
29CS 536 Spring 2008©

The Structure of a Compiler
A compiler performs two major
tasks:
• Analysis of the source program

being compiled
• Synthesis of a target program

Almost all modern compilers
are syntax-directed: The
compilation process is driven
by the syntactic structure of the
source program.
A parser builds semantic
structure out of tokens, the
elementary symbols of
programming language syntax.
Recognition of syntactic
structure is a major part of the
analysis task.

30CS 536 Spring 2008©

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

31CS 536 Spring 2008©

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by
an optimizer so that a more
efficient program may be
generated.

32CS 536 Spring 2008©

Type Checker

Optimizer

Code

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens Syntax
Tree

(AST)

Decorated
AST

Intermediate
Representation

(IR)

IR

Generator

Target Machine
Code

Translator

Abstract

The Structure of a Syntax-Directed Compiler

33CS 536 Spring 2008©

Scanner
The scanner reads the source
program, character by
character. It groups individual
characters into tokens
(identifiers, integers, reserved
words, delimiters, and so on).
When necessary, the actual
character string comprising the
token is also passed along for
use by the semantic phases.
The scanner:
• Puts the program into a compact

and uniform format (a stream of
tokens).

• Eliminates unneeded information
(such as comments).

• Sometimes enters preliminary
information into symbol tables (for

34CS 536 Spring 2008©

example, to register the presence
of a particular label or identifier).

• Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and Jlex) are valuable
compiler-building tools.

35CS 536 Spring 2008©

Parser
Given a syntax specification (as
a context-free grammar, CFG),
the parser reads tokens and
groups them into language
structures.
Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct
syntax and may issue a syntax
error message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.

36CS 536 Spring 2008©

Type Checker
(Semantic Analysis)

The type checker checks the
static semantics of each AST
node. It verifies that the construct
is legal and meaningful (that all
identifiers involved are declared,
that types are correct, and so on).
If the construct is semantically
correct, the type checker
“decorates” the AST node, adding
type or symbol table information
to it. If a semantic error is
discovered, a suitable error
message is issued.
Type checking is purely
dependent on the semantic rules
of the source language. It is
independent of the compiler’s
target machine.

37CS 536 Spring 2008©

Translator
(Program Synthesis)

If an AST node is semantically
correct, it can be translated.
Translation involves capturing
the run-time “meaning” of a
construct.
For example, an AST for a while
loop contains two subtrees,
one for the loop’s control
expression, and the other for
the loop’s body. Nothing in the
AST shows that a while loop
loops! This “meaning” is
captured when a while loop’s
AST is translated. In the IR, the
notion of testing the value of
the loop control expression,

38CS 536 Spring 2008©

and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source
language. Little of the nature of
the target machine need be
made evident. Detailed
information on the nature of
the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.
In simple non-optimizing
compilers (like our class
project), the translator
generates target code directly,
without using an IR.
More elaborate compilers may
first generate a high-level IR

39CS 536 Spring 2008©

(that is source language
oriented) and then
subsequently translate it into a
low-level IR (that is target
machine oriented). This
approach allows a cleaner
separation of source and target
dependencies.

40CS 536 Spring 2008©

Optimizer
The IR code generated by the
translator is analyzed and
transformed into functionally
equivalent but improved IR code
by the optimizer.
The term optimization is
misleading: we don’t always
produce the best possible
translation of a program, even
after optimization by the best of
compilers.
Why?
Some optimizations are
impossible to do in all
circumstances because they
involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.

41CS 536 Spring 2008©

Other optimizations are too
expensive to do in all cases.
These involve NP-complete
problems, believed to be
inherently exponential.
Assigning registers to variables
is an example of an NP-complete
problem.
Optimization can be complex; it
may involve numerous
subphases, which may need to
be applied more than once.
Optimizations may be turned off
to speed translation.
Nonetheless, a well designed
optimizer can significantly speed
program execution by
simplifying, moving or
eliminating unneeded
computations.

42CS 536 Spring 2008©

Code Generator
IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine-specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target
code requires consideration of
many special cases.
Automatic generation of code
generators is possible. The
basic approach is to match a
low-level IR to target
instruction templates, choosing

43CS 536 Spring 2008©

instructions which best match
each IR instruction.
A well-known compiler using
automatic code generation
techniques is the GNU C
compiler. GCC is a heavily
optimizing compiler with
machine description files for
over ten popular computer
architectures, and at least two
language front ends (C and
C++).

44CS 536 Spring 2008©

Symbol Tables
A symbol table allows
information to be associated
with identifiers and shared
among compiler phases. Each
time an identifier is used, a
symbol table provides access
to the information collected
about the identifier when its
declaration was processed.

45CS 536 Spring 2008©

Example
Our source language will be
CSX, a blend of C, C++ and
Java.
Our target language will be the
Java JVM, using the Jasmin
assembler.

• Our source line is
 a = bb+abs(c-7);
 this is a sequence of ASCII characters
in a text file.

• The scanner groups characters into
tokens, the basic units of a program.

a = bb+abs(c-7);
After scanning, we have the following
token sequence:
 Ida Asg Idbb Plus Idabs Lparen Idc
Minus
 IntLiteral7 Rparen Semi

46CS 536 Spring 2008©

• The parser groups these tokens into
language constructs (expressions,
statements, declarations, etc.)
represented in tree form:

(What happened to the
parentheses and the
semicolon?)

Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

47CS 536 Spring 2008©

• The type checker resolves types and
binds declarations within scopes:

Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

int

intintloc

intloc int

int

intloc
int

method

48CS 536 Spring 2008©

• Finally, JVM code is generated for each
node in the tree (leaves first, then
roots):
iload 3 ; push local 3 (bb)
iload 2 ; push local 2 (c)
ldc 7 ; Push literal 7
isub ; compute c-7
invokestatic java/lang/Math/
abs(I)I
iadd ; compute bb+abs(c-7)
istore 1 ; store result into

local 1(a)

49CS 536 Spring 2008©

Interpreters
There are two different kinds of
interpreters that support
execution of programs,
machine interpreters and
language interpreters.

Machine Interpreters
Machine interpreters simulate
the execution of a program
compiled for a particular
machine architecture. Java uses
a bytecode interpreter to
simulate the effects of
programs compiled for the JVM.
Programs like SPIM simulate the
execution of a MIPS program on
a non-MIPS computer.

50CS 536 Spring 2008©

Language Interpreters
Language interpreters simulate the
effect of executing a program
without compiling it to any particular
instruction set (real or virtual).
Instead some IR form (perhaps an
AST) is used to drive execution.
Interpreters provide a number of
capabilities not found in compilers:
• Programs may be modified as

execution proceeds. This provides a
straightforward interactive debugging
capability. Depending on program
structure, program modifications may
require reparsing or repeated
semantic analysis. In Python, for
example, any string variable may be
interpreted as a Python expression or
statement and executed.

51CS 536 Spring 2008©

• Interpreters readily support languages
in which the type of a variable denotes
may change dynamically (e.g., Python
or Scheme). The user program is
continuously reexamined as execution
proceeds, so symbols need not have a
fixed type. Fluid bindings are much
more troublesome for compilers, since
dynamic changes in the type of a
symbol make direct translation into
machine code difficult or impossible.

• Interpreters provide better
diagnostics. Source text analysis is
intermixed with program execution,
so especially good diagnostics are
available, along with interactive
debugging.

• Interpreters support machine
independence. All operations are
performed within the interpreter. To
move to a new machine, we just
recompile the interpreter.

52CS 536 Spring 2008©

However, interpretation can
involve large overheads:
• As execution proceeds, program text

is continuously reexamined, with
bindings, types, and operations
sometimes recomputed at each use.
For very dynamic languages this can
represent a 100:1 (or worse) factor in
execution speed over compiled code.
For more static languages (such as C
or Java), the speed degradation is
closer to 10:1.

• Startup time for small programs is
slowed, since the interpreter must be
load and the program partially
recompiled before execution begins.

53CS 536 Spring 2008©

• Substantial space overhead may be
involved. The interpreter and all
support routines must usually be kept
available. Source text is often not as
compact as if it were compiled. This
size penalty may lead to restrictions in
the size of programs. Programs
beyond these built-in limits cannot be
handled by the interpreter.

Of course, many languages
(including, C, C++ and Java) have
both interpreters (for debugging
and program development) and
compilers (for production work).

