworms (cestodes) are arguably the most important group of parasites infecting 

elasmobranchs. These parasites are known to have typically high host specificity as 

adults (are limited to one or a few host species) and showcase an incredible diversity 

of species across various elasmobranch hosts (Caira & Healy 2004; Caira & Jensen 

2010). Several studies have demonstrated that the high specificity of tapeworms in 

elasmobranchs is at least partially the consequence of compatibility filters. For 

example, immune response in elasmobranchs has been shown to reject certain 

tapeworm species (McVicar & Fletcher 1970; Randhawa & Burt 2008). On the other 

hand, the importance of encounter filters for tapeworm infection is generally 

unknown, and it is possible that some encounter filters, such as host diet, are more 

restrictive for tapeworm establishment than compatibility filters (Randhawa et al. 

2008). These tapeworms all have complex life-cycles, involving at a minimum three 

different host species, and are trophically-transmitted to elasmobranchs from their 

intermediate or paratenic host prey (Willams 2002), and thus, it would not be 

surprising for their diet to play a large role in restricting parasite encounters.  

 

The draughtsboard shark Cephaloscyllium Isabellum (Bonnaterre, 1788) is a 

scyliorhinid catshark species, of the Order Carcharhiniformes, endemic to New 

Zealand (Cox & Francis 1997). This species is abundant around New Zealand’s 

continental shelf, and acts as a demersal hunter and scavenger, foraging down to 

depths of 500 m (Francis et al. 2002; Horn 2016). Their diet is dominated by benthic 

invertebrates, but overall consists of a broad range of prey species, including but not 

limited to, fishes, crustaceans, molluscs, tunicates, echinoderms and priapulid worms 

(Horn 2016). Despite their broad diet, however, only one tapeworm species, 

Calyptrobothrium chalarosomum, has been described from C. isabellum (Hewitt and 

Hine 1972; Hine et al. 2000). This is interesting given that most other studied sharks 
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harbour several different tapeworm species on average (Randhawa and Poulin 2010). 

Moreover, C. isabellum has been identified as a cold spot in shark tapeworm 

diversity, entailing that it is infected by fewer tapeworm species than expected for a 

shark of its size (~1m in length) (Randhawa 2014, unpublished data; see Poulin et al. 

2011b for details on hot and cold spots in parasite diversity). In essence, this makes C. 

isabellum a good model for studying the importance of encounter and compatibility 

filters for elasmobranch tapeworms. On one hand, the shark species could be a 

coldspot for tapeworm diversity because it does not encounter other tapeworm species 

through its diet, and conversely, different tapeworm species may be encountered 

through its diet, but their infection of the shark could be inhibited by strong 

compatibility filters such as host immune response. The life cycle of the shark’s 

known tapeworm C. chalarosomum is completely unknown, and the intermediate 

hosts used by this tapeworm could consist of any number of the many different 

species included in the shark’s diet. It is also unknown whether any of its prey species 

harbour the larval stages of other tapeworm species, although given the breadth of its 

diet, there is a high possibility that other tapeworms are also encountered by the 

shark. 

 
4.1.1. Objectives of chapter 4 

 

The primary objective of this chapter was to provide some insight into the importance 

of encounter and compatibility filters for the tapeworm infection of the draughtsboard 

shark C. isabellum. This objective was addressed through a series of steps. The first 

step was to analyse the diet and parasites of C. isabellum individuals to get an idea of 

what prey the shark encounters, and thus determine which prey species might serve as 

intermediate hosts for tapeworms. Previous research has shown that the intermediate 

hosts of trophically transmitted parasites are not always important prey of their final 

host (Cirtwill et al. 2017). However, important shark prey were targeted for parasite 

examination in this study to give some indication of how many parasites C. isabellum 

might regularly encounter via its diet. The second step was to examine samples of the 

sharks favoured prey, to determine whether they host any larval tapeworms. This 

included looking for larval stages of the shark’s only known tapeworm species, C. 

chalarosomum. The third and final step relied on whether any tapeworm larvae other 

than C. chalarosomum were recovered from the prey of C. isabellum. If other 
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tapeworm larvae were found in prey, they were tested for their compatibility with the 

shark host via exposure to the host’s blood serum (following procedures described in 

Randhawa and Burt 2008).  

 
4.2. Methods 

4.2.1. Surveying parasites of C. isabellum  

A total of 24 adult draughtsboard sharks were examined for this study. These sharks 

were trawled from approximately 80 metres deep by local fishermen off the coast of 

Otago, New Zealand, on two separate trips. Thirteen of the sharks were caught on the 

25th of April 2015, between Curio Bay (46°66S, 169°10E), and Dunedin (45°87S, 

170°54E). The other 11 sharks were caught on the 26th of June 2015, a few 

kilometres north of Nugget Point (46°44S, 169°82E). Individuals were collected from 

the fishermen immediately following each trip and transported to the laboratory to be 

necropsied without delay. 

 

Prior to dissection, each individual shark was measured for total length (in cm) and 

sex was determined based on the presence of distinct claspers in males (Horn 2016). 

Following these measurements, the individuals were flipped upside down and an 

incision was made along the ventral body surface to allow inspection of the body and 

organs for any parasites. The entire spiral valve was removed, carefully cut open, and 

placed inverted into a 1L container filled with saline solution and 1 tsp of sodium 

bicarbonate (baking soda). This container was sealed and shaken vigorously for a few 

minutes to separate tapeworms from mucous, then left to sit for at least 2 hours. Any 

tapeworms not detached from the gut mucosa were extracted from the tissue using 

forceps. All recovered parasites were then placed in formalin to be later counted 

under a dissection microscope. 

 

4.2.2. Diet analysis of C. isabellum 

 
Once measured and surveyed for parasites, the stomach of each shark was removed 

and opened via an incision along the dorsal surface. Stomach contents were placed 

into a fine sieve (500µm mesh size), rinsed with tap water, and transferred into a 

container with 70% ethanol for later measurement and identification. Prey were 

identified under dissection microscope to the lowest taxonomic level possible. A 
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range of available guides and taxonomic keys from literature were used to aid in 

identifications for crustaceans (Schembri & McLay 1983; Naylor et al. 2005; Ahyong 

2012; Wilkens & Ahyong 2015), molluscs (Powell 1979) and teleosts (Lourie et al. 

2004; Roberts et al. 2014). Prey items were counted and weighed (wet weight, to 

nearest .01 g) for subsequent quantitative analyses.  

 

The diet composition of different shark prey groups was quantified by percentage 

number (%N), percentage mass (%M), and frequency of occurrence (%O). These 

indices were also used to calculate the index of relative importance [IRI = (%N + 

%M) × %O] (Cortés 1997). % IRI was calculated for the contribution of overall 

groups (teleosts, molluscs, crustaceans, unidentified organic matter and plants) as well 

as separately for individual prey within each group. 

 

4.2.3. Surveying known prey items for parasites 

Based on the quantitative diet analyses here, combined with findings of Horn’s (2016) 

diet analysis on a larger subset of C. isabellum individuals, it was decided that 

parasite surveys of prey should focus on crab species, and especially, hermit crabs 

(Paguridae), which make up a considerable amount of the diet of C. isabellum. Most 

of the prey collected for this study were obtained on the 14th of March 2016 by the 

vessel “RV Polaris II” operating Northeast of Taiaroa Head, off Otago’s Shelf 

(45°48S, 170°55E). More than a hundred individual hermit crabs, as well as small 

numbers (n<25) of several other crab species and ascidians, were caught as by-catch 

in beam trawls at 92 metres depth. A small sample (n=10) of long-legged masking 

crabs (Leptomithrax longipes) was obtained separately from local fishermen, who 

found the crabs in a trawl with draughtsboard sharks. This trawl was conducted on the 

7th of December 2015 offshore Otago peninsula at 50 m depth (45°87S, 170°75E). 

 

All invertebrates were kept alive on capture and transported to an aerated holding tank 

with seawater in Portobello Marine Lab, where they were surveyed for macroparasites 

within two weeks of capture. It was important they were kept alive so that any 

parasites were still alive upon inspection. Similar with the stomach contents of C. 

isabellum, invertebrates were identified to the lowest taxonomic level possible using 

guides and taxonomic keys from literature (Schembri & McLay 1983; Naylor et al. 
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2005; Ahyong 2012; Wilkens & Ahyong 2015). Tunicates were measured by length 

and dissected via longitudinal incision to reveal internal organs. Crabs were 

euthanised by piercing the cephalic ganglion with a knife, measured (carapace length) 

and determined for sex where possible. Following measurements, crabs were placed 

in a petri dish with seawater and the carapace was removed to expose organs for 

dissection. The full body was checked for macroparasites under a light dissection 

microscope and any recovered worms were placed in 5ml Eppendorf tubes containing 

70% ethanol. 

  

4.2.4. Host compatibility tests 

 

Due to the complete absence of any tapeworm larval stages recovered from prey 

items, serological tests to analyse host compatibility (exposure of parasites to the 

host’s blood serum) could not be carried out in this study. 

 

4.3. Results 

Of the 24 sharks caught in this study, there were 14 males and 10 females. The mean 

length of individuals was 72.40cm (± 6.25cm SD, range = 53.6-82.1cm). There was 

no significant difference in size between males (72.05 ± 3.81cm SD) and females 

(72.88 ± 8.85cm SD) (t22 = 0.31, p = 0.76), although size was notably more variable 

among female sharks.  

 

4.3.1. Parasites of C. isabellum 

 

All 24 draughtsboard sharks were infected by the tapeworm Calyptrobothrium 

chalarosomum in their spiral valves (100% prevalence), but no other tapeworm 

species were recovered from the sharks’ intestines. In total, 1,609 adult C. 

chalarosomum were recovered. The mean abundance of tapeworms per shark was 

67.04 (± 49.90 SD) and intensity ranged from 16 to 241 tapeworms per host. Sharks 

caught between Curio Bay and Dunedin in April generally had a higher intensity of 

infection (mean = 82.46 ± 60.17 SD) compared with sharks caught North of Nugget 

Point in June (mean = 48.82 ± 26.59 SD) (Figure 4.1). However, there was 

considerable variation among individuals from each location and the difference was 

statistically non-significant between the two samples (t22 = 1.71, p=0.10). Male sharks 



79 

 

 

 

had generally higher intensity of infection (mean = 82.79 ± 58.15 SD) than females 

(mean = 45.00 ± 23.53 SD) (Figure 4.1), but there was a similarly high variation 

within each sex and the overall difference was marginally non-significant (t22 = 1.94, 

p=0.06). There was also no significant association between infection intensity and 

host length (Figure 4.2) (R² = 0.0003, p=0.94). 

 

 

    
Figure 4.1. Mean infection intensity of the tapeworm Calyptrobothrium chalarosomum and 

  the sex and sample of their draughtsboard shark hosts (Cephaloscyllium isabellum).  

  Sample sizes for the Curio Bay to Dunedin sharks were (n=5) for females and (n=8)  

  for males. Sample Sizes for the Nugget Point sharks were (n=5) for females and (n=6)  

  for males. Error bars show ± 1 Standard Error.  
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Figure 4.2. Relationship between the infection intensity of the tapeworm Calyptrobothrium  

  chalarosomum and the total length (cm) of their draughtsboard shark hosts  

  (Cephaloscyllium isabellum). There was no significant relationship between the  

  variables (R² = 0.0003, p=0.94).  

 

Although no parasite other than C. chalarosomum was recovered from the spiral valve 

of C. isabellum, there were a few parasites recovered from other parts of the shark. 

Five individuals were each infected by a single digenean trematode in the stomach 

(Prevalence = 20.83%). This trematode species was not identified, but could possibly 

be Otodistomum veliporum, which has been previously described from the stomach of 

C. isabellum (Hewitt & Hine 1972). Two female sharks (both from North of Nugget 

Point) also had a few (3 and 4) larval Anisakis sp. nematodes embedded in their body 

wall. The only other parasite recovered from C. isabellum was a singular immature 

(plerocercoid) tapeworm, identified as Hepatoxylon trichiuri (Palm 2004), which was 

found in the body cavity of a male shark caught North of Nugget Point.  

 

4.3.2. The diet of C. isabellum 

 

All 24 sharks sampled in this study had stomachs containing food. Stomach contents 

included remains from a variety of different taxa, including teleost fishes, bivalves, 

cephalopods, crabs and shrimps (Table 4.1). Overall, teleosts, molluscs and 

crustaceans were all similarly important prey groups in diet of C. isabellum, with their 

%IRI’s being 29.69%, 38.39%, and 29.73%, respectively (Table 4.1). Crustaceans 

were the most important prey group by frequency of occurrence (%O) with 16 of the 
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24 sharks sampled (66.67%) containing some crustacean remains in their stomachs. 

Teleosts were most important in terms of overall mass (%M) (49.68% of total prey 

mass), and molluscs contributed the most to the diet by percentage in number (%N) 

(Table 4.1). 

 

Table 4.1. Diet composition of 24 draughtsboard sharks (Cephaloscyllium isabellum) caught 

off the Coast of Otago, New Zealand. Composition is expressed as percentage in number 

(%N), mass (%M), percentage occurrence (%O), and by index of relative importance (%IRI).  

Prey group Species %N %M %O %IRI 

Teleosts  15.15 49.68 41.67 29.69 

Sea horse (Syngnathidae) Hippocampus abdominalis 1.52 0.03 4.17 0.12 

Unidentified teleost remains  13.64 49.37 37.5 42.29 

Molluscs  42.42 41.39 41.67 38.39 

Bivalve siphons 
 (Hiatellidae) 

Panopea zelandica 31.82 40.64 29.17 37.83 

Unidentified Cephalopods  4.55 0.25 12.5 1.07 

Unidentified Mollusc remains  6.06 0.5 12.5 1.47 

Crustaceans  33.33 7.24 66.67 29.73 

Policeman crabs  

(Goneplacidae) 

Neommatocarcinus huttoni 4.55 2.00 8.33 0.98 

Hairy red swimming crab 

(Ovalipidae) 

Nectocarcinus antarcticus 3.03 1.70 8.33 0.71 

Hermit crabs 
 (Paguridae) 

Pagurus sp. 6.06 0.51 16.67 1.96 

Unidentified crabs  13.64 1.84 33.33 9.24 

Banded mantis shrimp 
(Lysiosquillidae) 

 1.52 1.15 4.17 0.20 

Unidentified shrimp  1.52 0.01 4.17 0.11 

Other crustacea remains  3.03 0.03 8.33 0.46 

Unidentified organic matter  7.58 1.68 20.83 2.12* 

Plant material  1.52 0.00 4.17 0.07* 

 
Total number of prey items 

Total mass of prey 

Number of stomachs sampled 

(none empty) 

 

66 

494.76g 

24 

 

 

    

*Calculated as overall group IRIs, not compared against individual components 

 

Teleosts and crustaceans found in stomach contents included a range of different 

species, although most were unidentifiable parts, or their digestion was too far 

advanced for specific identification. In contrast, molluscs were represented almost 
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entirely by a single bivalve species, Panopea zelandica (Table 4.1). Only siphons of 

this bivalve were found in stomachs, except for one individual which had its shell 

attached. Crabs were the most important group of crustaceans within the diet of C. 

isabellum, and of the identified crabs, hermit crabs (Pagurus sp.) made up the most 

%O (Table 4.1). The only teleost species identified from stomach contents was the 

seahorse Hippocampus abdominalis, but it was of low overall importance to the diet 

with only one specimen observed (Table 4.1). 

4.3.3. Survey of prey items 

Five different crab species and one ascidian species were trawled off the coast of 

Otago at depths where C. isabellum is common (50-100m) (Table 4.2). Most of the 

crabs sampled (n=128) were hermit crabs (Pagurus sp.), which as described above, 

make up a large component of the diet of C. isabellum. The other crab species and 

ascidian that were sampled in smaller numbers (n=5-25) have not been explicitly 

identified from the shark’s stomach contents. However, given that other ascidians and 

a large amount of unidentified crabs are important parts of its diet, C. isabellum is 

very likely to encounter and eat these species too.  

 

There was a general absence of parasites in these invertebrates, and overall, no 

tapeworm larval stages were recovered from any of the sampled crabs or ascidians.  

All species were found to have some individuals with very small nematodes (≤ 1mm 

in size), and some individual hermit crabs and ascidians also harboured small mites. 

The prevalence and abundance of these small nematodes was generally low for each 

crab species (Prevalence mostly below 20%), except for camouflage crabs 

(prevalence = 76.92%) (Table 4.2). A few mites were recovered from one orange 

ascidian and two individual hermit crabs, and their total prevalence and abundance 

also was very low (Table 4.2). Only one other symbiont was recovered from the 

invertebrates examined; a nematode found only in orange ascidians. This unidentified 

nematode species was much larger than the other nematode observed from crabs and 

ascidians (it reached a few millimetres in length). Four specimens of this nematode 

were recovered from each of four individual ascidians (26.67% prevalence). 
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Table 4.2. Prevalence and abundance of symbionts recovered from crabs and ascidians 

caught off the Coast of Otago, New Zealand. All prey species were caught via beam trawl 

from the Otago Shelf, ~NE off Taiaroa Head, at 92 m depth, except for long-legged masking 

crabs (Leptomithrax longipes), which were caught in a trawl with sharks offshore Otago 

peninsula, at 50 m depth. Mean host size given represents the carapace length of crabs, and 

the longest width dimension of ascidians. Numbers in parentheses indicate associated 

standard deviations. 

Prey  

(Species) 

Sample size 

(n) 

Mean host size  

(mm) 

NĞŵĂƚŽĚĞƐ ;чϭŵŵͿ Mite symbionts 

   Prevalence Abundance Prevalence

  

Abundance 

Orange Ascidian 
(Cnemidocarpa 

bicornuta) 

15 51.67 (16.01) 40.00% 0.87 (1.30) 6.67% 0.07 (0.26) 

Hermit crabs 

(Pagurus 

spinulimanus) 

128 11.02 (3.58) 3.91% 0.06 (0.39) 1.56% 0.03 (0.28) 

Triangle crabs 

(Eurynolambrus 

australis) 

25 27.40 (9.45) 8.00% 0.28 (1.21) - - 

Long-legged 

masking crabs 

(Leptomithrax 

longipes) 

11 67.45 (17.49) 9.09% 0.18 (0.60) - - 

Long-handed 

masking crabs 
(Leptomithrax 

longimanus) 

5 23.60 (7.64) 20.00% 0.60 (1.34) - - 

Camouflage crabs 

(Notomithrax sp.) 

13 36.38 (8.90) 76.92% 3.00 (3.36) - - 

 

4.4. Discussion  

The main objective of this study was to provide some insight into the importance of 

encounter and compatibility filters for tapeworm infection in the draughtsboard shark 

Cephaloscyllium isabellum. Regarding this aim, the findings of this study offer a 

small glimpse into the importance of diet as an encounter filter, showing that some of 

the most important prey items of draughtsboard sharks (hermit crabs Pagurus 

spinulimanus) are unlikely to be intermediate hosts to tapeworms. It is possible that 

despite their broad diet, draughtsboard sharks have a low diversity of tapeworms 

because the prey species they exploit generally don’t harbour many tapeworm larvae. 

However, this can only be speculated based on the data analysed in this study. As 

demonstrated here and in other research, this shark consumes a variety of teleost, 

mollusc and other invertebrate prey (Horn 2016), none of which have been surveyed 
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for parasites. Consequently, a far more comprehensive survey of prey would be 

needed to fully quantify the shark’s tapeworm encounters, and accordingly, to 

determine the full importance of diet as an encounter filter for tapeworms. As 

highlighted by previous research on parasite encounter and compatibility filters, 

quantifying all parasite encounters is logistically challenging and requires a 

considerable amount of time and resources (Combes 2001; Kuris et al. 2007). 

Nevertheless, the data here provide a useful starting point for such research. 

 

Prior to this research, C. isabellum was considered a cold spot in shark tapeworm 

diversity because it has fewer described tapeworm species than expected for a shark 

of its size (Randhawa 2014, unpublished data). The results here are consistent with 

this notion, given that all 24 of the sharks’ spiral valves examined were exclusively 

infected by their only known tapeworm, Calyptrobothrium chalarosomum. It is still 

possible that the parasite assemblages of C. isabellum vary on a greater spatial scale. 

These sharks are known to occur across the entire coastal shelf around the North, 

South and Stewart Islands of New Zealand (Horn 2016), but so far records of their 

tapeworms have only been obtained from sharks examined off the east coast in Otago 

(present study), Oamaru, and from sharks inhabiting waters at the bottom of the North 

Island (Alexander 1963). To fully confirm the shark’s low diversity of tapeworm 

species, individuals should be examined across their entire range, including waters off 

the West Coast, upper North Island, and offshore islands.  

 

There was considerable variation in the intensity of Calyptrobothrium chalarosomum 

infection among the sharks inspected in this study, but the size, sex and sample of 

individuals did not significantly affect intensity. The intensity of tapeworm infections 

has been shown to generally increase with host size in fishes (see Poulin 2000). 

However, studies of elasmobranchs have shown mixed results (Cislo & Caira 1993; 

Sanmartin et al. 2000; Friggens & Brown 2005), and consistent with findings herein, 

some demonstrate that host length has little impact on tapeworm intensity of infection 

(Cislo & Caira 1993; Randhawa and Poulin 2009). It has been noted that the 

relationship may be in part masked by differences in tapeworm size, since there is a 

trade-off between the size and number of worms in the limited space and resources of 

a host, i.e. “crowding effect” (Read 1951; Roberts 2000; Randhawa and Poulin 2009). 

Regarding the effect of host sex on tapeworm intensity, it was interesting that 
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although the difference was marginally non-significant here, male draughtsboard 

sharks generally harboured more tapeworms than females. Differences in infection 

intensity between sexes may reflect physiological or behavioural differences between 

male and female hosts (Zuk 1990; Poulin 1996). It is possible for example, that male 

and female draughtsboard sharks have different dietary preferences, whereby males 

are exposed to more tapeworm larva in their prey. Diet has not been analysed per sex 

in C. isabellum, however (Horn 2016), and in any case, high variation in tapeworm 

intensity was also observed within each sex and sample of sharks. Thus, larger sample 

sizes are needed to determine whether the differences seen here are consistent on a 

larger scale.  

 

The overall diet composition of C. isabellum showed substantial overlap with 

previous records, reinforcing the notion that crustaceans, teleosts and molluscs are all 

important prey groups for this shark (Graham 1956; Horn 2016). Much like Horn’s 

(2016) New Zealand-wide diet analysis, the present study showed that crabs dominate 

the diet in terms of occurrence (%O), and several crab species identified here had 

already been described as prey of C. isabellum. On the other hand, it was found here 

that the siphons of geoduck clams (Panopea zelandica) constituted a large part of the 

diet for individuals caught off Otago; this is the first record of these molluscs as prey. 

Given that there was a general absence of the clam’s shells and other parts in stomach 

contents, it is suggested that the sharks likely bite off P. zelandica siphons while 

foraging, rather than eating them whole. Horn (2016) noted that similarly with 

findings here, despite feeding on many hermit crabs and gastropods, there are rarely 

shells or shell fragments in C. isabellum stomach contents. Like other scyliorhinid 

sharks, draughtsboard sharks may actively use their snouts to flip over protected 

invertebrates and eat only the exposed prey (Brightwell 1953; Horn 2016). This 

would allow them to avoid hard shells and materials that are difficult to digest and 

have little to no nutritional value. Remarkably, many other bivalve species have been 

recorded as intermediate hosts of elasmobranch tapeworms, but the infection of 

tapeworm larvae is generally restricted to the gonads, digestive gland and digestive 

tract of these bivalve hosts (Lauckner 1983; Hine & Thorne 2000; Vázquez & 

Cremonte 2017). This indicates that feeding on these siphons is unlikely to yield in 

tapeworm transmission for C. isabellum. 
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The complete absence of tapeworm larval stages that was observed in hermit crabs 

Pagurus spinulimanus suggests that they are unlikely intermediate hosts of 

elasmobranch tapeworms off the coast of Otago. By having a diet that consists largely 

of these hermit crabs, C. isabellum may inadvertently avoid potential encounters with 

tapeworms. However, this is not to say that all hermit crabs in their diet are scarce 

sources of tapeworms, since C. isabellum probably eat many other species which have 

not been surveyed for parasites. Overseas, several hermit crab species have been 

confirmed to host procercoid and plerocercoid larval stages of tapeworms that mature 

in sharks (Abbott 1987; Cherry et al. 1991; Smolowitz et al. 1993; McDermott et al. 

2010). The most studied tapeworm species in hermit crabs, Calliobothrium 

verticillatum, has showed more than 95% prevalence in Pagurus sp. from the Woods 

Hole region, Massachusetts (Cherry et al. 1991). Interestingly, these tapeworms have 

also been described from brachyuran crabs (Fyler 2007), highlighting the potential for 

both hermit crabs and brachyuran crabs to be intermediate hosts of the same 

tapeworm larva. In the several small samples of brachyuran crabs examined for 

parasites in this study, no tapeworm larval stages were found. Nevertheless, the crab 

species examined from this area of Otago may harbour tapeworm larvae at a low 

prevalence, and hence, considerably larger sample sizes of these species must be 

surveyed to determine whether they host tapeworm larval stages. It is also worth 

noting that individuals in other areas may be more heavily infected, given that the 

prevalence and abundance of marine parasites often varies substantially across spatial 

and temporal scales (Smith 2001; Latham & Poulin 2003; Byers et al. 2008). 

Accordingly, further research on the parasites of these crabs would likely benefit from 

surveying individuals across other areas and during different seasons.    

 

Despite not recovering any larval tapeworms from the ascidians, hermit crabs and 

brachyuran crabs examined, it is worth noting that all species were found to be 

infected with small nematodes, and some individual hermit crabs and ascidians also 

harboured small mites. Hermit crabs and other decapod crustaceans are known to 

sometimes harbour juvenile nematodes that mature in marine fishes (Poinar and Kuris 

1975; Moravec et al. 2003; McDermott et al. 2010). Conversely, the nematodes of 

crabs examined herein were not encysted, and are probably not parasitic. However, 

further insights into the nature of this relationship will require additional studies and 

molecular tools for specific identification of the nematodes. Based on mites known 
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from other hermit crabs, the mites found on P. spinulimanus in this study are also 

unlikely to be parasitic, and are probably symbiotic or commensal associates 

(McDermott 2010). Though it has been pointed out that the nature of relationships 

between mites and hermit crabs are generally unknown and warrant further 

investigation (O’Connor 1982, McDermott 2010). 

 

4.4.1. Conclusions 

The limited application of this study toward determining the importance of encounter 

filters for C. isabellum emphasises that analysing encounter filters for parasite 

infection is a very challenging task. Difficulties in estimating parasite encounters have 

been acknowledged by many researchers seeking to understand the importance of 

encounter and compatibility filters in hosts (Combes 2001; Kuris et al. 2007; Lagrue 

et al. 2011; Medeiros et al. 2013). In some host-parasite systems it may be possible to 

find good proxies for parasite encounter rates (Medeiros et al. 2013), but this is not 

possible for trophically transmitted parasites that use many different intermediate 

hosts to encounter their final host. In tapeworms of elasmobranchs, for example, the 

importance of encounter filters is hard to estimate without conducting comprehensive 

surveys of parasites from all of the elasmobranch’s prey. Surveys can focus on prey 

species that are known to be most important in the final host’s diet, since these 

species are the most encountered, and therefore, the quantity of larval parasites they 

harbour should be good indicators of how many parasites are typically encountered by 

the host. However, the most important prey in the diet are not necessarily the most 

important intermediate hosts (Cirtwill et al. 2017), and as illustrated by the findings 

here, there may be important prey which don’t harbour larval stages of parasites 

known to infect the final host as adults. Ultimately, where there is sufficient time and 

resources available for researchers to quantify a host’s encounters with trophically-

transmitted parasites, it would be ideal to survey as many of their common prey for 

parasites as possible. However, it is suggested that smaller scale studies can still prove 

to be a valuable tool for analysing parasite encounters. Despite not finding any links 

in the life-cycles of local elasmobranch tapeworms, the results of this study provide 

new ecological and parasitological data for draughtsboard sharks and some of their 

selected prey, and offer some important insights that may aide further research 

towards better understanding the influence of encounter and compatibility filters of 
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tapeworms in the model species C. isabellum and other South Island (NZ) 

elasmobranchs. 
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Chapter 5: Discussion
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5.1. Summary of main findings and their implications  

The overall objective of this thesis was to assess what factors influence the structure 

and diversity of tapeworm parasite assemblages in sharks, with focus on the 

importance of host diet. Previous research has already provided insights on several 

important determinants for tapeworm infections in elasmobranchs. These include a 

combination of phylogenetic factors, such as the interface between tapeworm 

attachment structures and host gut morphology (Williams 1960; 1966; 1968; 

Randhawa & Burt 2008), immune response (McVicar & Fletcher 1970; Randhawa & 

Burt 2008) and ecological factors, such as host size, depth, and latitude (Randhawa & 

Poulin 2010). However, a number of potentially key determinants, including the 

breadth and composition of host diet, have been recognised as crucial gaps in 

knowledge (Randhawa & Poulin 2010). The present research aimed to investigate 

these gaps on a broad scale by assessing the relative importance of host diet features 

(diet breadth, diet composition and trophic level) as predictors of tapeworm diversity 

across a large subset of different shark species (Chapter 2). Furthermore, literature 

records were used to conduct a comprehensive analysis of the relationship between 

shark’s diet compositions and tapeworm compositions (Chapter 3). And finally, these 

gaps in knowledge were investigated on a smaller scale by analysing the importance 

of host diet for tapeworm encounter in a local shark species, Cephaloscyllium 

isabellum (Chapter 4). This shark species was selected as a model given its relatively 

broad diet and restricted tapeworm diversity. 

 

The present research revealed that the diet breadth of a shark species, measured as its 

number of known prey families, is a better predictor of tapeworm species richness 

than other host features examined to date (Chapter 2). Thus, it is suggested that shark 

species with broad diets generally encounter and become infected with more 

tapeworm species than those with restricted or specialised diets. This has important 

implications not only for tapeworm diversity in sharks, but also for the diversity of 

trophically transmitted parasites in general. This study is the first to examine the 

influence of host diet on tapeworm diversity in elasmobranchs, and to my knowledge, 

is the most comprehensive analysis of tapeworm diversity in sharks to date. Few 

empirical studies in other host-parasite systems have demonstrated diet breadth to be 

important for the diversity of trophically-transmitted parasites (e.g. Chen et al. 2008; 
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Locke et al. 2014). Moreover, other comparative studies looking at determinants of 

parasite diversity have rarely analysed diet breadth as a factor (Kamiya et al. 2014). 

Thus, the findings herein emphasise that diet breadth could be very important for 

parasite diversity in other systems too, and should be more seriously considered in 

comparative studies among other commonly tested predictors of parasite diversity 

(e.g. host size, geographical range and population density). 

 

Although the findings here establish diet breadth to be a key determinant of tapeworm 

richness in sharks, it was also made evident that it cannot be considered as a universal 

determinant of tapeworm diversity in all shark species. There are some shark species 

which are clear exceptions to the rule, demonstrated in chapter four with the model 

species C. isabellum. C. isabellum was found to have a relatively broad diet 

consisting of a variety of teleost fishes, crustaceans and other benthic invertebrates. 

Yet, it was shown to have a limited tapeworm fauna, with all individuals examined 

being exclusively infected by one species; Calyptrobothrium chalarosomum. This 

finding ultimately reinforces the notion that C. isabellum is a cold spot in shark 

tapeworm diversity, meaning that it harbours fewer tapeworm species than is 

expected for a shark of its size (Randhawa 2014, unpublished data; see Poulin et al. 

2011b). Prior to this research, it was thought that C. isabellum could be a cold spot in 

tapeworm diversity due to compatibility filters (e.g. immune response) that eliminate 

potential tapeworm infections. However, given that no larval tapeworms were 

recovered in this research, testing for such compatibility filters was beyond the scope 

of the present study and still requires further investigation. The lack of tapeworm 

larval stages observed in some of the local prey species of this shark (hermit crabs and 

various brachyuran crabs) could also indicate that C. isabellum is a cold spot in 

tapeworm diversity because its preferred prey taxa are not intermediate hosts for 

tapeworms that mature in elasmobranchs. Without further surveys of its other prey, 

this can only be speculated. However, these results highlight the fact that certain prey 

taxa in a shark’s diet are likely to be considerably more relevant for tapeworm 

encounters than others.  

 

The potential for highly variable distributions of tapeworm larval stages among prey 

is perhaps best illustrated in chapter three, where it was found that certain families of 

perciform fishes are substantially more important intermediate hosts of 



92 

 

 

 

trypanorhynch-species larvae than other prey families. This notion has also been 

supported by extensive surveys of some fish families which have revealed particular 

taxa to be devoid of any tapeworm larvae (Beveridge et al. 2014). In chapter two, a 

negative relationship was found between the tapeworm richness of sharks and the 

average TD (taxonomic distinctness) of prey in their diets, which could also reflect 

this minor importance of certain prey as intermediate hosts. It was reasoned that 

sharks eating very unique and taxonomically different prey might often consume taxa 

that are irrelevant for tapeworm transmission, therefore resulting in species-poor 

tapeworm assemblages. Whether or not this is the case, this result clearly 

demonstrates that general diet breadth (richness of prey families) and diet TD, despite 

both being relative measures of diversity, reflect very different properties. Although 

the average TD of species assemblages is often included in ecological studies to 

complement simpler measures of diversity (i.e. species richness) (Von Euler & 

Svensson 2001; Heino et al. 2005; Winter et al. 2013), to my knowledge TD has only 

been implemented to measure aspects of diet in one other study comparing the diets 

of turtles (Stringell et al. 2016). The different patterns observed in this research for 

diet breadth and diet TD indicate that diet TD can provide unique and interesting 

insights into the feeding ecology of animals. As such, I encourage future comparative 

diet studies to consider investigating diet TD in conjunction with other aspects of diet.  

 

It was clear from the present research that sharks’ diets not only have important 

implications for the diversity of their tapeworms, but also have large consequences for 

the structure and composition of their tapeworm assemblages (Chapter 3). A 

significant positive correlation was found between similarities in shark diet 

composition and similarities in tapeworm composition, meaning that shark species are 

more likely to share tapeworm taxa if they have similar diets. This relationship 

supports the idea that tapeworms can be useful indicators of the feeding ecology of 

their definitive shark hosts (Palm et al. 2017). Further support for this point can be 

seen in comparisons of tapeworm families among sharks with different dominant prey 

groups. Tapeworm families were observed to be remarkably different between 

crustacean-feeding and teleost-feeding shark species, reflecting underlying 

differences in the life cycles of their tapeworms. Chapter three used several examples 

to illustrate that the tapeworm families common in crustacean-feeding sharks 

generally use crustaceans as second intermediate hosts, whereas tapeworm families of 
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teleost-feeding sharks generally use teleosts or cephalopods as second intermediate 

hosts (see Palm 2004). These associations have important implications for ecologists 

who want to know the general feeding habits of poorly studied shark species. Notably, 

certain tapeworm taxa may be used to make predictions about a host’s diet. For 

example, if a host is known to harbour echinobothriid tapeworm species, we could say 

that its diet is likely dominated by crustaceans and other benthic invertebrates, which 

are known to be their second intermediate hosts (Vivares 1971; Cake 1976; Tyler 

2006) (see 3.4.1 for more examples). In some cases, these predictions may also work 

in reverse to inform ecologists of the likely intermediate hosts of certain tapeworms. 

Such information is extremely valuable given the current paucity of information on 

the life cycles of marine tapeworms (Caira & Reyda 2005; Jensen & Bullard 2010; 

Caira & Jensen 2017). Research on tapeworm life cycles has also been declining over 

the last few decades and is failing to keep up with new species descriptions, further 

highlighting the importance of this research (Blasco-Costa & Poulin 2017).  

 

Tapeworm compositions were demonstrated to significantly differ between sharks of 

different taxonomic Orders, with carcharhiniform sharks being characterised by 

different tapeworm families than both lamniform and squaliform sharks (Chapter 3). 

This highlights the fact that tapeworm assemblages are fundamentally shaped both by 

host ecology and host evolutionary history, and emphasises the need to consider both 

aspects when looking at parasites as indicators of host ecology. Although previous 

research has given some insight into the importance of host diet and evolutionary 

history for the structure of trypanorhynch tapeworm assemblages in sharks (see Palm 

et al. 2017), the present research is the first to use ecological and phylogenetic data of 

host species to make inferences about the potential life cycles of tapeworms in other 

taxonomic Orders. Furthermore, this research offers new insights on more specific 

aspects of host diets, which have only been examined prior at a very basic level 

(between vertebrate and invertebrate feeding sharks) (Palm et al. 2017). For instance, 

the tapeworms of cephalopod-feeding sharks were found to overlap considerably with 

both teleost-feeding and crustacean-feeding sharks, indicating that perhaps 

cephalopods are commonly intermediate or paratenic hosts in the same life cycles of 

teleosts and crustaceans. Overall, these insights provide a considerable step towards a 

better understanding of the complex relationships that exist between the ecology and 
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evolution of elasmobranch hosts and the composition of their tapeworm parasite 

assemblages. 

 

A more comprehensive survey of the prey of C. isabellum is still clearly needed to 

determine the relative importance of its diet as an encounter filter for tapeworm 

parasite diversity. However, although the prey survey conducted here offered very 

limited insights regarding the life-cycles of local elasmobranch tapeworms, important 

new data were provided on both the parasites and diet of C. isabellum. The geoduck 

clam Panopea zelandica was revealed as a new diet record for C. isabellum, and was 

found to be very important prey for individuals inhabiting the Otago region. Panopea 

zelandica has been recognised to lack current ecological information, but has recently 

gained increased attention as a potential target for commercial exploitation (Gribben 

& Heasman 2015). Likewise, C. isabellum has been identified as one of the shark 

species most at risk to commercial fishery impacts in New Zealand, but is also 

acknowledged that significant knowledge gaps remain regarding its basic biology and 

ecology (Ford et al. 2015; Horn 2016). Thus, the diet information herein may be of 

use for fisheries involving these species. On top of this, these findings provide a small 

step for further research towards better understanding the influence of encounter and 

compatibility filters of tapeworms in C. isabellum and other South Island (NZ) 

elasmobranchs.  

 

5.2. Further research 

The current research established some strong ecological patterns that demonstrate 

host diet as an important factor governing tapeworm assemblages in sharks. These 

patterns were established by large-scale comparative analyses across different species 

and by some limited observations in the model shark species C. isabellum. 

Nevertheless, there is still great room for future comparative studies to extend on this 

work and provide a better understanding of the intricacies within these patterns. 

Furthermore, there is a need for the patterns established here to be backed up with 

experimental evidence. Notably, questions remain as to whether encounter filters or 

compatibility filters are more important barriers to tapeworm infections in C. 

isabellum and other elasmobranchs. These questions cannot be fully answered by 
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observational studies alone, and will require explorations of host-parasite 

compatibility in future experimental studies.  

 

This research identified several key knowledge gaps in the literature that, if 

addressed, may considerably improve our understanding of the relationship between 

the diet of shark hosts and the diversity and structure of their parasite assemblages. 

First and foremost, available data on hosts’ diets and parasites are conspicuously 

biased towards shark species of the Order Carcharhiniformes. It could be argued that 

this is the result of carcharhiniform species being some of the most important, 

abundant and widespread sharks inhabiting our oceans (Compagno 2001). However, 

to further our knowledge of the diversity and evolution of parasite lineages in sharks, 

there is a need to prioritise the sampling of diets and parasites across shark species of 

other taxonomic Orders. The diets of some lesser-studied shark species could be 

poorly known for conservational or ethical reasons (since most diet sampling is 

lethal). However, several studies have demonstrated the efficacy of non-lethal 

methods of diet sampling e.g. gastric lavage (Foster 1977; Barnett et al. 2010; 

Hammerschlag & Sulikowski 2011). These methods warrant consideration in further 

research aiming to elucidate the diets of important shark species, especially those that 

are endangered or identified as conservation risks.  

 

Another key knowledge gap that may be of interest to future research is how 

intraspecific variation in the diets of elasmobranchs affects their tapeworm 

assemblages. In the present study, tapeworms and prey were viewed for each shark 

species as the sum of all records known for the species. However, diets may vary 

substantially with the size or age of individuals (e.g. Lowe et al. 1996; Ebert 2002), 

between different sexes (e.g. Klimley 1987; Borrell 2011), between seasons (e.g. 

Cortes et al. 1996), and between different geographical areas (e.g. Simpfendorfer et 

al. 2001; Bethea et al. 2007). The present research indicates that disparities in diet 

among these different sub-populations could have large consequences for their 

parasite assemblages. Though diet studies often look at differences in sharks’ stomach 

contents among these different sub-populations, few diet studies have looked at the 

intestinal parasites of individuals in conjunction with their diets (for notable 

exceptions see Klimpel et al. 2003; Gracan et al. 2014; Isbert et al. 2015). I 

recommend that future studies examining elasmobranch stomach contents should also 
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examine the spiral valves of individuals for any potential parasites. Such studies will 

provide valuable insights into the effects of intra-specific diet variation on the 

diversity and composition of elasmobranch tapeworm assemblages. Furthermore, 

even where researchers are specifically interested in revealing species diets (i.e. have 

no interest in parasitological data), as demonstrated within this research, tapeworms 

can provide additional information on species’ feeding habits. In some cases, 

tapeworm assemblages could be even more informative given that stomach contents 

provide only a limited snapshot of a host’s last meal, whereas tapeworms have the 

potential to reflect their longer-term feeding habits. The inclusion of parasite data in 

future diet studies will require raising the awareness of marine ecologists to these 

potential insights, and ultimately, better collaborations between marine ecologists and 

marine parasitologists (Poulin et al. 2016).  

 

Future studies integrating diet and parasite data could perhaps also benefit from 

looking at how diet variation among closely related elasmobranchs affects their 

respective tapeworm assemblages. In chapter three of this thesis it was shown that 

deciphering the relative influence of feeding ecology and host evolutionary history on 

shark tapeworm assemblages can be very challenging. However, it would be possible 

to explore the relative influence of host ecology and evolutionary history in some 

species by looking at how tapeworm compositions vary among closely related sharks 

with different feeding habits. For example, in hammerhead sharks (Sphryna sp.), there 

are some clear differences in feeding habits between species. Sphyrna lewini, S. 

mokkaran and S. zygaena all feed predominantly on fishes and cephalopods (Stevens 

& Lyle 1989; Smale 1991), whereas S. tiburo is a durophagous predator that feeds 

mainly on crustaceans (Cortés et al. 1996; Bethea et al. 2007). The dataset herein 

indicates that the three teleost-feeding hammerhead species each have relatively high 

tapeworm species richness, but S. tiburo appears to have low tapeworm richness 

(although it requires further study for parasites). A possible reason for this 

discrepancy could be that the ancestors of S. tiburo were mainly teleost-feeders, but S. 

tiburo has gone down an evolutionary path where it switched to feeding on 

crustaceans (see Lim et al. 2010). Considering this, the evolution of S. tiburo may 

have broken life cycles of ancestral tapeworms involving teleost fishes, resulting in a 

lower diversity of tapeworms for the species compared with other Sphyrna species. 
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These points can only be speculated without further research looking more 

specifically at the variations in diet and parasites among these species.  

 

The present research showed a novel approach towards understanding encounter and 

compatibility filters for parasites in C. isabellum, by analysing host diet to determine 

parasite encounters. However, there is still a long way to go before the relative 

importance of these filters can be established. More comprehensive parasite surveys 

of the shark’s prey will be needed to determine the relative influence of encounter 

filters. This will demand a considerable amount of time and resources (Combes 2001; 

Kuris et al. 2007). Nevertheless, no previous studies have quantified parasite 

encounters for elasmobranchs in this way, and the findings of such research could 

significantly advance our understanding of parasite filters in elasmobranchs. In 

addition, where larval parasites are recovered from prey in these surveys, this would 

open opportunities for experimental studies to test the strength of compatibility filters 

in elasmobranch hosts. For instance, larval tapeworms from known prey could be 

exposed to the host’s blood sera and observed for mortality to determine whether 

immune response restricts potential tapeworm establishment i.e. whether immune 

response is a strong compatibility filter for the species (McVicar & Fletcher 1970; 

Randhawa & Burt 2008). Other compatibility filters could also be tested by setting up 

experiments where sharks are held in vivo and given anthelmintic drugs to remove 

their tapeworms. Subsequently, prey infected by larval tapeworms (that are not 

naturally found in the host) could be fed to individual hosts and assessed for whether 

they can successfully establish in the shark’s digestive system as mature adult worms. 

These tests could potentially be done in species other than C. isabellum.  However, 

the findings of this thesis reinforce that C. isabellum would be an ideal model for 

these studies given its relatively broad diet and low tapeworm diversity.  

 

5.3. Conclusions 

The observational studies carried out within this project emphasise that various 

aspects of sharks’ diets can have important implications for their tapeworm parasite 

assemblages. It was demonstrated that the diversity of tapeworms infecting a shark 

species largely depends on the breadth of its diet. Furthermore, it was shown that 

certain prey taxa are considerably more important as intermediate hosts for 
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tapeworms than others, and ultimately, even sharks with broad diets may have a 

limited diversity of tapeworm species depending on their dietary preferences. Finally, 

it was found that certain tapeworm taxa in sharks are useful indicators of their 

ecology and evolutionary history, and may be used to make predictions about the 

host’s feeding habits. Together these findings demonstrate some strong ecological 

patterns that establish host diet as an important determinant of tapeworm composition 

and diversity in sharks. However, there is a need for further exploration of these 

patterns with experimental research to validate the influence of these patterns in 

nature.   
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Figure A.1. Scatter plot showing the relationship between tapeworm richness and host- 

  parasite study effort of shark species (n = 91). Tapeworm richness represents the  

  sum of all tapeworm species known to infect the shark species (as adult stages) and  

  host-parasite study effort is the total number of references obtained by searching  

  parasite records for the host species on ISI Web of Knowledge. The solid line shows  

  the fit of a quadratic regression of tapeworm richness on study effort. 

 
Figure A.2. Scatter plot showing the relationship between number of prey families (diet  

  breadth) and the number of stomachs examined containing food (study effort for  

  diet) for 91 shark species. Number of prey families is how many different taxonomic  

  families were recorded across all diet references available for a species on ISI Web 

   of Knowledge and number of stomachs containing food represents the sum of how  

  many stomachs were examined for diet contents across these references. The solid  

  line shows the fit of a quadratic regression of number of prey families on study  

  effort. 
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Figure A.3. Scatter plot showing the relationship between richness of trypanorhynch  

  tapeworms (larval stages) known to infect an animal family and the study effort of  

  the family for parasites (n = 626). Study effort represents the total number of  

  references obtained by searching parasite records for the animal family on ISI Web  

  of Knowledge. The solid line shows the fit of a quadratic regression of trypanorhynch 

   tapeworm richness on study effort. 

 
Figure A.4. Scatter plot showing the relationship between richness of trypanorhynch  

  tapeworms (adult stages) known to infect a shark species and the study effort of  

  the shark species for parasites (n = 71). host-parasite study effort is the total number  

  of references obtained by searching parasite records for the shark species on ISI  

  Web of Knowledge. The solid line shows the fit of a quadratic regression of  

  trypanorhynch tapeworm richness on study effort. 
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Table A.1. Table displaying tapeworm species richness and diet breadth (prey family richness) for 91 different shark species. For each shark host species, 

families of prey are listed with their respective references indicated in brackets following each name. This dataset on shark families was obtained from ISI 

WĞď ŽĨ KŶŽǁůĞĚŐĞ͘ TĂǆĂ ŽĨ ĞĂĐŚ ƐŚĂƌŬ ŚĞƌĞ ;LĂƚŝŶ ŶĂŵĞ ƉůƵƐ Ăůů ŬŶŽǁŶ ƐǇŶŽŶǇŵƐͿ ĐŽŵďŝŶĞĚ ǁŝƚŚ ŬĞǇǁŽƌĚƐ ͚͚ĚŝĞƚΎ O‘ ĨĞĞĚΎ O‘ ƉƌĞy*͛͛ ǁĞƌĞ ƐĞĂƌĐŚĞĚ ŽŶ 
ISI Web of Knowledge (all databases) and all available references from 1864 to 2017 were perused for records on shark diets (Searches conducted April 

2017). The total number of references listed, references with diet information, and sum of stomachs examined containing food are given for each shark 

species. The total sum of stomachs examined (including empty stomachs) is included in parentheses and indicates minimum estimates. 

 

Shark Species Total No. 
Prey 

Families 

List of prey families in diet of shark species 
[references] 

Total No. 
Refs 

Refs with 
diet info 

Stomachs 
examined 
with food 
(total Inc. 
empty) 

 
Alopias 

superciliosus 

42 Alepisauridae [8], Ancistrocheiridae [1-2,6], Belonidae [1-2,5-6], Carangidae [4], 

Clupeidae [1-2,4-6,8], Coryphaenidae [1-2,5-6], Cranchiidae [4], Echeneidae [1-

2,5], Engraulidae [4], Enoploteuthidae [1-2,6], Exocoetidae [1,5-6], Fistulariidae 

[1-2,5-6], Gonatidae [4], Hemiramphidae [5], Histioteuthidae [1-2,4-6], 

Istiophoridae [8], Loliginidae [2,4-5], Lutjanidae [1,6], Mastigoteuthidae [1-2,5-

6], Merlucciidae [1-2,4-6], Munididae [4],  Myctophidae [1-2,5], Octopoteuthidae 

[1,4,6], Ommastrephidae [1-2,4-7], Ophichthidae [1-2,6], Ophidiidae [5], 

Paralepididae [4], Penaeidae [5], Pholidoteuthidae [2], Sciaenidae [1-2,5-6], 

Scomberesocidae [4], Scombridae [1-2,4-6,8], Scorpaenidae [1,6], Sebastidae [4], 

Serranidae [1,6], Solenoceridae [6], Steniteuthidae [1], Synodontidae [1], 

Tetraodontidae [1-2,5-6], Thysanoteuthidae [2], Trachipteridae [4,6], 

Trichiuridae [3],  

26 8 448 (523) 

Alopias vulpinus 21 Arripidae [9], Atherinidae [10,12], Berycidae [9], Carangidae [9-10,12-13], 

Clupeidae [9-12], Engraulidae [9-12], Gadidae [13], Gonatidae [12], Loliginidae 

[10-12], Luvaridae [12], Merlucciidae [10-12], Munididae [12], Ommastrephidae 

[10-11], Paralepididae [10], Paralichthyidae [10,12], Sciaenidae [12], 

Scomberesocidae [10], Scombridae [11-13], Sebastidae [10-12], Sphyraenidae 

31 5 349 (506) 
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[12], Stromateidae [12]  

Carcharhinus 

acronotus 

5 Loliginidae [14], Muraenidae [14], Octopodidae [14], Pomacentridae [14], 

Serranidae [14] 

12 1 19 (86) 

Carcharhinus 

amblyrhynchoides 

14 Ariidae [17], Carangidae [17], Clupeidae [17], Hemiramphidae [36], Labridae 

[17], Leiognathidae [17,36], Ophichthidae [17], Penaeidae [17,36], 

Platycephalidae [17], Plotosidae [17], Scombridae [17], Sillaginidae [17], 

Squillidae [17], Terapontidae [17] 

2 2 163 (241) 

Carcharhinus 

amblyrhynchos 

24 Acanthuridae [16], Apogonidae [37], Ariidae [38,285], Carangidae [38,285], 

Chaetodontidae [16], Clupeidae [38], Elapidae [37], Gerreidae [36], 

Hemiramphidae [38], Holocentridae [16], Leiognathidae [36], Monacanthidae 

[16], Mugilidae [38], Mullidae [36], Muraenidae [16,37-38], Octopodidae [37], 

Palinuridae [15], Penaeidae [36,285], Pomacentridae [16], Scaridae [16], 

Scombridae [17], Scorpaenidae [16], Sepiidae [37], Zanclidae [16]  

25 9 173 (400) 

Carcharhinus 

amboinensis 

50 Acanthuridae [19], Ariidae [17-19], Carangidae [18-19], Carcharhinidae [18-20], 

Chanidae [18], Chirocentridae [19], Clupeidae [17],  Cynoglossidae [18], 

Dasyatidae [19], Delphinidae [18], Diodontidae [18], Elapidae [19-20], 

Engraulidae [20], Gobiidae [19], Gymnuridae [18], Haemulidae [18], 

Istiophoridae [17], Labridae [19], Leiognathidae [18-19], Loliginidae [17,19], 

Megalopidae [19], Mugilidae [18], Myliobatidae [18], Octopodidae [18], 

Ommastrephidae [19], Oplegnathidae [18], Penaeidae[19], Platycephalidae [18], 

Pomacanthidae [19], Pomatomidae [18], Polynemidae [17,19-20], Portunidae 

[17],  Psettodidae [19], Rhinobatidae [18], Sciaenidae [18-19], Scombridae [17-

19], Scyliorhinidae [18], Sepiidae [18-19], Sepiolidae [19], Serranidae [18], 

Sparidae [18-19], Sphyrnidae [18], Squatinidae [18], Squillidae [19], 

Synodontidae [18], Terapontidae [19], Tetraodontidae [19], Triacanthidae [20], 

Triacanthodidae [20], Trichiuridae [18] 

9 4 227 (338) 

Carcharhinus 

brachyurus 

56 Alcyoniidae [22], Apogonidae [23], Arhynchobatidae [22], Arripidae [9], 

Atherinidae [22-23], Batrachoididae [22], Callianassidae [23], Callorhinchidae 

[22-23], Carangidae [9,21,23], Cheilodactylidae [23], Clupeidae [9,21-23], 

12 4 895 (2264) 
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Congridae [22], Delphinidae [21], Dussumieriidae [21,23], Engraulidae [9,22-23], 

Gadidae [9], Gempylidae [9], Haemulidae [21,23], Hemiramphidae [9], Labridae 

[9], Loliginidae [9,21,23,39], Merlucciidae [23], Monacanthidae [9], Mugilidae 

[9,21,23], Mullidae [21], Myliobatidae [21-23], Nassariidae [22], Octopodidae 

[23], Odacidae [9], Ommastrephidae [9,23], Ophidiidae [9,23], Ovalipidae [9], 

Penaeidae [9,23], Pentanchidae [21], Percophidae [22], Pinguipedidae [22], 

Platycephalidae [9], Plotosidae [9], Pomatomidae [21], Rajidae [9,22], 

Rhinobatidae [21,23], Sciaenidae [9,22-23], Scombridae [9,21,23], Scorpaenidae 

[9], Sepiidae [9,21,23], Serranidae [22-23], Sillaginidae [9], Sparidae [9,21-23], 

Sphyraenidae [9], Squalidae [21,23], Squatinidae [21-22], Stromateidae [22], 

Terapontidae [9], Triakidae [22], Trichiuridae [21], Urolophidae [9] 

Carcharhinus 

brevipinna 

33 Ancistrocheiridae [26], Ariidae [25-26], Carangidae [17,24,26], Carcharhinidae 

[26], Clupeidae [17,24-25], Engraulidae [24-27], Exocoetidae [24], Gerreidae 

[17,26], Haemulidae [24,26], Leiognathidae [17,26], Loliginidae  [26], 

Monacanthidae [17], Monodactylidae [26], Mugilidae [24,26], Mullidae [17,26], 

Muraenidae [24], Nemipteridae [17], Octopodidae [24,26], Paralichthyidae [24], 

Pomacanthidae [26], Pomatomidae [26], Rhinobatidae [26], Sciaenidae [25-26], 

Scombridae [17,24,26-27], Sepiidae [26], Soleidae [26], Sparidae [26], 

Sphyraenidae [24,26], Sphyrnidae [26], Syngnathidae [25], Synodontidae [24,26], 

Trichiuridae [26], Triglidae [26] 

27 6 559 (2038) 

Carcharhinus 

dussumieri 

40 Anguillidae [17], Apogonidae [17], Balistidae [17], Bothidae [17], 

Bregmacerotidae [17], Callianassidae [17], Callionymidae [17], Carangidae [38], 

Centriscidae [17], Clupeidae [17], Congridae [17], Cynoglossidae [17], 

Engraulidae [17,38,40], Fistulariidae [17], Gerreidae [36], Gobiidae [17,38], 

Hemiramphidae [36], Hypoptychidae [17], Labridae [17,38], Leiognathidae 

[17,36,38,40], Loliginidae [17], Monacanthidae [17,36], Mugilidae [17,36], 

Mullidae [17], Muraenesocidae [17], Muraenidae [17], Myctophidae [17], 

Nemipteridae [17], Ogcocephalidae [17], Penaeidae [17,36, 40], Platycephalidae 

[17], Portunidae [17], Priacanthidae [17], Raninidae [17], Scombridae [17], 

4 4 470 (695) 
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Scorpaenidae [17], Squillidae [17], Synodontidae [17], Tetraodontidae [17], 

Uranoscopidae [17] 

Carcharhinus 

falciformis 

44 Alloposidae [29], Amphitretidae [29], Ancistrocheiridae [2,28-30], Argonautidae 

[2,17,28-30], Balistidae [2,17,28,30-31], Carangidae [2,28-30], Clupeidae [30], 

Coryphaenidae [2,28-30], Diodontidae [29], Echeneidae [29], Enoploteuthidae 

[28], Exocoetidae [29-31], Galatheidae [29], Gempylidae [28], Gobiidae [31], 

Gonatidae [2,30], Haemulidae [30], Hemiramphidae [29], Histioteuthidae [2,30], 

Istiophoridae [29], Kyphosidae [29], Labridae [2,30], Mastigoteuthidae [29], 

Molidae [29], Monacanthidae [17,28], Mugilidae [41], Munididae [29-30], 

Myctophidae [28-29], Nomeidae [28-29], Octopodidae [28], Octopoteuthidae 

[29],  Ommastrephidae [2,28-31], Onychoteuthidae [2,28-29], Ostraciidae [29], 

Penaeidae [2], Polynemidae [31], Portunidae [17,28-29,31], Priacanthidae 

[2,28,30], Scombridae [2,27-31], Sepiidae [17], Sphyraenidae [28,30], 

Tetraodontidae [29-30], Tremoctopodidae [29], Vitreledonellidae [29] 

31 7 864 (1447) 

Carcharhinus 

galapagensis 

16 Acanthuridae [32], Balistidae [32], Belonidae [32], Carangidae [32], Clupeidae 

[32], Diodontidae [32], Holocentridae [32], Lethrinidae [32], Monacanthidae 

[32], Muraenidae [32], Pomacentridae [32], Priacanthidae [32], Scaridae [32], 

Scombridae [32], Serranidae [32], Synodontidae [32] 

10 3 96 (178) 

Carcharhinus 

isodon 

11 Carangidae [25,33], Carcharhinidae [34], Clupeidae [25,33-35], Elopidae [25], 

Engraulidae [25], Penaeidae [34-35], Portunidae [33], Sciaenidae [25,33-34], 

Scombridae [33-34], Sparidae [25], Syngnathidae [25] 

10 4 142 (293) 

Carcharhinus 

leucas 

73 Achiridae [46], Ambassidae [19], Anguillidae [19], Ariidae [19,42,45-47], 

Batrachoididae [46], Bradypodidae [44], Carangidae [19,42,45-46], 

Carcharhinidae [19,42,45-46], Centropomidae [19,44], Characidae [44], 

Cheilodactylidae [42], Cheloniidae [42,44,47], Cichlidae [42,44], Clariidae [42], 

Clupeidae [42-43,46-47], Coryphaenidae [42], Crocodylidae [47], Dasyatidae 

[19,42,45-46], Dermochelyidae [42], Dinopercidae [42], Drepaneidae [42], 

Elapidae [43], Eleotridae  [44], Elopidae [46], Engraulidae [42], Ephippidae [42], 

Gecarcinidae [44], Gerreidae [45], Gobiidae [19,45], Haemulidae [42,44-45], 

88 7 1034 (1967) 
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Hemiramphidae [47], Hominidae [42], Labridae [42], Lamnidae [42], Latidae [47], 

Leiognathidae [19], Lepisosteidae [44], Lutjanidae [44], Megalopidae [44], 

Monodactylidae [42], Mugilidae [42,44,46-47], Muraenidae [42], Myliobatidae 

[42,45], Octopodidae [42], Odontaspididae [42], Ophichthidae [46], 

Osteoglossidae [19,47], Ovalipidae [42], Palaemonidae [19,47], Penaeidae [46], 

Platycephalidae [42], Plotosidae [42], Polynemidae [47], Pomatomidae [42], 

Portunidae [45-46], Pristidae [44,47], Rhinobatidae [42], Sciaenidae [42,45-47], 

Scombridae [19,42,45], Scyliorhinidae [42], Sepiidae [42], Serranidae [42], 

Sesarmidae [42], Sparidae [42,46], Sphyrnidae [42,45], Squalidae [42], 

Squatinidae [42], Stegostomatidae [42], Suidae [47], Synbranchidae [19], 

Synodontidae [42,46-47], Triakidae [42], Tyrannidae [44] 

Carcharhinus 

limbatus 

72 Acanthuridae [54], Achiridae [33], Albulidae [54,56], Ariidae [25,38,48,51,55], 

Atherinopsidae [53], Balistidae [48,50,56], Batrachoididae [55], Belonidae 

[48,54], Berycidae [48], Blenniidae [48], Bothidae [33,53], Carangidae 

[25,48,50,53-54], Carcharhinidae [48,55], Chaetodontidae [54,56], Cichlidae [48], 

Clupeidae [25,33,35,38,40,48,50-51,53-56], Cynoglossidae [38,48], Dasyatidae 

[33], Delphinidae [48], Dinopercidae [48], Echeneidae [48], Elopidae [25,48], 

Engraulidae [25,48,50,53], Ephippidae [51], Gerreidae [54,56], Gymnuridae [48], 

Haemulidae [48,50,54,56], Hemiramphidae [50], Holocentridae [56], Kyphosidae 

[48], Labridae [48], Leiognathidae [40,48], Lethrinidae [38],  Loliginidae 

[25,48,50,53], Lutjanidae [25,48,54,56-57], Megalopidae [51], Monodactylidae 

[48], Mugilidae [48], Mullidae [56], Muraenidae [49], Myliobatidae [50,55], 

Octopodidae [48], Ophichthidae [33], Oplegnathidae [48], Ostraciidae [48], 

Palinuridae [48], Paralichthyidae [50-51,55], Penaeidae [25,33,50-53], Plotosidae 

[48], Pomacanthidae [48], Pomacentridae [48,54], Pomatomidae [48], Rajidae  

[50], Rhinobatidae [48], Scaridae [54,56], Sciaenidae [25,33,38,48,50-51,53,55], 

Scombridae [27,48,55-57], Scyliorhinidae [48], Sepiidae [48], Serranidae [48], 

Sillaginidae [38], Sparidae [25,48,54,56-57], Sphyraenidae [49], Sphyrnidae 

[48,55], Squillidae [52], Stromateidae [33,53], Syngnathidae [25], Synodontidae 

64 16 1624 (3056) 
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[25,40,48], Terapontidae [40],  Tetraodontidae [48], Triacanthidae [38], 

Trichiuridae [33,48,50,53] 

Carcharhinus 

longimanus 

9 Alepisauridae [58], Berycidae [27], Bramidae [58], Carangidae [27], Clupeidae 

[58], Coryphaenidae [59], Pomatomidae [27], Scombridae [58], Sparidae [27]  

20 3 44 (89) 

Carcharhinus 

macloti 

11 Carangidae [17], Chirocentridae [17], Clupeidae [17], Dasyatidae [17], 

Engraulidae [17], Hoplichthyidae [17], Leiognathidae [17], Nemipteridae [17], 

Platycephalidae [17], Scombridae [17], Synodontidae [17] 

2 1 91 (216) 

Carcharhinus 

melanopterus 

37 Acanthuridae [60], Aplysinidae [60], Apogonidae [63], Acrochordidae [63], 

Atherinidae [37], Balistidae [60], Carangidae [36], Chanidae [63], Elapidae 

[37,63], Ephippidae [63], Fistulariidae [37], Gerreidae [36], Haemulidae [36],  

Haliotidae [37], Labridae [37,60,63], Leiognathidae [36], Lethrinidae [60], 

Loliginidae [37], Lutjanidae [37,63], Monacanthidae [63], Mullidae [36,60], 

Muraenidae [37], Muridae [61], Octopodidae [37], Platycephalidae [63], 

Pomacanthidae [37], Portunidae [60], Scaridae [37,60], Sparidae [63], Sternidae 

[37], Sulidae [61], Synodontidae [37],  

45 6 133 (231) 

Carcharhinus 

obscurus 

105 Acanthuridae [67,319], Achiridae [66], Albulidae [65], Anguillidae [65,319], 

Apogonidae [65], Ariidae [23,64], Atherinidae [66], Aulopidae [65], Balistidae 

[64,66], Belonidae [319], Cancridae [66], Carangidae [9,50,64-65,67], 

Carcharhinidae [27,50,64-65,67], Cheilodactylidae [64-65], Cheloniidae [50], 

Chirocentridae [64], Chlorophthalmidae [64], Cichlidae [64], Clupeidae [9,23,64-

65,67], Congridae [50,319], Cynoglossidae [64-65], Dactylopteridae [319], 

Dasyatidae [23,64-66], Delphinidae [64], Elopidae [64,67], Engraulidae 

[23,50,64,66-67], Enoploteuthidae [319], Ephippidae [50,319], Exocoetidae [64], 

Fistulariidae [68], Gempylidae [9,64], Gerreidae [64-65], Gobiidae [23,67], 

Gymnuridae [64], Haemulidae [23,64,67], Hemiramphidae [65], Heterodontidae 

[9,65], Istiophoridae [319], Kyphosidae [64-65], Labridae [65], Lamnidae [319], 

Leiognathidae [64], Lethrinidae [67], Limulidae [66], Loliginidae [23,50,64,66-67], 

Lophiidae [66], Lutjanidae [50], Lycoteuthidae [319], Macrouridae [64], 

Matutidae [67], Monacanthidae [65], Mugilidae [23,64-65,67], Mullidae [50,64-

41 10 2466 (6467) 



 
 

1
2

0
 

65,67], Muraenidae [64], Myctophidae [319], Myliobatidae [64-65], Nassariidae 

[66-67], Neosebastidae [65], Octopodidae [9,23,64,67,319], Octopoteuthidae 

[319], Odacidae [9], Odontaspididae [64], Ommastrephidae [9,64], Ophidiidae 

[9], Oplegnathidae [64], Ostraciidae [64,68], Ovalipidae [9,66], Palinuridae 

[23,64,67], Paralichthyidae [50,65-66], Penaeidae [9,67], Pentacerotidae [65], 

Pentanchidae [64], Peristediidae [319], Platycephalidae [65,319], Pleuronectidae 

[319], Plotosidae [64-65], Pomacentridae [65,319], Pomatomidae [64,66-68], 

Priacanthidae [319],  Pristigasteridae [64], Rajidae [50,64,66], Rhinobatidae 

[23,64-65], Scaridae [65], Sciaenidae [23,50,64,66-67], Scombridae [9,23,64-

65,67], Scyliorhinidae [319], Sepiidae [9,23,64,67], Serranidae [23,64-65], 

Sillaginidae [9], Sparidae [9,23,64,67], Sphyraenidae [9,64,67], Sphyrnidae [64-

65], Spirulidae [67], Squalidae [319], Squatinidae [64], Stromateidae [66], 

Syngnathidae [65,319], Synodontidae [50,64,67], Terapontidae [319], Triakidae 

[64-65,67], Trichiuridae [23,50,67,319], Triglidae [50,66-67,319], Uranoscopidae 

[9,65-66], Urolophidae [65], Zeidae [23]  

Carcharhinus 

plumbeus 

110 Acanthuridae [70], Achiridae [69], Acropomatidae [73], Ammodytidae [17,69], 

Anguillidae [69,74-75], Apogonidae [73], Atherinopsidae [74], Aulostomidae [70], 

Balistidae [17,70,72], Belonidae [70,72], Bothidae [17,70-71], Callianassidae [69], 

Callionymidae [70], Cancridae [69,71,75], Caproidae [17], Carangidae [17,69-73], 

Carcharhinidae [69], Carcinidae [69], Centrolophidae [73], Chaetodontidae [70], 

Champsodontidae [17], Chauliodontidae [71], Clupeidae [69,71-72,74-75,81], 

Congridae [17,69-71,73], Cottidae [71], Crangonidae [69], Cynoglossidae [69], 

Dasyatidae [69,71], Diodontidae [70], Engraulidae [69,73-74,81], Ephippidae 

[69], Epialtidae [69], Exocoetidae [70], Fistulariidae [69-70], Fundulidae [69,74-

75], Gadidae [71], Gonatidae [71], Holocentridae [70], Labridae [17,70-71], 

Leiognathidae [17], Lethrinidae [17], Leucosiidae [69], Limulidae [69], 

Littorinidae [69], Loliginidae [17,69,72,74,81], Lophiidae [69,71], Lutjanidae [70], 

Lysmatidae [69], Mactridae [69], Majidae [69], Merlucciidae [71], 

Monacanthidae [70], Monocentridae [17], Moronidae [69], Mugilidae [69,72-

87 10 2022 (2757) 
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73,81], Mullidae [17,70,72], Muraenidae [70], Myliobatidae [69], Mytilidae [69], 

Nassariidae [69], Naticidae [69], Nemipteridae [17], Nuculidae [69], Octopodidae 

[72,76], Ommastrephidae [69,71,73], Ophidiidae [69,71], Ophichthidae [71], 

Ophiuridae [70], Ostraciidae [70], Ovalipidae [69,74-75], Paguridae [69], 

Paralichthyidae [69,74], Penaeidae [17,69,72], Pharidae [69], Phocoenidae [70], 

Phycidae [69,81], Pinguipedidae [17], Pleuronectidae [69,71], Pomacanthidae 

[17], Pomatomidae [69,71,74-75], Portunidae [69,74-75], Priacanthidae [17,70], 

Rachycentridae [69], Rajidae [69,71-72], Scaridae [70,76], Sciaenidae [69,74-

75,81], Scombridae [17,70-72], Scophthalmidae [69], Scorpaenidae [70], 

Scutellidae [71], Scyliorhinidae [17], Sepiidae [72], Serranidae [69], Soleidae [72], 

Sparidae [69,72,81], Sphyraenidae [70], Squalidae [71], Squatinidae [81],  

Squillidae [69,72,74-75], Stromateidae [71,73,81],  Syngnathidae [69-70,74], 

Synodontidae [17,70-71], Tetraodontidae [17,69-70,75], Triakidae [69,71,74,81], 

Trichiuridae [17,73], Triglidae [69-71,81], Upogebiidae [69], Uranoscopidae [69], 

Zanclidae [70], Zoarcidae [71] 

Carcharhinus 

porosus 

15 Achiridae [77], Ariidae [77], Carcharhinidae [77], Clupeidae [77], Dasyatidae [77], 

Engraulidae [77], Ephippidae [77], Loliginidae [77], Mugilidae [77], Penaeidae 

[77], Polynemidae [77], Portunidae [77], Sciaenidae [77], Stromateidae [77], 

Trichiuridae [77] 

4 1 171 (684) 

Carcharhinus 

sealei 

6 Carangidae [78], Clupeidae [78], Hemiramphidae [78], Labridae [78],  

Lutjanidae [78], Nemipteridae [78] 

1 1 30 (108) 

Carcharhinus 

signatus 

13 Acanthuridae [79], Bramidae [79], Chiroteuthidae [79], Cranchiidae [79], 

Histioteuthidae [79], Howellidae [79], Myctophidae [79], Octopodidae [79], 

Octopoteuthidae [79], Ommastrephidae [79], Scombridae [79], Serranidae [79], 

Xiphiidae [79] 

6 1 215 (415) 

Carcharhinus 

sorrah 

39 Ammodytidae [80], Apogonidae [20], Ariidae [80], Balistidae [80], Bothidae 

[20,80], Carangidae [20,36,80], Centriscidae [80], Chirocentridae [80], Clupeidae 

[20,80], Congridae [80], Dactylopteridae [80], Diodontidae [80], Exocoetidae 

[80], Fistulariidae [80], Gerreidae [20,80], Haemulidae [20,36], Leiognathidae 

6 5 731 (1388) 
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[20,36,40,80], Lethrinidae [80], Loliginidae [20], Menidae [20,80], 

Monacanthidae [36,80], Mullidae [20,36,80], Nemipteridae [80], 

Ostraciodontidae [80], Penaeidae [20,36,38,40], Polynemidae [20], Portunidae 

[80], Priacanthidae [80], Scaridae [80], Sciaenidae [20], Scombridae [80], 

Sillaginidae [20], Soleidae [20], Spirulidae [20], Synodontidae [40,80], 

Terapontidae [20], Tetraodontidae [20,80], Trichiuridae [80], Triglidae [80] 

Carcharhinus 

tilstoni 

46 Anguillidae [80], Ariidae [20,38,80], Balistidae [80], Bothidae [80], Carangidae 

[20,80], Carcharhinidae [80], Clupeidae [20,38,40,80], Coryphaenidae [80], 

Cynoglossidae [38], Dactylopteridae [80], Diodontidae [80], Elapidae [80], 

Engraulidae [20], Exocoetidae [80], Gerreidae [20,36], Haemulidae [36,80], 

Hemigaleidae [80], Hemiramphidae [36,80], Leiognathidae [20,36,40,80], 

Lethrinidae [38,80], Loliginidae [20,80], Lutjanidae [80], Monacanthidae [80], 

Mullidae [20,36,80], Muraenesocidae [80], Myctophidae [80], Nemipteridae 

[80], Paralepididae [80], Penaeidae [20,36], Platycephalidae [80], Polynemidae 

[20], Priacanthidae [80], Psettodidae [80], Scaridae [80], Sciaenidae [36,38,80], 

Scombridae [20,40,80], Scorpaenidae [80], Sillaginidae [38], Sphyraenidae [80], 

Synodontidae [20,80], Terapontidae [40], Tetraodontidae [80], Triacanthidae 

[38,80], Trichiuridae [80], Triglidae [80], Uranoscopidae [80] 

4 5 1192 (2402) 

Carcharias taurus 56 Achiridae [66], Aphroditidae [83], Arhynchobatidae [83], Ariidae [82], 

Atherinidae [83], Batrachoididae [81,83], Bothidae [82], Carangidae [81-83], 

Carcharhinidae [66,81,82], Cheilodactylidae [82-83], Clupeidae [66,81-83], 

Congridae [83], Ctenodiscidae [83], Cynoglossidae [82], Dasyatidae [82], 

Dussumieriidae [82], Echeneidae [82], Gonorynchidae [82], Haemulidae [82], 

Hexanchidae [83], Labridae [66], Loliginidae [39,66,81-82], Lophiidae [66], 

Merlucciidae [82], Mugilidae [82], Myliobatidae [66,82-83], Nassariidae [83], 

Octopodidae [82], Ophidiidae [66,82], Paguridae [66,83], Paralichthyidae [66,83], 

Pentanchidae [82], Percophidae [81,83], Phycidae [83], Pinguipedidae [83], 

Platyxanthidae [83], Pomatomidae [66,82-83], Rajidae [66,82-83], Rhinobatidae 

[82], Sciaenidae [66,81-83], Scombridae [66,81-82], Scophthalmidae [66], 

46 5 801 (1000) 



 
 

1
2

3
 

Scyliorhinidae [82], Sepiidae [82], Serranidae [83], Soleidae [82], Sparidae [66,81-

82], Squalidae [82], Squatinidae [66,83], Stromateidae [66,81,83], Synodontidae 

[66], Torpedinidae [82], Triakidae [66,81-83], Trichiuridae [81], Triglidae [66,82-

83], Uranoscopidae [83] 

Carcharodon 

carcharias 

43 Acipenseridae [94], Alopiidae [91], Ariidae [84], Asteriidae [85], Bursidae [94], 

Cancridae [85,88,94], Carcharhinidae [84], Cetorhinidae [89,94], Chiroteuthidae 

[91], Clupeidae [84-85,89,94], Cottidae [89,94], Dasyatidae [84,94], Delphinidae 

[84,90], Engraulidae [94], Haemulidae [91], Hexagrammidae [89,94], Loliginidae 

[91], Merlucciidae [85,88], Moronidae [94], Myliobatidae [84,89,94,96], 

Odontaspididae [84], Otariidae [84,87,94-95], Phocidae [88,92-94,97], 

Phocoenidae [86], Phycidae [85], Pleuronectidae [85,92], Pomatomidae [85], 

Rajidae [85], Rhincodontidae [91], Rhinobatidae [84], Salmonidae [88,92,94], 

Sciaenidae [84,89,94,96], Scombridae [84,96,98], Sebastidae [88,94], Sepiidae 

[84], Serranidae [91], Sparidae [84], Sphyraenidae [84], Sphyrnidae [84,91], 

Squalidae [84,89,94], Stromateidae [85], Triakidae [85,89,94,96], Triglidae [85] 

266 17 329 (512) 

Centrophorus 

granulosus 

28 Apogonidae [100], Argentinidae [99], Brachioteuthidae [100], Calappidae [99], 

Callionymidae [99], Clupeidae [100], Cranchiidae [100], Etmopteridae [99], 

Gadidae [99], Geryonidae [99], Histioteuthidae [100], Lepidoteuthidae [100], 

Macrouridae [99], Myctophidae [99], Nephropidae [99], Octopoteuthidae [100], 

Ommastrephidae [99], Pandalidae [99], Pentanchidae [99], Phosichthyidae [99], 

Phycidae [99], Polybiidae [99], Rajidae [99], Scombridae [100], Sepiidae [99], 

Sepiolidae [99], Soleidae [100], Trachichthyidae [99] 

11 3 153 (194) 

Centrophorus 

squamosus 

16 Alepocephalidae [102], Argentinidae [104], Bramidae [101], Carangidae 

[101,103], Chimaeridae [102],  Congridae [101], Diretmidae [103], Gadidae [102], 

Macrouridae [102-104], Merlucciidae [101,103], Moridae [104], 

Onychoteuthidae [103],  Oreosomatidae [101], Penaeidae [103], Sebastidae 

[101,104], Squalidae [101]  

12 4 85 (466) 

Centroscymnus 

coelolepis 

18 Acanthephyridae [105], Alepocephalidae [102], Bramidae [103], Epigonidae 

[103], Gadidae [102], Histioteuthidae [105], Ipnopidae [105], Lotidae [104], 

14 4 222 (379) 
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Lycoteuthidae [103], Macrouridae [102,104], Merlucciidae [103], Moridae [104], 

Myctophidae [104], Octopoteuthidae [103], Ommastrephidae [105], 

Pleuronectidae [104] Sepiolidae [105], Stomiidae [105]  

Cephaloscyllium 

isabellum 

28 Buccinidae [106], Cancridae [106], Carangidae [106], Centriscidae [106], 

Engraulidae [106], Goneplacidae [106], Macrouridae [106], Monacanthidae 

[106], Moridae [106], Munididae [106], Octopodidae [106], Ommastrephidae 

[106], Ophidiidae [106], Ostreidae [106], Ovalipidae [106], Palinuridae [106], 

Percophidae [106], Pinguipedidae [106], Pleuronectidae [106], 

Pseudarchasteridae [106], Pyuridae [106], Rajidae [106], Scyllaridae [106], 

Squalidae [106], Squillidae [106], Syngnathidae [106], Triakidae [106],  

Urechidae [106] 

1 1 261 (278) 

Cetorhinus 

maximus 

3 Penaeidae [107], Sergestidae [108],  

Temoridae [109] 

87 3 3 (6) 

Chlamydoselachus 

anguineus 

7 Chiroteuthidae [110], Gonatidae [110], Histioteuthidae [110], Mastigoteuthidae 

[110], Ommastrephidae [110],  

Onychoteuthidae [110], Rostellariidae [110] 

6 1 37 (139) 

Dalatias licha 26 Alpheidae [111], Aristeidae [111], Axiidae [111], Carapidae [113], 

Centrophoridae [101], Chlorophthalmidae [112], Epigonidae [111], Etmopteridae 

[111,113], Gadidae [111], Histioteuthidae [111], Loliginidae [112,115],  

Macrouridae [111], Merlucciidae [101,112,114], Moridae [111,113], 

Myctophidae [111-112], Nephropidae [113], Paralepididae [111], Pasiphaeidae 

[111,113], Penaeidae [112], Pentanchidae [111-113], Phycidae [111], 

Pyrosomatidae [113], Sepiolidae [111-112,114], Sergestidae [111], Stomiidae 

[111], Trichiuridae [115] 

16 8 151 (210) 

Deania calcea 32 Acanthephyridae [116], Alepocephalidae [117], Aphroditidae [117], Carangidae 

[116,118], Clupeidae [120], Cranchiidae [116], Cyttidae [116], Gadidae [102,117], 

Gempylidae [120], Gonostomatidae [117], Histioteuthidae [117], Lotidae [102], 

Macrouridae [116], Merlucciidae [116], Myctophidae [102-103,116-120], 

Notosudidae [116], Ommastrephidae [116-117,119], Onychoteuthidae [116], 

11 7 455 (814) 
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Oplophoridae [116], Pandalidae [120], Paralepididae [103], Pasiphaeidae [116-

117], Penaeidae [103], Phosichthyidae [116], Phycidae [102], Scombridae 

[102,117], Sebastidae [102], Sergestidae [102,116-117], Sternoptychidae [116], 

Stomiidae [103,117], Trachichthyidae [116], Zeidae [116]  

Deania 

profundorum 

3 Enoploteuthidae [103], Myctophidae [103], Ommastrephidae [103] 1 1 43 (78) 

Etmopterus 

granulosus 

7 Batoteuthidae [121], Brachioteuthidae [121], Histioteuthidae [103,121], 

Mastigoteuthidae [121], Myctophidae [103,121], Paralepididae [103], Penaeidae 

[103]  

1 2 67 (191) 

Etmopterus lucifer 5 Enoploteuthidae [122], Euphausiidae [122-123], Histioteuthidae [122], 

Lophogastridae [123], Myctophidae [122]  

8 2 385 (681) 

Etmopterus 

princeps 

7 Acanthephyridae [124], Bathylagidae [102], Gadidae [124], Myctophidae [124], 

Notosudidae [124], Ommastrephidae [124], Paralepididae [124] 

5 2 55 (98) 

Etmopterus 

pusillus 

13 Enoploteuthidae [125], Gadidae [125], Gonostomatidae [125], Histioteuthidae 

[125], Merlucciidae [103], Myctophidae [103,125], Ommastrephidae [125], 

Onychoteuthidae [125], Pandalidae [125], Pasiphaeidae [125], Polybiidae [125], 

Sepiolidae [125], Trichiuridae [125]  

1 2 448 (605) 

Etmopterus spinax 35 Alepocephalidae [127], Alpheidae [133], Aristeidae [126,133], Callionymidae 

[126], Centrolophidae [127], Crangonidae [126,131,133], Enoploteuthidae [133], 

Etmopteridae [126], Euphausiidae [102,117,127-133], Gadidae 

[102,117,126,131], Gnathophausiidae [117,127], Gobiidae [129],  Goneplacidae 

[126], Histioteuthidae [117,129-130,133], Munididae [127], Myctophidae 

[102,126-127,129-130,133], Mysidae [102], Oplophoridae [117], Pandalidae 

[126,128,130-131], Paralepididae [130], Pasiphaeidae [127-131,133], 

Pentanchidae [126], Phosichthyidae [126], Phycidae [102,126-127], Processidae 

[127], Scombridae [128], Sepiidae [126], Sepiolidae [126,128-130,133], 

Sergestidae [102,129-130,133], Solenoceridae [127], Sternoptychidae 

[102,128,131-132], Stomiidae [130,133], Synaphobranchidae [102], 

42 12 533 (866) 
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Trachichthyidae [126], Trichiuridae [130]  

Euprotomicrus  

bispinatus  

5 Bramidae [136], Myctophidae [136],  

Oncaeidae [136], Phosichthyidae [136], Sternoptychidae [136] 

3 1 12 (12) 

Galeocerdo cuvier 111 Acanthuridae [138], Ancistrocheiridae [332], Anguillidae [17,148], Argonautidae 

[332], Ariidae [76], Aulostomidae [138], Balistidae [17,50,76,138,140], 

Batrachoididae [137,143], Belonidae [138,143], Bovidae [138,141,147,153-155], 

Busyconidae [150], Canidae [138],  Carangidae [27,50,137-138,147,156], 

Carcharhinidae [50,62,137,154], Chelonibiidae [17], Cheloniidae [137-

138,149,153-154], Chirocentridae [156,332], Cirolanidae [139], Clupeidae 

[27,62,140,154,156], Columbidae [150,152], Congridae [138], Coryphaenidae 

[138], Cranchiidae [332], Cuculidae [150], Cycloteuthidae [332], Dasyatidae 

[50,76,145,154], Delphinidae [17,27,137], Diodontidae [27,50,76,137-

138,143,145,147], Diomedeidae [17],  Dugongidae [143,145,148], Elapidae 

[17,143,145,148,151], Elopidae [144], Engraulidae [156], Enoploteuthidae [332], 

Ephippidae [50,140], Equidae [138,153], Fasciolariidae [150], Felidae [138], 

Fistulariidae [138,147], Gerreidae [50,140], Gorgoniidae [137], Haemulidae 

[140], Hemiramphidae [143,145], Herpestidae [138], Histioteuthidae [332], 

Hominidae [138,146],  Istiophoridae [17,138], Joubiniteuthidae [332], Labridae 

[138], Lamnidae [141], Laridae [137], Limulidae [137], Loliginidae [50,140,332], 

Luidiidae [137], Lutjanidae [145], Meropidae [141], Molidae [27], 

Monacanthidae [138,140], Muridae [138], Mugilidae [50,137], Mullidae [138], 

Muraenidae [138], Myliobatidae [50,145,154],  Naticidae [137], Octopodidae 

[137,332], Octopoteuthidae [332], Ommastrephidae [332], Onychoteuthidae 

[332], Ostraciidae [17,138], Ovalipidae [137], Palinuridae [138,145], 

Paralichthyidae [137], Parulidae [150], Pelecanidae [149], Phalacrocoracidae 

[137], Phocidae [157], Phocoenidae [154], Pholidoteuthidae [332], 

Platycephalidae [27], Pleuronectidae [138], Pomacanthidae [17], Pomacentridae 

[138], Pontoporiidae [144], Portunidae [17,27,50,137,149], Pristidae [62], 

Procellariidae [27],  Rachycentridae [137], Rajidae [137], Rallidae [142], 

208 30 1359 (1944) 
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Raninidae [147], Rhinobatidae [17,145], Sciaenidae [27,50,137,140,144,156], 

Scaridae [138], Scombridae [17,27,137-138,154], Scyllaridae [17,138,147], 

Sepiidae [332], Serranidae [137], Sparidae [50,137], Sphyraenidae [138], 

Sphyrnidae [50,154], Squillidae [17,137], Suidae [147], Sulidae [140], 

Stromateidae [137,144,156], Syngnathidae [145], Tachyglossidae [17], 

Tetraodontidae [17,27,60,138,140,145], Trichiuridae [156], Triglidae [50], 

Turdidae [150], Volutidae [145] 

Galeorhinus 

galeus 

66 Agonidae [163], Argentinidae [101], Arhynchobatidae [158], Atherinidae [158], 

Batrachoididae [158-159], Belonidae [159], Bramidae [101], Callionymidae [163], 

Callorhinchidae [158], Caproidae [161], Carangidae [81,101,158,161,164], 

Centriscidae [161], Chimaeridae [159], Clinidae [159], Clupeidae [81,158-

160,162-163], Congridae [158], Cottidae [159,162],  Cynoglossidae [158], 

Eledonidae [163], Embiotocidae [159], Engraulidae [81,158-160,162], 

Exocoetidae [159], Gadidae [163], Gempylidae [160,164], Gonatidae [162], 

Kyphosidae [159], Loliginidae [158,163,165], Macrouridae [101,161], 

Merlucciidae [81,101,160,162], Moridae [101], Mugilidae [158], Mullidae [158], 

Myliobatidae [158], Nephropidae [101], Nototheniidae [159], Octopodidae 

[158,161], Ommastrephidae [101,158,160,165], Onychoteuthidae [101], 

Ophidiidae [158], Palinuridae [164], Pandalidae [101], Paralichthyidae [158,160], 

Percophidae [81,158],  Phycidae [161], Pinguipedidae [158], Pleuronectidae 

[162-163], Pomacentridae [159], Pomatomidae [81,158], Porpitidae [162], 

Rajidae [158], Salmonidae [159], Salpidae [101], Sciaenidae [81,158-159], 

Scombridae [159,161,163],  Sebastidae [101], Sepiolidae [163], Serranidae [158], 

Sparidae [159,161], Sphyraenidae [159], Squatinidae [81], Sternoptychidae 

[161], Stromateidae [158], Synodontidae [161], Triakidae [81,158],  Trichiuridae 

[81,161], Triglidae [81,163] 

34 12 1280 (1976) 

Galeus 

melastomus 

110 Acanthephyridae [105,117,166], Alepocephalidae [117,167], Alpheidae [105,129-

130,167], Aphroditidae [117], Argentinidae [169], Argonautidae [166,171], 

Aristeidae [130,166], Astrorhizidae [169], Axiidae [105,129-130,169],  

49 14 2983 (3431) 
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Bathypolypodidae [105,117], Benthesicymidae [129-130,166], Bothidae [166], 

Brachioteuthidae [130,166,171], Bythitidae [166], Carangidae [117,167], 

Chiroteuthidae [105,166], Chlorophthalmidae [166], Chtenopterygidae [166], 

Cirolanidae [105,117], Cliidae [166], Cranchiidae [105], Crangonidae 

[117,129,169,359], Cymbuliidae [117], Cynoglossidae [166], Diphyidae [105], 

Eledonidae [172], Enoploteuthidae [130,166,171], Epimeriidae [117], Eucopiidae 

[105], Euphausiidae [105,117,129-130,169], Eusiridae [169], Gadidae 

[117,130,166-167,169,359], Gammaridae [169], Geryonidae [105,117,130], 

Gnathophausiidae [117], Gobiidae [166,169], Goneplacidae [167], 

Gonostomatidae [130], Hauerinidae [105], Histioteuthidae [105,129,166,170-

171], Hyperiidae [105,117], Ipnopidae [166], Leuconidae [105], Loliginidae [166], 

Lophogastridae [129-130,169], Lotidae [105,166,169], Lysianassidae [169], 

Macrouridae [105,117,129,166,359], Merlucciidae [166-167], Moridae 

[105,117,359], Munididae [102,117,166-167,169], Myctophidae 

[102,105,117,129-130,166-167,170], Mysidae [105,169], Nassariidae [166], 

Nebaliidae [169], Nemichthyidae [129], Octopodidae [166,172], 

Octopoteuthidae [166], Ommastrephidae [105,117,129-130,166,168], 

Onuphidae [169], Onychoteuthidae [129-130,166], Opisthoteuthidae [172], 

Oplophoridae [129,166], Paguridae [105,117,129-130,167], Pandalidae 

[129,166,169,359], Paralepididae [105,166], Parapaguridae [117], Parasquillidae 

[166], Pardaliscidae [105], Pasiphaeidae [105,117,129-130,166-167,170,359], 

Penaeidae [130], Phasianidae [105], Phosichthyidae [166], Phronimidae 

[105,129], Phrosinidae [105], Phycidae [117], Platyscelidae [105], Pleuronectidae 

[129], Polybiidae [117,130,167], Polychelidae [117,129], Poromyidae [166], 

Processidae [105,129-130,166-167], Pyrosomatidae [129,166], Pyroteuthidae 

[166,359], Rajidae [130], Rhabdamminidae [105,169], Rissoidae [105], 

Saccamminidae [169], Salpidae [105,117,129], Scinidae [105], Scomberesocidae 

[167], Scombridae [167], Scorpaenidae [166], Scyllaridae [166], Sebastidae [166], 

Sepiidae [172], Sepiolidae [105,129-130,166,168-169,171-172,359], Sergestidae 
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[105,117,129-130,166-167,170], Serpulidae [105], Sigalionidae [169], 

Solenoceridae [167,359], Sternoptychidae [117,129,167,169], Stomiidae 

[105,129-130,166], Synaphobranchidae [117], Terebratulidae [105], 

Trachichthyidae [166], Tubulariidae [166], Uristidae [117,169], Uvigerinidae 

[105], Xanthidae [105]  

Ginglymostoma 

cirratum 

18 Batrachoididae [173], Belonidae [173], Carangidae [173], Epialtidae [173], 

Haemulidae [173], Labridae [173], Loliginidae [173], Lutjanidae [173], Majidae 

[173], Octopodidae [173], Ophichthidae [173], Palinuridae [173], Rachycentridae 

[173], Rajidae [173], Scaridae [173], Scombridae [173], Sparidae [173], 

Syngnathidae [173] 

80 1 41 (91) 

Hemipristis 

elongata 

5 Congridae [17], Dasyatidae [17], Diodontidae [17], Lutjanidae [17], Muraenidae 

[17] 

2 2 86 (114) 

Hemiscyllium 

ocellatum 

10 Alpheidae [174], Amphinomidae [174], Callionymidae [174], Gammaridae [174], 

Gonodactylidae [174], Lysiosquillidae [174], Ocypodidae [174], Portunidae [174],  

Terebellidae [174], Xanthidae [174] 

15 1 51 (53) 

Hemitriakis 

japanica 

13 Alpheidae [175], Bothidae [175], Callianassidae [175], Engraulidae [175], 

Gobiidae [175], Hippolytidae [175], Mysidae [175], Ogyrididae [175], 

Palaemonidae [175], Pasiphaeidae [175], Penaeidae [175], Sciaenidae [175],  

Upogebiidae [175] 

3 2 51 (57) 

Heptranchias perlo 18 Acropomatidae [176], Centrolophidae [176], Enoploteuthidae [176], Gempylidae 

[176], Macrouridae [176], Merlucciidae [176], Myctophidae [176], Narcinidae 

[176], Octopodidae [176], Ommastrephidae [176-177], Ophidiidae [176], 

Oplophoridae [176], Paraulopidae [176], Scombridae [177], Serranidae [176], 

Solenoceridae [176], Trichiuridae [176], Triglidae [176]  

9 2 89 (117) 

Heterodontus 

francisci 

8 Aegidae [178-179], Calyptraeidae [178-179], Fissurellidae [178], Octopodidae 

[178-179], Penaeidae [178-179], Portunidae [178-179], Sipunculidae [178-179], 

Syngnathidae [178-179]  

30 2 193 (219) 

Hexanchus griseus 28 Callorhinchidae [180], Carangidae [181], Chimaeridae [184], Clupeidae [180-

181], Delphinidae [180], Dussumieriidae [180], Echinorhinidae [184], Engraulidae 

33 8 90 (162) 
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[180,182], Gempylidae [180], Inachoididae [183], Loliginidae [180-181], 

Lophiidae [183],  Macrouridae [180,183], Merlucciidae [180-182,184], 

Myctophidae [180], Myxinidae [184], Ommastrephidae [180], Otariidae [180], 

Petromyzontidae [184], Pomatomidae [182], Phycidae [183], Rajidae [180], 

Scombridae [180-182], Scyliorhinidae [180], Sebastidae [180], Squalidae [180-

184], Triakidae [180-181], Xiphiidae [181]  

Iago omanensis 12 Cranchiidae [185], Eledonidae [185], Enoploteuthidae [185], Histioteuthidae 

[185], Loliginidae [185], Majidae [185], Myctophidae [185-186], 

Ommastrephidae [185], Portunidae [185], Sepiolidae [185], Solenoceridae [186], 

Squillidae [185]  

11 2 256 (279) 

Isurus oxyrinchus 89 Alepisauridae [190,193,195,197,202], Ammodytidae [194], Amphitretidae [10], 

Ancistrocheiridae [1,201], Anguillidae [202], Argentinidae [73], Argonautidae 

[10], Atelecyclidae [197], Axiidae [197], Balistidae [190,197], Belonidae 

[1,191,197,201], Berycidae [27], Bramidae [10,190,192-193,195,199], Carangidae 

[1,9-10,27,73,191,193,195,197,199-201], Carcharhinidae [10,191,194,201-202], 

Centrolophidae [27], Cheloniidae [190], Clupeidae [10,27,191,194,198,202], 

Coryphaenidae [1], Dalatiidae [195], Dasyatidae [191], Delphinidae [9-

10,189,193,196], Diodontidae [27,195], Diomedeidae [193], Engraulidae [10,73], 

Enoploteuthidae [10],  Ephippidae [191], Gadidae [202], Gempylidae 

[3,9,27,191,195,199], Gnathophausiidae [192], Gonatidae [10,202], Haemulidae 

[1,191,201], Histioteuthidae [1,10,165,193,197,199,201-202], Istiophoridae 

[191,195,201], Kyphosidae [10], Lamnidae [191,193], Loliginidae 

[10,191,194,197,201-202], Lycoteuthidae [165,199,201], Macrouridae [10], 

Malacanthidae [194], Mastigoteuthidae [1], Merlucciidae [191,194,202], 

Monacanthidae [1,9], Mugilidae [10,27,73], Myliobatidae [1,191,201-202], 

Nomeidae [1,193,195], Octopoteuthidae [1,10,201], Odontaspididae [191], 

Ommastrephidae [1,9-10,73,165,192-194,197,199,201-203], Onychoteuthidae 

[1,10,202], Ophidiidae [10,191], Opisthoteuthidae [1], Oplegnathidae [191], 

Ostraciidae [201], Otariidae [188], Paralepididae [10], Paralichthyidae [10], 

106 23 2177 (3776) 
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Penaeidae [27], Phycidae [197], Pomatomidae [194,202], Priacanthidae [1], 

Pseudocarchariidae [193], Rajidae [197,202], Regalecidae [1,27], Sciaenidae 

[191,201], Scomberesocidae [10,190,197-198,202], Scombridae [1,3,9-

10,27,73,190-195,197,199-202], Scorpaenidae [202], Scyliorhinidae [191,201], 

Sebastidae [10,202], Sepiidae [187,201], Serranidae [194], Solenoceridae [193-

194], Sparidae [27,191,194,197,202], Sphyrnidae [191,201], Spirulidae [197], 

Squalidae [191,194,201], Squillidae [197], Stromateidae [202], Syngnathidae 

[202], Tetragonuridae [195], Tetraodontidae [1,27], Thysanoteuthidae [1], 

Trachipteridae [199], Trichiuridae [3,27,73,199], Triglidae [194,202], Xiphiidae 

[193-195,197,202], Zeidae [191], Zoarcidae [194,202] 

Lamna nasus 44 Alepisauridae [204], Ammodytidae [204], Anarhichadidae [204], Anguillidae 

[204], Anotopteridae [204], Argentinidae [209], Belonidae [209], 

Brachioteuthidae [121], Bramidae [200,206], Carangidae [200], Centrolophidae 

[200], Channichthyidae [121], Chiroteuthidae [121], Clupeidae [204,208-

209,211], Congiopodidae [121], Cottidae [204], Cranchiidae [121], Cyclopteridae 

[204], Eledonidae [208], Euphausiidae [207], Gadidae [204,209], Gempylidae 

[121], Gonatidae [121], Hemitripteridae [204], Histioteuthidae [121], Loliginidae 

[211], Mastigoteuthidae [121], Merlucciidae [204,206], Myctophidae [121,204], 

Nemichthyidae [204], Neoteuthidae [121], Ommastrephidae [121,200,204], 

Onychoteuthidae [121,205,210], Oregoniidae [204], Paralepididae [200], 

Petromyzontidae [204], Phosichthyidae [206], Pleuronectidae [209], 

Scomberesocidae [204], Scombridae [204,208,211], Sebastidae [204,211], 

Squalidae [204], Stomiidae [121], Trachipteridae [206]  

30 10 1928 (4891) 

Loxodon 

macrorhinus 

46 Alpheidae [17], Ammodytidae [17], Apogonidae [17], Bothidae [17], 

Bregmacerotidae [17], Caesionidae [17], Calappidae [212], Callianassidae [17], 

Callionymidae [17,212], Carangidae [17], Champsodontidae [17], Congridae [17], 

Creediidae [212], Engraulidae [213], Euphausiidae [17], Gobiidae [17], Labridae 

[17,212], Leiognathidae [17], Loliginidae [212-213], Mugilidae [212], Mullidae 

[17], Mussidae [213], Nannosquillidae [212], Ocypodidae [213], Ophichthidae 

4 3 345 (449) 
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[212], Palinuridae [213], Pegasidae [17,212], Penaeidae [17,212-213], 

Phascolosomatidae [213], Platycephalidae [17], Portunidae [212-213],  Scaridae 

[17], Scombridae [212], Scorpaenidae [17], Sepiidae [213], Sepiolidae [17,212], 

Siganidae [212], Sillaginidae [212], Sparidae [212], Squillidae [17,212], 

Syngnathidae [17], Synodontidae [212], Tetraodontidae [17,212], Triglidae 

[17,212], Upogebiidae [17], Uranoscopidae [17]  

Megachasma 

pelagios 

1 Euphausiidae [214-216] 19 3 3(3) 

Mustelus asterias 15 Agonidae [163], Atelecyclidae [163], Axiidae [163], Cancridae [163], Corystidae 

[163], Donacidae [163], Galatheidae [207], Majidae [163], Oregoniidae [163], 

Paguridae [163], Pandalidae [163], Pilumnidae [163], Polybiidae [163,207], 

Upogebiidae [163], Xanthidae [163]  

8 2 48 (49) 

Mustelus 

californicus 

8 Batrachoididae [217], Blepharipodidae [217], Callianassidae [217], Cancridae 

[217], Clupeidae [217], Crangonidae [217], Urechidae [217], Varunidae [217] 

5 1 49 (52) 

Mustelus canis 55 Achiridae [66], Ammodytidae [66,218], Anguillidae [218], Ariidae [222], 

Atherinopsidae [224], Busyconidae [66], Calappidae [223], Cancridae [66,218-

220,224], Carcinidae [224], Clupeidae [218], Congridae [223], Crangonidae 

[66,220,224], Diodontidae [223], Diogenidae [223], Engraulidae [220,222], 

Epialtidae [66,219-220,224], Fundulidae [224], Gadidae [66], Gammaridae [220], 

Geryonidae [223], Glyceridae [220], Gonodactylidae [223], Limulidae [66,219], 

Loliginidae [66,165,218,220,223], Majidae [218,223], Merlucciidae [218], 

Munididae [223], Mysidae [220], Mytilidae [219-220], Naticidae [218,220], 

Nephropidae [218-219], Octopodidae [223], Ommastrephidae [218], Ophidiidae 

[66], Ovalipidae [66,219,224], Paguridae [66,218-220,224], Palaemonidae [224], 

Panopeidae [218-219,224], Paralichthyidae [66,218,220], Parasquillidae [223], 

Penaeidae [220], Pharidae [220,224], Portunidae [66,223-224], Priacanthidae 

[223], Rajidae [218], Sciaenidae [220], Sepiolidae [165], Solenidae [66], Sparidae 

[66,218], Squalidae [218], Squillidae [66,219-220,222-223], Stromateidae [218], 

Triglidae [218], Upogebiidae [219-220,224], Xanthidae [223]  

45 8 453 (514) 
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Mustelus fasciatus 9 Aethridae [225], Batrachoididae [225], Diogenidae [225], Epialtidae [225], 

Leucosiidae [225], Olividae [225], Paralichthyidae [225], Penaeidae [225], 

Portunidae [225] 

1 1 14 (17) 

Mustelus griseus 35 Alpheidae [175], Bothidae [175], Callianassidae [175], Callionymidae [175], 

Cancridae [175], Carangidae [175], Crangonidae [175], Diogenidae [175], 

Dorippidae [175], Epialtidae [175], Euryplacidae [175], Galatheidae [175], 

Galenidae [175], Hexapodidae [175], Hippolytidae [175], Holognathidae [175], 

Leucosiidae [175], Lysmatidae [175], Menippidae [175], Mysidae [175], 

Ogyrididae [175], Ommastrephidae [175], Palaemonidae [175], Parthenopidae 

[175], Pasiphaeidae [175], Penaeidae [175], Pinnotheridae [175], Polybiidae 

[175], Portunidae [175], Sepiidae [175], Sepiolidae [175], Squillidae [175], 

Upogebiidae [175], Urechidae [175], Varunidae [175] 

3 1 181 (187) 

Mustelus henlei 42 Blepharipodidae [217], Bothidae [217,227], Calappidae [226-227], Callianassidae 

[229-230], Cancridae [217,229-230], Chasmocarcinidae [228], Cottidae [229], 

Crangonidae [217,229-230], Diogenidae [226], Dromiidae [228], Embiotocidae 

[230], Engraulidae [217,229-230], Epialtidae [229], Ethusidae [227], 

Eurysquillidae [226], Galatheidae [226-227], Gobiidae [217,230], Grapsidae 

[230], Loliginidae [217,228], Lophiidae [227], Molgulidae [230], Munididae 

[226,228], Nereididae [230], Octopodidae [226], Ophidiidae [227], Paguridae 

[228], Pandalidae [227], Paralichthyidae [226-227,230], Parasquillidae [227], 

Penaeidae [227-228], Pinnotheridae [229], Portunidae [226-228], Scombridae 

[226], Scorpaenidae [226], Serranidae [226-227], Sicyoniidae [228], 

Solenoceridae [226-227], Squillidae [226-228], Syngnathidae [229], Upogebiidae 

[229-230], Uranoscopidae [226], Varunidae [217,229-230] 

13 6 585 (768) 

Mustelus 

lenticulatus 

37 Aphroditidae [232], Arenicolidae [232], Axiidae [232], Cancridae [232], 

Crangonidae [232], Diogenidae [232], Eunicidae [232], Glyceridae [232], 

Goneplacidae [232], Goniadidae [232], Hiatellidae [232], Hymenosomatidae 

[232], Laomediidae [232], Macrophthalmidae [232], Majidae [232], Maldanidae 

[232], Mesodesmatidae [232], Olividae [232], Ommastrephidae [232], Ovalipidae 

2 1 428 (428) 
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[232], Paguridae [232], Palaemonidae [232], Palinuridae [232], Pinnotheridae 

[232], Priapulidae [232], Sabellariidae [232], Sigalionidae [232], Squillidae [232], 

Struthiolariidae [232], Terebellidae [232], Tetrasquillidae [232], Trochidae [232], 

Turritellidae [232], Upogebiidae [232], Urechidae [232], Varunidae [232], 

Volutidae [232] 

Mustelus 

lunulatus 

37 Aethridae [233-234], Albulidae [233], Axiidae [228], Batrachoididae [235], 

Blepharipodidae [235], Buccinidae [234], Calappidae [228,235], Cancridae [233], 

Carangidae [233], Chasmocarcinidae [228], Congridae [235],  Dromiidae [228], 

Dussumieriidae [233], Gobiidae [228], Hemiramphidae [233], Hemisquillidae 

[233], Hippidae [234], Kyphosidae [233], Leucosiidae [228], Loliginidae [228], 

Munididae [228,233], Octopodidae [233], Paguridae [228], Palaemonidae [234], 

Parthenopidae [228], Penaeidae [228,234], Portunidae [228,234], 

Pseudorhombilidae [228], Pseudosquillidae [234], Scombridae [233], 

Scorpaenidae [235] Sicyoniidae [228,233], Squillidae [228,234], Stromateidae 

[233], Synodontidae [233], Terebridae [234], Xanthidae [228] 

7 4 309 (498) 

Mustelus manazo 68 Aegidae [236], Alpheidae [175,236-237], Ammodytidae [175,236], Axiidae [236], 

Blepharipodidae [237], Calappidae [175,236], Callianassidae [175], Cancridae 

[73,175,236-237], Carangidae [236-237], Carditidae [236], Cheiragonidae [236], 

Cirolanidae [175], Clupeidae [236-237], Cottidae [236], Crangonidae [175,236-

237], Diogenidae [175,236-237], Dorippidae [175,236-237], Engraulidae [73,236], 

Epialtidae [175], Euphausiidae [236], Euryplacidae [175,236], Galatheidae 

[175,236], Galenidae [175], Gobiidae [236], Goneplacidae [73,175,236], 

Hexapodidae [175], Hippolytidae [175], Holognathidae [175], Inachidae [236], 

Leucosiidae [175,236-237], Lysmatidae [175], Majidae [236], Menippidae [175], 

Monacanthidae [237], Moridae [237], Munididae [73], Mysidae [175], 

Nephropidae [236], Ogyrididae [175], Ommastrephidae [73], Ophiolepididae 

[236], Oregoniidae [236], Ovalipidae [237], Paguridae [236-237], Palaemonidae 

[175], Pandalidae [236], Parthenopidae [175,236], Pasiphaeidae [175], 

Penaeidae [175,236-237], Pinnotheridae [236], Polybiidae [73,175,236], 

12 4 1539 (1602) 
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Porcellanidae [175], Portunidae [175,236-237], Raninidae [236-237], 

Scomberesocidae [73,236], Scombridae [237], Scyllaridae [175], Semelidae [236], 

Sicyoniidae [237], Solenoceridae [73], Squillidae [175,236-237], Synodontidae 

[236], Trichiuridae [73], Trichopeltariidae [236], Upogebiidae [175,236-237], 

Urechidae [175], Varunidae [175], Xanthidae [175,236-237]  

Mustelus mustelus 88 Alpheidae [238-239], Aphroditidae [242], Atelecyclidae [238,242], Belonidae 

[239], Bothidae [238], Calappidae [238-240], Callianassidae [240], Carangidae 

[239-240,242], Carcinidae [241], Centracanthidae [239-240,242], Cerithiidae 

[238], Cheilodactylidae [240], Clupeidae [238-240,242], Congridae [238-239], 

Congiopodidae [240], Corystidae [238], Crangonidae [238-239,242], Dairoididae 

[240], Dentaliidae [238], Diodontidae [240], Diogenidae [238], Donacidae [238], 

Dorippidae [238-239], Dromiidae [239], Dussumieriidae [240], Eledonidae [239], 

Engraulidae [238,240-242], Enteroctopodidae [240], Eriphiidae [239], Ethusidae 

[238-239], Euryplacidae [239], Gadidae [241-242], Geryonidae [239], Gobiidae 

[239], Goneplacidae [238-240,242], Haemulidae [240],  Inachidae [238], Labridae 

[239], Leucosiidae [238,240], Loliginidae [168,238-240,242], Lophogastridae 

[238], Mactridae [238], Majidae [238-239], Merlucciidae [240,242], Mugilidae 

[238-240], Mullidae [239], Munididae [242], Mytilidae [240], Nannosquillidae 

[238], Nephropidae [242], Nuculidae [238], Octopodidae [239-240], 

Ommastrephidae [168,242], Ophichthidae [238], Ophiotrichidae [240], 

Ovalipidae [240], Paguridae [238-239], Palaemonidae [239], Palinuridae [240], 

Parasquillidae [238], Parthenopidae [238-239], Pectinidae [238], Penaeidae [238-

240], Pilumnidae [241], Plagusiidae [240], Polybiidae [238-239,241-242], 

Pomatomidae [240], Portunidae [238-241], Processidae [238], Sciaenidae [240], 

Scombridae [238-239], Scorpaenidae [239], Scyllaridae [238,240], Sebastidae 

[240], Sepiidae [238-241], Sepiolidae [242], Serranidae [239], Sicyoniidae [238-

239], Soleidae [239], Sparidae [238-240,242], Squillidae [238-242], Syngnathidae 

[239-240], Tellinidae [238], Thiidae [240], Turritellidae [238], Upogebiidae [238-

241], Varunidae [238,240], Xanthidae [239,242]  

22 8 1271 (1444) 



 
 

1
3

6
 

Mustelus schmitti 80 Alpheidae [247], Ampeliscidae [243], Ampharetidae [243], Atherinidae [247], 

Balanidae [243], Batrachoididae [243], Belliidae [243,245], Blepharipodidae 

[243,246], Branchiostomatidae [243], Calappidae [243], Capitellidae [243], 

Caprellidae [245], Carangidae [243], Cirolanidae [243,245], Clupeidae [247], 

Columbellidae [243], Cynoglossidae [243], Diogenidae [243,245], Echiuridae 

[243], Engraulidae [243,246], Epialtidae [243,245], Eunicidae [243], 

Flabelligeridae [243], Gammaridae [243,245], Glyceridae [243-244,246], 

Goniadidae [243], Idoteidae [246], Inachoididae [243], Lithodidae [243], 

Loliginidae [243-245,247], Lumbrineridae [243], Mactridae [243], Majidae 

[243,247], Maldanidae [243], Marginellidae [243], Merlucciidae [243], 

Munididae [243], Muricidae [244], Mytilidae [243], Myxinidae [243], Nassariidae 

[243], Naticidae [243], Nephtyidae [243], Nereididae [243], Nototheniidae [246], 

Octopodidae [243,245-246], Ommastrephidae [243], Onuphidae [243,246], 

Opheliidae [243], Ophidiidae [243], Paguridae [243-244], Panopeidae [243], 

Paralichthyidae [243], Pectinariidae [243], Penaeidae [243,245-246], 

Phyllodocidae [243], Pilumnidae [243], Pilumnoididae [243,245], Pinnotheridae 

[243], Platyxanthidae [243,245], Polybiidae [243], Porcellanidae [243,246], 

Portunidae [243], Sabellidae [243], Sergestidae [243,245], Serolidae 

[243,245,247], Serranidae [243], Sesarmidae [243], Sipunculidae [243,245], 

Solenidae [243,245], Solenoceridae [243], Spionidae [243], Squillidae [243], 

Tetrasquillidae [243,245-246], Travisiidae [243], Trichopeltariidae [243,247], 

Varunidae [245-247], Veneridae [243,245], Volutidae [243], Zoarcidae [247]  

12 5 1056 (1126) 

Negaprion 

acutidens 

18 Ariidae [38], Atherinidae [248], Balistidae [60], Belonidae [38,248], Carangidae 

[38], Clupeidae [38,248], Drepaneidae [38], Gobiidae [38], Labridae [248], 

Mugilidae [38], Penaeidae [38], Portunidae [248], Rhinobatidae [248], Scaridae 

[60], Scombridae [38], Sillaginidae [248], Sparidae [248], Syngnathidae [248]  

22 4 68 (98) 

Negaprion 

brevirostris 

46 Albulidae [249], Alpheidae [249,253], Arenicolidae [249], Ariidae [250], 

Atherinidae [249-250], Atherinopsidae [251], Balistidae [249], Batrachoididae 

[249-251], Belonidae [249-250], Blenniidae [250], Bothidae [249], Carangidae 

164 5 576 (855) 
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[249-250,253], Centropomidae [250], Clupeidae [253],  Cyprinodontidae [249-

251], Dasyatidae [249], Elopidae [250], Engraulidae [251], Ephippidae [250], 

Fundulidae [253], Gerreidae [249-251,253], Gobiidae [249-250], Gonodactylidae 

[249], Haemulidae [249-251], Hemiramphidae [249-250], Labridae [249], 

Loliginidae [249], Lutjanidae [249-250], Monacanthidae [250], Mugilidae 

[250,252], Octopodidae [250], Ocypodidae [249], Ophichthidae [249-250,253], 

Ostraciidae [250],  Palinuridae [249], Penaeidae [249-251], Pomacentridae [249], 

Portunidae [249-250,253], Pseudosquillidae [249], Scaridae [249-250], Soleidae 

[249-250], Sparidae [249-251], Sphyraenidae [249-250], Synodontidae [249], 

Tetraodontidae [250], Xanthidae [249] 

Notorynchus 

cepedianus 

82 Acipenseridae [259], Aegidae [176], Anguillidae [254], Aplodactylidae [176], 

Arhynchobatidae [256], Ariidae [258], Arripidae [176,254], Atherinidae [255-

257,259], Balaenopteridae [254], Batrachoididae [81], Callorhinchidae 

[176,254,257-258], Cancridae [259], Carangidae [176,254,256-258], 

Carcharhinidae [258], Centriscidae [176], Centrolophidae [176,254,257], 

Cheilodactylidae [176], Clupeidae [81,254,258], Congridae [254,258], Cottidae 

[259],  Dasyatidae [254,258], Delphinidae [254,258], Embiotocidae [259], 

Emmelichthyidae [254], Engraulidae [254], Enteroctopodidae [259],  Gempylidae 

[176,254], Geotriidae [254], Gobiidae [176], Haemulidae [258], Hexanchidae 

[176,254,258-259], Labridae [254], Latridae [254], Loliginidae [81,176,258], 

Macropodidae [254], Merlucciidae [257-258], Moridae [254], Mugilidae 

[254,258], Myliobatidae [176,254,256,258-259], Mytilidae [258], Myxinidae 

[257-258], Narcinidae [254], Narkidae [258], Nassariidae [256,258], Octopodidae 

[258], Odacidae [254], Ommastrephidae [176,254,257], Ophidiidae [257-258], 

Otariidae [176,255-258], Paguridae [256], Palinuridae [176], Paralichthyidae 

[257], Parascylliidae [176], Pentacerotidae [176], Percophidae [81], 

Petromyzontidae [259], Phocidae [257,259], Pinguipedidae [257], Plagusiidae 

[258], Platycephalidae [254], Polyprionidae [257], Pontoporiidae [256], 

Pristiophoridae [176,254], Rajidae [176,254,256-259], Rhinobatidae [258], 

38 8 855 (1371) 
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Salmonidae [254,259], Sciaenidae [81,256,258], Scombridae [254,257-258], 

Scyliorhinidae [176,254,258], Sebastidae [259], Serranidae [176,254,257], 

Sertulariidae [256], Sillaginidae [176], Sparidae [176,258], Squalidae 

[176,254,257-259], Squatinidae [81,176,256], Stromateidae [257], Torpedinidae 

[258], Triakidae [81,176,254,256-259], Trichiuridae [258], Triglidae [176,254], 

Urolophidae [176,254]  

Prionace glauca 133 Alepisauridae [58,192,200,261,264,268,274], Alloposidae [2,10,165,199,260-

262,266,268,271-272], Amphitretidae [2,10,260-262,268,272], Ancistrocheiridae 

[1-2,165,199,260,262,266,268,272], Anoplopomatidae [275], Anotopteridae 

[280], Architeuthidae [165,199,260-261], Argonautidae [1-

2,10,165,192,199,260,262,270,272,275], Ariommatidae [261], Balistidae [265], 

Bathylagidae [260], Batrachoididae [260,275], Belonidae [260,278], 

Brachioteuthidae [271], Brachyscelidae [192], Bramidae 

[192,199,261,264,268,274], Buccinidae [278], Cancridae [260], Caproidae [272], 

Carangidae [1-2,10,27,192,199,200,260-262,264,277-278], Carcharhinidae 

[262,264], Centriscidae [272], Chiroteuthidae [165,199,260-261,265-

266,268,272,277], Chtenopterygidae [272], Cionidae [278], Cinclidae [262], 

Cirolanidae [199], Cirroteuthidae [264,268], Clupeidae 

[10,27,58,162,192,260,269,271,275,278], Congridae [199], Coryphaenidae [1], 

Cottidae [260], Cranchiidae [2,260-262,266,268,272,277,279], Cyclopteridae 

[269,276], Cycloteuthidae [268,272], Dasyatidae [261], Delphinidae 

[192,260,264], Dermochelyidae [264], Diodontidae [27,192,199,261,265], 

Diretmidae [272], Echeneidae [2,58,262], Embiotocidae [281], Engraulidae 

[1,162,260,262,267,270,275,277,281], Enoploteuthidae [10,260-261,268], 

Euphausiidae [10,266,275], Exocoetidae [268,277], Gadidae [269,271,278], 

Galatheidae [278], Gempylidae [192,199,261,264,274], Gnathophausiidae 

[260,274], Gonatidae [1-2,10,260-262,266,268,271-272,274-275,279], 

Halosauridae [271], Hexagrammidae [260], Histioteuthidae [1-

2,10,165,192,199,260-262,266,268,271-273,275,277,279], Hyperiidae [266,271], 

167 34 2921 (4259) 
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Idoteidae [260], Istiophoridae [261], Joubiniteuthidae [272], Lamnidae [261,264], 

Lampridae [10,261], Loliginidae [10,260,275,277], Lophiidae [269], 

Lophogastridae [262], Luvaridae [10], Lycoteuthidae [165,199], Lysianassidae 

[277], Macrouridae [272], Mastigoteuthidae [1-2,260,272,277], Merlucciidae [1-

2,10,162,260,262,269,275,277], Mimidae [263], Molidae [10,260], 

Monacanthidae [199,261,265], Moronidae [278], Mugilidae [10,260,278], 

Munididae [2,10,260,262], Muraenidae [272], Myctophidae [58,260-

261,268,272,274-275,280], Neoteuthidae [260], Nomeidae [260,264], 

Octopodidae [192,260-261,275,277], Octopoteuthidae [1,10,165,199,260-

261,268,271-272,275,279], Ocythoidae [200,260-261,266,272,274], 

Ommastrephidae [1-2,10 ,165,192,199,260-262,264-265,267,271,274-

275,277,279], Onuphidae [278], Onychoteuthidae [1-2,10,162,165,199,260-

262,266,268,272,274-275,277], Ophidiidae [1,275], Opisthoteuthidae [1,10], 

Ostraciidae [58], Otariidae [265], Pandalidae [275,277], Paralichthyidae 

[162,275], Pentacerotidae [274], Petromyzontidae [275], Pholidoteuthidae [1-

2,261-262], Platyscelidae [199,261], Pleuronectidae [162,269,271,275,278], 

Polybiidae [278], Pomacentridae [277], Procellariidae [261,271], Psammobiidae 

[278], Rajidae [269], Regalecidae [27], Renillidae [277], Salmonidae [268-269], 

Salpidae [261], Sciaenidae [275,281], Scomberesocidae [10,260,269,271,280], 

Scombridae [1-2,10,27,192,200,260-262,264,268-269,271,276,278], Sebastidae 

[10,260,269,275,277], Sepiidae [278-279], Sepiolidae [279], Solenoceridae [264], 

Sphyraenidae [272], Squalidae [10,269,275,277], Squillidae [2,262], Sternidae 

[10], Stauroteuthidae [268], Sternoptychidae [260,268,274], Stomiidae [260], 

Sulidae [58], Syngnathidae [271,275-277], Tetragonuridae [192], Tetraodontidae 

[1,264], Thysanoteuthidae [261-262,277], Trachichthyidae [192], Trachipteridae 

[2,261-262], Tremoctopodidae [165,199,261], Triakidae [10,270], Trichiuridae 

[192,199,265,271-272], Triglidae [278], Vampyroteuthidae [1-2,10,260-

262,264,266,268,272,275,277], Veneridae [278], Xiphiidae [261,264]  

Rhizoprionodon 61 Alpheidae [38], Apogonidae [38], Ariidae [17], Aristeidae [282], Atherinidae 20 8 1223 (4656) 
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acutus [38,248], Batrachoididae [17], Bothidae [20], Bregmacerotidae [17], 

Callionymidae [20], Carangidae [17,38,213,282], Centropomidae [248], 

Clupeidae [17,20,38,40,213,248,282], Congridae [17], Cynoglossidae [282], 

Dactylopteridae [17], Draconettidae [20], Elapidae [20], Elopidae [282], 

Engraulidae [20,38,40,213,282], Gerreidae [36,38,213,282], Gobiidae [38], 

Haemulidae [20,36,282], Hemiramphidae [36,38], Labridae [248,282], 

Leiognathidae [17,20,36,38,40], Lethrinidae [213], Loliginidae [17,20], Lutjanidae 

[213], Monacanthidae [17,36], Monocentridae [17], Moronidae [282], Mugilidae 

[20,36,213,282], Mullidae [17,20,36,282], Muraenesocidae [282], Muraenidae 

[17,282], Nassariidae [282], Nemipteridae [17], Octopodidae [282], 

Ommastrephidae [282], Penaeidae [17,20,36,38,40,248], Pinguipedidae [17],  

Platycephalidae [17,38], Polybiidae [282], Polynemidae [282], Pomatomidae 

[282], Portunidae [248,282], Pristigasteridae [17],  Ranellidae [282], Sciaenidae 

[38,282], Scombridae [17,20], Scorpaenidae [17], Sepiidae [213,282], Sillaginidae 

[17,38,248], Soleidae [20,282], Sparidae [282], Sphyraenidae [282], Strombidae 

[282], Syngnathidae [17], Synodontidae [17,20], Terapontidae [38,248], 

Tetraodontidae [17] 

Rhizoprionodon 

terraenovae 

53 Aethridae [51,283], Alpheidae [284], Ariidae [25,33,51,284], Balistidae [283], 

Bothidae [33,283], Calappidae [24], Cancridae [66],  Carangidae [24-

25,33,51,284], Cerithiidae [25], Cheloniidae [283], Clupeidae [25,33,51,66,283-

284], Congridae [283], Cynoglossidae [25,66,284], Dasyatidae [33,284], Elopidae 

[24,33], Engraulidae [24-25,33,51,66,283-284], Epialtidae [66], Gerreidae [284], 

Gobiidae [51], Gonodactylidae [24], Haemulidae [24,66,283-284], Hippidae 

[284], Loliginidae [24-25,33,66,284], Lutjanidae [25,51], Lysiosquillidae [283], 

Mugilidae [51], Muraenidae [24,283], Nassariidae [66], Naticidae [284], 

Octopodidae [24], Ophichthidae [25,33,51,284], Ophidiidae [66], Ovalipidae [66], 

Paguridae [66,283], Paralichthyidae [24,51,66,284], Penaeidae [25,33,51,66,283-

284], Portunidae [25,33,51,284], Priacanthidae [66], Rajidae [283], Sciaenidae 

[25,33,51,66,283-284], Scombridae [24,33,51,283], Scophthalmidae [66], 

35 8 1306 (2287) 
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Serranidae [51,66], Sicyoniidae [283], Sparidae [51,66,284], Sphyraenidae [283], 

Squillidae [25,33,51,283], Syngnathidae [33,284], Synodontidae [51,283-284], 

Terebellidae [284], Triacanthodidae [283], Trichiuridae [33,51], Triglidae [33,66]  

Rhizoprionodon 

taylori 

24 Apogonidae [286], Chirocentridae [286], Clupeidae [17,20,286], Cynoglossidae 

[286], Engraulidae [20,285-286], Haemulidae [286], Hemiramphidae [286], 

Leiognathidae [17,20,286], Leptobramidae [286], Loliginidae [286], 

Monacanthidae [17], Mullidae [20,286], Penaeidae [17,286], Plotosidae [286], 

Polynemidae [20,286], Portunidae [286], Pristigasteridae [17], Scombridae 

[17,20], Sillaginidae [286], Syngnathidae [286], Synodontidae [286], 

Terapontidae [286], Triacanthidae [286], Trichiuridae [286]  

8 4 238 (536) 

Scoliodon 

laticaudus 

32 Ambassidae [287], Bregmacerotidae [287], Carangidae [287], Clupeidae [287-

288,290-291], Cynoglossidae [288], Cypridinidae [290], Engraulidae [287-

288,290-291], Eucalanidae [290], Glyceridae [290], Gobiidae [287-288], 

Hyperiidae [290], Leiognathidae [287], Loliginidae [287-288], Mugilidae 

[287,290], Muraenesocidae [290], Nereididae [290], Ophichthidae [290], 

Palaemonidae [290], Pasiphaeidae [290], Penaeidae [287-288,290-291], 

Sciaenidae [287-288,290-291], Scyllaridae [291], Sepiidae [288], Sergestidae 

[287-288], Solenoceridae [288,290], Sphyraenidae [290], Squillidae [288,290-

291], Synodontidae [288,290], Temoridae [290], Trachipteridae [291], 

Trichiuridae [287-288,290], Triglidae [290]  

10 4 964 (1867) 

Scyliorhinus 

canicula 

135 Aegidae [300], Alepocephalidae [167], Alpheidae [129,167,294-297,301], 

Agonidae [163,292], Ammodytidae [163,292], Ampeliscidae [294,298], 

Aphroditidae [129,163,292,298,301], Arenicolidae [163,302], Argentinidae 

[129,163,300], Atelecyclidae [129,163,292,294], Axiidae [163], Belonidae [296], 

Bonelliidae [301],  Bothidae [295,301], Branchiostomatidae [292], Buccinidae 

[163,292,298], Callianassidae [163], Callionymidae [129,163,292,294,296,298], 

Cancridae [163], Caproidae [129,297], Carangidae [129,163,167,295-297 ,301], 

Cardiidae [292], Centracanthidae [129], Centriscidae [301], Cepolidae [129,295-

297], Cerithiidae [302], Chaetopteridae [300], Chlorophthalmidae [300], 

164 14 14579 (16876) 
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Cirolanidae [294,300], Clupeidae [163,292,294,300-301], Corystidae [163,302], 

Cottidae [292], Crangonidae [129,163,292,298], Cucumariidae [294,298], 

Cynoglossidae [129], Diogenidae [129,294,301], Echinasteridae [292], Eledonidae 

[163], Engraulidae [297,300-301], Eriphiidae [301], Eunicidae [292], Euphausiidae 

[129,294-296], Euphrosinidae [300], Gadidae [129,163,167,292,294-

297,300,302], Galatheidae [129,163,292,295,300-302], Gammaridae [292], 

Glyceridae [292 ,301], Glycymerididae [292], Gobiesocidae [292], Gobiidae 

[129,163,292,295,300], Golfingiidae [292], Goneplacidae 

[129,163,167,294.297,300], Gonostomatidae [300], Haliotidae [294], Inachidae 

[163,301], Laomediidae [163,294], Leucosiidae [129,292,294], Liparidae [163], 

Loliginidae [163,294,300], Lophogastridae [129,294-296], Lumbrineridae [292], 

Macrouridae [300], Mactridae [292], Majidae [163], Merlucciidae 

[167,295,297,300-302], Mullidae [301], Munididae [129,163,167,295-297], 

Myctophidae [167,300], Myidae [163,292], Mysidae [295], Mytilidae [163], 

Naticidae [300], Nephropidae [163,295,301-302], Nephtyidae [292,298], 

Nereidae [163], Nereididae [292,301-302], Octopodidae [294,297,301], 

Oenonidae [292], Ommastrephidae [168,295,300-301], Opheliidae [292], 

Ophichthidae [129,301], Ophidiidae [163], Ophiuridae [292], Onuphidae [294],  

Oregoniidae [163,292,298], Paguridae [129,163,167,292,294,296-298,301-302], 

Palaemonidae [302], Palinuridae [129], Pandalidae [129,163,292,296-298,300], 

Parechinidae [301], Parthenopidae [129], Pasiphaeidae [129,163,167,294,297], 

Pectinidae [292], Penaeidae [300-301], Peristediidae [300], Pharidae [163,292], 

Pholidae [163,292], Phronimidae [129], Phyllophoridae [292,302], Pinnotheridae 

[292], Pleuronectidae [129,163,292,294], Polybiidae [129,163,167,292,294-

298,300-302], Polynoidae [292], Porcellanidae [292], Portunidae [129,294,300], 

Processidae [129,167,295,297], Rajidae [294], Sabellidae [302], Salpidae [129], 

Scomberesocidae [167], Scombridae [163,167,294], Scophthalmidae [129], 

Scyliorhinidae [292,297], Scyllaridae [129,301], Sepiidae [168,294-295,300-301], 

Sepiolidae [129,163,292,295,300-301], Sergestidae [167], Sipunculidae [129,293-
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294,301], Soleidae [163,301], Solenoceridae [129,167,294-295,297], Sparidae 

[129,301], Squillidae [129,163,295], Sternaspidae [294-295], Sternoptychidae 

[167,295], Stichaeidae [163,292], Stomiidae [129], Synaphobranchidae [296], 

Syngnathidae [129,294], Thiidae [294], Thoridae [292], Trachinidae [163], 

Triglidae [163,301-302], Upogebiidae [163,292,294-295,298,301-302], Xanthidae 

[129,163,292]  

Scyliorhinus 

stellaris 

32 Ammodytidae [303], Aphroditidae [303], Atelecyclidae [303], Buccinidae 

[163,303], Callionymidae [303], Cancridae [163], Carangidae [303], Clupeidae 

[303], Crangonidae [303], Eledonidae [163], Gadidae [163,303], Galatheidae 

[163], Loliginidae [163], Majidae [163], Merlucciidae [163,303], Myidae [163], 

Nephropidae [163], Nephtyidae [303], Oregoniidae [163], Paguridae [163,303], 

Palaemonidae [303], Pandalidae [303], Parechinidae [303], Pleuronectidae [163], 

Polybiidae [163,303], Rajidae [163], Scombridae [163,303], Sepiolidae [163], 

Soleidae [303], Squillidae [163], Triglidae [163], Upogebiidae [163]  

13 2 112 (126) 

Somniosus 

microcephalus 

57 Acanthephyridae [304], Agonidae [304], Anarhichadidae [304-307,309], 

Architeuthidae [121], Argentinidae [309], Arhynchobatidae [121], 

Balaenopteridae [305], Bathylagidae [304], Bathypolypodidae [304], 

Brachioteuthidae [121], Buccinidae [308], Chimaeridae [309], Clupeidae [309], 

Cottidae [304,307-308], Cranchiidae [121], Cyclopteridae [304,307-309], 

Cycloteuthidae [121], Etmopteridae [309], Gadidae [304-305,307,309], 

Gonatidae [121,305,307], Gorgonocephalidae [305,307], Histioteuthidae [121], 

Liparidae [304], Lithodidae [307], Lotidae [304,309], Lysianassidae [306], 

Macrouridae [304,307,310], Mastigoteuthidae [121], Monodontidae [306], 

Myctophidae [309], Myxinidae [307], Neoteuthidae [121], Nototheniidae [121], 

Octopodidae [304], Octopoteuthidae [121], Ommastrephidae [121], 

Onychoteuthidae [121], Ophiactidae [305], Ophiuridae [306], Opisthoteuthidae 

[304], Oplophoridae [304], Oregoniidae [305,307], Otariidae [121], Pandalidae 

[304], Phocidae [304-305,307-308,310-312], Pleuronectidae [304-305,307-

309,311], Psychrolutidae [304], Rajidae [304-305,307-309], Salmonidae 

41 10 230 (256) 
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[310,312], Sebastidae [304-305,307,309], Solasteridae [310], Somniosidae [305-

306,310], Stichaeidae [304], Strongylocentrotidae [305,308], Uristidae [306], 

Ursidae [307,309], Zoarcidae [304,307-308,310]  

Somniosus 

pacificus 

28 Anoplopomatidae [314], Cirolanidae [304], Clupeidae [316], Cranchiidae [316], 

Crangonidae [315], Delphinidae [317], Enteroctopodidae [304,314-315], Gadidae 

[304,313-316], Gonatidae [304,316], Liparidae [313,316], Macrouridae 

[304,313,316], Myctophidae [316], Nototheniidae [317], Octopodidae [318], 

Ommastrephidae [304], Onychoteuthidae [316], Oregoniidae [318], Paguridae 

[315], Phocidae [314,318], Pleuronectidae [314-316], Psychrolutidae [316], 

Ranellidae [315,318], Salmonidae [313-316], Sebastidae [314-315], Spongiidae 

[316], Squalidae [314], Uristidae [316], Zoarcidae [316]  

28 9 461 (545) 

Sphyrna lewini 137 Acanthuridae [2,320-321,329-330], Achiridae [325,328], Alloposidae [79,165], 

Alpheidae [50,323,329-330], Amphitretidae [79], Ancistrocheiridae 

[2,321,326,332], Anguillidae [319], Apogonidae [329-331], Argonautidae 

[321,324,326,328], Ariidae [320,323], Atherinidae [329-330], Aulostomidae [49], 

Balistidae [50,319,321,324,328,331], Batrachoididae [2,321], Belonidae [320-

321,331], Bothidae [320,323-324,328,330-331], Brachioteuthidae [332],  

Callionymidae [2,331], Carangidae [2,24,79,320-326,328,331], Carcharhinidae 

[320], Centropomidae [328], Chaetodontidae [330], Champsodontidae [331], 

Chanidae [330], Cheilodactylidae [320], Chirocentridae [319], Chiroteuthidae 

[79,332], Chlorophthalmidae [319], Cichlidae [319], Clupeidae [2,320-

324,326,328-329,331], Congridae [320,330-331], Coryphaenidae 

[2,321,326,328], Cranchiidae [79,332], Cynoglossidae [320,325,328], 

Dactylopteridae [320,331], Dasyatidae [320], Delphinidae [319], Diodontidae 

[331], Dussumieriidae [2,320], Echeneidae [321], Elopidae [319], Engraulidae 

[40,50,320,323-326,328-330], Enoploteuthidae [2,320-321,324,328,330], 

Ephippidae [319], Exocoetidae [2,320-321,323,326,331], Gempylidae [2,79,319], 

Gerreidae [319,322-323,328], Gobiidae [329-330], Gonatidae [2,321,326], 

Gymnuridae [320], Haemulidae [24,50,320,323], Hemiramphidae 

106 28 4157 (5320) 
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[2,321,326,328,330], Histioteuthidae [2,79,235,326,330,332], Holocentridae 

[328], Istiophoridae [319], Kyphosidae [320], Labridae [321,324,328,330], 

Lamnidae [319], Leiognathidae [40,320,331], Lethrinidae [331], Loliginidae 

[2,50,320-321,323-328,332], Lutjanidae [2,79,325,331], Lycoteuthidae 

[165,320,332], Lysiosquillidae [329], Malacanthidae [328], Mastigoteuthidae 

[2,321,326], Menidae [331], Merlucciidae [2,320,326], Monacanthidae [79,331], 

Mugilidae [24,320,322,324-326,328-329], Mullidae [235,320,328,330-331], 

Munididae [2,321,324,328], Muraenesocidae [27,320], Muraenidae 

[2,24,79,319,321,324,326,328], Muricidae [325], Myctophidae [319,326], 

Myliobatidae [319], Nemipteridae [331], Octopodidae [2,79,235,320,325-

326,332], Octopoteuthidae [2,79,320,326,332], Odontaspididae [319], 

Ommastrephidae [2,79,165,319,321,326,328,330,332], Onychoteuthidae [326], 

Ophichthidae [2,324,326,328], Ophidiidae [328], Opisthoteuthidae [332], 

Oplegnathidae [320], Ostraciidae [320,331], Palaemonidae [323,329], Pandalidae 

[2], Paralichthyidae [24,50,321-324,326,328], Penaeidae [2,24,40,50,321-

326,328,331], Pentanchidae [320], Peristediidae [320], Pholidoteuthidae [2,326], 

Pinguipedidae [320], Platycephalidae [320,331], Pleuronectidae [320,328], 

Plotosidae [320], Polynemidae [331], Pomacentridae [320,330], Pomatomidae 

[320], Portunidae [50,323,328-329], Priacanthidae [2,320,331], Processidae 

[325,328], Pseudocarchariidae [320], Rajidae [50,320], Rhinobatidae [320], 

Scaridae [79,329-331], Sciaenidae [2,50,320,322-326,328], Scombridae 

[2,79,235,320-324,326,328,331], Scorpaenidae [2], Scyliorhinidae [320], Sepiidae 

[320,331-332], Sepiolidae [165], Serranidae [2,24,320-321,326,328], Sicyoniidae 

[323-325,328], Sillaginidae [331], Solenoceridae [2,50,325], Sparidae 

[50,320,323], Sphyraenidae [79,320,328], Sphyrnidae [319,330], Squalidae 

[27,320-321,323,331], Squillidae [235,324-325,327-329,331], Squatinidae [320], 

Stromateidae [324,328], Syngnathidae [320], Synodontidae [2,50,320-321,323-

324,326,328-331], Terapontidae [320], Tetraodontidae [331], Thysanoteuthidae 

[2,325-326], Triacanthidae [331], Trichiuridae [50,320,331], Triglidae [24,320], 
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Vampyroteuthidae [235], Xanthidae [2], Yoldiidae [323]  

Sphyrna mokarran 40 Ancistrocheiridae [332], Ariidae [333],  Balistidae [331], Carcharhinidae [333], 

Cynoglossidae [331], Dasyatidae [333], Diodontidae [331], Echeneidae [333], 

Gymnuridae [333], Haemulidae [331,333], Istiophoridae [331], Labridae [331], 

Latidae [331], Loliginidae [332], Lutjanidae [331], Myliobatidae [333], 

Nemipteridae [331], Octopodidae [332], Octopoteuthidae [332], 

Ommastrephidae [332], Oplegnathidae [333], Ostraciidae [331], Palinuridae 

[331,333], Penaeidae [331], Pentanchidae [333], Platycephalidae [333], 

Portunidae [331], Psettodidae [331], Rajidae [333], Rhinobatidae [333], 

Sciaenidae [331,333], Scombridae [331], Scyliorhinidae [333], Scyllaridae [331], 

Sepiidae [332-333], Sphyraenidae [331], Squillidae [331], Tetraodontidae [331], 

Trichiuridae [331], Triglidae [333]  

27 3 423 (493) 

Sphyrna tiburo 33 Aethridae [334], Batrachoididae [334], Bothidae [334], Calappidae [334], 

Callianassidae [334], Cancridae [334], Clupeidae [51], Congridae [337], Elopidae 

[334], Engraulidae [337], Epialtidae [334,336], Leucosiidae [334,336], Limulidae 

[336], Loliginidae [51,334,336], Menippidae [336], Mithracidae [334], Mugilidae 

[51], Octopodidae [334], Onuphidae [334], Ophichthidae [334,336], 

Ophiolepididae [51], Ovalipidae [334], Paguridae [334,336], Palinuridae 

[334,337], Pandalidae [334], Panopeidae [334], Penaeidae [51,334-337], 

Portunidae [51,334-337], Sciaenidae [51,334,337], Sicyoniidae [334], Squillidae 

[51,334,336], Syngnathidae [334], Xanthidae [51,334]  

65 5 1262 (1317) 

Sphyrna tudes 2 Ariidae [338], Penaeidae [338] 8 1 155 (155) 

Sphyrna zygaena 73 Achiridae [340], Amathinidae [340], Amphitretidae [2,340], Anisakidae [341], 

Ancistrocheiridae [2,332,340], Argonautidae [2,23,332], Ariidae [23], Arripidae 

[9], Atherinopsidae [50], Balistidae [2,339], Belonidae [9,27,235], Berycidae 

[9,27], Carangidae [2,23,27,49-50,340-341], Chaetodontidae [23], Chiroteuthidae 

[23,339], Clupeidae [2,23,27,50,340-341], Congiopodidae [23], Congridae [23], 

Coryphaenidae [2,340], Cranchiidae [235,332], Cynoglossidae [23], Diodontidae 

[339], Dussumieriidae [23], Engraulidae [9,23,340], Enoploteuthidae [2,332], 

45 13 943 (1463) 
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Exocoetidae [2,340], Fistulariidae [2], Gempylidae [2,9], Gerreidae [2], Gonatidae 

[2,340], Haemulidae [340-341], Hemiramphidae [2,9,50,340-341], 

Histioteuthidae [2,235,332,340], Loliginidae [2,9,23,39,50,332,340-341], 

Lycoteuthidae [23,332], Macrouridae [23], Mastigoteuthidae [2,340], 

Merlucciidae [2,23], Monacanthidae [9,27,339], Mugilidae [2,23,27,50], 

Myctophidae [340], Myliobatidae [235], Naticidae [340], Nuculanidae [340], 

Octopodidae [332], Octopoteuthidae [2,332,340], Ocythoidae [23], 

Ommastrephidae [2,9,23,50,332,339-340], Onychoteuthidae [2,235,332,340], 

Ophichthidae [2,340], Ophidiidae [2,23,340], Ovalipidae [9], Paralichthyidae 

[2,340], Pempheridae [9], Penaeidae [9], Pholidoteuthidae [2], Phosichthyidae 

[2], Platycephalidae [27], Portunidae [341], Sciaenidae [2,23,50,340-341], 

Scomberesocidae [23,27], Scombridae [2,23,27,50,58,340], Sepiidae [9,23,332], 

Serranidae [2], Sparidae [9,23,50], Sphyraenidae [27], Squalidae [23], 

Syngnathidae [9], Synodontidae [2], Terapontidae [9], Thysanoteuthidae [2,340], 

Trichiuridae [23,50,341], Triglidae [23,27,340]  

Squalus acanthias 145 Actiniidae [342], Alpheidae [343], Ammodytidae [163,218,221,345,348,352,357-

358], Ampeliscidae [346], Anguillidae [218,346], Anoplopomatidae [357], 

Aphroditidae [351,354], Argentinidae [116], Atherinidae [346], Batrachoididae 

[342,351,357], Belonidae [163],  Beroidae [353,358], Bolinopsidae [353,357], 

Bothidae [343], Buccinidae [358], Callianassidae [163], Callionymidae 

[103,163,352,358], Cancridae [162-163,218,221,348,355,358], Carangidae 

[116,163,342-343,349,358], Centracanthidae [343], Centriscidae [116], 

Centrolophidae [342], Cepolidae [343], Cheilodactylidae [354], Chimaeridae 

[116,357], Cirolanidae [342], Clupeidae [103,162-163,218,221,342-349,352-

353,355,357-358], Congridae [342-343], Cottidae [345,348], Cranchiidae [116], 

Crangonidae [116,163,349], Cryptacanthodidae [221], Cyllopodidae [116], 

Cymothoidae [346], Cynoglossidae [344-345], Echiuridae [342], Dussumieriidae 

[103], Eledonidae [163,343,352], Embiotocidae [357], Emmelichthyidae [116], 

Engraulidae [103,162-163,342-344,346,348-349,351,354], Enteroctopodidae 

334 23 40827 (72204) 



 
 

1
4

8
 

[351,353], Epialtidae [342,354], Eunicidae [116], Euphausiidae 

[116,162,221,342,345,347-348,350,354-355,357], Gadidae [163,221,342-

343,347,349,352,357-358], Gammaridae [221,342], Gempylidae [346], 

Glyceridae [342,346], Gobiidae [343,345-346,349], Gonatidae [353], 

Goneplacidae [116], Hexagrammidae [162,347], Histioteuthidae [348], 

Hoplichthyidae [116], Hyperiidae [116,162,342,351,353-355], Latridae [346], 

Limacinidae [162], Lithodidae [342], Litocheiridae [346], Loliginidae 

[163,218,221,342-343,351,353-354,357], Lophiidae [221], Lotidae [349], 

Macrouridae [116], Majidae [116,342], Merlucciidae [103,116,162,218,221,342-

343,348,351-354,356-358], Metridiidae [358], Moridae [116,342,355], 

Moronidae [344], Mullidae [343,349], Munididae [116,342,351,353-355], 

Muricidae [349], Myctophidae [103,116,342,354-355], Myxinidae [342,354], 

Nassariidae [346], Naticidae [345], Nephropidae [116,163], Nereididae [358], 

Nototheniidae [342,351,353-354], Octopodidae [342-343,346,352,354-355,357], 

Ommastrephidae [103,116,218,221,342-343,346,351,353-355], Onuphidae 

[116,343], Onychoteuthidae [116], Ophidiidae [116,342,345,351], Oplophoridae 

[116], Oreosomatidae [116], Osmeridae [348,357], Ovalipidae [355], Paguridae 

[163,354,358], Palaemonidae [343], Palinuridae [116], Pandalidae [116,162-

163,357], Paralichthyidae [162,218,221,344-345,351], Pasiphaeidae [163],  

Penaeidae [103,346,354], Percophidae [342,355], Petromyzontidae [348], 

Phycidae [221,345], Phyllodocidae [346], Pleurobrachiidae [351,355,357-358], 

Pleuronectidae [162-163,221,352,354], Polybiidae [163], Polymixiidae [345], 

Polyprionidae [342], Porpitidae [162], Portunidae [345], Rajidae [342], 

Salmonidae [347], Salpidae [353-355], Sciaenidae [342,344], Scomberesocidae 

[103,352], Scombridae [163,221,342,352,358], Scophthalmidae [221], 

Scorpaenidae [116,343,347,349,357], Sebastidae [116,221,342], Sepiadariidae 

[355], Sepiidae [343], Sepiolidae [116,163,345,351,353-354], Sergestidae [342], 

Serolidae [342,351,354], Serranidae [116,342], Sillaginidae [346], Sipunculidae 

[342], Soleidae [343], Solenoceridae [342,351,354], Sparidae [218,342-343], 
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Squalidae [103,342,346,349,355,357], Squillidae [103,346], Sternoptychidae 

[103,116], Stichaeidae [163], Stromateidae [218,342,351,353], Syngnathidae 

[345,349], Terebellidae [346], Tetrarogidae [346], Tetrasquillidae [355], 

Thalasseleotrididae [355], Trichiuridae [103], Trichopeltariidae [116,353-354], 

Triglidae [218,342-343,345,351,358], Upogebiidae [163,349], Uranoscopidae 

[349], Urechidae [355], Varunidae [346], Zeniontidae [342], Zoarcidae 

[221,351,357]  

Squalus blainville 46 Alpheidae [294,360], Aphroditidae [360], Argentinidae [359-360], 

Astropectinidae [360], Atelecyclidae [360], Blenniidae [360], Bothidae [360], 

Callionymidae [360], Calliostomatidae [294], Carangidae [360], Centracanthidae 

[360], Cepolidae [360-361], Cirolanidae [294], Citharidae [360], Clupeidae [360-

361], Congridae [360], Crangonidae [360], Echinasteridae [360], Eledonidae 

[360], Engraulidae [360-361], Euphrosinidae [361], Gadidae [359-360], Gobiidae 

[360-361], Goneplacidae [360-361], Haliotidae [294], Inachidae [360], 

Leucosiidae [360], Loliginidae [294,360], Merlucciidae [360], Mullidae [360-361], 

Nereididae [360], Octopodidae [294,360], Paguridae [294], Palaemonidae [294], 

Penaeidae [360-361], Polybiidae [294,360-361], Portunidae [294], Scyliorhinidae 

[361], Sepiidae [294,360-361], Sepiolidae [360], Serranidae [360], Sicyoniidae 

[360], Sipunculidae [294,360], Soleidae [294,360], Sparidae [360], Squillidae 

[360] 

11 4 1103 (1471) 

Squalus megalops 60 Acropomatidae [299], Alpheidae [299], Aphroditidae [299], Apogonidae [299], 

Argentinidae [73,299], Callionymidae [103], Carangidae [299], Centriscidae [299], 

Cirolanidae [299], Clupeidae [299], Congridae [299], Crangonidae [73], Cyttidae 

[299], Diogenidae [299], Dussumieriidae [103], Engraulidae [73,103], Eunicidae 

[299], Fasciolariidae [299], Gempylidae [299], Gerreidae [299], Histioteuthidae 

[299], Leucosiidae [299], Loliginidae [73], Lumbrineridae [299], Macrouridae 

[299], Merlucciidae [299], Myctophidae [73,103,299], Nannosquillidae [299], 

Narcinidae [299], Nereididae [299], Octopodidae [73,103,299], Ommastrephidae 

[73,299], Ophichthidae [299], Otariidae [299], Paguridae [299], Palaemonidae 

9 3 694 (1076) 
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[299], Palinuridae [299], Paraulopidae [299], Penaeidae [103,299], Philinidae 

[299], Pilumnidae [299], Platycephalidae [299], Portunidae [299], Rajidae [299], 

Scomberesocidae [73], Scombridae [73,299], Scorpaenidae [299], Sebastidae 

[299], Serrivomeridae [299], Sillaginidae [299], Sipunculidae [299], Solenoceridae 

[299], Squalidae [299], Squillidae [103,299], Triakidae [299], Trichiuridae 

[73,103], Triglidae [299], Turbinidae [299], Urolophidae [299], Volutidae [299]  

Squalus mitsukurii 34 Benthesicymidae [289], Berycidae [289], Bothidae [289], Callanthiidae [289], 

Calappidae [103], Callionymidae [103], Clupeidae [103], Congridae [103,289], 

Echeneidae [289], Emmelichthyidae [103,289], Enoploteuthidae [289], 

Epigonidae [289], Euphausiidae [289], Gnathophausiidae [289], Histioteuthidae 

[289], Macrouridae [103], Merlucciidae [103], Monacanthidae [289], 

Myctophidae [103,289], Ommastrephidae [103,289], Oplophoridae [289], 

Paralepididae [289], Parapaguridae [103], Phronimidae [289], Pyrosomatidae 

[289], Salpidae [289], Scomberesocidae [103], Sebastidae [103], Sepiolidae [289], 

Sergestidae [289], Sternoptychidae [289], Stomiidae [289], Trichiuridae [103], 

Zeidae [103] 

10 2 312 (564) 

Squatina 

californica 

18 Batrachoididae [231], Carangidae [231], Clupeidae [231], Dussumieriidae [231], 

Enoploteuthidae [231], Holocentridae [231], Labridae [231], Mastigoteuthidae 

[231], Mugilidae [231], Muraenidae [231], Ophidiidae [231], Pomacentridae 

[231], Scombridae [231], Serranidae [231], Sicyoniidae [231], Stromateidae 

[231], Synodontidae [231], Triglidae [231] 

9 1 190 (414) 

Squatina squatina 4 Majidae [163], Pleuronectidae [163], Polybiidae [163], Triglidae [163] 7 1 18 (19) 

Triakis 

semifasciata 

 

35 Atherinidae [62,230], Batrachoididae [62,230], Blepharipodidae [62], Bothidae 

[62], Callianassidae [62,230], Cancridae [62,134-135,230], Clupeidae [62,230], 

Cottidae [62,135], Crangonidae [62,230], Cynoglossidae [62], Embiotocidae 

[62,135,230], Engraulidae [62,230], Gobiidae [62,230], Grapsidae [62,134], 

Hippidae [62], Loliginidae [135], Mactridae [135], Myliobatidae [135,230], 

Nereididae [230], Octopodidae [62,230], Ophidiidae [135], Paralichthyidae 

[135,230], Petromyzontidae [135], Pinnotheridae [135], Rajidae [135], 

49 4 676 (827) 
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Rhinobatidae [62], Sciaenidae [62], Scorpaenidae [62], Solenidae [135], 

Squalidae [135], Syngnathidae [135], Triakidae [230], Upogebiidae [62,135,230], 

Urechidae [62,134-135,230], Varunidae [62,134]  
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Table A.2. Table showing intermediate hosts of trypanorhynch tapeworms, which infect various shark species with known diet information. For each 

tapeworm species, the larval stage(s) are given alongside the known definitive hosts and intermediate hosts obtained via the extensive records in Palm 

(2004) and from ISI Web of Knowledge references 2004-present.  

 

Trypanorhynch 
tapeworm species 
 

Tapeworm Family Definitive shark hosts 
with diet records 
 

Intermediate hosts (family -species) listed with references  
 
Key to larval stage:  
pro = procercoid, pls = plerocercus,  
pld = plerocercoid, mer = merocercoid 
 

Aporhynchus 

norvegicus 

Aporhynchidae Etmopterus spinax Crustaceans: 

Euphausiidae -Meganyctiphanes norvegica (pls) [1];  

Calanidae -Calanus finmarchicus (pro) [1] 

Dollfusiella lineata Eutetrarhynchidae Ginglymostoma cirratum Teleosts: 

Sciaenidae -Sciaenops ocellatus (pls) [1] 

Dollfusiella martini Eutetrarhynchidae Carcharhinus brachyurus Crustaceans: 

Carcinidae -Carcinus maenas (pld) [2-3] 

Eutetrarhynchus 

ruficollis 

Eutetrarhynchidae Mustelus canis, Mustelus 

mustelus, Squalus 

acanthias 

Crustaceans: 

Cancridae -Cancer pagurus (pls) [1];  

Carcinidae -Carcinus maenas (pls) [1]; 

Oregoniidae -Hyas araneus (pls) [1];  

Inachidae -Inachus dorsettensis (pls) [1], Macropodia longirostris (pls) [1], 

Macropodia rostrata (pls) [1] 

Polybiidae - Liocarcinus marmoreus (pls) [1], Liocarcinus depurator (pls) [1];  

Paguridae -Pagurus bernhardus (pls) [1]; 

Penaeidae -Penaeus kerathurus (pls) [1]; 

Pilumnidae -Pilumnus hirtellus (pls) [1]; 

Other mollusks: 

Ostreidae - Ostrea edulis (pls) [1];  
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Parachristianella 

dimegacantha 

Eutetrarhynchidae Sphyrna zygaena Crustaceans: 

Penaeidae -Penaeus aztecus (pls) [1], Penaeus duorarum (pls) [1];  

Other mollusks: 

Veneridae -Chione cancellate (pls) [1]; 

Mactridae -Spisula solidissima (pls) [1] 

Prochristianella 

tumidula 

Eutetrarhynchidae Carcharhinus obscurus, 

Mustelus canis, Mustelus 

mustelus 

Teleosts: 

Batrachoididae -Opsanus tau (pls) [1]; 

Gilquinia squali Gilquiniidae Etmopterus granulosus, 

Mustelus mustelus, 

Scyliorhinus stellaris, 

Squalus acanthias, 

Squalus blainville 

Teleosts: 

Gadidae -Merlangius merlangus (pls) [1]; 

Salmonidae -Oncorhynchus tshawytscha (pls) [1];  

Gymnorhynchus gigas Gymnorhynchidae Carcharodon carcharias, 

Isurus oxyrinchus, Lamna 

nasus 

Teleosts: 

Bramidae -Brama brama (mer) [1];  

Xiphiidae -Xiphias gladius (pld) [4];  

Trichiuridae -Lepidopus caudatus (pld) [5] 

Molicola horridus Gymnorhynchidae Carcharodon carcharias, 

Isurus oxyrinchus, 

Prionace glauca 

Teleosts: 

Diodontidae - Cyclichthys orbicularis (mer) [1], Diodon holocanthus (mer) [1], 

Diodon hystrix (mer) [1,11], Diodon liturosus (mer) [11]; 

Molidae -Masturus lanceolatus (mer) [1], Mola mola (mer) [1,7];  

Xiphiidae -Xiphias gladius (pld) [4,6];  

Molicola uncinatus Gymnorhynchidae Alopias vulpinus Teleosts: 

Scombridae -Allothunnus fallai (mer) [1];  

Molidae -Mola mola (mer) [1];  

Bramidae -Taractes rubescens (mer) [1], Taractichthys steindachneri (mer) [1];  

Gempylidae -Thyrsites atun (mer) [1,8];  

Xiphiidae -Xiphias gladius (mer) [1] 
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Callitetrarhynchus 

gracilis 

Lacistorhynchidae Carcharhinus 

amblyrhynchoides, 

Carcharhinus 

amboinensis, 

Carcharhinus leucas, 

Carcharhinus limbatus, 

Carcharhinus 

melanopterus, 

Carcharhinus obscurus, 

Mustelus canis, 

Negaprion brevirostris, 

Prionace glauca, 

Rhizoprionodon acutus, 

Rhizoprionodon 

terraenovae, Sphyrna 

lewini, Sphyrna zygaena 

Teleosts: 

Belonidae -Ablennes hians (pls) [1], Tylosurus crocodilus crocodilus (pls) [1];  

Carangidae -Alepes djedaba (pls) [1], Alectis alexandrina (pls) [1], Carangoides 

otrynter (pls) [1], Carangoides bajad (pls) [1], Carangoides fulvoguttatus [11], 

Caranx crysos (pls) [1], Caranx hippos (pls) [1], Caranx ignobilis (pls) [1], Caranx 

rhonchus (pls) [1], Caranx ruber (pls) [1], Caranx senegallus (pls) [1], Caranx 

sexfasciatus (pls) [1], Caranx papuensis [11], Caranx sp. (pls) [1] Caranx latus (pls) 

[19], Chloroscombrus chrysurus (pls) [1], Lichia amia (pls) [1], Megalaspis cordyla 

(pls) [1,11], Oligoplites palometa (pls) [1], Oligoplites saurus (pls) [1], 

Scomberoides commersonnianus (pls) [1], Scomberoides lysan (pls) [1], 

Scomberoides tala (pls) [1], Selene vomer (pls) [1], Seriola quinqueradiata (pls) [1], 

Seriola sp. (pls) [1], Trachinotus goodei (pls) [1], Trachinotus ovatus (pls) [1], 

Trachurus capensis (pls) [1], Trachurus trachurus (pls) [1], Atule mate [11]; 

Serranidae -Alphestes afer (pls) [1], Cephalopholis fulva (pls) [1], Cephalopholis 

taeniops (pls) [1],  Cephalopholis miniata (pls) [11,17], Cephalopholis boenak [11], 

Cephalopholis cyanostigma [11], Cephalopholis spiloparaea [11], Hyporthodus 

niveatus (pls) [1], Epinephelus adscensionis (pls) [1], Epinephelus aeneus (pls) [1], 

Epinephelus akaara (pls) [1], Epinephelus maculatus (pls) [1], Epinephelus striatus 

(pls) [1], Epinephelus chlorostigma [11], Epinephelus fasciatus [11], Epinephelus 

retouti [11], Epinephelus rivulatus [11], Epinephelus polyphekadion (pls) [17] 

Epinephelus summana (pls) [17], Epinephelus sp. (pls) [1], Hemilutjanus 

macrophthalmos (pls) [1], Mycteroperca bonaci (pls) [1], Mycteroperca 

interstitialis (pls) [1], Mycteroperca tigris (pls) [1], Mycteroperca venenosa (pls) [1], 

Paralabrax humeralis (pls) [1], Paranthias furcifer (pls) [1], Cromileptes altivelis 

[11], Plectropomus maculatus [11], Variola louti [11]; 

Sciaenidae -Argyrosomus regius (pls) [1], Cynoscion guatucupa (pls) [1,20], 

Cynoscion jamaicensis (pls) [1], Larimus breviceps (pls) [1] Macrodon ancylodon 

(pls) [1,20], Micropogonias furnieri (pls) [1,20], Otolithes ruber (pls) [1,13,15], 

Paralonchurus peruanus (pls) [1], Pennahia anea (pls) [1], Pennahia argentata (pls) 
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[1], Paralonchurus peruanus (pls) [1], Sciaena deliciosa (pls) [1], Johnius borneensis 

[11]; 

Ariidae -Ariopsis felis (pls) [1], Netuma thalassina (pls) [1], Bagre marinus (pls) [1], 

Genidens barbus (pls) [1]; 

Arripidae -Arripis truttacea (pls) [1];  

Scombridae -Auxis rochei rochei (pls) [1], Euthynnus affinis (pls) [1], Euthynnus 

alletteratus (pls) [1,9], Euthynnus sp. (pls) [1], Scomber colias (pls) [1], 

Scomberomorus cavalla (pls) [1], Scomberomorus commerson (pls) [1,11,21], 

Scomberomorus guttatus (pls) [1], Scomberomorus maculatus (pls) [1], 

Scomberomorus munroi (pls) [1], Scomberomorus niphonius (pls) [1], 

Scomberomorus queenslandicus [11], Thunnus albacares (pls) [1], Thunnus thynnus 

(pls) [1], Thunnus sp. (pls) [1];  

Balistidae -Balistes sp. (pls) [1];  

Bramidae -Brama brama (pls) [1];  

Centropomidae -Centropomus undecimalis (pls) [1];  

Bothidae -Chascanopsetta lugubris (pls) [1];  

Psettodidae - Psettodes erumei (pls) [10,15], 

Chirocentridae -Chirocentrus dorab (pls) [1,11], Chirocentrus nudus (pld) [15];  

Chloropthalmidae -Chlorophthalmus agassizi (pls) [1];  

Sparidae -Chrysoblephus puniceus (pls) [1], Chrysophrys auratus (pls) [1], Pagrus 

pagrus (pls) [1], Porcostoma dentata (pls) [1];  

Labridae -Bodianus axillaris (pls) [1], Choerodon cyanodus [11]; 

Exocoetidae -Cypselurus poecilopterus (pls) [1];  

Moronidae -Dicentrarchus labrax (pls) [1];  

Dinopercidae -Dinoperca petersi (pls) [1];  

Elopidae -Elops saurus (pls) [1];  

Engraulidae -Engraulis japonicus (pls) [1];  
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Clupeidae -Ethmalosa fimbriate (pls) [1], Harengula clupeola (pls) [1], 

Opisthonema oglinum (pls) [1], Sardina pilchardus (pls) [1], Sardinella maderensis 

(pls) [1];  

Ammodytidae - Gymnammodytes cicerelus (pls) [1];  

Haemulidae -Haemulon aurolineatum (pls) [1];  

Istiophoridae - Istiophorus platypterus (pls) [1], Istiompax indica (pls) [1], Makaira 

mazara (pls) [1];  

Latidae - Lates calcarifer (pls) [1];  

Leiognathidae - Leiognathus equulus (pls) [1], Secutor ruconius (pls) [1];  

Trichiuridae -Lepturacanthus savala (pls) [1], Trichiurus lepturus (pls, pld) 

[1,14,56];  

Macrouridae -Malacocephalus laevis (pls) [1]; 

Lethrinidae -Lethrinus erythracanthus (pls) [1], Lethrinus miniatus [11], Lethrinus 

nebulosus [15], Lethrinus mahsena (pls) [17], Lethrinus variegatus (pls) [17];  

Lutjanidae -Lutjanus analis (pls) [1], Lutjanus campechanus (pls) [1], Lutjanus 

fulgens (pls) [1], Lutjanus goreensis (pls) [1], Lutjanus griseus (pls) [1], Lutjanus 

vitta (pls) [1,11], Lutjanus carponotatus [11], Lutjanus johnii (pls) [15], Lutjanus sp. 

(pls) [1], Ocyurus chrysurus (pls) [1], Pristipomoides multidens (pls) [1]; 

Merlucciidae -Merluccius gayi peruanus (pls) [1], Merluccius gayi gayi (pls) [1]; 

Mullidae -Mullus barbatus (pls) [1];  

Muraenesocidae -Muraenesox cinereus (pls) [1];  

Nemipteridae - Nemipterus japonicus (pls) [1], Nemipterus furcosus [11];  

Paralichthyidae -Paralichthys dentatus (pls) [1], Paralichthys olivaceus (pls) [1], 

Paralichthys isosceles (pls) [18]; 

Platycephalidae -Platycephalus fuscus (pls) [1]; 

Pomatomidae -Pomatomus saltatrix (pls) [1,11,19]; 

Priacanthidae -Priacanthus hamrur (pls) [1]; 

Rachycentridae -Rachycentron canadum (pls) [1]; 
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Synodontidae -Saurida tumbil (pls) [1,15], Saurida undosquamis (pls) [1], Synodus 

lucioceps (pls) [1]; 

Sphyraenidae - Sphyraena acutipinnis (pls) [1], Sphyraena barracuda (pls) [1], 

Sphyraena guachancho (pls) [1], Sphyraena novaehollandiae (pls) [1], Sphyraena 

pinguis (pls) [1], Sphyraena obtusata [11]; 

Monacanthidae -(unidentified) (pls) [1];  

Pomacentridae -Abudefduf whitleyi [11];  

Apogonidae -Apogon poecilopterus [11], Ostorhinchus fasciatus [11];  

Caesionidae -Caesio cuning [11];  

Moridae -Lotella rhacina [11];  

Acanthuridae -Naso vlamingii [11];  

Polynemidae -Filimanus heptadactyla [11], Eleutheronema tetradactylum [16];  

Triodontidae -Triodon macropterus [11];  

Phycidae -Urophycis brasiliensis [12]; 

Ophidiidae -Genypterus brasiliensis (pls) [22]; 

Coryphaenidae -Coryphaena hippurus [28], Coryphaena equiselis [28]; 

Chondrichthyan fishes 

Ginglymostomatidae -Nebrius ferrugineus (pls) [1]; 

Reptiles: 

Colubridae -Cerberus rynchops (pls) [1]; 

Callitetrarhynchus 

speciosus 

Lacistorhynchidae Carcharhinus obscurus, 

Negaprion brevirostris 

Teleosts: 

Ariidae -Netuma thalassina (pls) [1], Genidens barbus (pls) [1];  

Platycephalidae -Cociella punctata (pls) [1], Cymbacephalus beauforti [11], 

Platycephalus indicus (pls) [1];  

Congridae -Conger cinereusi (pls) [17]; 

Pomatomidae ʹPomatomus saltatrix (pls) [1,19];  

Sciaenidae -Cynoscion guatucupa (pls) [1,20], Cynoscion regalis (pls) [1], 

Micropogonias furnieri (pls) [1,20], Nibea albiflora (pls) [1]; 

Balistidae -Canthidermis maculata (pls) [1];  
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Serranidae -Cephalopholis hemistiktos (pls) [1], Epinephelus adscensionis (pls) [1], 

Epinephelus areolatus (pls) [1], Epinephelus maculatus (pls) [1], Epinephelus morio 

(pls) [1], Epinephelus multinotatus (pls) [1], Epinephelus striatus (pls) [1], 

Epinephelus tukula (pls) [1], Mycteroperca interstitialis (pls) [1], Mycteroperca 

phenax (pls) [1], Mycteroperca venenosa (pls) [1]; 

Sparidae -Chrysoblephus anglicus (pls) [1]; 

Coryphaenidae -Coryphaena hippurus (pls) [1]; 

Echeneidae -Echeneis naucrates (pls) [1],  

Haemulidae -Haemulon album (pls) [1]; 

Priacanthidae -Heteropriacanthus cruentatus (pls) [1], Priacanthus arenatus (pls) 

[23]; 

Scombridae -Katsuwonis pelamis (pls) [1], Scomber japonicus (pls) [1], 

Scomberomorus commerson (pls) [1], Scomberomorus guttatus (pls) [1], Thunnus 

thynnus (pls) [1]; 

Labridae -Lachnolaimus maximus (pls) [1];  

Lethrinidae -Lethrinus nebulosus (pls) [1]; 

Lutjanidae -Lutjanus analis (pls) [1], Lutjanus campechanus (pls) [1], Lutjanus 

griseus (pls) [1], Lutjanus synagris (pls) [1], Lutjanus argentimaculatus [25], 

Ocyurus chrysurus (pls) [1]; 

Muraenesocidae -Muraenesox cinereus (pls) [1]; 

Triglidae -Prionotus carolinus (pls) [1]; 

Carangidae -Selene vomer (pls) [1], Seriola dumerili (pls) [1], Trachinotus goodei 

(pls) [1];  

Monacanthidae -Stephanolepis hispidus (pls) [1], Aluterus monoceros (pls) [24];  

Trichiuridae -Trichiurus lepturus (pls) [1]; 

Xiphiidae -Xiphias gladius (pls) [1]; 

Dasyrhynchus 

giganteus 

Lacistorhynchidae Carcharhinus leucas, 

Carcharhinus 

melanopterus, 

Teleosts: 

Carangidae -Caranx hippos (pls) [1], Oligoplites saliens (pls) [1], Seriola dumerili 

(pls) [1];  
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Carcharhinus plumbeus, 

Negaprion brevirostris, 

Rhizoprionodon 

terraenovae 

Polynemidae -Polydactylus quadrifilis (pls) [1]; 

Xiphiidae -Xiphias gladius (pls) [1]; 

Dasyrhynchus 

pacificus 

Lacistorhynchidae Carcharhinus brachyurus, 

Carcharhinus limbatus, 

Carcharhinus obscurus, 

Carcharhinus plumbeus, 

Sphyrna lewini 

Teleosts: 

Sciaenidae -Cynoscion guatucupa (pls) [1,20], Cynoscion jamaicensis (pls) [1], 

Macrodon ancylodon (pls) [1,20], Micropogonias furnieri [20], Menticirrhus 

americanus (pls) [1,20], Argyrosomus japonicus (pls) [1], Argyrosomus 

hololepidotus (pls) [1], Sciaena deliciosa (pls) [1]; 

Monacanthidae -Acanthaluteres brownie (pls) [1];  

Lutjanidae -Aprion virescens (pls) [1];  

Lethrinidae -Lethrinus mahsena (pls) [1];  

Mugilidae -Mugil curema (pls) [1], Mugil cephalus (pls) [1]; 

Dasyrhynchus 

talismani 

Lacistorhynchidae Carcharhinus brachyurus, 

Carcharhinus leucas, 

Carcharhinus longimanus, 

Prionace glauca 

Teleosts: 

Scombridae -Thunnus albacares (pls) [1], Thunnus obesus (pls) [1]; 

Dasyrhynchus 

varioucinatus 

Lacistorhynchidae Carcharhinus 

amblyrhynchoides, 

Carcharhinus 

amblyrhynchos, 

Carcharhinus falciformis, 

Carcharhinus leucas, 

Carcharhinus limbatus, 

Carcharhinus plumbeus, 

Carcharodon carcharias, 

Negaprion brevirostris 

Teleosts: 

Scombridae -Euthynnus affinis (pls) [1];  

Carangidae -Carangoides ciliarius (pls) [1], Caranx sexfasciatus (pls) [1], Caranx sp. 

(pls) [1]; 
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Diesingium 

lomentaceum 

Lacistorhynchidae Galeorhinus galeus, 

Mustelus canis, Mustelus 

mustelus 

Teleosts: 

Carangidae -Carangoides fulvoguttatus [11];  

Serranidae -Epinephelus chlorostigma [11] 

Floriceps minacanthus Lacistorhynchidae Carcharhinus 

amblyrhynchos, 

Carcharhinus 

amboinensis, 

Carcharhinus brachyurus, 

Carcharhinus 

melanopterus 

Teleosts: 

Serranidae -Cephalopholis hemistiktos (pls) [1], Cephalopholis urodeta [11], 

Cephalopholis miniate (pld) [11,26-27], Cephalopholis boenak [11], Cephalopholis 

cyanostigma [11], Cephalopholis sonnerati [11], Epinephelus quoyanus [11], 

Epinephelus coioides [11], Epinephelus cyanopodus [11], Epinephelus maculatus 

[11], Plectropomus areolatus [11], Plectropomus leopardus (pls) [1,11], 

Plectropomus laevis [11], Variola louti [11];  

Scombridae -Euthynnus affinis (pls) [1,11], Euthynnus alletteratus (pls) [1,11], 

Grammatorcynus bicarinatus [11], Gymnosarda unicolor (pls) [1]; 

Lethrinidae -Lethrinus miniatus (pls) [1,11], Lethrinus mahsena (pls,pld) [1,26]; 

Nemipteridae -Nemipterus furcosus (pls) [1,11]; 

Sphyraenidae -Sphyraena flavicauda [11], Sphyraena putnamae [11], Sphyraena 

jello [11], Sphyraena novaehollandiae (pls) [1];  

Belonidae -Tylosurus crocodilus crocodilus [11]; 

Carangidae -Carangoides bajad (pls,pld) [1,26]; 

Platycephalidae -Platycephalus bassensis (pls) [1], Platycephalus laevigatus (pls) 

[1], Platycephalus sp. (pls) [1] 

Floriceps saccatus Lacistorhynchidae Carcharhinus limbatus, 

Carcharhinus obscurus, 

Carcharhinus plumbeus, 

Carcharhinus signatus, 

Negaprion brevirostris, 

Notorynchus cepedianus, 

Prionace glauca 

Teleosts: 

Carangidae -Caranx papuensis [11], Caranx hippos (pls) [1], Seriola lalandi (pls) [1], 

Trachinotus ovatus (pls) [1];  

Diodontidae -Diodon holocanthus (pls) [1], Diodon liturosus [11], Diodon hystrix 

(pls) [1,11]; 

Monacanthidae -Aluterus monoceros (pls) [24], Aluterus sp. (pls) [1]; 

Coryphaenidae -Coryphaena hippurus (pls) [1,28], Coryphaena equiselis (pls) [1];  

Sciaenidae -Argyrosomus regius (pls) [1]; 

Centropomidae -Centropomus nigrescens (pls) [1]; 
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Gempylidae -Gempylus serpens (pls) [1,56]; 

Pleuronectidae -Glyptocephalus stelleri (pls) [1]; 

Scombridae -Katsuwonis pelamis (pls) [1]; 

Molidae -Mola mola (pls) [1]; 

Tetraodontidae -Takifugu porphyreus (pls) [1]; 

Trichiuridae -Trichiurus lepturus (pls) [1]; 

Grillotia acanthoscolex Lacistorhynchidae Hexanchus griseus Teleosts: 

Scorpaenidae -Scorpaena scrofa (pls) [1]; 

Lophiidae -Lophius piscatorius (pls) [29]; 

Chondrichthyan fishes: 

Torpedinidae -Tetronarce nobiliana (pls) [1];  

Centrophoridae -Deania hystricosa (pls) [1], Deania profundorum (pls) [1]; 

Hexanchidae -Heptranchias perlo (pls) [1]; 

Grillotia 

amblyrhynchos 

Lacistorhynchidae Carcharhinus 

amblyrhynchos 

Chondrichthyan fishes: 

Etmopteridae -Etmopterus sp. (pls) [1]; 

Grillotia 

dolichocephala 

Lacistorhynchidae Centrophorus squamosus Chondrichthyan fishes: 

Somniosidae -Centroscymnus coelolepis (pls) [29]; 

Centrophoridae -Centrophorus squamosus (pls) [29], Deania profundorum (pls) 

[29]; 

Grillotia dollfusi Lacistorhynchidae Carcharhinus signatus, 

Heptranchias perlo 

Teleosts: 

Macrouridae -Nezumia aequalis (pls) [1]; 

Merlucciidae -Merluccius gayi gayi (pls) [1]; 

Grillotia erinaceus Lacistorhynchidae Squalus acanthias Teleosts: 

Agonidae -Agonus cataphractus (pls) [1];  

Anarhichadidae -Anarhichas lupus (pls) [1]; 

Bothidae -Arnoglossus laterna (pls) [1]; 

Lotidae -Brosme brosme (pls) [1], Enchelyopus cimbrius (pls) [1], Lota lota (pls) [1], 

Molva molva (pls) [1]; 

Macrouridae -Coelorinchus fasciatus (pls) [1], Malacocephalus laevis (pls) [1]; 
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Callionymidae -Callionymus lyra (pls) [1]; 

Caproidae -Capros aper (pls) [1]; 

Cepolidae -Cepola macrophthalma (pls) [1]; 

Triglidae -Chelidonichthys cuculus (pls) [1], Chelidonichthys lucerna (pls) [1], 

Eutrigla gurnardus (pls) [1], Trigloporus lastoviza (pls) [1], Prionotus carolinus (pls) 

[1];  

Clupeidae -Clupea harengus (pls) [1]; 

Congridae -Conger conger (pls) [1]; 

Serranidae -Epinephelus marginatus (pls) [1]; 

Gadidae -Gadus morhua (pls) [1], Melanogrammus aeglefinus (pls) [1], Merlangius 

merlangus (pls,pld) [1,30-31], Pollachius pollachius (pls) [1], Pollachius virens (pls) 

[1], Trisopterus esmarkii (pls) [1], Trisopterus minutus (pls) [1]; 

Pleuronectidae -Glyptocephalus cynoglossus (pls) [1], Hippoglossoides 

platessoides (pls) [1], Hippoglossus hippoglossus (pls) [1], Limanda aspera (pls) [1], 

Limanda ferruginea (pls) [1], Limanda limanda (pls) [1] Microstomus kitt (pls) [1], 

Platichthys flesus (pls) [1], Pleuronectes platessa (pls) [1], Reinhardtius 

hippoglossoides (pls) [1]; 

Ateleopodidae -Guentherus altivela (pls) [1]; 

Scophthalmidae -Lepidorhombus 

Whiffiagonis (pls) [1], Scophthalmus aquosus (pls) [1], Scophthalmus maximus (pls) 

[1], Scophthalmus rhombus (pls) [1]; 

Lophiidae -Lophius piscatorius (pls) [1]; 

Merlucciidae -Merluccius bilinearis (pls) [1], Merluccius merluccius (pls) [1]; 

Cottidae -Myoxocephalus scorpius (pls) [1], Taurulus bubalis (pls) [1]; 

Pholidae -Pholis gunnellus (pls) [1]; 

Batrachoididae -Porichthys porosissimus (pls) [1]; 

Salmonidae -Salmo salar (pls) [1]; 

Scombridae -Scomber scombrus (pls) [1]; 

Scorpaenidae -Scorpaena plumieri (pls) [1];  
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Sebastidae -Sebastes norvegicus (pls) [1], Sebastes mentella (pls) [1], Sebastes 

viviparous (pls) [1]; 

Soleidae -Solea solea (pls) [1];  

Carangidae -Trachurus capensis (pls) [1], Trachurus trachurus (pls) [1]; 

Phycidae -Urophycis tenuis (pls) [1]; 

Xiphiidae -Xiphias gladius (pls) [1]; 

Nototheniidae -Dissostichus eleginoides (pld) [32,34]; 

Eleginopsidae -Eleginops maclovinus (pld) [33]; 

Crustaceans 

Acartidae -Acartia longiremis (pro) [1]; 

Paracalanidae -Paracalanus parvus (pro) [1]; 

Clausiocalanidae -Pseudocalanus elongatus (pro) [1]; 

Temoridae -Temora longicornis (pro) [1]; 

Chondrichthyan fishes: 

Odontaspididae -Carcharias Taurus (pls) [1];  

Centrophoridae -Centrophorus squamosus (pls) [1]; 

Rajidae -Dipturus batis (pls) [1]; 

Arhynchobatidae -Sympterygia bonapartii (pls) [1]; 

Grillotia heptanchi Lacistorhynchidae Dalatias licha, 

Heptranchias perlo, 

Hexanchus griseus 

Teleosts: 

Scophthalmidae -Lepidorhombus 

Whiffiagonis (pls) [29]; 

Lotidae -Molva dypterygia (pls) [1,29]; 

Ophidiidae -Genypterus chilensis (pls) [1]; 

Trachichthyidae -Hoplostethus atlanticus (pls) [1]; 

Sciaenidae -Johnius coitori (pls) [1]; 

Trichiuridae -Lepidopus caudatus (pls) [1];  

Lophiidae -Lophius piscatorius (pls) [1];  
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Merlucciidae -Macruronus magellanicus (pls) [1], Merluccius australis (pls) [1,47], 

Merluccius capensis (pls) [1], Merluccius gayi gayi (pls) [1], Merluccius merluccius 

(pls) [1], Merluccius paradoxus (pls) [1];  

Gadidae -Merlangius merlangus (pls) [1], Gadus chalcogrammus (pls) [1]; 

Centrarchidae -Micropterus salmoidesi (pls) [1]; 

Hexagrammidae -Ophiodon elongatus (pls) [1]; 

 Chondrichthyan fishes: 

Hexanchidae -Hexanchus griseus (pls) [1]; 

Grillotia smaris-gora Lacistorhynchidae Squatina californica, 

Squatina squatina 

Teleosts: 

Gadidae -Microgadus tomcod (pls) [1]; 

Paralichthyidae -Paralichthys dentatus (pls) [1]; 

Centracanthidae -Spicara maena (pls) [1], Spicara smaris (pls) [1];  

Sparidae -Stenotomus chrysops (pls) [1]; 

Carangidae -Trachurus sp. (pls) [1]; 

Grilotiella exile Lacistorhynchidae Galeocerdo cuvier Teleosts: 

Scombridae -Scomberomorus commerson [11]; 

Lacistorhynchus 

dollfusi 

Lacistorhynchidae Galeorhinus galeus, 

Mustelus californicus, 

Mustelus henlei, Mustelus 

lunulatus, Triakis 

semifasciata 

Teleosts: 

Sciaenidae -Atractoscion nobilis (pls) [1], Genyonemus lineatus (pls) [1], 

Cheilotrema fasciatum (pls) [1]; 

Labridae -Choerodon cyanodus (pls) [1];  

Clupeidae -Clupea pallasii (pls) [1]; 

Embiotocidae -Cymatogaster aggregata (pls) [1], Cymatogaster sp. (pls) [1], 

Embiotoca jacksoni (pls) [1], Rhacochilus vacca (pls) [1]; 

Poeciliidae -Gambusia affinisi (pls) [1]; 

Atherinidae -Leuresthes tenuis (pls) [1]; 

Moronidae -Morone saxatilis (pls) [1]; 

Hexagrammidae -Ophiodon elongatus (pls) [1]; 

Paralichthyidae -Paralichthys adspersus (pls) [1], Paralichthys californicus (pls) [1], 

Citharichthys sordidus (pld) [35-36];  
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Pleuronectidae -Platichthys stellatus (pls) [1];  

Sebastidae -Sebastes atrovirens (pls) [1], Sebastes flavidus (pls) [1], Sebastes 

goodei (pls) [1], Sebastes paucispinis (pls) [1];  

Synodontidae -Synodus lucioceps (pls) [1]; 

Chondrichthyan fishes 

Triakidae -Triakis semifasciata (pls) [1];  

Crustaceans: 

Harpacticidae -Tigriopus californicus (pro) [1];  

Lacistorhynchus tenuis Lacistorhynchidae Alopias vulpinus, 

Galeorhinus galeus, 

Mustelus canis, Mustelus 

mustelus, Squalus 

acanthias 

Teleosts: 

Mugilidae -Aldrichetta forsteri (pls) [1];  

Monacanthidae -Aluterus schoepfii (pls) [1]; 

Anguillidae -Anguilla rostrata (pls) [1]; 

Belonidae -Belone belonei (pls) [1];  

Triglidae -Chelidonichthys cuculus (pls) [1], Eutrigla gurnardus (pls) [1], 

Chelidonichthys lucerna (pls) [1], Trigloporus lastoviza (pls) [1], Trigla lyra (pls) [1], 

Trigla sp. (pls) [1]; 

Clupeidae -Clupea harengus (pls) [1,37]; 

Congridae -Conger conger (pls) [1]; 

Moronidae -Dicentrarchus labrax (pls) [1];  

Trachinidae -Echiichthys vipera (pls) [1], Trachinus draco (pls) [1]; 

Lotidae -Enchelyopus cimbrius (pls) [1], Molva macrophthalma (pls) [1];  

Gadidae -Gadus morhua (pls) [1], Melanogrammus aeglefinus (pls) [1], Merlangius 

merlangus (pls) [1], Pollachius pollachius (pls) [1], Trisopterus luscus (pls) [1];  

Poeciliidae -Gambusia affinis (pls) [1]; 

Gasterosteidae -Gasterosteus aculeatus aculeatus (pls) [1];  

Gobiidae -Gobius sp. (pls) [1]; 

Labrisomidae -Labrisomus philippii (pls) [1,38]; 

Labridae -Labrus bergylta (pls) [1], Labrus merula (pls) [1], Symphodus tinca (pls) 

[1], Tautoga onitis (pls) [1]; 
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Pleuronectidae -Limanda limanda (pls) [1]; 

Lophiidae -Lophius piscatorius (pls) [1]; 

Scophthalmidae - Scophthalmus aquosus (pls) [1]; 

Merlucciidae -Merluccius gayi gayi (pls) [1], Merluccius merluccius (pls) [1], 

Merluccius gayi peruanus (pls) [1]; 

Mullidae -Mullus barbatus (pls) [1]; 

Cottidae -Myoxocephalus octodecemspinosus (pls) [1], Myoxocephalus Scorpius 

(pls) [1]; 

Atherinidae -Odontesthes regia (pls) [1]; 

Osmeridae -Osmerus eperlanus (pls) [1]; 

Scombridae -Scomber scombrus (pls) [1], Scomberomorus maculatus (pls) [1]; 

Sparidae -Sparus aurata (pls) [1];  

Gempylidae -Thyrsites atun (pls) [1]; 

Carangidae -Trachurus trachurus (pls) [1];  

Zeidae -Zenopsis nebulosa (pls) [1], Zeus faber (pls) [1]; 

Chondrichthyan fishes: 

Etmopteridae -Etmopterus spinax (pls) [1]; 

Triakidae -Mustelus canis (pls) [1]; 

Cephalopods: 

Loliginidae -Doryteuthis (Amerigo) pealeii (pls) [1]; 

Ommastrephidae -Illex illecebrosus (pls) [1];  

Crustaceans: 

Acartiidae -Acartia (Acanthacartia) tonsa (pro) [1]; 

Harpacticidae -Tigriopus fulvus (pro) [1]; 

Pseudogrillotia 

basipunctata 

Lacistorhynchidae Carcharhinus 

amblyrhynchos 

Teleosts: 

Diodontidae -Diodon hystrix (pls) [1]; 

Pseudogrillotia 

epinepheli 

Lacistorhynchidae Carcharhinus leucas Serranidae -Epinephelus flavocaeruleus (pls) [1], Epinephelus marginatus (pls) [1], 

Serranus atricauda (pls) [39];  

Muraenidae -Muraena Helena (pls) [1]; 
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Pseudogrillotia 

perelica 

Lacistorhynchidae Carcharhinus leucas, 

Carcharhinus limbatus, 

Negaprion brevirostris 

Teleosts: 

Carangidae -Caranx senegallus (pls) [1]; 

Mugilidae -Liza dumerili (pls) [1], Liza macrolepis (pls) [1], Liza richardsonii (pls) 

[1], Mugil cephalus (pls) [1], Myxus capensis (pls) [1], Valamugil buchanani (pls) 

[1], Valamugil cunnesius (pls) [1], Valamugil robustus (pls) [1];  

Pseudolacistorhynchus 

noodti 

Lacistorhynchidae Ginglymostoma cirratum Teleosts: 

Monacanthidae -Aluterus schoepfii (pls) [1];  

Muraenidae -Gymnothorax funebris (pls) [1]; 

Mullidae -Pseudupeneus maculatus (pls) [1]; 

Scombridae -Scomberomorus maculatus (pls) [1]; 

Otobothrium 

alexanderi 

Otobothriidae Carcharhinus 

melanopterus 

Teleosts: 

Belonidae -Tylosurus crocodilus crocodilus (pls) [1,11,40]; 

Otobothrium 

carcharidis 

Otobothriidae Carcharhinus 

amblyrhynchoides, 

Carcharhinus brachyurus, 

Carcharhinus dussumieri, 

Carcharhinus limbatus, 

Carcharhinus macloti, 

Carcharhinus 

melanopterus, 

Carcharhinus sealei, 

Carcharhinus sorrah, 

Rhizoprionodon acutus, 

Rhizoprionodon taylori, 

Scoliodon laticaudus, 

Sphyrna lewini 

Teleosts: 

Balistidae -Abalistes stellatus (pls) [1]; 

Lethrinidae -Lethrinus ornatus (pls) [1]; 
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Otobothrium cysticum Otobothriidae Carcharhinus 

amboinensis, 

Carcharhinus leucas, 

Carcharhinus longimanus, 

Carcharhinus 

melanopterus, 

Carcharhinus obscurus, 

Galeocerdo cuvier, 

Rhizoprionodon 

terraenovae, Sphyrna 

zygaena 

Teleosts: 

Ophidiidae -Genypterus brasiliensis (pls) [22];  

Scombridae -Scomberomorus commerson (pls) [1,21], Euthynnus alletteratus (pls) 

[1,40], Sarda sarda (pls) [1,40], Scomberomorus cavalla (pls) [1,40], 

Scomberomorus regalis [40], Scomberomorus maculatus (pls) [1]; 

Coryphaenidae -Coryphaena hippurus (pls) [1,28,40]; 

Acanthuridae -Acanthurus coeruleus (pls) [1,40]; 

Monacanthidae -Aluterus schoepfii (pls) [1,40]; 

Ariidae -Ariopsis felis [40], Bagre marinus (pls) [1,40], Neoarius graeffei (pls) [1], 

Arius latiscutatus (pls) [1];  

Sciaenidae -Bairdiella chrysoura (pls) [1,40], Cynoscion nebulosus (pls) [1,40], 

Cynoscion regalis (pls) [1,40], Cynoscion arenarius (pls) [1], Leiostomus xanthurus 

(pls) [1,40], Micropogonias undulatus (pls) [1,40], Pseudotolithus elongatus (pls) 

[1], Pseudotolithus senegallus (pls) [1], Pseudotolithus typus (pls) [1]; 

Balistidae -Balistes capriscus (pls) [1,40]; 

Carangidae -Caranx crysos (pls) [1,40], Caranx senegallus (pls) [1], Trachurus 

trecae (pls) [1]; 

Sparidae -Diplodus sargus sargus (pls) [1,40], Lagodon rhomboides (pls) [1,40], 

Dentex macrophthalmus (pls) [1], Pagrus pagrus (pls) [1]; 

Fundulidae -Fundulus heteroclitus heteroclitus (pls) [1,40]; 

Triglidae -Lepidotrigla faurei (pls) [1,40]; 

Lobotidae -Lobotes surinamensis (pls) [1,40]; 

Acropomatidae -Neoscombrops cynodont [40]; 

Lutjanidae -Ocyurus chrysurus (pls) [1,40], Lutjanus campechanus (pls) [1]; 

Batrachoididae -Opsanus tau (pls) [1,40]; 

Haemulidae -Orthopristis chrysoptera (pls) [1,40], Haemulon parra (pls) [1]; 

Paralichthyidae -Paralichthys albigutta (pls) [1,40], Paralichthys dentatus (pls) 

[1,40], Paralichthys lethostigma (pls) [1];  
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Stromateidae -Peprilus paru (pls) [1,40], Peprilus burti (pls) [1], Peprilus 

triacanthus (pls) [1,40];  

Pomatomidae -Pomatomus saltatrix (pls) [1,40];  

Trichiuridae -Trichiurus lepturus (pls) [1,40]; 

Siluridae -Wallago attu (pls) [1,40]; 

Xiphiidae -Xiphias gladius (pls) [1,40]; 

Cepolidae -Cepola macrophthalma (pls) [1]; 

Muraenesocidae -Cynoponticus ferox (pls) [1]; 

Serranidae -Epinephelus striatus (pls) [1], Mycteroperca bonaci (pls) [1], Sacura 

boulengeri (pls) [1]; 

Lophiidae -Lophius piscatorius (pls) [1]; 

Merlucciidae -Merluccius capensis (pls) [1], Merluccius merluccius (pls) [1];  

Monodactylidae -Monodactylus sebae (pls) [1]; 

Sphyraenidae -Sphyraena guachancho (pls) [1]; 

Uranoscopidae -Uranoscopus scaber (pls) [1], Uranoscopus sp. (pls) [1]; 

Chondrichthyans: 

Carcharhinidae -Carcharhinus melanopterus (pls) [1,40], Carcharhinus limbatus 

(pls) [1,40], Carcharhinus obscurus (pls) [1,40], Carcharhinus plumbeus (pls) [1], 

Rhizoprionodon terraenovae (pls) [1,40]; 

Dasyatidae -Dasyatis margarita (pls) [1]; 

Triakidae -Mustelus canis (pls) [1,40], Mustelus mustelus (pls) [1,40]; 

Squalidae -Squalus acanthias (pls) [1,40];  

Lamnidae -Carcharodon carcharias (pls) [1]; 

Cephalopods: 

Ommastrephidae -Illex illecebrosus (pls) [1]; 

Loliginidae -Doryteuthis pealeii (pls) [1,40]; 

Reptiles: 

Crocodylldae -Osteolaemus tetraspis (pls) [1]; 

Cheloniidae -Eretmochelys imbricata (pls) [1], Chelonia mydas (pls) [1]; 
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Otobothrium insigne Otobothriidae Carcharhinus leucas, 

Carcharhinus limbatus, 

Carcharhinus obscurus, 

Rhizoprionodon 

terraenovae, Sphyrna 

tudes 

Teleosts: 

Ariidae -Ariopsis felis (pls) [1,40], Arius sp. (pls) [1]; 

Balistidae -Balistes polylepis [40] 

 

Otobothrium minutum Otobothriidae Carcharhinus limbatus, 

Carcharhinus macloti, 

Rhizoprionodon acutus 

Teleosts: 

Carangidae -Parastromateus niger (pls) [1]; 

 

Otobothrium mugilis Otobothriidae Carcharhinus limbatus, 

Sphyrna mokarran 

Teleosts: 

Mugilidae -Mugil cephalus (pls) [1,40]; 

Ariidae -Neoarius graeffei (pls) [1,40], Netuma thalassina (pls) [1], Arius sp. (pls) 

[1]; 

Sciaenidae -Otolithes ruber (pls) [1,40]; 

Clupeidae -Tenualosa ilisha (pls) [1]; 

Otobothrium 

penetrans 

Otobothriidae Carcharhinus leucas, 

Carcharhinus limbatus, 

Carcharhinus longimanus, 

Carcharhinus 

melanopterus, 

Carcharodon carcharias, 

Negaprion brevirostris, 

Rhizoprionodon 

terraenovae, Sphyrna 

lewini, Sphyrna zygaena 

Teleosts: 

Belonidae -Tylosurus crocodilus crocodilus (pls) [1,11,40,56], Tylosurus acus acus 

(pls) [1,40], Platybelone sp. (pls) [1,40]; 

Hemiramphidae -Hyporhamphus dussumieri (pls) [1,40]; 

Poecilancistrium 

caryophyllum 

Otobothriidae Carcharhinus brachyurus, 

Carcharhinus leucas, 

Teleosts: 
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Carcharhinus limbatus, 

Negaprion brevirostris, 

Rhizoprionodon acutus, 

Rhizoprionodon 

terraenovae 

Sciaenidae -Micropogonias furnieri [20], Micropogonias altipinnis (pls) [1], 

Micropogonias undulatus (pls) [1]; Macrodon ancylodon (pld) [41] Argyrosomus 

hololepidotus (pls) [1], Argyrosomus japonicus (pls) [1], Bairdiella chrysoura (pls) 

[1], Cilus gilberti (pls) [1], Cynoscion arenarius (pls) [1], Cynoscion nebulosus (pls) 

[1], Cynoscion nothus (pls) [1], Cynoscion regalis (pls) [1], Leiostomus xanthurus 

(pls) [1], Menticirrhus americanus (pls) [1], Nibea maculata (pls) [1], Pennahia 

anea (pls) [1], Pennahia argentata (pls) [1], Pogonias cromis (pls) [1], Protonibea 

diacanthus (pls) [1], Pseudotolithus senegalensis (pls) [1], Sciaenops ocellatus (pls) 

[1], Umbrina coroides (pls) [1]; 

Polynemidae -Eleutheronema tetradactylum (pls) [1], Polydactylus opercularis 

(pls) [1]; 

Serranidae -Epinephelus coioides (pls) [1]; 

Latidae -Lates calcarifer (pls) [1]; 

Pomatomidae -Pomatomus saltatrix (pls) [1];  

Sillaginidae -Sillago robusta (pls) [1]; 

Clupeidae -Tenualosa ilisha (pls) [1]; 

Crustaceans: 

Acartiidae -Acartia (Acanthacartia) tonsa (pro) [1];  

Pseudodiaptomidae -Pseudodiaptomus sp. (pro) [1]; 

Harpacticidae -Tigriopus californicus (pro) [1];  

Proemotobothrium 

southwelli 

Otobothriidae Carcharhinus limbatus Teleosts: 

Sciaenidae -Johnius borneensis (pls) [1,11]; 

Istiophoridae -Istiophorus platypterus (pls) [1]; 

Pterobothrium 

pearsoni 

Pterobothriidae Mustelus manazo Teleosts: 

Sphyraenidae -Sphyraena jello [11],  

Polynemidae -Eleutheronema tetradactylum [16];  

Sciaenidae -Cynoscion virescens (pls) [1], Otolithes ruber (pls) [1], Protonibea 

diacanthus (pls) [1]; 

Leiognathidae -Gazza minuta (pls) [1]; 
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Carangidae -Pseudocaranx dentex (pls) [1]; 

Scombridae -Scomberomorus guttatus (pls) [1]; 

Clupeidae -Tenualosa ilisha (pls) [1]; 

Pintneriella 

musculicola 

Rhopalothylacidae Carcharias taurus Teleosts: 

Sparidae -Chrysophrys auratus (pls) [1]; 

Serranidae -Epinephelus akaara (pls) [1], Epinephelus chlorostigma (pls) [1], 

Epinephelus tauvina (pls) [1]; 

Lethrinidae -Lethrinus nebulosus (pls) [1]; 

Hepatoxylon 

megacephalum 

Sphyriocephalidae Carcharodon carcharias, 

Notorynchus cepedianus, 

Prionace glauca 

Teleosts: 

Gadidae -Pollachius virens (pld) [1]; 

Scorpaenidae -Scorpaena porcus (pld) [1]; 

Trichomycteridae -Trichomycterus punctulatus (pld) [1]; 

Xiphiidae -Xiphias gladius (pld) [1]; 

Chondrichthyan fishes: 

Squalidae -Squalus acanthias (pld) [1], Squalus megalops (pld) [1];  

Squatinidae -Squatina australis (pld) [1]; 

Torpedinidae -Torpedo marmorata (pld) [1]; 

Scyliorhinidae -Scyliorhinus canicula (pld) [1], Scyliorhinus stellaris (pld) [1]; 

Sphyrnidae -Sphyrna zygaena (pld) [1]; 

Carcharhinidae -Carcharhinus obscurus (pld) [1], Prionace glauca (pld) [1]; 

Dalatiidae -Dalatias licha (pld) [1]; 

Centrophoridae -Deania calcea (pld) [1]; 

Rajidae -Dipturus oxyrinchus (pld) [1], Raja clavata (pld) [1], Raja sp. (pld) [1]; 

Etmopteridae -Etmopterus spinax (pld) [1]; 

Triakidae -Galeorhinus galeus (pld) [1], Mustelus mustelus (pld) [1]; 

Pentanchidae -Galeus melastomus (pld) [1]; 

Hexanchidae -Heptranchias perlo (pld) [1], Hexanchus griseus (pld) [1], 

Notorynchus cepedianus (pld) [1]; 

Lamnidae -Isurus oxyrinchus (pld) [1]; 
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Hepatoxylon trichiuri Sphyriocephalidae Alopias vulpinus, 

Carcharodon carcharias, 

Isurus oxyrinchus, Lamna 

nasus, Prionace glauca, 

Somniosus microcephalus 

Teleosts: 

Diodontidae -Diodon hystrix [11];  

Istiophoridae -Tetrapturus angustirostris [11];  

Scombridae -Thunnus obesus [11], Thunnus alalunga (pld) [1], Thunnus albacares 

(pld) [1], Thunnus thynnus (pld) [52], Katsuwonus pelamis (pld) [1], Scomber 

japonicus (pld) [1];  

Ophidiidae -Genypterus brasiliensis (pld) [1,22], Genypterus blacodes (pld) [1], 

Genypterus chilensis (pld) [1];  

Coryphaenidae -Coryphaena hippurus (pld) [1,28]; 

Nototheniidae -Dissostichus eleginoides (pld) [34,48]; 

Alepisauridae -Alepisaurus ferox (pld) [1]; 

Argentinidae -Argentina elongata (pld) [1]; 

Berycidae -Beryx splendens (pld) [1]; 

Bramidae -Brama brama (pld) [1], Taractes rubescens (pld) [1], Taractichthys 

steindachneri (pld) [1], Brama australis [1], Unidentified bramid (pld) [1]; 

Macrouridae -Coelorinchus australis (pld) [1], Coelorinchus chilensis (pld) [51], 

Lepidorhynchus denticulatus (pld) [1]; 

Serranidae -Caesioperca lepidoptera (pld) [1], Lepidoperca pulchella (pld) [1]; 

Cyttidae -Cyttus novaezealandiae (pld) [1], Cyttus traversi (pld) [1]; 

Gadidae -Gadus morhua (pld) [1], Melanogrammus aeglefinus (pld) [1], 

Micromesistius australis (pld) [1,47], Pollachius virens (pld) [1]; 

Gempylidae -Gempylus serpens (pld) [1,56], Rexea solandri (pld) [1], Thyrsites atun 

(pld) [1]; 

Geotriidae -Geotria australis (pld) [1]; 

Pleuronectidae -Hippoglossus hippoglossus (pld) [1]; 

Hoplichthyidae -Hoplichthys haswelli (pld) [1];  

Trachichthyidae -Hoplostethus atlanticus (pld) [1]; 

Centrolophiidae -Hyperoglyphe antarctica (pld) [1]; 

Haemulidae -Isacia conceptionis (pld) [1]; 



 
 

1
9

7
 

Trichiuridae -Lepidopus caudatus (pld) [1]; 

Merlucciidae -Macruronus novaezelandiae (pld) [1], Macruronus magellanicus 

(pld) [46-47], Merluccius australis (pld) [1,45,47], Merluccius capensis (pld) [1], 

Merluccius gayi gayi (pld) [1,47], Merluccius hubbsi (pld) [1], Merluccius merluccius 

(pld) [1], Merluccius paradoxus (pld) [1], Merluccius polli (pld) [1]; 

Lotidae -Molva sp. (pld) [1]; 

Moridae -Mora moro (pld) [1], Pseudophycis bachus (pld) [1]; 

Cheilodactylidae -Nemadactylus macropterus (pld) [1]; 

Salmonidae -Oncorhynchus keta (pld) [1], Oncorhynchus tshawytscha (pld) [1], 

Salmo salar (pld) [1], Salmo carpio (pld) [1], Salmo trutta trutta (pld) [1]; 

Oplegnathidae -Oplegnathus conwayi (pld) [1]; 

Polyprionidae -Polyprion oxygeneios (pld) [1]; 

Scophthalmidae -Scophthalmus maximus (pld) [1];  

Sebastidae -Sebastes norvegicus (pld) [1], Sebastes mentella (pld) [1]; 

Carangidae -Seriola lalandi (pld) [1], Trachurus murphyi (pld) [1]; 

Trachipteridae -Trachipterus arcticus (pld) [1]; 

Xiphiidae -Xiphias gladius (pld) [1,43]; 

Notacanthidae -Notacanthus sexspinis [51]; 

Chondrichthyan fishes: 

Alopiidae -Alopias vulpinus (pld) [1], Alopias superciliosus (pld) [1]; 

Carcharhinidae -Carcharhinus plumbeus (pld) [1], Prionace glauca (pld) [1,42]; 

Lamnidae -Carcharodon carcharias (pld) [1], Isurus oxyrinchus (pld) [1], Lamna 

nasus (pld) [1]; 

Somniosidae -Centroscymnus coelolepis (pld) [1], Centroscymnus owstonii (pld) 

[1], Somniosus microcephalus (pld) [1]; Somniosus pacificus (pld) [1]; 

Chlamydosechalidae -Chlamydoselachus anguineus (pld) [1]; 

Dalatiidae -Dalatias licha (pld) [1]; 

Centrophoridae -Deania calcea (pld) [1]; 

Triakidae -Galeorhinus galeus (pld) [1], Mustelus mustelus (pld) [1]; 
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Pentanchidae -Galeus melastomus (pld) [1]; 

Hexanchidae -Hexanchus griseus (pld) [1]; 

Squalidae -Squalus acanthias (pld) [1], unidentified squalid (pld) [1]; 

Torpedinidae -Tetronarce fairchildi (pld) [1]; 

Scyliorhinidae -Scyliorhinus canicula (pld) [1]; 

Cephalopods: 

Architeuthidae -Architeuthis dux (pld) [1]; 

Ommastrephidae -Illex argentinus (pld) [1], Sthenoteuthis pteropus (pld) [1], 

Todarodes angolensis (pld) [1], Dosidicus gigas (pld) [49-50]; 

Mammals: 

Hominidae -Homo sapiens (pld) [1]; 

Heterosphyriocephalus 

tergestinus 

Sphyriocephalidae Alopias vulpinus, 

Euprotomicrus bispinatus, 

Isurus oxyrinchus  

Teleosts: 

Trichiuridae -Aphanopus carbo (pld) [1], Lepidopus caudatus (pld) [1], Aphanopus 

carbo [54]; 

Bramidae -Brama brama (pld) [1], Brama dussumieri (pld) [1,56], Taractichthys 

steindachneri (pld) [1]; 

Merlucciidae -Macruronus novaezelandiae (pld) [1]; 

Carangidae -Trachurus picturatus (pld) [1]; 

Congridae -Conger conger [53]; 

Scombridae -Sarda chiliensis (pld) [55]; 

Sphyriocephalus 

dollfusi 

Sphyriocephalidae Alopias superciliosus Teleosts: 

Alepisauridae -Alepisaurus ferox (pld) [1,56]; 

Bramidae -Taractichthys steindachneri (pld) [1]; 

Scombridae -Thunnus obesus (pld) [1]; 

Sphyriocephalus viridis Sphyriocephalidae Alopias superciliosus, 

Alopias vulpinus, 

Centrophorus granulosus, 

Teleosts: 

Xiphiidae -Xiphias gladius [43];  

Alepocephalidae -Alepocephalus rostratus (pld) [1]; 

Synaphobranchidae -Synaphobranchus brevidorsalis (pld) [1]; 

Macrouridae -Trachyrincus scabrus (pld) [1]; 
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Dalatias licha, Isurus 

oxyrinchus 

Chondrichthyan fishes: 

Centrophoridae -Centrophorus granulosus (pld) [1]; 

Somniosidae -Centroscymnus coelolepis (pld) [1]; 

Dalatiidae -Dalatias licha (pld) [1]; 

Pentanchidae -Galeus melastomus (pld) [1]; 

Pseudotriakidae -Pseudotriakis microdon (pld) [1]; 

Squalidae -Squalus acanthias (pld) [1]; 

Heteronybelinia 

estigmena 

Tentaculariidae Carcharhinus 

amblyrhynchoides, 

Carcharhinus leucas, 

Carcharhinus limbatus, 

Carcharhinus obscurus, 

Prionace glauca 

Teleosts: 

Scombridae -Sarda australis (pld) [1,11], Scomberomorus maculatus (pld) [1], 

Thunnus albacares (pld) [1];  

Carangidae -Atule mate [11], Selar crumenophthalmus (pld) [1,11], Alectis 

alexandrina (pld) [1], Caranx rhonchus (pld) [1], Selene setapinnis (pld) [1], Seriola 

dumerili (pld) [1], Trachurus murphyi (pld) [1]; 

Sciaenidae Cynoscion jamaicensis (pld) [1,20], Genyonemus lineatus (pld) [1], 

Otolithes ruber (pld) [1]; 

Clupeidae -Herklotsichthys quadrimaculatus [11];  

Sphyraenidae - Sphyraena putnamae [11], Sphyraena guachancho (pld) [1];  

Trichiuridae -Trichiurus lepturus [11]; 

Coryphaenidae -Coryphaena hippurus (pld) [1,28], Coryphaena equiselis (pld) 

[1,28]; 

Monacanthidae -Aluterus monoceros (pld) [1]; 

Sparidae -Boops boops (pld) [1]; 

Bramidae -Brama dussumieri (pld) [1,56], Taractichthys steindachneri (pld) [1], 

Unidentified Bramid (pld) [1]; 

Echeneidae -Echeneis naucrates (pld) [1], Remora sp. (pld) [1]; 

Serranidae -Epinephelus fasciatus (pld) [1]; 

Fistulariidae -Fistularia tabacaria (pld) [1]; 

Haemulidae -Haemulon plumierii (pld) [1], Pomadasys incisus (pld) [1]; 

Pomatomidae -Pomatomus saltatrix (pld) [1]; 



 
 

2
0

0
 

Xiphiidae -Xiphias gladius (pld) [1]; 

Heteronybelinia 

heteromorphi 

Tentaculariidae Sphyrna mokarran Teleosts: 

Bothidae -Bothus podas (pld) [1]; 

Nemipteridae -Nemipterus furcosus (pld) [1]; 

Heteronybelinia 

nipponica 

Tentaculariidae Carcharhinus signatus, 

Sphyrna lewini 

Teleosts: 

Paralichthyidae -Paralichthys isosceles (pls) [18], Pseudorhombus pentophthalmus 

(pld) [1];  

Sciaenidae -Menticirrhus americanus (pld) [1,20], Umbrina canosai (pld) [1,20];  

Ophidiidae -Genypterus brasiliensis (pls) [22], Neobythites macrops (pld) [1]; 

Argentinidae -Argentina kagoshimae (pld) [1];  

Macrouridae -Coelorinchus caelorhincus (pld) [1]; 

Pleuronectidae -Eopsetta grigorjewi (pld) [1]; 

Sebastidae -Helicolenus dactylopterus (pld) [1]; 

Trachichthyidae -Hoplostethus mediterraneus mediterraneus (pld) [1]; 

Tetraodontidae -Sphoeroides pachygaster (pld) [1]; 

Heteronybelinia 

overstreeti 

Tentaculariidae Carcharhinus limbatus Teleosts: 

Mullidae -Pseudupeneus maculatus (pld) [1]; 

Heteronybelinia 

palliata 

Tentaculariidae Notorynchus cepedianus, 

Sphyrna zygaena 

Teleosts: 

Alepisauridae -Alepisaurus ferox (pld) [1]; 

Sciaenidae -Cynoscion regalise (pld) [1]; 

Paralichthyidae -Paralichthys dentatus (pld) [1]; 

Chondrichthyan fishes: 

Triakidae -Mustelus canis (pld) [1]; 

Heteronybelinia 

perideraeus 

Tentaculariidae Notorynchus cepedianus Teleosts: 

Leiognathidae -Secutor ruconius (pld) [1]; 

Heteronybelinia 

robusta 

Tentaculariidae Carcharhinus limbatus, 

Mustelus asterias 

Teleosts: 

Carangidae -Caranx rhonchus (pld) [1]; 

Bothidae -Chascanopsetta lugubris (pld) [1]; 
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Lophiidae -Lophiodes mutilus (pld) [1], Lophius piscatorius (pld) [1]; 

Merlucciidae -Merluccius capensis (pld) [1]; 

Polymixiidae -Polymixia nobilis (pld) [1]; 

Congridae -Bassanago albescens (pld) [1]; 

Peristediidae -Satyrichthys adeni (pld) [1]; 

Synodontidae -Saurida undosquamis (pld) [1]; 

Heteronybelinia 

yamagutii 

Tentaculariidae Carcharhinus signatus, 

Sphyrna lewini 

Teleosts: 

Trichiuridae -Aphanopus carbo [54], Benthodesmus elongatus (pld) [1]; 

Berycidae -Beryx splendens (pld) [1]; 

Macrouridae -Coelorinchus flabellispinnis (pld) [1]; 

Chaunacidae -Chaunax pictus (pld) [1]; 

Coryphaenidae -Coryphaena hippurus (pld) [1]; 

Derichthyidae -Derichthys serpentinus (pld) [1]; 

Gempylidae -Gempylus serpens (pld) [1,56], Thyrsitoides marleyi (pld) [1,56]; 

Gonostomatidae -Gonostoma elongatum (pld) [1]; 

Lycoteuthidae -Lycoteuthis springeri (pld) [1]; 

Myctophidae -Metelectrona ventralis (pld) [1]; 

Nemichthyidae -Nemichthys scolopaceus (pld) [1]; 

Derichthyidae -Nessorhamphus ingolfianus (pld) [1]; 

Sternoptychidae -Polyipnus polli (pld) [1]; 

Polymixiidae -Polymixia nobilis (pld) [1]; 

Synodontidae -Saurida undosquamis (pld) [1]; 

Tetraodontidae -Sphoeroides pachygaster (pld) [1]; 

Cephalopods: 

Ommastrephidae -Sthenoteuthis oualaniensis (pld) [1], Sthenoteuthis pteropus 

(pld) [1], Todarodes angolensis (pld) [1]; 

Loliginidae -Doryteuthis (Amerigo) pealeii (pld) [1]; 

Mixonybelinia 

californica 

Tentaculariidae Isurus oxyrinchus Teleosts: 

Pleuronectidae -Eopsetta jordani (pld) [1]; 
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Sciaenidae -Genyonemus lineatus (pld) [1]; 

Mixonybelinia 

edwinlintoni 

Tentaculariidae Sphyrna lewini, Sphyrna 

tudes 

Teleosts: 

Bothidae -Arnoglossus sp. (pld) [1]; 

Mullidae -Pseudupeneus maculatus (pld) [1]; 

Chondrichthyan fishes 

Carcharhinidae -Carcharhinus melanopterus (pld) [1], Carcharhinus sorrah (pld) 

[1];  

Rhinobatidae -Rhynchobatus djiddensis (pld) [1]; 

Mixonybelinia lepturi Tentaculariidae Alopias superciliosus, 

Sphyrna lewini 

Teleosts: 

Alepisauridae -Alepisaurus ferox (pld) [1,56]; 

Coryphaenidae -Coryphaena hippurus (pld) [1]; 

Gempylidae -Gempylus serpens (pld) [1,56], Thyrsitoides marleyi (pld) [1,56]; 

Trichiuridae -Trichiurus lepturus (pld) [1,56]; 

Bramidae -Brama dussumieri (pld) [56]; 

Cephalopods: 

Ommastrephidae -Sthenoteuthis oualaniensis (pld) [1]; 

Mixonybelinia 

southwelli 

Tentaculariidae Galeocerdo cuvier Teleosts: 

Labridae -Choerodon venustus (pld) [1,11]; 

Serranidae -Epinephelus longispinis (pld) [1]; 

Istiophoridae -Istiompax indica (pld) [1]; 

Trichiuridae -Trichiurus lepturus (pld) [1]; 

Mullidae -Upeneus sulphureus (pld) [1], Upeneus vittatus (pld) [1]; 

Nybelinia africana Tentaculariidae Alopias superciliosus, 

Carcharhinus leucas, 

Carcharhinus 

melanopterus, 

Carcharhinus obscurus, 

Mustelus canis 

Teleosts: 

Gempylidae -Gempylus serpens (pld) [1,56], Thyrsitoides marleyi (pld) [1];  

Trichiuridae -Trichiurus lepturus (pld) [1,56], Benthodesmus elongatus (pld) [1]; 

Bramidae -Brama dussumieri (pld) [1,56]; 

Alepisauridae -Alepisaurus ferox (pld) [1,56]; 

Paralepididae -Arctozenus risso (pld) [1], Lestrolepis intermedia (pld) [1]; 

Congridae -Conger cinereus (pld) [1]; 
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Coryphaenidae -Coryphaena hippurus (pld) [1]; 

Polynemidae -Galeoides decadactylus (pld) [1]; 

Mullidae -Mullus barbatus (pld) [1], Pseudupeneus maculatus (pld) [1]; 

Sparidae -Pagellus sp. (pld) [1]; 

Sternoptychidae -Polyipnus polli (pld) [1]; 

Polymixiidae -Polymixia nobilis (pld) [1]; 

Serranidae -Serranus cabrilla (pld) [1]; 

Triglidae -Trigla sp. (pld) [1]; 

Cephalopods: 

Ommastrephidae -Sthenoteuthis oualaniensis (pld) [1], Todarodes angolensis (pld) 

[1]; 

Nybelinia anthicosum Tentaculariidae Heterodontus francisci, 

Prionace glauca, Triakis 

semifasciata 

Teleosts: 

Embiotocidae -Amphistichus rhodoterus (pld) [1], Cymatogaster aggregata (pld) 

[1], Hyperprosopon argenteum (pld) [1], Rhacochilus vacca (pld) [1]; 

Sciaenidae -Genyonemus lineatus (pld) [1]; 

Pleuronectidae -Glyptocephalus zachirus (pld) [1], Lyopsetta exilis (pld) [1]; 

Paralichthyidae -Paralichthys californicus (pld) [1]; 

Cottidae -Scorpaenichthys marmoratus (pld) [1]; 

Chondrichthyan fishes: 

Squalidae -Squalus acanthias (pld) [1]; 

Nybelinia gopalai Tentaculariidae Sphyrna lewini, Sphyrna 

zygaena 

Teleosts: 

Macrouridae -Coelorinchus flabellispinnis (pld) [1], Ventrifossa nasuta [1]; 

Hoplichthyidae -Hoplichthys acanthopleurus (pld) [1]; 

Peristediidae -Satyrichthys adeni (pld) [1], Satyrichthys welchi (pld) [1]; 

Synodontidae -Saurida undosquamis (pld) [1]; 

Nybelinia goreensis Tentaculariidae Sphyrna lewini Teleosts: 

Lethrinidae -Lethrinus genivittatus [11], Lethrinus rubrioperculatus [11];  

Nemipteridae -Nemipterus furcosus (pld) [1,11];  
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Mullidae - Parupeneus barberinus [11], Parupeneus multifasciatus [11], Upeneus 

vittatus (pld) [1]; 

Paralichthyidae -Pseudorhombus arsius (pld) [1], Pseudorhombus dupliciocellatus 

(pld) [1]; 

Nybelinia indica Tentaculariidae Alopias superciliosus, 

Carcharhinus leucas, 

Carcharhinus limbatus, 

Rhizoprionodon acutus 

Teleosts: 

Carangidae -Caranx sexfasciatus [11], Alepes djedaba (pld) [1], Selar 

crumenophthalmus (pld) [1];  

Diodontidae -Diodon hystrix (pld) [1,11], Diodon liturosus (pld) [1];  

Tetraodontidae -Lagocephalus sceleratus [11];  

Leiognathidae -Leiognathus fasciatus [11];  

Nemipteridae - Nemipterus furcosus [11], Nemipterus japonicus (pld) [1]; 

Polynemidae -Eleutheronema tetradactylum [16]; 

Gempylidae -Gempylus serpens (pld) [1,56]; 

Balistidae -Balistes capriscus (pld) [1]; 

Congridae -Conger cinereus (pld) [1]; 

Coryphaenidae -Coryphaena hippurus (pld) [1]; 

Serranidae - Epinephelus coioides (pld) [1], Epinephelus tauvina (pld) [1]; 

Istiophoridae -Istiophorus platypterus (pld) [1], Istiompax indica (pld) [1]; 

Latidae -Lates calcarifer (pld) [1]; 

Sciaenidae -Pennahia anea (pld) [1]; 

Platycephalidae- Platycephalus indicus (pld) [1]; 

Sternoptychidae -Polyipnus polli (pld) [1]; 

Priacanthidae -Priacanthus hamrur (pld) [1]; 

Paralichthyidae -Pseudorhombus dupliciocellatus (pld) [1]; 

Mullidae -Pseudupeneus maculatus (pld) [1], Upeneus japonicus (pld) [1], Upeneus 

sulphureus (pld) [1], Upeneus tragula (pld) [1], Upeneus vittatus (pld) [1]; 

Synodontidae -Saurida undosquamis (pld) [1], Trachinocephalus myops (pld) [1]; 

Scombridae -Scomberomorus commerson (pld) [1]; 

Trichiuridae -Trichiurus lepturus (pld) [1]; 
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Cephalopods: 

Ommastrephidae -Sthenoteuthis pteropus (pld) [1]; 

Nybelinia 

jayapaulazariahi 

Tentaculariidae Rhizoprionodon 

terraenovae 

Teleosts: 

Cynoglossidae -Cynoglossus sp. (pld) [1]; 

Synodontidae -Harpadon nehereus (pld) [1]; 

Soleidae -Synclidopus macleayanus (pld) [1], Brachirus niger (pld) [1]; 

Nybelinia lingualis Tentaculariidae Carcharhinus leucas, 

Carcharhinus limbatus, 

Carcharhinus 

melanopterus, 

Carcharhinus obscurus, 

Carcharhinus plumbeus, 

Carcharodon carcharias, 

Hexanchus griseus, Isurus 

oxyrinchus, Mustelus 

canis, Mustelus schmitti, 

Notorynchus cepedianus, 

Scyliorhinus canicula 

Teleosts: 

Paralichthyidae -Paralichthys isosceles (pld) [18], Paralichthys californicus (pld) 

[1]; 

Trichiuridae -Aphanopus carbo (pld) [1,54], Lepidopus caudatus (pld) [1]; 

Bothidae -Arnoglossus imperialis (pld) [1]; 

Berycidae -Beryx splendens (pld) [1]; 

Bramidae -Brama japonica (pld) [1], Unidentified Bramid (pld) [1]; 

Triglidae -Eutrigla gurnardus (pld) [1], Chelidonichthys lucerna (pld) [1], Trigla lyra 

(pld) [1]; 

Congridae -Conger conger (pld) [1]; 

Embiotocidae -Cymatogaster aggregata (pld) [1]; 

Sciaenidae -Cynoscion leiarchus (pld) [1], Genyonemus lineatus (pld) [1]; 

Ammodytidae -Hyperoplus lanceolatus (pld) [1]; 

Merlucciidae -Merluccius bilinearis (pld) [1]; 

Soleidae -Microchirus variegatus (pld) [1], Pegusa lascaris (pld) [1]; 

Mullidae -Mullus barbatus (pld) [1], Mullus surmuletus (pld) [1], Pseudupeneus 

maculatus (pld) [1]; 

Salmonidae -Oncorhynchus gorbuscha (pld) [1], Oncorhynchus keta (pld) [1]; 

Phycidae -Phycis blennoides (pld) [1]; 

Batrachoididae -Porichthys porosissimus (pld) [1]; 

Scombridae -Sarda sarda (pld) [1], Scomber scombrus (pld) [1], Thunnus thynnus 

(pld) [1]; 

Cottidae -Scorpaenichthys marmoratus (pld) [1]; 
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Centracanthidae -Spicara smaris (pld) [1]; 

Tetraodontidae -Torquigener pleurogramma (pld) [1]; 

Carangidae -Trachurus capensis (pld) [1], Trachurus murphyi (pld) [1], Trachurus 

picturatus (pld) [1,57], Trachurus trachurus (pld) [1]; 

Chondrichthyan fishes: 

Rajidae -Zearaja nasuta (pld) [1], Raja sp. (pld) [1]; 

Arhynchobatidae -Sympterygia bonapartii (pld) [1]; 

Scyliorhinidae -Scyliorhinus canicula (pld) [1]; 

Carcharhinidae -Prionace glauca (pld) [1]; 

Cephalopods: 

Eledonidae -Eledone cirrhosa (pld) [1], Eledone moschata (pld) [1]; 

Ommastrephidae -Eucleoteuthis luminosa (pld) [1], Ommastrephes bartramii (pld) 

[1], Sthenoteuthis oualaniensis (pld) [1], Sthenoteuthis pteropus (pld) [1], 

Todarodes angolensis (pld) [1], Todaropsis eblanae (pld) [1]; 

Loliginidae -Loligo vulgaris (pld) [1]; 

Octopodidae -Octopus vulgaris (pld) [1]; 

Sepiidae -Sepia elegans (pld) [1,58], Sepia officinalis (pld) [1]; 

Nybelinia pinteri Tentaculariidae Prionace glauca Teleosts: 

Paralichthyidae -Paralichthys olivaceus (pld) [1]; 

Nybelinia 

queenslandensis 

Tentaculariidae Carcharhinus 

melanopterus 

Teleosts: 

Nemipteridae -Nemipterus furcosus [11];  

Apogonidae - Ostorhinchus cookie [11], Ostorhinchus properuptus [11]; 

Nybelinia strongyla Tentaculariidae Sphyrna tudes Teleosts: 

Sciaenidae -Johnius borneensis (pld) [1,11], Argyrosomus hololepidotus (pld) [1];  

Tetraodontidae -Sphoeroides pachygaster (pld) [1]; 

Nybelinia syngenes Tentaculariidae Sphyrna zygaena Teleosts: 

Scorpaenidae -Dendrochirus zebra (pld) [1]; 

Chondrichthyan fishes: 

Sphyrnidae -Sphyrna zygaena (pld) [1]; 



 
 

2
0

7
 

Nybelinia thyrsites Tentaculariidae Carcharhinus brachyurus, 

Carcharhinus longimanus, 

Galeorhinus galeus 

Teleosts: 

Trichiuridae -Aphanopus carbo [54], Lepidopus caudatus (pld) [1]; 

Arripidae -Arripis truttacea (pld) [1]; 

Gempylidae -Thyrsites atun (pld) [1]; 

Carangidae -Trachurus declivis (pld) [1], Trachurus novaezelandiae (pld) [1]; 

Zeidae -Zeus faber (pld) [1]; 

Chondrichthyan fishes: 

Squalidae -Squalus sp. (pld) [1]; 

Tentacularia 

coryphaenae 

Tentaculariidae Carcharhinus 

galapagensis, 

Carcharhinus limbatus, 

Carcharhinus 

melanopterus, 

Carcharhinus obscurus, 

Carcharhinus plumbeus, 

Carcharodon carcharias, 

Galeocerdo cuvier, 

Prionace glauca, 

Rhizoprionodon acutus, 

Sphyrna zygaena 

Teleosts: 

Ophidiidae -Genypterus brasiliensis (pls) [22]; 

Coryphaenidae -Coryphaena hippurus (pld) [1,28,61], Coryphaena equiselis (pld) 

[1,28]; 

Trichiuridae -Aphanopus carbo (pld) [1,54], Trichiurus lepturus (pld) [1,56]; 

Scombridae -Sarda chiliensis (pld) [1,55], Sarda sarda (pld) [1], Acanthocybium 

solandri (pld) [1], Euthynnus affinis (pld) [1], Euthynnus alletteratus (pld) [1], 

Katsuwonis pelamis (pld) [1], Orcynopsis unicolor (pld) [1], Scomber japonicus (pld) 

[1], Scomber scombrus (pld) [1], Scomberomorus cavalla (pld) [1], Scomberomorus 

commerson (pld) [1], Scomberomorus guttatus (pld) [1], Thunnus alalunga (pld) 

[1], Thunnus albacares (pld) [1], Unidentified bonito (pld) [1]; 

Gempylidae -Gempylus serpens (pld) [1,56], Thyrsitoides marleyi (pld) [1,56], 

Lepidocybium flavobrunneum (pld) [1], Ruvettus pretiosus (pld) [1], Thyrsites atun 

(pld) [1,62]; 

Bramidae -Brama dussumieri (pld) [1,56], Brama brama (pld) [1], Taractichthys 

steindachneri (pld) [1]; 

Alepisauridae -Alepisaurus ferox (pld) [1,56]; 

Sciaenidae -Atractoscion aequidens (pld) [1]; 

Centropomidae -Centropomus nigrescens (pld) [1]; 

Stomiidae -Chauliodus sloani (pld) [1], Stomias boa (pld) [1]; 

Chaunacidae -Chaunax pictus (pld) [1]; 
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Carangidae -Decapterus sp. (pld) [1], Scomberoides commersonnianus (pld) [1], 

Seriola dumerili (pld) [1], Trachurus capensis (pld) [1], Trachurus murphyi (pld) [1], 

Trachurus picturatus (pld) [1], Trachurus declivis (pld) [1], Unidentified Carangid 

(pld) [1]; 

Echeneidae -Echeneis naucrates (pld) [1], Remora remora (pld) [1]; 

Gadidae -Gadus morhua (pld) [1]; 

Pleuronectidae -Hippoglossus hippoglossus (pld) [1]; 

Trachichthyidae -Hoplostethus atlanticus (pld) [1]; 

Lampridae -Lampris guttatus (pld) [1]; 

Lobotidae -Lobotes surinamensis (pld) [1]; 

Lophiidae -Lophius piscatorius (pld) [1]; 

Merlucciidae -Macruronus novaezelandiae (pld) [1], Merluccius capensis (pld) [1], 

Merluccius gayi gayi (pld) [1], Merluccius gayi peruanus (pld) [1]; 

Salmonidae -Oncorhynchus tshawytscha (pld) [1], Salmo salar (pld) [1]; 

Paralichthyidae -Paralichthys dentatus (pld) [1]; 

Nomeidae -Psenes cyanophrys (pld) [1]; 

Polynemidae -Polydactylus opercularis (pld) [1]; 

Polyprionidae -Polyprion oxygeneios (pld) [1];  

Rachycentridae -Rachycentron canadum (pld) [1];  

Peristediidae -Satyrichthys adeni (pld) [1]; 

Sternoptychidae -Sternoptyx diaphana (pld) [1]; 

Istiophoridae -Kajikia albida (pld) [1]; 

Cyprinidae -Tinca tinca (pld) [1]; 

Xiphiidae -Xiphias gladius (pld) [1,60]; 

Clupeidae -Sardinops sagax (pld) [59]; 

Chondrichthyan fishes: 

Carcharhinidae -Carcharhinus obscurus (pld) [1], Galeocerdo cuvier (pld) [1]; 

Centrophoridae -Centrophorus moluccensis (pld) [1], Deania calcea (pld) [1], 

Deania profundorum (pld) [1]; 
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Somniosidae -Centroscymnus coelolepis (pld) [1]; 

Rajidae -Raja sp. (pld) [1], Rajella caudaspinosa (pld) [1]; 

Rhinobatidae -Rhynchobatus sp. (pld) [1]; 

Hexanchidae -Heptranchias perlo (pld) [1]; 

Cephalopods: 

Ommastrephidae -Dosidicus gigas (pld) [1,49-50,63], Illex illecebrosus (pld) [1], 

Ommastrephes bartramii (pld) [1,64], Sthenoteuthis pteropus (pld) [1], 

Sthenoteuthis oualaniensis (pld) [1], Todarodes angolensis (pld) [1]; 

Sepiidae -Sepia unguiculata (pld) [1]; 

Reptiles: 

Cheloniidae -Chelonia mydas (pld) [1]; 

 
 
  



 
 

2
1

0
 

References:  
 
1. Palm, H. W. (2004). The trypanorhyncha diesing, 1863. PKSPL-IPB. 
2. Gurney, R. H., Nowak, B. F., Dykova, I., & Kuris, A. M. (2004). Histopathological effects of trypanorhynch metacestodes in the digestive gland of a novel  
  host, Carcinus maenas (Decapoda). Diseases of aquatic organisms, 58(1), 63-69.  
3. Gurney, R. H., Johnston, D. J., & Nowak, B. F. (2006). The effect of parasitism by trypanorhynch plerocercoids (Cestoda, Trypanorhyncha) on the  
  digestive enzyme activity of Carcinus maenas (Linnaeus, 1758)(Decapoda, Portunidae). Crustaceana, 79(6), 663-675. 
4. Muscolino, D., Giarratana, F., Giuffrida, A., & Panebianco, A. (2012). Inspective Investigation on Swordfish (Xiphias gladius) frozen Slices of Commerce:  
  Anatomical-Histopatological Findings. Czech Journal of Food Science, 30(3). 
5. Giarratana, F., Muscolino, D., Beninati, C., Ziino, G., Giuffrida, A., Trapani, M., & Panebianco, A. (2014). Gymnorhynchus gigas in Lepidopus caudatus  
  (Actinopterygii: Perciformes: Trichiuridae): Prevalence and Related Effects on Fish Quality. Czech Journal of Food Science, 32(4). 
6. Gòmez-Morales, M. A., Ludovisi, A., Giuffra, E., Manfredi, M. T., Piccolo, G., & Pozio, E. (2008). Allergenic activity of Molicola horridus (Cestoda,  
  Trypanorhyncha), a cosmopolitan fish parasite, in a mouse model. Veterinary parasitology, 157(3), 314-320. 
7. Fernández, I., Oyarzún, C., Valenzuela, A., Burgos, C., Guaquín, V., & Campos, V. (2016). Parásitos del pez luna Mola mola (Pisces: Molidae). Primer  
  registro en aguas de la costa centro sur de Chile. Gayana (Concepción), 80(2), 192-197. 
8. Nunkoo, M. A. I., Reed, C. C., & Kerwath, S. E. (2016). Community ecology of the metazoan parasites of snoek Thyrsites atun (Euphrasen,  
  1791)(Perciformes: Gempylidae) off South Africa. African Journal of Marine Science, 38(3), 363-371. 
9. Abdelsalam, M., Abdel-Gaber, R., Mahmoud, M. A., Mahdy, O. A., Khafaga, N. I., & Warda, M. (2016). Morphological, molecular and pathological  
  appraisal of Callitetrarhynchus gracilis plerocerci (Lacistorhynchidae) infecting Atlantic little tunny (Euthynnus alletteratus) in Southeastern  
  Mediterranean. Journal of advanced research, 7(2), 317-326. 
10. Haseli, M., Azimi, S., & Valinasab, T. (2016). Microthrix pattern of Pseudogilquinia thomasi (Palm, 2000) (Cestoda: Trypanorhyncha) and a review of  
  surface ultrastructure within the family Lacistorhynchidae Guiart, 1927. Journal of morphology, 277(3), 394-404. 
11. Beveridge, I., Bray, R. A., Cribb, T. H., & Justine, J. L. (2014). Diversity of trypanorhynch metacestodes in teleost fishes from coral reefs off eastern  
  Australia and New Caledonia. Parasite, 21, 60.  
12. Pereira, A. N., Pantoja, C., Luque, J. L., & Timi, J. T. (2014). Parasites of Urophycis brasiliensis (Gadiformes: Phycidae) as indicators of marine  
  ecoregions in coastal areas of the South American Atlantic. Parasitology research, 113(11), 4281-4292. 
13. Shohreh, P., Mousavi, H. E., Soltani, M., Mobedi, I., Ghadam, M., & Mood, S. M. (2014). Trypanorhych cestodes of the tiger tooth croaker (Otolithes 
   ruber) in the Persian Gulf. Bulletin of the European Association of Fish Pathologists, 34(4), 109.  



 
 

2
1

1
 

14. Carvalho, A. R., & Luque, J. L. (2011). Seasonal variation in metazoan parasites of Trichiurus lepturus (Perciformes: Trichiuridae) of Rio de Janeiro,  
  Brazil. Brazilian Journal of Biology, 71(3), 771-782. 
15. Haseli, M., Malek, M., Valinasab, T., & Palm, H. W. (2011). Trypanorhynch cestodes of teleost fish from the Persian Gulf, Iran. Journal of  
  Helminthology, 85(2), 215-224.  
16. Zischke, M. T., Cribb, T. H., Welch, D., Sawynok, W., & Lester, R. J. G. (2009). Stock structure of blue threadfin Eleutheronema tetradactylum on the  
  Queensland east coast, as determined by parasites and conventional tagging. Journal of Fish Biology, 75(1), 156-171. 
17. Abdou, N. S., & Palm, H. W. (2008). New record of two genera of Trypanorhynch cestodes infecting Red Sea fishes in Egypt. Journal of the Egyptian  
  Society of Parasitology, 38(1), 281-292.  
18. Felizardo, N. N., Torres, E. J. L., Fonseca, M. C. G., Pinto, R. M., Gomes, D. C., & Knoff, M. (2010). Cestodes of the flounder Paralichthys isosceles  
  Jordan, 1890 (Osteichthyes-Paralichthyidae) from the state of Rio de Janeiro, Brazil. Neotropical Helminthology, 4(2), 113-125. 
19. de Freitas Ferreira, M., de São Clemente, S. C., Tortelly, R., de Lima, F. C., do Nascimento, E. R., de Oliveira, G. A., & de Resende Lima, A. (2006).  
  Parasitas da ordem Trypanorhyncha: sua importância na inspeção sanitária do pescado. Revista Brasileira de Ciência Veterinária, 13(3), 190-193. 
20. Pereira Junior, J., & Boeger, W. A. P. (2005). Larval tapeworms (Platyhelminthes, Cestoda) from sciaenid fishes of the southern coast of Brazil.  
  Zoosystema, 27(1), 5-25. 
21. Williams, R. E., & Lester, R. J. G. (2006). Stock structure of Spanish mackerel Scomberomorus commerson along the Australian east coast deduced from  
  parasite data. Journal of Fish Biology, 68(6), 1707-1712. 
22. São Clemente, S. C., Knoff, M., Padovani, R. E., Lima, F. C., & Gomes, D. C. (2004). Cestóides Trypanorhyncha parasitos de  
  Congro-rosa, Genypterus brasiliensis Regan, 1903 comercializados nos municípios de Niterói e Rio de Janeiro, Brasil. Revista Brasileira de 
   Parasitologia Veterinária, 13(3), 97-102. 
23. Knoff, M. F., Nilza N. G., Delir C. C., Sergio C. (2016). Callitetrarhynchus speciosus (linton, 1897) carvajal & rego, 1985 trypanorhyncha (cestoda)  
  parasitizing priacanthus arenatus (cuvier, 1829) (osteichthyes, priacanthidae) from Rio de Janeiro coast, Brazil. Neotropical Helminthology, 10(1),  
  33-40. 
24. Dias, F. D. J. E., São Clemente, S. C. D., & Knoff, M. (2010). Larvae of Anisakidae nematodes and Trypanorhyncha cestodes of public health importance  
  in Aluterus monoceros (Linnaeus, 1758) in Rio de Janeiro State, Brazil. Revista Brasileira de Parasitologia Veterinária, 19(2), 94-97. 
25. Rizwana, A. G., Khatoon, N., & Bilqees, F. M. (2009). Studies on the infestation in relation to sex of the host fish Lutjanus argentimaculatus (Forsk., 
   1775). International Journal of Biology and Biotechnology, 6(1-2), 71-74. 
26. Abdou, E. N. (2005). Scanning electron microscopy of the plerocercoids of Floriceps minacanthus (Cestoda: Trypanorhyncha) parasitize the fish  
  Cephalopholis micri, a new host record in the Red Sea–Egypt. Journal of the Egyptian German Society of Zoology, 47, 133-145. 



 
 

2
1

2
 

27. Abdou, N. (2005). Transmission electron microscope study of plerocercoids of two Floriceps spp. (Cestoda: Trypanorhyncha) infecting certain fishes in  
  the Red Sea. Journal of Union of Arab Biologists, 24, 83-97.  
28. Williams Jr, E. H., & Bunkley-Williams, L. (2009). Checklists of the parasites of dolphin, Coryphaena hippurus, and pompano dolphin, C. equiselis with  
  new records, corrections, and comments on the literature. Reviews in Fisheries Science, 18(1), 73-93. 
29. Beveridge, I., & Campbell, R. A. (2013). A new species of Grillotia Guiart, 1927 (Cestoda: Trypanorhyncha) with redescriptions of congeners and new  
  synonyms. Systematic parasitology, 85(2), 99-116. 
30. Özer, A., Kornyychuk, Y. M., Öztürk, T., & Yurakhno, V. (2015). Comparative Study on Parasite Fauna of the Whiting Merlangius merlangus in the 
   Northern and Southern Zones of the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 15(2), 283-291. 
31. Özer, A., Öztürk, T., Kornyushin, V. V., Kornyychuk, Y., & Yurakhno, V. (2014). Grillotia erinaceus (van Beneden, 1858)(Cestoda: Trypanorhyncha)  
  from whiting in the Black Sea, with observations on seasonality and host-parasite interrelationship. Acta Parasitologica, 59(3), 420-425. 
32. Brown, J., Brickle, P., & Scott, B. E. (2013). The parasite fauna of the Patagonian toothfish Dissostichus eleginoides off the Falkland Islands. Journal of  
  helminthology, 87(4), 501-509. 
33. Brickle, P., & MacKenzie, K. (2007). Parasites as biological tags for Eleginops maclovinus (Teleostei: Eleginopidae) around the Falkland Islands. Journal  
  of Helminthology, 81(2), 147-153. 
34. Brickle, P., MacKenzie, K., & Pike, A. (2006). Variations in the parasite fauna of the patagonian toothfish (Dissostichus eleginoides smitt, 1898), with  
  length, season, and depth of habitat around the falkland islands. Journal of Parasitology, 92(2), 282-291. 
35. Hogue, C., & Swig, B. (2007). Habitat quality and endoparasitism in the Pacific sanddab Citharichthys sordidus from Santa Monica Bay, southern  
  California. Journal of Fish Biology, 70(1), 231-242. 
36. Courtney-Hogue, C. (2016). Heavy metal accumulation in Lacistorhynchus dollfusi (Trypanorhyncha: Lacistorhynchidae) infecting Citharichthys  
  sordidus (Pleuronectiformes: Bothidae) from Santa Monica Bay, southern California. Parasitology, 143(6), 794-799. 
37. Campbell, N., Cross, M. A., Chubb, J. C., Cunningham, C. O., Hatfield, E. M., & MacKenzie, K. (2007). Spatial and temporal variations in parasite  
  prevalence and infracommunity structure in herring (Clupea harengus L.) caught to the west of the British Isles and in the North and Baltic Seas:  
  implications for fisheries science. Journal of helminthology, 81(2), 137-146. 
38. Cruces, C., Chero, J., Iannacone, J., Sáez, G., & Alvariño, L. (2017). Community of endohelminth parasites of yellowmouth blenny labrisomus philippii  
  (steindachner, 1866) (perciformes: labrisomidae) from the central coast of peru. The Biologist (Lima), 13(1), 91-109. 
39. Costa, G., Khadem, M., Silva, S., Moreira, E. M., & Amélio, S. D. (2013). Endohelminth parasites of the blacktail comber Serranus atricauda (Pisces:  
  Serranidae), from Madeira Archipelago (Atlantic Ocean). Diseases of aquatic organisms, 103(1), 55-64. 



 
 

2
1

3
 

40. Schaeffner, B. C., & Beveridge, I. (2013). Redescriptions and new records of species of Otobothrium Linton, 1890 (Cestoda: Trypanorhyncha).  
  Systematic parasitology, 84(1), 17-55. 
41. Oliveira, S., São Clemente, S., Benigno, R., & Knoff, M. (2009). Poecilancistrium caryophyllum (Diesing, 1850)(Cestoda,  
  Trypanorhyncha), parasite of Macrodon ancylodon (Bloch & Schneider, 1801) from the Northern littoral of Brazil. Revista Brasileira de 
  Parasitologia Veterinária, 18(4), 71-73. 
42. Borucinska, J. D., & Bogicevic, T. (2004). Gastric polyp in a wild-caught blue shark. Journal of Aquatic Animal Health, 16(1), 39-44. 
43. Mattiucci, S., Garcia, A., Cipriani, P., Santos, M. N., Nascetti, G., & Cimmaruta, R. (2014). Metazoan parasite infection in the swordfish, Xiphias gladius,  
  from the Mediterranean Sea and comparison with Atlantic populations: implications for its stock characterization. Parasite, 21, 35. 
44. Oliva, M. E., Espinola, J. F., & Ñacari, L. A. (2016). Metazoan parasites of Brama australis from southern Chile: a tool for stock discrimination?. Journal 
   of fish biology, 88(3), 1143-1148. 
45. Torres, P., Puga, S., Castillo, L., Lamilla, J., & Miranda, J. C. (2014). Helmintos, myxozoos y microsporidios en músculos de peces comercializados  
  frescos y su importancia como riesgo potencial para la salud humana en la ciudad de Valdivia, Chile. Archivos de medicina veterinaria, 46(1), 83-92. 
46. MacKenzie, K., Brickle, P., Hemmingsen, W., & George-Nascimento, M. (2013). Parasites of hoki, Macruronus magellanicus, in the Southwest Atlantic  
  and Southeast Pacific Oceans, with an assessment of their potential value as biological tags. Fisheries research, 145, 1-5. 
47. Chávez, R. A., González, M. T., Oliva, M. E., & Valdivia, I. M. (2012). Endoparasite fauna of five Gadiformes fish species from the coast of Chile: host  
  ecology versus phylogeny. Journal of helminthology, 86(1), 10-15. 
48. Oliva, M. E., Fernández, I., Oyarzún, C., & Murillo, C. (2008). Metazoan parasites of the stomach of Dissostichus eleginoides Smitt 1898 (Pisces:  
  Notothenidae) from southern Chile: A tool for stock discrimination?. Fisheries Research, 91(2), 119-122. 
49. Pardo-Gandarillas, M. C., Lohrmann, K. B., Valdivia, A. L., & Ibáñez, C. M. (2009). First record of parasites of Dosidicus gigas (d'Orbigny,  
  1835)(Cephalopoda: Ommastrephidae) from the Humboldt Current system off Chile. Revista de Biología Marina y Oceanografía, 44(2), 397-408 
50. Céspedes, R. E., Iannacone, J., & Salas, A. (2011). Helmintos parásitos de Dosidicus gigas" Pota" eviscerada en Arequipa, Perú. Ecología  
  Aplicada, 10(1), 1-11. 
51. Pardo-Gandarillas, M. C., González, K., Ibáñez, C. M., & George-Nascimento, M. (2008). Parasites of two deep-sea fish Coelorynchus chilensis (Pisces:  
  Macrouridae) and Notacanthus sexspinis (Pisces: Notacanthidae) from Juan Fernández Archipelago, Chile. Marine Biodiversity Records, 1, 1-5. 
52. Mladineo, I. (2006). Hepatoxylon trichiuri (Cestoda: Trypanorhyncha) plerocercoids in cage-reared northern bluefin tuna, Thunnus thynnus (Osteichthyes: 
   Scombridae). ACTA adriatica, 47(1), 79-83. 
53. Costa, G., Santos, M. J., Costa, L., Biscoito, M., de Carvalho, M. A. P., & Melo-Moreira, E. (2009). Helminth parasites from the stomach of conger eel,  
  Conger conger, from Madeira Island, Atlantic Ocean. Journal of Parasitology, 95(4), 1013-1015. 



 
 

2
1

4
 

54. Santos, M. J., Saraiva, A., Cruz, C., Eiras, J. C., Hermida, M., Ventura, C., & Soares, J. P. (2009). Use of parasites as biological tags in stock  
  identification of the black scabbardfish, Aphanopus carbo Lowe, 1839 (Osteichthyes: Trichiuridae) from Portuguese waters. Scientia Marina, 73(S2),  
  55-62. 
55. Chero, J., Sáez, G., Iannacone, J., Cruces, C., Alvariño, L., & Luque, J. (2016). Ecología Comunitaria de Metazoos Parásitos del Bonito Sarda chiliensis  
  Cuvier, 1832 (Perciformes: Scombridae) de la Costa Peruana. Revista de Investigaciones Veterinarias del Perú, 27(3), 539-555. 
56. Jakob, E., & Palm, H. W. (2006). Parasites of commercially important fish species from the southern Java coast, Indonesia, including the distribution  
  pattern of trypanorhynch cestodes. Verhandlungen der Gesellschaft fr Ichthyologie, 5, 165-191.  
57. Costa, G., Melo-Moreira, E., & de Carvalho, M. P. (2012). Helminth parasites of the oceanic horse mackerel Trachurus picturatus Bowdich 1825 (Pisces:  
  Carangidae) from Madeira Island, Atlantic Ocean, Portugal. Journal of helminthology, 86(3), 368-372. 
58. Bello, G. (2004). Sepia elegans (Cephalopoda: Sepiidae): a new host record for the parasite Nybelinia lingualis (Cestoda: Tentaculariidae). Atti della  
  Società italiana di scienze naturali e del museo civico di storia naturale di Milano, 145(1), 225-228. 
59. Reed, C., MacKenzie, K., & Van der Lingen, C. D. (2012). Parasites of South African sardines, Sardinops sagax, and an assessment of their potential as  
  biological tags. Bulletin of the European Association of Fish Pathologists, 32(2), 41-48. 
60. Muñoz G., García N. and Valdebenito V. (2012). Gastric helminths in the swordfish Xiphias gladius collected off the 
  coast of central-south Chile. XI European Multicolloquium of Parasitology, 11, 55-58. 
61. da Silva, A. M., Clemente, S. D. S., da Fonseca, M. C. G., Gomes, D. C., Justo, M. C. N., & Knoff, M. (2017). Morphological characters and hygienic- 
  sanitary significance of Tentacularia coryphaenae in Coryphaena hippurus from Brazil. Boletim do Instituto de Pesca, 43(2), 266-273. 
62. Nunkoo, M. A. I., Reed, C. C., & Kerwath, S. E. (2016). Community ecology of the metazoan parasites of snoek Thyrsites atun (Euphrasen,  
  1791)(Perciformes: Gempylidae) off South Africa. African Journal of Marine Science, 38(3), 363-371. 
63. Iannacone, J. & Alvariño, L. (2009). Catastre of endoparasite fauna of jumbo flying squid Dosidicus gigas (Cephalopoda) in the north of Peru.|Catastro de  
  la fauna endoparasitaria de la pota Dosidicus gigas (Cephalopoda) en el norte del Peru. Neotropical Helminthology, 2009, 3(2), 89-100. 
64. Nigmatullin, C. M., Shchetinnikov, A. S., & Shukhgalter, O. A. (2009). On feeding and helminth fauna of neon flying squid Ommastrephes bartramii  
  (Lesueur, 1821)(Cephalopoda: Ommastrephidae) in the southeastern Pacific. Revista de Biología Marina y Oceanografía, 44(1). 
 


