

Pacific Highway NH2U Threatened Flora Monitoring Year 3 April 2020

Threatened Flora Monitoring – 2019/20

Transport for NSW | June 2020 | Final Report version 3

Pacific Highway Upgrade - Nambucca Heads to Urunga Operational Phase Threatened Flora Monitoring Year 3 Annual Report

This report, Pacific Highway Upgrade Nambucca Heads to Urunga Operational Phase - Threatened Flora Monitoring Year 3 Annual Report, was prepared for Transport for NSW (formerly NSW Roads and Maritime Services) in accordance with the NSW Environmental Planning and Assessment Act 1979, the NSW Biodiversity Conservation Act 2016 and the Commonwealth Environmental Protection and Biodiversity Conservation Act 1999.

The author of this report is Peter Richards, Consultant Ecologist, whose qualifications are B.Sc. (UNE).

Any opinion expressed in this report is the professional, objective opinion of the author.

June 2020

Title Page Images

of Robs

Top: Spider Orchid *Dendrobium melaleucaphilum* – a wild plant within Translocation Area 2.

Bottom: Sector A Slender Marsdenia *Marsdenia longiloba* recipient site within Translocation Area 1.

Images taken by Peter Richards, February 2020.

Title Page Images	
TABLES	5
FIGURES	5
GLOSSARY	6
INTRODUCTION	
In situ flora populations	
Translocated Flora Species	
Translocated Fiora Species	·
Translocation Area 1	
Translocation Area 2	_
Objectives of translocation	
MONITORING METHODS	
Condition Class Scores	
Data Analysis	
YEAR 1 MONITORING RESULTS AND RECOMMENDATIONS	
YEAR 2 MONITORING RESULTS AND RECOMMENDATIONS	
DELAY IN YEAR 3 MONITORING SURVEYS	
RESULTS – IN SITU FLORA MONITORING	15
Spider Orchid	15
Slender Marsdenia	_
Gully Ironbark	
RESULTS - TRANSLOCATED FLORA MONITORING	17
Slender Marsdenia	17
Sector A	17
Sector F	
Sector J	
Woolls's Tylophora	
Sector B	_
Rusty Plum	
Translocated Rusty Plums	
Rusty Plum enhancement plantings	
Red Bopple Nut	
Spider Orchid	
DISCUSSION	
Evaluation of in situ Flora Management	
Spider Orchid	
Slender Marsdenia	
Gully Ironbark	
Evaluation of Flora Translocation Program	
Woolls's Tylophora	
Rusty Plum transplants	
Rusty Plum enhancement plantings	
Spider Orchid	
RECOMMENDED 12 MONTH WORK PLAN	
REFERENCES	
APPENDIX 1	
Monitoring Results – all in situ flora February 2020	
Snider Orchid in situ	26

Slender Marsdenia and Gully Ironbark in situ	28
APPENDIX 2	29
Monitoring Results – All Translocated Flora February 2020	29
Slender Marsdenia - Sector A transplants	29
Slender Marsdenia - Sector F transplants	
Slender Marsdenia - Sector J transplants	
Woolls's Tylophora - Sector B transplants	
Rusty Plum & Red Bopple Nut transplants	
Rusty Plum Enhancement Plantings	
Spider Orchid transplants – TA2	
APPENDIX 3	41
Year 3 Recommended 12 month Work Plan – Tasks and Proposed Methods	41
TABLES	
Table 1:Number and location of translocated plants and enhancement plantings at NH2U Translocation Areas	10
Table 2: Monitoring data recorded for each translocated species.	
Table 3: Condition scores applied to Slender Marsdenia and Woolls's Tylophora	
Table 4: Condition scores applied to Siender Warsderna and Woolis's Tylophora	
Table 5: Condition scores applied to Nusty Fluir and Neu Bopple Nut	
Table 6: Summary of monitoring results for in situ Spider Orchids.	
Table 7: Slender Marsdenia in TA1 Sector A - mean height in centimetres and percent survival of	. 13
transplants – all surveys.	17
Table 8: Slender Marsdenia in TA1 Sector F - mean height in centimetres and percent survival of	,
transplants	. 17
Table 9: Slender Marsdenia in TA1 Sector J - mean height in centimetres and percent survival of	
transplants	. 18
Table 10: Woolls's Tylophora in TA1 Sector B - mean height in centimetres and percent survival of	
transplants	. 18
Table 11: Summary of monitoring results for Spider Orchid transplants at TA2	21
Table 12: Evaluation of performance indicators for in situ flora.	. 22
Table 13: Evaluation of performance indicators for translocated flora	23
Table 14: Year 3 recommended 12 month work plan	. 24
FIGURES	
Figure 1: Location of NH2U in situ and translocated threatened or rare flora monitoring sites Figure 2: Translocation Area 1 (TA1) showing sectors supporting different species and treatments	8
(from Ecos Environmental 2016a).	. 10
Figure 3: Translocation Area 2 (TA2) showing sectors supporting different species and treatments	
(from Ecos Environmental 2016a).	. 11
Figure 4: In situ Slender Marsdenia UTW3 in Feb 2020	
Figure 5: Rusty Plum transplanted tree No. 1 in good health with new growth	
Figure 6: New leaf shoots on Red Bopple Nut transplant in TA1 Feb 2020	. 20
Figure 7: Spider Orchid transplants 8a and 8b in excellent health, TA2 Feb 2020	. 21

GLOSSARY

TERM	MEANING
ANPC	Australian Network for Plant Conservation
BC Act	NSW Biodiversity Conservation Act 2016
EPBC Act	Commonwealth Environment Protection and Biodiversity Conservation Act 1999
EP&A Act	NSW Environmental Planning and Assessment Act 1979
In situ	Latin term meaning 'in the original place'. In this report, refers to threatened plants that are being protected where they were found
LGA	Local Government Area
MCoA	Ministers Conditions of Approval
NH2U	Nambucca Heads to Urunga Pacific Highway Upgrade Project
NSW EPA	NSW Environment Protection Authority
NSW OEH	NSW Office of Environment and Heritage
RMS	NSW Roads and Maritime Services (now known as Transport for NSW)
TA	Translocation Area
TFMP	Threatened Flora Management Plan (Ecos Environmental 2013)
TfNSW	Transport for NSW (formerly RMS)
TSC Act	NSW Threatened Species Conservation Act 1995

INTRODUCTION

The Nambucca Heads to Urunga Pacific Highway Upgrade Project (NH2U) is a 22-km-long section of the Pacific Highway upgrade on the Mid North Coast of NSW. The NH2U project comprises the northern half of the Warrell Creek to Urunga section of the Pacific Highway upgrade, which is being built in two stages. Mitigation measures employed during the construction of NH2U included *in situ* protection, or translocation, and monitoring, of populations of the following eight threatened or rare plant species:

Spider Orchid Dendrobium melaleucaphilum (Endangered, BC Act)

Red Bopple Nut Hicksbeachia pinnatifolia (Vulnerable, BC Act & EPBC Act)

Slender Marsdenia Marsdenia longiloba (Endangered, BC Act; Vulnerable, EPBC Act)

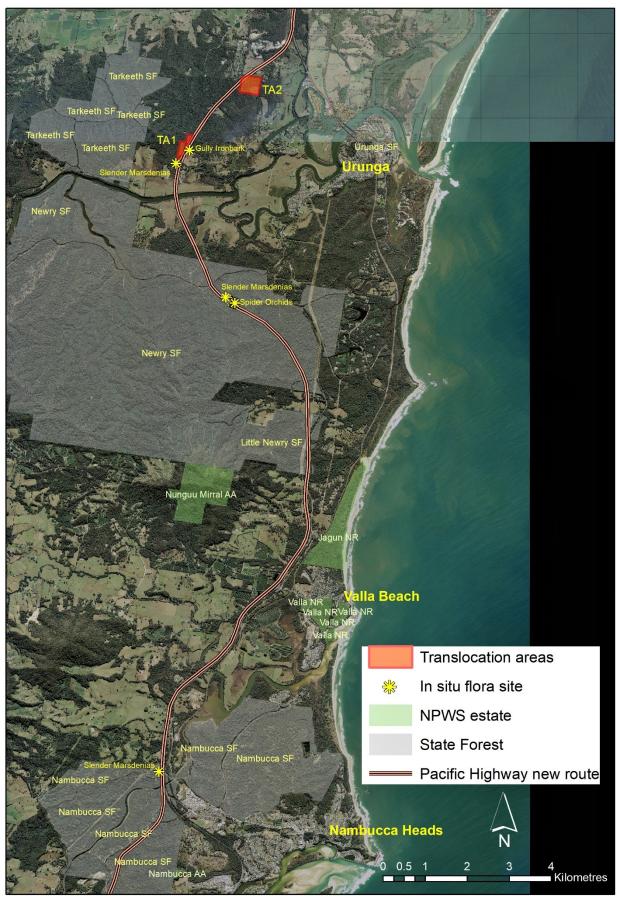
Rusty Plum Niemeyera whitei (Vulnerable, BC Act)

Woolls's Tylophora Tylophora woollsii (Endangered, BC Act & EPBC Act).

Koala Bells Artanema fimbriatum (unlisted, nationally rare)

Gully Ironbark, Nambucca Ironbark Eucalyptus ancophila (unlisted, local endemic species)

Ford's Goodenia Goodenia fordiana (unlisted, nationally rare)


In situ flora populations

One component of the mitigation measures employed on the NH2U project involved the protection and monitoring of *in situ* plants of Spider Orchid, Slender Marsdenia and Gully Ironbark that remain within the NH2U road reserve and were not directly impacted by the project. Baseline data collection, and construction phase monitoring, has been undertaken on 76 Spider Orchid plants, five Slender Marsdenia plants and a single Gully Ironbark (Ecos Environmental 2014, 2016, 2017) which are located at various points in the road reserve along the NH2U route (Figure 1).

Translocated Flora Species

Where threatened or rare plants were recorded within the NH2U construction footprint and direct impact was unavoidable, a program was developed to guide the translocation and monitoring of Spider Orchid, Red Bopple Nut, Slender Marsdenia, Rusty Plum, Woolls's Tylophora, Koala Bells and Ford's Goodenia from the construction footprint into one of two recipient sites (Translocation Areas, TA1 and TA2) that adjoin the NH2U footprint and are owned and managed by NSW Roads and Maritime (now known as Transport for NSW (TfNSW)) (Figure 1).

The translocations were conducted according to the Warrell Creek to Urunga Threatened Flora Management Plan (TFMP, Ecos Environmental 2013), which was prepared as a condition of approval by the NSW Department of Planning and the Commonwealth Department of Environment.

 $\textit{Figure 1: Location of NH2U in situ and translocated threatened or rare flora\ monitoring\ sites.}$

Translocation methods and planting layout

A detailed description of the actual salvage and translocation methodology is provided in Ecos Environmental (2013, 2014a, 2016a, 2016b). The summary provided below is also drawn from these Ecos Environmental reports and explains the source of plant material (transplanted from construction footprint or propagated off-site), whether a slow-release fertiliser was applied, and the location within TA1 or TA2 of the transplants or enhancement plantings.

Translocation Area 1

TA1 was divided into ten sectors (A to J, Figure 2) each receiving one species and different introduction treatments, as described below:

• Transplanted from construction footprint with no addition of fertiliser.

Sector A Slender Marsdenia

Sector B Woolls's Tylophora

• Transplanted from construction footprint with no fertiliser except initial watering with seaweed solution.

Sector C Ford's Goodenia

Sector D Koala Bells

Sector E Rusty Plum

• Propagated vegetatively and planted in experimental grids with and without addition of slow-release fertiliser.

Sector F Slender Marsdenia

Sector G Woolls's Tylophora

Sector I Woolls's Tylophora

• Propagated from seed and planted in an experimental grid with and without addition of slow-release fertiliser.

Sector J Slender Marsdenia

• Transplanted from construction footprint with no fertiliser except initial watering with seaweed solution.

Sector H Red Bopple Nut

Translocation Area 2

TA2 consists of two sectors, for the Spider Orchid and Koala Bells (Figure 3).

- Spider Orchid transplanted from construction footprint, no fertiliser addition Sector A
- Koala Bells population enhancement, no fertiliser addition Sector B

Individuals were planted at a regular spacing, with rows about 10m apart and individual plants about 5 metres apart along rows. Where a sector was on a hill slope, grid lines were laid out parallel with the slope contour. This facilitated comparison of species performance in relation to slope position.

Monitoring, to date, has been undertaken for a total of 681 translocated plants (Ecos Environmental 2014, 2016, 2016a) as detailed in Table 1 below.

 $Table\ 1: Number\ and\ location\ of\ translocated\ plants\ and\ enhancement\ plantings\ at\ NH2U\ Translocation\ Areas.$

Translocation Area (TA)	Species	Sector / Method	Number of plants	
		Sector A – transplants	104	
		Sector F – population enhancement (veg) &	90	
	Slender Marsdenia	fertilizer experiment		
		Sector J – population enhancement (seed) &	103	
		fertilizer experiment		
		Sector B – transplants	42	
	Woolls's Tylophora	Sector G – population enhancement (veg) &	87	
TA1		fertilizer experiment		
		Sector I – population enhancement (veg)	51	
	D. ot. Di. os	Sector E – transplants and population enhancement	3 trees	
	Rusty Plum	(seed)	40 seeds	
	Red Bopple Nut	Sector H - transplant	1	
	Koala Bells	Sector D - transplants	35	
	Ford's Goodenia	Sector C – transplants	5 patches	
TA2	Spider Orchid	Sector A - transplants	55	
TA2	Koala Bells	Sector B - population enhancement (veg)		

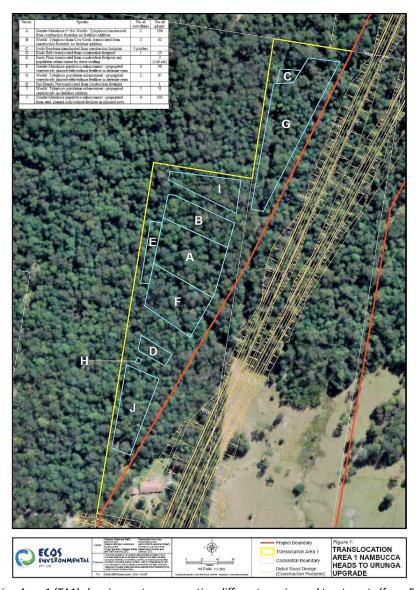


Figure 2: Translocation Area 1 (TA1) showing sectors supporting different species and treatments (from Ecos Environmental 2016a).

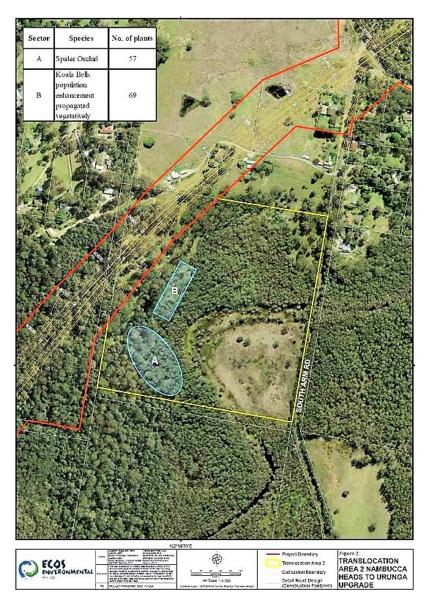


Figure 3: Translocation Area 2 (TA2) showing sectors supporting different species and treatments (from Ecos Environmental 2016a).

Objectives of translocation

The objectives of the translocation project set out in the TFMP are:

- To salvage and re-establish impacted individuals of threatened (TSC/BC/EPBC Act) species.
- To re-establish species at a recipient site near the original site with closely matching habitat and long-term security of tenure.
- To enhance the size and genetic diversity of the translocated population by propagation and introduction of individuals additional to those salvaged from the road footprint.
- To maintain good quality habitat to the relocation site(s).
- To preserve individuals of threatened species *in situ* wherever possible and limit translocation to plants within the highway footprint and construction buffer.

In accordance with the Ministers' Conditions of Approval (MCoA) for the TFMP, an annual monitoring report is to be prepared which addresses the monitoring goals, provides an evaluation of the effectiveness of the mitigation measures against performance indicators, documents any corrective actions implemented, and identifies recommendations for any adaptive management.

Upon completion of the construction phase of the NH2U upgrade, responsibility for operational management passed to TfNSW. This report describes the results of Year 3 (operational phase) monitoring of *in situ* and translocated flora for the NH2U upgrade. It should be noted that, upon completion of construction phase monitoring of translocated plants, monitoring of those species not listed as threatened under the TSC (BC) Act or the EPBC Act (Koala Bells and Ford's Goodenia) has been discontinued.

MONITORING METHODS

Monitoring of all *in situ* and translocated plants was undertaken in February 2020 (see comments below regarding delays to this year's survey).

The following description of the NH2U flora monitoring methodology is adapted from Ecos Environmental (2014 to 2017). During the NH2U construction phase, monitoring of transplants was conducted every 3 months in Year 1, every 6 months in Year 2 and annually in Year 3. Population enhancement individuals were monitored twice in Year 1 thence at the same time as transplanted individuals. Ongoing monitoring during the NH2U operational phase is to be undertaken annually for a minimum five years.

Each transplanted and propagated plant was given a unique identification number which was written on flagging tape and attached to the plant itself, or to its protective wire cage. Transplants were relocated in the field using a hand-held GPS to navigate to a set of coordinates that had been recorded when the plants were introduced to the sites (in some cases coordinates were not available – in such cases a thorough search of the relevant sector was undertaken by the author, and each transplant found had locality coordinates recorded with a GPS unit). Data were recorded as per Section 3.8 of the TFMP and listed in Table 2 below.

Table 2: Monitoring data recorded for e	each translocated species.
---	----------------------------

Data Recorded	Slender Marsdenia	Woolls's Tylophora	Rusty Plum	Red Bopple Nut	Spider Orchid
Monitoring Number	У	У	У	У	У
Date	У	У	У	У	У
Line	У	У	-	-	-
Source Label	У	У	У	-	У
Translocation Label	У	У	У	У	У
Species - Current ID	У	У	-	-	-
Condition Class	У	У	У	У	У
No. leaves	У	У	-	-	
Height (cm)	У	У	У	У	
New Shoots – New Active Growth (Y/N)	У	У	У	У	У
Comment	У	У	У	У	У
No. of pseudobulbs with leaves	-	-	-	-	У
Length of the longest pseudobulb	-	-	-	-	У
Waypoint	У	У	У	У	У
Coordinates	У	У	У	У	У

Condition Class Scores

The key attribute for evaluating species survival and performance was Condition Class, which was scored on a scale of 0 to 5. The scores were defined differently according to plant type, as detailed below in Table 3, Table 4 and Table 5.

Table 3: Condition scores applied to Slender Marsdenia and Woolls's Tylophora.

Score	Condition						
0	dead						
1	stem died back to ground, no leaves or green stem, live stem stub may be present						
2	plant < 75 cm tall; stem with leaves, with or without new shoots (active growth), or green leafless stem						
3	plant > 75 cm tall, stem with leaves, with or without new shoots (active growth), if green leafless stem <1m or leaves discoloured score as 2						
4	plant > 1.5m tall with > 15 leaves, mature or nearing maturity						
5	plant flowering or seeding						

Table 4: Condition scores applied to Rusty Plum and Red Bopple Nut.

Score	Condition				
0	dead				
1	leafless and no sign of re-shooting				
2	pruned foliage retained, or small amount of re-shooting after defoliating, or foliage sparse/discoloured (<40 cm tall Koala Bells)				
3	vigorous re-shooting (>40 cm tall Koala Bells)				
4	crown recovering, foliage healthy				
5	growing actively, flowering or seeding recorded				

Table 5: Condition scores applied to Spider Orchid.

Score	Condition					
0	dead					
1	pseudobulbs discoloured/grazed/withering, no new growth					
2	pseudobulbs healthy in colour, not withering, no new growth					
3	plant small, not many healthy pseudobulbs, new growth occurring					
4	several healthy pseudobulbs present, new growth occurring					
5	several good sized, healthy pseudobulbs, flowering or seeding recorded					

Data Analysis

Monitoring data were stored and processed in Excel™ spreadsheets.

Species survival rate was calculated as:

(no. of individuals in condition classes 2+3+4+5/total no. plants) X 100

Species 'thrival' rate (a term used by Ecos Environmental to describe the general trend in vigour of plants in individual sectors or subject to different treatments) was calculated as:

(number of individuals in condition classes 3+4+5/total no. plants) X 100

The thrival rate provides, according to Ecos Environmental (2016a) a better indication of the percentage of plants likely to reach reproductive maturity. Mean species height was calculated for all plants including those with zero height (ie plants that had died back to the ground – condition class 1 - not just plants in condition classes 2 to 5).

YEAR 1 MONITORING RESULTS AND RECOMMENDATIONS

The Year 1 NH2U threatened flora monitoring report (Richards 2017) found that whilst the survival of Slender Marsdenia transplants was comparable to that achieved in other translocation projects, many transplants had died back as a result of a very dry winter-spring in 2017. Furthermore, it was discovered that the Woolls's Tylophora plants were in fact the common *Tylophora paniculata*, and that the Rusty Plum enhancement plantings had been almost entirely lost. Therefore, the following recommendations were made:

- 1. Discontinue monitoring of *Tylophora paniculata* plants in Sectors G and I in TA1.
- 2. Direct seed an additional 40 Rusty Plum seeds into Sector E in TA1.
- 3. Install protective cages on all new and surviving Rusty Plum enhancement plantings.

The direct seeding of Rusty Plum seed, and installation of cages, was undertaken in October 2018 and is described in a separate report (Richards 2018). From 2018 on, Sectors G and I in TA1 will no longer be monitored.

YEAR 2 MONITORING RESULTS AND RECOMMENDATIONS

The Year 2 NH2U threatened flora monitoring report (Richards 2018a) found that performance indicators were met for *in situ* plants of Slender Marsdenia and Gully Ironbark, but that Spider Orchid had failed to meet the target for percentage of plants in condition class 3 or better. Results for translocated plants were mixed, with target survival rates after five years not met for Slender Marsdenia, Woolls's Tylophora and Rusty Plum. Recommendations arising from the Year 2 report were:

- Monitor Rusty Plum enhancement plantings six months after planting (ie April 2019) to assess condition of protective cages, incursion of weeds or competing native species, whether any seeds have germinated, and to undertake any necessary maintenance of the enhancement plantings.
- 2. Engage a qualified bush regenerator to assess the current level of infestation of Broad-leaved Paspalum and Lantana in TA1, and, if necessary, provide an appropriate control program. Observations by the author during monitoring surveys suggests that both weed species have increased in density in parts of TA1, particularly in the vicinity of old vehicular tracks. Early action to control both species would be beneficial.

As at February 2020, the Year 2 recommendations had not been implemented, due to a lapse in communication between different contractors and TfNSW personnel. An inspection of the weed-affected areas in TA1 was, however, undertaken by a qualified bush regenerator during the Rusty Plum enhancement planting in October 2018. It should be noted that weeds are not directly affecting any translocated plants at present. Recommendations provided in the present report (refer to p.23) account for this oversight and provide appropriate mitigation measures.

DELAY IN YEAR 3 MONITORING SURVEYS

Monitoring surveys are usually undertaken during late spring to early summer (October to December). However, the early start to the 2019 bushfire season was accompanied by extended periods of high to extreme fire danger and hazardous levels of bushfire smoke across the NSW mid-north coast from August 2019 to January 2020. This situation compelled the author to postpone field-based surveys until early February 2020, in the interests of workplace health and safety.

RESULTS – IN SITU FLORA MONITORING

Appendix 1 provides full details of the results of the NH2U Year 3 monitoring of all *in situ* flora. A summary of these results is provided below.

Spider Orchid

The rate of survival of in situ Spider Orchids decreased significantly to 50 (66%) of the original plants recorded in December 2014 (79% of plants recorded in the previous survey in October 2018). 27 plants could not be found during the current survey; 4 plants not found in 2018 were re-found and some individual orchids had died, bringing the potential number of loss or mortality over six years to 26 plants from the original 76. Very few plants bore old inflorescence axes, indicating poor flowering in spring 2019. No seed pods were recorded during the current survey.

Compared to previous surveys at this site, there was a large amount of tree-fall debris present. Most debris came from large senescent wattles (*Acacia maidenii*) which appeared to have fallen recently. This has probably contributed to the high number of plants that were not able to be re-located during the current survey. It is very likely that many of those plants still survive.

Attributes summarised in Table 6 below suggest a general decline in plant condition:

- Survival rate decreased significantly
- Median plant condition declined
- Mean number of pseudobulbs with leaves per plant decreased slightly.
- The number of plants showing new shoot growth decreased slightly.

The only attribute indicating an improvement in plant condition was an increase in mean length of the longest pseudobulb per plant (Table 6).

Table 6: Summar	of monitoring results for in sa	itu Snider Orchids
Tuble U. Sullilliul	of information indicating for in a	itu spiuči Ortiius.

Attribute	Dec 2014	Feb 2016	Feb 2017	Oct 2017	Oct 2018	Feb 2020
Total number of living orchid plants (n)	76	75	72	67	63	50
% survival	100	99	95	88	83	66
Median condition class of plants				3	3	2
Mean length of longest pseudobulb	5.27±0.86	6.46±0.85	5.92±0.34	4.2±4.1	5.07±5.9	6.3±5.6
Mean number of pseudobulbs with leaves per plant	2.46±0.43	2.92±0.19	2.46±0.19	3.4±1.8	3.4±1.8 3.5±2.34	3.3±1.85
% of plants with active new shoot growth	4.8%	15.2%	2.5%	60%	55%	52%
Change in number of pseudobulbs with leaves per plant relative to the year before		Dead – 1% decrease – 10% increase – 59% same – 29%	Dead – 2.4% decrease – 24.4% increase – 24.4% same – 48.7%	Dead / not found – 14% decrease – 21% increase – 41% same – 24%	Dead / not found – 17% decrease – 17% increase – 26% same – 11%	Dead / not found – 41% decrease – 15% increase – 17% same – 5%

The overall trend in the *in situ* Spider Orchid population indicates a decline in plant condition, with a median condition class score of 2. This result is not surprising, as the past three years have been characterised by long periods of above average temperatures and below average rainfall, including severe winter-spring drought in 2017, 2018 and 2019. Despite the adverse weather conditions, it was

noted during the current survey that there were many dozens, if not hundreds, of wild Spider Orchid plants present at this site in addition to the tagged plants. Most plants appeared to be in reasonable to good health. The decline in condition of tagged plants at this site is most likely due to climate-related factors rather than direct or indirect impacts related to the NH2U project.

Slender Marsdenia

Of the five *in situ* Slender Marsdenia plants being monitored, one (ML119) had died back, and the remaining sites supported healthy plants, with a median condition class of 3. Site UTW3 (Figure 4), like last year, had three plants recorded close to the flagged survey point. Site UTW4 had two plants recorded this year compared to one last year.

Figure 4: In situ Slender Marsdenia UTW3 in Feb 2020.

Gully Ironbark

The large Gully Ironbark, *Eucalyptus ancophila*, which occurs on a drainage line in the NH2U road reserve directly opposite TA1, was observed to be in the same fair condition as the previous survey. As this specimen is a very old tree, the crown inevitably displays some signs of senescence.

RESULTS - TRANSLOCATED FLORA MONITORING

Appendix 2 provides full details of the results of the NH2U Year 3 monitoring of all translocated flora. A summary of these results is provided below. The results of the current season's monitoring of all translocated threatened plants, including all data collected in the field, is also provided as an Excel™ workbook which accompanies this report.

Slender Marsdenia

Slender Marsdenia was planted in three sectors in TA1:

- Sector A Directly transplanted from construction footprint with no fertiliser.
- Sector F Propagated vegetatively and introduced with and without fertiliser.
- Sector J Propagated from seed and introduced with and without fertiliser.

Sector A

Survival rate for all 106 plants in Sector A was 39.6% after six years, a small increase on the previous year (36.8%). Mean plant height decreased slightly, from 40.7cm to 40.4cm. 19 of these plants were a metre or more in height. The percentage of plants with active shoot growth was 33%. 62 plants had died back, and three plants could not be found and have possibly been lost under tree-fall debris. Survival and mean height results recorded during all Sector A surveys are summarised in Table 7 below.

After six years the 'thrival rate' of Slender Marsdenia in Sector A was 25.5% (27 plants out of 106 with a Condition Class score of 3, 4 or 5), a slight decrease from the previous survey rate of 28.3%. No plants were in flower or fruit at the time of survey.

Table 7: Slender Marsdenia in TA1 Sector A - mean height in centimetres and percent survival of transplants – all surveys.

All plants n = 106	Mar 2014	Dec 2014	Jan 2016	Nov 2016	Oct 2017	Nov 2018	Feb 2020
Survival %	90.5	87.6	71.2	67.9	40	36.8	39.6
Mean height (cm)	36.25	36.25	42.38	39.97	36.3	40.7	40.4

Sector F

The survival rate of all 90 plants in Sector F was 51.1%, an improvement on the previous survey but lower than previous seasons. Mean plant height was 46.1cm, also an increase on the previous survey. Survival and mean height results recorded during all Sector F surveys are summarised below in Table 8.

The thrival rate after six years was 32.2%, lower than the previous survey rate of 36.7%. 19 plants with a condition class score of 3 or more were more than one metre in height. No plants were in bud, or flowering, at the time of the current survey.

Table 8: Slender Marsdenia in TA1 Sector F - mean height in centimetres and percent survival of transplants.

All plants n = 90	Jul 2014	Jan 2016	Nov 2016	Oct 2017	Nov 2018	Feb 2020
Survival %	83.63	77.1	66.75	61.1	42.2	51.1
Mean height (cm)	21.04	68.50	55.89	52.44	30.7	46.1

Sector J

103 propagated Slender Marsdenia seedlings were planted in Sector J in August 2014. Results from the current survey reveal an increase in survival rate to 48.5% and mean plant height to 37.2cm since the last monitoring survey (Table 9).

The current thrival rate of Slender Marsdenia in Sector J is 32%, which is the same as the previous year. 14 plants were one metre or more in height. No plants were in flower or fruit.

Table 9: Slender Marsdenia in TA1 Sector J - mean height in centimetres and percent survival of transplants.

All plants n = 103	Dec 2014	Jan 2016	Nov 2016	Oct 2017	Nov 2018	Feb 2020
Survival %	92.2	86.4	82.5	54.39	43.7	48.5
Mean height (cm)	46.75	69.15	64.19	54.61	32.3	37.2

Woolls's Tylophora

Woolls's Tylophora *Tylophora woollsii* was translocated to TA1 into Sector B as direct transplants from the construction footprint with no fertiliser.

Sector B

Mean survival rate for all plants in Sector B for the current survey was 11.9% (5 plants of 42), a slight increase from the previous year. Mean plant height again decreased to 1.6cm (Table 10).

As was the case last season, the strongest indicator of the poor state of plants in this sector is the thrival rate of 0%. No plants were assessed as being in condition class 3 or better. As suggested by Ecos Environmental (2016a), the recipient site, being located on a hill crest and visibly drier and more exposed than other sectors, represents sub-optimal habitat for Woolls's Tylophora and Slender Marsdenia.

As noted in last year's report, several of the living plants observed during the current survey looked more like *Tylophora paniculata* than *T. woollsii*. Until these plants flower, it will be assumed that they all represent *T. woollsii*.

Table 10: Woolls's Tylophora in TA1 Sector B - mean height in centimetres and percent survival of transplants.

All plants n = 42	Mar 2014	Dec 2014	Jan 2016	Nov 2016	Oct 2017	Nov 2018	Feb 2020
Survival %	90.5	80	73.8	31	14.29	9.5	11.9
Mean height (cm)	76.31	38.84	34.07	11.73	4.88	2.07	1.6

Rusty Plum

Translocated Rusty Plums

Two small Rusty Plum trees (4-8m high) were transplanted into Sector E in TA1. One tree had split and was separated into two pieces (plants 1 and 2) before planting. The other tree (plant 3) was pruned back to remove most of the branch system before being transplanted. Plant 2 died in 2017.

The current survey revealed no losses since the previous survey, with a survival rate of 67%. Plant 1 bore a healthy, basal stem shoot which had increased in size from the previous survey (Figure 5). Plant 3 was in excellent health with a flush of new growth.

Figure 5: Rusty Plum transplanted tree No. 1 in good health with new growth.

Rusty Plum enhancement plantings

Ecos Environmental (2016a) noted that most of the 40 Rusty Plum seeds planted directly into 20 points within Sector E of TA1 had germinated, but no protective tree guards were installed, resulting in heavy losses to browsing by wallabies and possums. Ten of the direct seeded points (50%) had live Rusty Plum seedlings in January 2016. This number had decreased to six (30%) by Nov 2016, and only three in 2017. During the current survey, only one of the original Rusty Plum enhancement plantings was re-located, a survival rate of 2.5%.

As described in the introductory section of this report, the direct seeding of Rusty Plum seed was repeated, including the installation of tree guards, in October 2018 (Richards 2018). None of the newly direct-planted seeds had survived when re-visited during the current survey. The seeds were planted in cool, moist conditions, but a severe winter-spring drought occurred in 2019. It is likely that the plantings succumbed to the drought conditions.

Red Bopple Nut

A single Red Bopple Nut tree was transplanted to Sector H in TA1. The tree was recorded in excellent condition during the current survey. Although it appeared that flowering had failed due to the extremely dry winter-spring, the plant bore new leaf shoots (Figure 6) which probably appeared after heavy rains in January/February 2020. No fruit-set was observed at the time of the survey.

Figure 6: New leaf shoots on Red Bopple Nut transplant in TA1 Feb 2020

Spider Orchid

Of the 60 Spider Orchid transplants at TA2 recorded in 2016 (Ecos Environmental 2016a), 44 were recorded as alive during the current survey, a survival rate of 73.3%, which represents a slight increase from the previous survey result of 71.7% survival. This figure may underestimate actual survival, as some plants were not able to be re-located during the current survey whilst another six plants that were not located in the 2018 survey were re-found during the current survey.

Along with the slight improvement in survival rate, other results showed an improvement in the population, including an increase in the mean length of the longest pseudobulb; a small increase in mean number of pseudobulbs with leaves per plant, and a significant increase in the number of plants bearing new shoots. Median condition class of the translocated Spider Orchids has remained at 3. This accords with the general impression that the majority of surviving translocated Spider Orchids remain in good health (Figure 7). Several old inflorescence axes were observed during the current survey, indicating that flowering had occurred in the previous spring. However, no evidence of fruit production was recorded. Monitoring results for all translocated Spider Orchid surveys are summarised below in Table 11.

Figure 7: Spider Orchid transplants 8a and 8b in excellent health, TA2 Feb 2020

Table 11: Summary of monitoring results for Spider Orchid transplants at TA2.

Attribute	Mar 2014	Dec 2014	Jan 2016	Nov 2016	Oct 2017	Nov 2018	Feb 2020
Survival (%, n=60)	96.4	92.7	94.6	94.6	78.3	71.7	73.3
Mean length of the longest pseudobulb (cm)	8.22	8.22	8.56	8.56	6.55	7.3	8.3
Mean number of pseudobulbs with leaves	1.95	1.73	2.40	2.40	2.43	2.5	2.7
Number of plants with new shoots (pseudobulbs)	1	6	10	10	15	28	35

DISCUSSION

In accordance with the MCoA of the NH2U TFMP (Ecos Environmental 2013), each annual monitoring report must include an assessment of the success or failure of protective measures for *in situ* threatened flora, and an assessment of the success or failure of the threatened flora translocation program (salvage translocation and population enhancement measures). These assessments are provided below. The MCoA also requires a recommended work plan for the next 12 months. This, too, is provided below.

Evaluation of in situ Flora Management

The following performance indicators are used to evaluate the success of protective measures for *in situ* threatened flora:

- a) The survival rate of *in situ* threatened flora at the finish of clearing is 100%. No accidental damage occurs during clearing.
- b) The survival rate of *in situ* threatened flora at the end of years 1-3 of the monitoring program is at least 80% and at least 70% at the end of years 4-8.
- c) Of plants surviving at the end of each year, at least 75% are in good condition i.e. they have healthy foliage, no sign of die-back or disease and exhibit new shoot growth (Condition Class 3 or better).

Table 12 below summarises how the above performance indicators have been met to date.

Table 12: Evaluation of performance indicators for in situ flora.

Species	100% survival rate at the finish of clearing. No accidental damage during clearing	80% survival rate at the end of years 1-3 and at least 70% at the end of years 4-8	At least 75% of surviving plants are in good condition at each year end (Condition Class 3 or higher)	Performance indicators met?
Spider Orchid	Υ	Υ	N (66%)	2 of 3
Slender Marsdenia	Υ	Υ	Y (80%)	3 of 3
Gully Ironbark	Υ	Υ	Υ	3 of 3

Spider Orchid

The current level of survival of *in situ* Spider Orchids is the only performance indicator that has not been met to date. As noted in previous reports, this is possibly because not all surviving plants were re-located during the current survey. The large amount of recent tree fall debris made re-location of flagged plants even more difficult this year. Furthermore, the past three years of the winter-spring period have been extremely warm and dry, which may contribute to a general reduction in plant condition. Taking the above comments into consideration, it is the opinion of the author that the *in situ* Spider Orchid population is generally healthy and will most likely achieve, or come close to achieving, all performance indicators for *in situ* flora.

Slender Marsdenia

Slender Marsdenia currently meets all performance indicators for in situ flora.

Gully Ironbark

Gully Ironbark currently meets all performance indicators for *in situ* flora.

Evaluation of Flora Translocation Program

The following performance indicators are used to evaluate the success of the threatened species translocations (salvage translocation and population enhancement):

- a) All directly impacted individuals of threatened species were salvaged and relocated to the receival sites.
- b) At least 60% of transplant and enhancement individuals are surviving after the first year, 50% after five years and 40% after eight years.
- c) At the end of the monitoring program (8 years), at least 50% of surviving individuals have a Condition Class of 3 or higher.

Table 13 below summarises how the above performance indicators have been met to date.

Table 13: Evaluation of performance indicators for translocated flora.

Species	All directly impacted individuals of threatened species were salvaged and relocated to the receival site(s).	At least 60% of transplant and enhancement individuals are surviving after the first year, 50% after five years and 40% after eight years	At the end of the monitoring program (8 years), at least 50% of surviving individuals have a Condition Class of 3 or higher.	Performance indicators met?
Slender Marsdenia	Υ	Y, N, n/a	n/a	2 of 3 to date
Woolls's Tylophora	Υ	Y, N, n/a	n/a	2 of 3 to date
Rusty Plum transplants	Υ	Y, N, n/a	n/a	2 of 3 to date
Rusty Plum enhancement plantings	n/a	N, n/a, n/a	n/a	0 of 3 to date
Red Bopple Nut	Υ	Y, Y, n/a	n/a	2 of 3 to date
Spider Orchid	Υ	Y, Y, n/a	n/a	2 of 3 to date

It is clear from Table 13 above that the performance indicators are designed to provide an assessment of translocation success mainly for the latter half of the program (years 5 to 8). Because of this, little can be gleaned from this current assessment, apart from some specific comments below.

Slender Marsdenia

The current (Year 6) mean survival rate of all Slender Marsdenia plants stands at 46.4%. Based on the author's knowledge of other translocations of this species, this should be considered a good result. It should also be noted that it is highly likely that a proportion of those Slender Marsdenia plants recorded as having died back are still alive and may resprout in future years. However, successful achievement of the performance indicators for this species is as dependant on climatic factors as much as anything else. Should the region continue to experience severe winter-spring droughts like the past three years, then the survival rate of Slender Marsdenia transplants would be expected to decline as more plants die back in response to dry conditions. On the other hand, should milder conditions prevail then significantly more plants would be expected to produce aerial shoots and be in better overall condition.

Woolls's Tylophora

The current (Year 6) mean survival rate of Woolls's Tylophora (plants only within Sector B) stands at 11.9%, with a correspondingly low median condition class score of 1. If this low survival and condition persists, then the translocation of this species will have failed all survival and condition class performance indicators.

Rusty Plum transplants

Because all Rusty Plum transplants and half the Rusty Plum enhancement plantings survived through Year 1, at present Rusty Plum meets relevant performance criteria. As at Year 6, Rusty Plum transplant survival is 67%, which, if maintained, will meet ongoing performance criteria.

Rusty Plum enhancement plantings

The Rusty Plum enhancement planting survival rate is 2.5%, with all seeds direct-planted in October 2018 failing to survive the winter-spring drought of 2019. It is apparent that these enhancement plantings require ongoing maintenance to assist in their survival in such adverse weather conditions.

Spider Orchid

The current (Year 6) survival rate of 73.3% may be an underestimate of the actual rate of survival of Spider Orchid plants at TA2, as explained above. Overall, the translocation of Spider Orchid plants has been successful, and it is expected that performance indicators will be met in the future for this species.

RECOMMENDED 12 MONTH WORK PLAN

Recommendations to achieve the principle objectives and performance indicators of the TFMP for *in situ* and translocated flora, along with TfNSW responses, are presented in Table 14.

Table 14: Ye	ar 3 recomme	nded 12 n	nonth work	plan
--------------	--------------	-----------	------------	------

Rec Nº	Recommendation	Transport for NSW Response		
1	Cessation of monitoring of all <i>in situ</i> plants. After six years of monitoring, it is considered that all extant <i>in situ</i> plants are highly likely to survive into the future.	Agree with author's recommendation. EPA have reviewed this recommendation and have endorsed the proposed change to monitoring. Recommendation to be adopted following DPIE approval.		
2	Continue monitoring of all currently monitored sectors and plants in TA1	Agree with author's recommendation		
3	Repeat the Rusty Plum enhancement planting program. Rather than direct-planting of seeds, it is recommended that collected seeds are germinated and grown on in nursery conditions. Planting of seedlings into TA1 would occur only when weather conditions are favourable. The protective tree guards from the previous attempt in 2018 are already in place within TA1 and can be re-used. The planting should be followed up with regular inspections and handwatering as required. Proposed methods and timelines are provided in APPENDIX 3	Agree with author's recommendation to be adopted a EPA have reviewed this recommendation and have endorsed the proposed enhancement planting works.		
4	Implement weed control program in TA1 targeting Broad- leaved Paspalum and Lantana in areas identified by bush regenerator as requiring action. Proposed methods and timelines are provided in APPENDIX 3	Agree with author's recommendation. EPA have reviewed this recommendation and have endorsed the proposed works.		

REFERENCES

- ECOS Environmental. 2013. Warrell Creek to Urunga Upgrade Threatened Flora Management Plan. Report prepared for NSW Roads and Maritime Services, Grafton.
- ECOS Environmental. 2014. Nambucca Heads to Urunga Pacific Highway Upgrade Monitoring of In situ Roadside Threatened Plants Summary for Year 1 (December 2013 to December 2014). Report prepared for Lend Lease Infrastructure.
- ECOS Environmental Pty Ltd. 2014a. Nambucca Heads to Urunga Upgrade of the Pacific Highway Threatened Flora Translocation Project Annual Monitoring Report Year 1 December 2014. Report prepared for Lend Lease Infrastructure.
- ECOS Environmental Pty Ltd. 2016. Nambucca Heads to Urunga Upgrade of the Pacific Highway Monitoring of in *situ* Roadside Threatened Plants Summary for Year 2 (December 2014 to February 2016). Report prepared for Lend Lease Infrastructure.
- ECOS Environmental Pty Ltd. 2016a. Nambucca Heads to Urunga Upgrade of the Pacific Highway Threatened Flora Translocation Project Annual Monitoring Report (Year 2) February 2016. Report prepared for Lend Lease Infrastructure.
- ECOS Environmental Pty Ltd. 2016b. Nambucca Heads to Urunga Upgrade of the Pacific Highway
 Threatened Flora Translocation Project Annual Monitoring Report (Year 3) December 2016.
 Report prepared for Lend Lease Infrastructure.
- ECOS Environmental Pty Ltd. 2017. Nambucca Heads to Urunga Pacific Highway Upgrade Monitoring of *in situ* Roadside Threatened Plants Year 3 (December 2014 to February 2017) Results
- Richards, P. 2016. Pacific Highway Sapphire to Woolgoolga Upgrade Threatened Flora Monitoring Annual Report 5. Final report prepared for NSW Roads and Maritime Services.
- Richards, P. 2017. Pacific Highway Nambucca Heads to Urunga Upgrade Operational Phase Threatened Flora Monitoring Year 1 Annual Report. Final report prepared for NSW Roads and Maritime Services.
- Richards, P. 2018. Pacific Highway Nambucca Heads to Urunga Upgrade Operational Phase Threatened Flora Monitoring Year 1 Recommendation Rusty Plum enhancement plantings. Report prepared for NSW Roads and Maritime Services.
- Richards, P. 2018a. Pacific Highway Nambucca Heads to Urunga Upgrade Operational Phase Threatened Flora Monitoring Year 2 Annual Report. Final report prepared for NSW Roads and Maritime Services.

APPENDIX 1

Monitoring Results – all in situ flora February 2020 Spider Orchid in situ

No	Date	No. plants	Cond.	No. pbs	No. pbs	Pbs with	Pb change	longest	length pb	New	Comment
so-59	Feb 2020	1	1	3	1	1	same	1		n	On Grey Gum sapling. Will vanish when bark shed.
o-61	Feb 2020	2	3	11	3	1	increase	3		у	On Melaleuca styphelioides 5+ plants higher up.
	Feb 2020		3	5	4	3	increase	2		у	
4	Feb 2020	2	3	5	4	5	decrease	3		у	re-found nr so-39
	Feb 2020		2	5	3	4	increase	1		n	re-found nr so-39
io-39	Feb 2020	2	0		0			0			not found
	Feb 2020		0		0			0			not found
so-41	Feb 2020	4	0		0			0			not found
	Feb 2020		0		0			0			not found
	Feb 2020		0		0			0			not found
	Feb 2020		0		0			0			not found
so-40	Feb 2020	2	0		0			0			not found
	Feb 2020		0		0			0			not found
so-69	Feb 2020	3	3	9	2	5	decrease	8		у	
	Feb 2020		3	12	2	4	decrease	5		У	
	Feb 2020		3	9	3	6	decrease	2		У	
so-70	Feb 2020	1	2	6	2	1	increase	2		n	re-found 2019 - broken stem leaning on debris
В	Feb 2020	2	3	13	2	5	decrease	4		У	
	Feb 2020		3	7	3	4	decrease	7		у	
С	Feb 2020	1	2	9	2	3	decrease	3		n	re-found
D	Feb 2020	0	0		0			0			dead
so-71	Feb 2020	3	3	5	1	2	decrease	1		У	
	Feb 2020		3	4	1	3	decrease	2		У	
	Feb 2020		2	3	1	2	decrease	5		n	
	Feb 2020		0		0			0			gone
so-72	Feb 2020	6	2	5	1	1		0			not found
	Feb 2020		2	5	1	1		0			not found
	Feb 2020		2	4	2	2		0			not found
	Feb 2020		3	5	4	4		0			not found
	Feb 2020		3	9	4	4		0			not found
	Feb 2020		2	4	3	3		0			not found
so-76	Feb 2020	2	3					0			re-found
F	Feb 2020	3	3	6	4	4	same	15		у	
	Feb 2020		3	6	4	4	same	10		у	
	Feb 2020		4	15	4	4	same	31		у	
G	Feb 2020	1	3	6	2	1	increase	1		У	

No	Date	No. plants	Cond.	No. pbs	No. pbs	Pbs with	Pb change	longest	length pb	New	Comment
Н	Feb 2020	2	3	7	2	2		0	<u> </u>		not found
	Feb 2020		0		0			0			gone
M	Feb 2020	0	0		0			0			not found
N	Feb 2020	0	0		0			0			not found
so-27	Feb 2020	3	2	10	2	1	increase	1		n	
	Feb 2020	-	2	10	4	0	increase	2		n	
	Feb 2020		0		0			0			gone
so-26	Feb 2020	1	1	6	0	3	decrease	2.5		n	3 plants on tree - lowest monitored. Shaded by Cissus.
so-22	Feb 2020	1	2	15	8	12	decrease	1		n	many tiny Pbs at base with leaves - some new ones too
0	Feb 2020	2	2		0			0		n	Tree fallen. Plants alive but on ground in debris.
	Feb 2020		2		0			0		n	
P	Feb 2020	1	3	8	3	4	decrease	5		у	1 other plant high up on tree
Q	Feb 2020	1	3	12	7	6	increase	3		у у	
so-21	Feb 2020	1	3	13	4	1	increase	28		У	May have flowered this season
R	Feb 2020	2	0		0			0			not found
	Feb 2020		0		0			0			not found
so-19	Feb 2020	1	3	7	6	4	increase	3		У	re-found
so-17	Feb 2020	0	0		0			0			gone
so-16	Feb 2020	1	3	6	3	1	increase	5		V	On broken stem
so-15	Feb 2020	3	3	8	4	2		0			
	Feb 2020		3	9	2	4		0			
	Feb 2020		3	9	9	8		0			
S	Feb 2020	1	3	10	4	3	increase	3		У	5 plants on dying Mel styphelioides adjacent to so-15.
	Feb 2020	0	0		0			0		· · · · · ·	not found
	Feb 2020	0	0		0			0			not found
so-14	Feb 2020	1	2	7	3	1	increase	7		n	One plant gone. Top of host stem snapped off.
so-12	Feb 2020	2	0		0			0			Both plants now gone
	Feb 2020		0		0			0			gone
so-10	Feb 2020	1	3	11	7	5	increase	18		У	re-found low down on paperbark beneath fallen wattle
so-11	Feb 2020	2	2	7	2	1	increase	2.5		n	· ·
	Feb 2020		3	10	3	1	increase	6		У	
so-6	Feb 2020	2	3	9	2	4	decrease	12		У	
	Feb 2020		0		0			0			gone
so-5	Feb 2020	1	0		0			0			not found
so-4	Feb 2020	1	3	9	4	4	same	9		У	
so-7	Feb 2020	2	3	7	5	2	increase	6		у	
	Feb 2020		3	8	5	7	decrease	4		У	
so-8	Feb 2020	3	0		0			0			not found
	Feb 2020		0		0			0			not found
	Feb 2020		0		0			0			not found
so-9	Feb 2020	2	0		0			0			not found
	Feb 2020		0		0			0			not found
			-		-			-			

Slender Marsdenia and Gully Ironbark in situ

Site No	Species	Chainage	Date	Condition	Ht (m)	No. lvs	New shoots	Comment 2019
ML 119	Marsdenia longiloba	62100	18-Feb-20	1				Died back
ML 2010-1	Marsdenia longiloba	75000	18-Feb-20	3	0.8	11	у	
ML 2010-3	Marsdenia longiloba	75000	18-Feb-20	2	0.6	10	у	Collapsed at base of Forest Oak.
UTW3	Marsdenia longiloba	78450	18-Feb-20	2	0.2	6	у	Recent re-shoot of last season 'seedling'
UTW3	Marsdenia longiloba	78450	18-Feb-20	2	0.6	11	у	Uphill plant sprawling over litter
UTW4	Marsdenia longiloba	78450	18-Feb-20	3	1	20	у	c. 1.5m from bloodwood sapling on Lomandra and leaf litter
UTW4	Marsdenia longiloba	78450	18-Feb-20	4	2	60	у	Vigorous vine on broken bloodwood sapling
EA	Eucalyptus ancophila	78850	19-Feb-20	3				Same as last year. Pointless to monitor.

APPENDIX 2

Monitoring Results – All Translocated Flora February 2020

Slender Marsdenia - Sector A transplants

No	Date	Species	Line	Source Label	Condition	No. leaves	Height (cm)	New Shoots (Y/N)	Comment
1	Feb-20	Marslong	L7 east	ML14	1		0		db. Parsonsia dorrigoensis on cage
2		Marslong	L7	ML2010-2	1		0		db
3		Marslong	L7	MLN-5	1		0		db
4		Marslong	L7	ML14A	1		0		db
5		Marslong	L7	ML14A	1		0		db. P. dorrigoensis in cage
6		Marslong	L7	ML14A	2	8	60	n	Probably Tylophora paniculata
7		Marslong	L7	ML13	1		0		db
8		Marslong	L7	ML14A	1		0		db
9		Marslong	L7	ML11	1		0		db
10		Marslong	L7	UTW-2	1		0		db - tree fall debris
11		Marslong	L7	UTW-2	1		0		db - tree limbs, drought
12		Marslong	L7	TWN-1	1		0		db
13		Marslong	L7	UTW-2	2	6	60	У	resprout recent shoot
14		Marslong	L7	ML20	3	9	80	У	resprout
15		Marslong	L7	ML21	2	6	50	n	resprout
16		Marslong	L7	TWN-1	0		0		gone
17		Marslong	L7	UTW-2	1		0		db
18		Marslong	L7	UTW-2	3	8	80	٧	
19		Marslong	L7	UTW-1	2	4	20	У	
20		Marslong	L7 west	UTW-4	1		0	•	db
21		Marslong	L6 west	TWN-1	2	4	70	n	
22		Marslong	L6	TWN-1	2	4	10	n	
23		Marslong	L6	TWN-1	1		0		db
24		Marslong	L6	TWN-1	1		0		db
25		Marslong	L6	UML-6	3	3	120	У	
26		Marslong	L6	UML-6	2	7	60	У	
27		Marslong	L6	MLN-6	3	5	80	У	
28		Marslong	L6	UML-5	1		0	•	db
28b/41		Marslong	L6	UML-5	1		0		db
29		Marslong	L6	ML17	1		0		db
30		Marslong	L6	new near ML18	4	32	200	У	on Cryptocarya rigida
30b/42		Marslong	L6	UML-5	3	14	100	У	
31		Marslong	L6	new near ML18	1		0		db
32		Marslong	L6	MLN-6	3	6	120	У	
33		Marslong	L6	ML18	1		0		db
33b/40)	Marslong	L6	ML21	0		0		gone

No	Date	Species	Line	Source Label	Condition	No. leaves	Height (cm)	New Shoots (Y/N)	Comment
34		Marslong	L6	ML18	1		0	,	db
35		Marslong	L6	MLN6	3	6	240	у	Climbing Cryptocarya rigida
36		Marslong	L6	ML19	4	33	160	У	Climbing Cryptocarya rigida
37		Marslong	L6	ML19	4	52	200	у	Climbing dead sapling
38		Marslong	L6	ML20	1		0	•	db
39		Marslong	L6 east	ML21	2	5	30	У	recent shoot
43		Marslong	L5	ML18	1		0		db
44		Marslong	L5	ML30	1		0		db
45		Marslong	L5	TW29	3	4	80	У	resprout
46		Marslong	L5	ML32	1		0		db
47		Marslong	L5	new adj. ML33	2	4	5	n	resprout
48		Marslong	L5	new adj. ML33	1		0		db
49		Marslong	L5	new adj. ML33	1		0		db
50		Marslong	L5	MLN-2	4	60	400	У	On Cryptocarya rigida
51		Marslong	L5	ML15	2	5	50	n	
52		Marslong	L5	ML15	1		0		db
53		Marslong	L5	new adj. ML33	1		0		db
54		Marslong	L5	new adj. ML33	3	14	120	У	
55		Marslong	L5	new adj. ML33	1		0		db
56		Marslong	L5	new adj. ML33	3	6	110	У	db
57		Marslong	L5	new adj. ML33	1		0		db
58		Marslong	L5	ML45-	1		0		db
59		Marslong	L5	ML45-11	2	8	70	у	T. paniculata - recent resprout
60		Marslong	L5	ML47-1	1		0		db
61		Marslong	L5	ML47-2	1		0		db
62		Marslong	L5	ML45-4	1		0		db
63		Marslong	L5 west	ML45-	1		0		db
106		Marslong	L4	ML2010-3	1		0		db
107		Marslong	L4	ML2010-3	3	8	80	у	
108		Marslong	L4	ML2010-3	2	9	30	у	resprout
109		Marslong	L4	MLN-4	1		0		db
110		Marslong	L4	ML126	4	28	140	у	
111		Marslong	L4	ML126	2	5	50	у	
112		Marslong	L4	ML127	3	8	110	у	
113		Marslong	L4	ML2010-3	1		0		db
114		Marslong	L4	ML2010-3	3	7	90	у	
115		Marslong	L4	ML2010-3	1		0		db
116		Marslong	L4	ML127	1		0		db
117		Marslong	L4	MLN-3	3	8	80	у	
118		Marslong	L4	MLN-3	3	8	90	У	resprout
119		Marslong	L4	MLN-3	1		0		db
120		Marslong	L4	MLN-3	3	6	120	у	

				Source			Height	New Shoots	
No	Date	Species	Line	Label	Condition	No. leaves	(cm)	(Y/N)	Comment
121		Marslong	L4	ML2010-4	3	10	120	У	resprout
122		Marslong	L4	ML2010-4	2	3	5	У	resprout
123		Marslong	L4	MLN-4	3	12	120	У	
124		Marslong	L4	MLN-4	3	6	110	У	
125		Marslong	L4	TWN-2	1		0		db
126		Marslong	L4	TWN-2	1		0		db
127		Marslong	L4	TWN-2	1		0		db
128		Marslong	L3	MLN-4	3	12	100	У	
129		Marslong	L3	MLN-4	1		0		db
130		Marslong	L3	MLN-4	3	5	240	У	new shoot
131		Marslong	L3	MLN-4	1		0		db
132		Marslong	L3	MLN-3	2	6	40	n	
133		Marslong	L3	MLN-3	1		0		db
134		Marslong	L3	MLN-3	1		0		db
135		Marslong	L3	ML3	1		0		db
136		Marslong	L3	ML3	1		0		db
137		Marslong	L3	ML3	3	24	180	У	good condition
138		Marslong	L3	ML3	1		0		db
139		Marslong	L3	ML3	1		0		db recent tree fall
140		Marslong	L3	ML2	1		0		under tree fall
141		Marslong	L3	ML2	1		0		db - cage collapsed
142		Marslong	L3	ML3	1		0		db
143		Marslong	L3	ML3	1		0		db
144		Marslong	L3	UTW10	1		0		db
145		Marslong	L3	UTW10	1		0		db
146		Marslong	L3	UML8	1		0		db
147		Marslong	L3	ML3	1		0		db
148		Marslong	L3	ML3	1		0		db - cage crushed tree fall

Slender Marsdenia - Sector F transplants

No	Species	Line	Date	Cond.	No. leaves	Height (cm)	New Shoots (Y/N)	Comment
F1	Marslong	Line 1 fert		1		0		db
F2	Marslong	Line 1 fert		3	20	90	У	
F3	Marslong	Line 1 fert		1		0		db
F4	Marslong	Line 1 fert		1		0		db
F5	Marslong	Line 1 fert		3	19	130	У	
F6	Marslong	Line 1 fert		3	4	80	У	
F7	Marslong	Line 1 fert		2	4	60	У	looking better than last survey
F8	Marslong	Line 1 fert		1		0		db

No	Species	Line	Date	Cond.	No. leaves	Height (cm)	New Shoots (Y/N)	Comment
F9	Marslong	Line 1 fert		3	9	80	У	resprout
F10	Marslong	Line 1 fert		1		0		db
F11	Marslong	Line 1 fert		2	6	20	У	resprout cage crushed by tree fall
F12	Marslong	Line 1 fert		2	2	50	У	under tree fall
F13	Marslong	Line 1 fert		4	20	190	У	on Cordyline stricta
F14	Marslong	Line 1 fert		1		0		db
F15	Marslong	Line 1 fert		2	2	40	У	resprout
F16	Marslong	Line 1 fert		2	5	30	У	resprout
F17	Marslong	Line 1 fert		1		0		db
F18	Marslong	Line 1 fert		1		0		db
F19	Marslong	Line 1 fert		1		0		db - under tree fall debris
F20	Marslong	Line 1 fert		2	2	70	n	
F21	Marslong	Line 1 fert		2	6	40	У	resprout
F22	Marslong	Line 1 fert		2	8	70	n	resprout
NF23	Marslong	Line 2 no fert		3	9	100	У	
NF24	Marslong	Line 2 no fert		3	6	90	У	
NF25	Marslong	Line 2 no fert		1		0		db
NF26	Marslong	Line 2 no fert		1		0		db
NF27	Marslong	Line 2 no fert		1		0		db
NF28	Marslong	Line 2 no fert		4	16	170	У	
NF29	Marslong	Line 2 no fert		1		0		db
NF30	Marslong	Line 2 no fert		1		0		db
NF31	Marslong	Line 2 no fert		2	2	25	У	
NF32	Marslong	Line 2 no fert		1		0		db
NF33	Marslong	Line 2 no fert		1		0		db - under dense Cissus hypoglauca
NF34	Marslong	Line 2 no fert		3	8	90	У	
NF35	Marslong	Line 2 no fert		2	6	50	У	reshooting
NF36	Marslong	Line 2 no fert		1		0		db
NF37	Marslong	Line 2 no fert		1		0		db
NF38	Marslong	Line 2 no fert		1		0		db
NF39	Marslong	Line 2 no fert		3	13	110	У	on cage and dead limb
NF40	Marslong	Line 2 no fert		1		0		db - cage knocked over
NF41	Marslong	Line 2 no fert		1		0		db
NF42	Marslong	Line 2 no fert		1		0		db
NF43	Marslong	Line 2 no fert		1		0		db
NF44	Marslong	Line 2 no fert		2	6	10	n	
NF44a	Marslong	Line 2 no fert		2	5	15	У	resprout
NF44b	Marslong	Line 2 no fert		3	4	120	У	
F45	Marslong	Line 3 fert		1		0		db
F46	Marslong	Line 3 fert		1		0		db
F47	Marslong	Line 3 fert		2	9	30	n	resprout
F48	Marslong	Line 3 fert		3	23	120	У	

No	Species	Line	Date	Cond.	No. leaves	Height (cm)	New Shoots (Y/N)	Comment
F49	Marslong	Line 3 fert		2	4	8	n	resprout
F50	Marslong	Line 3 fert		1		0		db
F51	Marslong	Line 3 fert		2	2	35	n	yellowed leaves
F52	Marslong	Line 3 fert		3	8	80	У	
F53	Marslong	Line 3 fert		1		0		db
F54	Marslong	Line 3 fert		1		0		db
F55	Marslong	Line 3 fert		3	10	95	У	on Tabernaemontana. Good condition
F56	Marslong	Line 3 fert		1		0		db
F57	Marslong	Line 3 fert		3	8	110	У	
F58	Marslong	Line 3 fert		4	15	190	У	Under tree fall debris
F59	Marslong	Line 3 fert		3	10	140	У	
F60	Marslong	Line 3 fert		3	5	90	У	fair cond
F61	Marslong	Line 3 fert		3	9	110	У	
F62	Marslong	Line 3 fert		1		0		db
F63	Marslong	Line 3 fert		1		0		db
F64	Marslong	Line 3 fert		1		0		db
F65	Marslong	Line 3 fert		1		0		db
F66	Marslong	Line 3 fert		2	4	40	n	
NF67	Marslong	Line 4 no fert		4	22	200	У	Growing up Gynocthodes (Morinda)
NF68	Marslong	Line 4 no fert		1		0		db
NF69	Marslong	Line 4 no fert		3	15	110	У	
NF70	Marslong	Line 4 no fert		4	22	210	У	on small dead shrub and Trochocarpa laurina
NF71	Marslong	Line 4 no fert		3	10	95	У	resprout
NF72	Marslong	Line 4 no fert		1		0		db
NF73	Marslong	Line 4 no fert		1		0		db
NF74	Marslong	Line 4 no fert		1		0		db
NF75	Marslong	Line 4 no fert		3	4	120	У	
NF76	Marslong	Line 4 no fert		3	10	90	У	
NF77	Marslong	Line 4 no fert		1		0		db
NF78	Marslong	Line 4 no fert		3	10	130	У	
NF79	Marslong	Line 4 no fert		1		0		db
NF80	Marslong	Line 4 no fert		3	16	100	У	on Tabernaemontana.
NF81	Marslong	Line 4 no fert		2	4	70	n	
NF82	Marslong	Line 4 no fert		1		0		db
NF83	Marslong	Line 4 no fert		3	7	130	У	
NF84	Marslong	Line 4 no fert		1		0		db
NF85	Marslong	Line 4 no fert		3	11	120	У	
NF86	Marslong	Line 4 no fert		1		0		db
NF87	Marslong	Line 4 no fert		1		0		db
NF88	Marslong	Line 4 no fert		0		0		gone

Slender Marsdenia - Sector J transplants

iandra sieberi
lebris
sapling fallen on cage
d level

Monit. No.	Species	Line	Fertiliser	Date	Cond	No. Lvs	Ht (cm)	New Shoots (Y/N)	Comment
17	Marslong	L2	fert		1		0	,	db
18	Marslong	L2	fert		1		0		db
19	Marslong	L2	fert		2	4	5	n	
20	Marslong	L2	fert		3	10	100	У	
21	Marslong	L2	fert		2	2	50	У	
22	Marslong	L2	fert		1		0		db - under pile of Cissus and Melodinus
23	Marslong	L2	fert		3	5	90	У	resprout
24	Marslong	L2	fert		1		0		db
25	Marslong	L2	fert		3	14	80	У	
Line 3 1	Marslong	L3	no fert		1		0		db
2	Marslong	L3	no fert		1		0		db
3	Marslong	L3	no fert		1		0		db
4	Marslong	L3	no fert		3	7	110	У	growing up Cordyline stricta
5	Marslong	L3	no fert		3	13	100	У	
6	Marslong	L3	no fert		3	17	90	У	on Ripogonum fawcettianum
7	Marslong	L3	no fert		3	9	80	У	
8	Marslong	L3	no fert		2	4	20	У	
9	Marslong	L3	no fert		3	22	130	У	wild Marsdenia longiloba also present
10	Marslong	L3	no fert		1		0		db
11	Marslong	L3	no fert		2	6	25	У	
12	Marslong	L3	no fert		1		0		db
13	Marslong	L3	no fert		2	2	10	n	
14	Marslong	L3	no fert		2	6	60	У	
15	Marslong	L3	no fert		2	4	5	n	
16	Marslong	L3	no fert		1		0		db
17	Marslong	L3	no fert		1		0		db
18	Marslong	L3	no fert		3	6	80	У	
19	Marslong	L3	no fert		3	12	90	У	
20	Marslong	L3	no fert		1		0		db
21	Marslong	L3	no fert		1		0		db
22	Marslong	L3	no fert		1		0		db
23	Marslong	L3	no fert		1		0		db
24	Marslong	L3	no fert		1		0		db
25	Marslong	L3	no fert		1		0		db
26	Marslong	L3	no fert		1		0		db
27	Marslong	L3	no fert		1		0		db
Line 4 1	Marslong	L4	fert		3	9	95	У	
2	Marslong	L4	fert		3	5	80	У	
3	Marslong	L4	fert		2	3	60	n	
4	Marslong	L4	fert		2	4	50	n	
5	Marslong	L4	fert		1		0		db - east side of creekline
6	Marslong	L4	fert		1		0		db

Monit.							Ht	New Shoots	
No.	Species	Line	Fertiliser	Date	Cond	No. Lvs	(cm)	(Y/N)	Comment
7	Marslong	L4	fert		2	8	60	У	
8	Marslong	L4	fert		1		0		db
9	Marslong	L4	fert		1		0		db
10	Marslong	L4	fert		1		0		db
11	Marslong	L4	fert		3	11	150	У	
12	Marslong	L4	fert		1		0		db
13	Marslong	L4	fert		2	6	50	У	
14	Marslong	L4	fert		1		0		db
15	Marslong	L4	fert		3	6	80	У	
16	Marslong	L4	fert		1		0		db
17	Marslong	L4	fert		3	19	105	У	
18	Marslong	L4	fert		1		0		db
19	Marslong	L4	fert		1		0		db
20	Marslong	L4	fert		2	10	50	У	
21	Marslong	L4	fert		1		0		db
22	Marslong	L4	fert		1		0		db
23	Marslong	L4	fert		1		0		db
24	Marslong	L4	fert		1		0		db
25	Marslong	L4	fert		1		0		db
26	Marslong	L4	fert		1		0		db - under fallen Forest Oak

Woolls's Tylophora - Sector B transplants

No	Date	Line	Tentative Species ID	Source Label	Cond	No. lvs	Height (cm)	New Shoots (Y/N)	Comment
64	Feb-20	L8 east, gate	Tylophora woollsii	ML46-6	1		0	. , ,	db
65	Feb-20	L8	Tylophora woollsii	ML46-	1		0		db
66	Feb-20	L8	Tylophora woollsii	ML48-5	1		0		db
67	Feb-20	L8	Tylophora woollsii	ML46-1	1		0		db. P. dorrigoensis on cage
68	Feb-20	L8	Tylophora woollsii	ML46	1		0		db
69	Feb-20	L8	Tylophora woollsii	ML46-	1		0		db
70	Feb-20	L8	Tylophora woollsii	ML46-3	1		0		db
71	Feb-20	L8	Tylophora woollsii	ML46-2	1		0		db
72	Feb-20	L8	Tylophora woollsii	ML47-3	1		0		db
73	Feb-20	L8	Tylophora woollsii	ML47-10	1		0		db
74	Feb-20	L8	Tylophora woollsii	ML46-6	1		0		db
75	Feb-20	L8	Tylophora woollsii	ML47-4	1		0		db
76	Feb-20	L8	Tylophora woollsii	ML48	1		0		db
77	Feb-20	L8	Tylophora woollsii	ML48-2	1		0		db
78	Feb-20	L8	Tylophora woollsii	ML47-5	1		0		db
79	Feb-20	L8	Tylophora woollsii	ML46-4	1		0		db

				Source			Height	New Shoots	
No	Date	Line	Tentative Species ID	Label	Cond	No. lvs	(cm)	(Y/N)	Comment
80	Feb-20	L8	Tylophora woollsii	ML47-6	1		0		db
81	Feb-20	L8	Tylophora woollsii	new near TA	1		0		db
82	Feb-20	L8	Tylophora woollsii	new near TA	1		0		db
83	Feb-20	L8	Tylophora woollsii	ML45-3	2	4	7	у	T. paniculata? Very narrow leaves
84	Feb-20	L8	Tylophora woollsii	ML45-2	1		0		db
85	Feb-20	L9	Tylophora woollsii	ML45-6	1		0		db
86	Feb-20	L9	Tylophora woollsii	ML45-10	1		0		db
87	Feb-20	L9	Tylophora woollsii	ML45-4	2	8	30	у	resprout
88	Feb-20	L9	Tylophora woollsii	ML48-4	1		0		db
89	Feb-20	L9	Tylophora woollsii	ML47-8	1		0		db
90	Feb-20	L9	Tylophora woollsii	ML46-7	1		0		db
91	Feb-20	L9	Tylophora woollsii	ML47-7	2	4	10	у	resprout
92	Feb-20	L9	Tylophora woollsii	ML48-1	1		0		db
93	Feb-20	L9	Tylophora woollsii	ML48-5	1		0		db
94	Feb-20	L9	Tylophora woollsii	ML48-7	1		0		db
95	Feb-20	L9	Tylophora woollsii	ML48-4	1		0		db
96	Feb-20	L9	Tylophora woollsii	ML	1		0		db
97	Feb-20	L9	Tylophora woollsii	ML47-9	2	4	10	у	resprout - T. paniculata?
98	Feb-20	L9	Tylophora woollsii	ML48-7	2	6	10	у	resprout
99	Feb-20	L9	Tylophora woollsii	ML48	1		0		db
100	Feb-20	L9	Tylophora woollsii	ML47-10	1		0		db
101	Feb-20	L9	Tylophora woollsii	ML45-5	1		0		db
102	Feb-20	L9	Tylophora woollsii	ML45-8	1		0		db
103	Feb-20	L9	Tylophora woollsii	ML48-9	1		0	<u> </u>	db
104	Feb-20	L9	Tylophora woollsii	ML48-1	1		0		db
105	Feb-20	L9	Tylophora woollsii	ML48-8	1		0		db

Rusty Plum & Red Bopple Nut transplants

Monitoring Number	Condition notes	Condition Score	Height (m)	Comments
Rusty Plum 1	split one from Boggy Creek shooting	4	0.9	In excellent health. One shoot from base of main stem
Rusty Plum 2	split one from Boggy Creek shooting	0	0	dead
Rusty Plum 3	good - lot of new shoots	4	3.7	In excellent health
Red Bopple Nut	Good health - new leaves appearing post-rain.	3	3.1	Flowering failed due to drought conditions. New growth after heavy rain Feb 2020.

Rusty Plum Enhancement Plantings

Monitoring No	Date planted	Easting	Northing	Condition Feb 2020	Notes
					Notes
NW1	22-Oct-18	n/a	n/a	Cage not re-located	
NW2	22-Oct-18	497848	6626467	Gone	killed by drought
NW3	22-Oct-18	497842	6626468	Gone	killed by drought
NW4	22-Oct-18	497847	6626456	Gone	killed by drought
NW5	22-Oct-18	497846	6626452	Gone	killed by drought
NW6	22-Oct-18	497848	6626445	Gone	killed by drought
NW7	22-Oct-18	497847	6626444	Gone	killed by drought
NW8	22-Oct-18	497847	6626443	Gone	killed by drought
NW9	22-Oct-18	497848	6626444	Gone	killed by drought
NW10	22-Oct-18	497843	6626441	Gone	killed by drought
NW11	22-Oct-18	497839	6626434	Gone	killed by drought
NW12	22-Oct-18	497839	6626433	Gone	killed by drought
NW13	22-Oct-18	497847	6626424	Gone	killed by drought
NW14	22-Oct-18	497847	6626424	Gone	killed by drought
NW15	22-Oct-18	49784	6626427	Gone	killed by drought
NW16	22-Oct-18	497847	6626428	Gone	killed by drought
NW17	22-Oct-18	497840	6626419	Gone	killed by drought
NW18	22-Oct-18	497839	6626419	Gone	killed by drought
NW19	22-Oct-18	497838	6626414	Gone	killed by drought
NW20	22-Oct-18	497838	6626418	Gone	killed by drought

Spider Orchid transplants – TA2

		Source		Cond			New growth	
No	Date	Label	Species	2019	pb with lvs	Longest pb	active	notes
2	Feb-20	so-87	Dendmela	4	9	17	У	wired to fallen Swamp Oak limb
3	Feb-20	so-74	Dendmela	3	5	6	У	
4	Feb-20	so-26b	Dendmela	0	0	0		gone
5	Feb-20	so-48	Dendmela	4	3	19	У	re-found near 7
6	Feb-20	so-52	Dendmela	3	4	8	У	adjacent to 7
7a (bottom)	Feb-20	so-36	Dendmela	3	4	6	У	
7b (top)	Feb-20	so-36	Dendmela	4	6	38	У	
8a (left)	Feb-20	so-62	Dendmela	4	6	28	у	
8b (right)	Feb-20	so-62	Dendmela	4	9	40	у	
9	Feb-20	so-25	Dendmela	0	0	0		dead
10	Feb-20	so-24	Dendmela	1	1	1	n	
11a	Feb-20	so-29	Dendmela	3	2	9	У	
11b	Feb-20	so-29	Dendmela	3	3	2	У	
11c	Feb-20	so-29	Dendmela	0	0	0	dead	dead
12	Feb-20	so-65	Dendmela	4	4	26	У	Well away from other plants in SE corner
13	Feb-20	so-64	Dendmela	3	4	12	У	
14	Feb-20	so-28	Dendmela	3	2	9	У	
15	Feb-20	so-24	Dendmela	3	4	10	у	
16	Feb-20	so-53	Dendmela	3	2	8	У	
17	Feb-20	so-26b	Dendmela	4	3	27	у	re-found
18	Feb-20	so-23	Dendmela	0	0	0	gone	gone
19	Feb-20	so-88	Dendmela	4	11	36	У	excellent condition
20	Feb-20	so-86	Dendmela	3	3	10	у	newest pb damaged
21	Feb-20	so-86-1	Dendmela	2	2	14	n	adjacent to 22
22	Feb-20	so-35	Dendmela	4	9	31	У	v healthy - pic
23a (bottom)	Feb-20	so-86-	Dendmela	0	0	0	,	tiny plant -gone 2020
23b (top)	Feb-20	so-86-	Dendmela	0	0	0		tiny plant -gone 2020
24	Feb-20	so-86-3	Dendmela	3	3	2	у	,. ,
25	Feb-20	so-86-4	Dendmela	2	1	1	n	re-found
26	Feb-20	so-43	Dendmela	0	0	0	gone	gone
27	Feb-20	so-67	Dendmela	0	0	0	gone	gone
28	Feb-20	so-68	Dendmela	4	3	35	у	
29a (bottom)	Feb-20	so-2	Dendmela	3	4	4	у у	re-found
29b	Feb-20	so-2	Dendmela	4	10	31	у у	re-found
29c (top)	Feb-20	so-2	Dendmela	2	3	1	n y	re-found
30	Feb-20	so-57	Dendmela	3	2	1.5	у	
31	Feb-20	so-30	Dendmela	3	3	4	у у	
32	Feb-20	so-82	Dendmela	3	3	2	у у	
33	Feb-20	so-66	Dendmela	3	4	7	у у	
34	Feb-20	so-38	Dendmela	2	1	4	n y	
35	Feb-20	so-86-13	Dendmela	0	0	0		gone
33	1 05-20	30 00-13	Dendineia	U	U	U	gone	Polic

No	Date	Source Label	Species	Cond 2019	pb with lvs	Longest pb	New growth active	notes
36	Feb-20	so-82	Dendmela	2	1	1.5	n	
37	Feb-20	so-86-5	Dendmela	0	0	0		dead
38	Feb-20	Dm34a	Dendmela	3	2	6	У	
39	Feb-20	so-86-12	Dendmela	4	2	26	У	
40	Feb-20	so-86-6	Dendmela	2	2	1	n	
41	Feb-20	so-86-7	Dendmela	0	0	0		gone
42	Feb-20	no label	Dendmela	0	0	0	gone	gone
43	Feb-20	so-86-14	Dendmela	2	2	1	n	on cheese tree
45	Feb-20	so-86-11	Dendmela	0	0	0	dead	dead
46a (bottom)	Feb-20	so-64	Dendmela	0	0	0		dead wired to Cheese Tree SW sector
46b	Feb-20	so-64	Dendmela	3	3	2	у	
46c	Feb-20	so-64	Dendmela	3	3	3	у	
46d	Feb-20	so-64	Dendmela	3	4	2	у	at pink flagging
46e	Feb-20	so-64	Dendmela	3	3	3	У	
46f	Feb-20	so-64	Dendmela	3	2	1	У	
46g (top)	Feb-20	so-64	Dendmela	2	2	1	n	wired to Cheese Tree SW sector
no yellow tag	Feb-20	so-58	Dendmela	3	1	3	У	upper plant only
47	Feb-20	so-86-9	Dendmela	0	0	0		not found
48	Feb-20	so-86-10	Dendmela	0	0	0		not found

APPENDIX 3

Year 3 Recommended 12 month Work Plan – Tasks and Proposed Methods

Task	Days	Personnel	Comments	
Rusty Plum enhancement planting: Collect at least 40 Rusty Plum seeds locally.	1	Bush regenerator X 1	Seed will be collected from local populations on public land during Oct / Nov 2020 whenever local trees are fruiting and fruit are ripe. No more than 10% of available seed will be collected from any one locality.	
Rusty Plum seed germination: Plant Rusty Plum seeds into pots and germinate ex-situ in shadehouse until established as viable seedlings.	1	Bush regenerator X 1	Collected fruits need outer layers removed before soaking the fresh seeds in water for several days prior to potting up. Germination usually occurs between 9 and 26 weeks after potting (Floyd 1989). Germinated seedlings to be tended in pots in shadehouse until weather conditions are suitable for planting out. Depending upon the length of time for germination to occur, seedlings may have to be held in pots until wet conditions prevail in late 2021 or early 2022.	
Rusty Plum enhancement plantings: Plant Rusty Plum seedlings out into TA1 when weather conditions are suitable (as the wet season begins, eg Jan/Feb 2022.	1	Bush regenerator X 2	Seedlings to be transplanted into existing tree guards, watered in with addition of a dilute seaweed-based fertilise to reduce transplant shock, and mulched. Condition and height of each transplant to be recorded in accordance wit current monitoring methodology.	
2022.	1	Ecologist	current monitoring methodology.	
Follow-up Maintenance	0.5 per visit	Bush regenerator X 2	Contingent upon local rainfall post-transplant. This action should be avoidable if planting occurs during the wettest time of year. However, if no rain is recorded for the week after transplant, then hand watering will be required on a weekly basis until adequate rainfall occurs. As TA1 is remote from vehicular access this will require transport of water and equipment on foot over approx. 500 metres to the Rusty Plum planting site (a small creek on the site is intermittent during dry weather but may contain sufficient water to assist with this action).	
Follow-up Monitoring	0.5 per visit	Ecologist	Monitoring of the seedlings will occur monthly for 3 months post-planting then once every 3 months for a year after that, then once in 6 months' time. For example, assuming seedlings are planted in February 2022, monitoring will be undertaken in March, April and May 2022, then August and November 2022, February and May 2023 then November 2023 (the November surveys will be included in the current monitoring program). A brief written report will be provided after each survey.	
Reporting: Prepare and submit a brief report	0.5	Ecologist	A brief report describing the weeding program and the Rusty Plum seed collection, germination, planting and initial monitoring results will be prepared and submitted.	
Weed Control Program in TA1: Implement a targeted program of Broad-leaved Paspalum (spot-spraying) and Lantana (cut and paint) control, with follow-up timed to minimise post- treatment seed production and germination.	2	Bush regenerator X 2	One day with 2 personnel undertaking initial weed control. Follow-up 4 weeks later to manage seedling emergence. Photographs to be provided to Ecologist for incorporation into monitoring report.	