
41CS 538 Spring 2004
©

Review of Concepts from
Procedural Programming
Languages

Declarations/Scope/Lifetime/Binding
Static/Dynamic

• Identifiers are declared, either explicitly
or implicitly (from context of first use).

• Declarations bind type and kind
information to an identifier. Kind
specifies the grouping of an identifier
(variable, label, function, type name,
etc.)

• Each identifier has a scope (or range) in
a program—that part of the program in
which the identifier is visible (i.e., may
be used).

42CS 538 Spring 2004
©

• Data objects have a lifetime—the span of
time, during program execution, during
which the object exists and may be used.

• Lifetimes of data objects are often tied
to the scope of the identifier that
denotes them. The objects are created
when its identifier’s scope is entered, and
they may be deleted when the identifier’s
scope is exited. For example, memory for
local variables within a function is
usually allocated when the function is
called (activated) and released when the
call terminates.
In Java, a method may be loaded into
memory when the object it is a member
of is first accessed.

43CS 538 Spring 2004
©

Properties of an identifier (and the
object it represents) may be set at
• Compile-time

These are static properties as they do
not change during execution.
Examples include the type of a
variable, the value of a constant, the
initial value of a variable, or the body
of a function.

• Run-time
These are dynamic properties.
Examples include the value of a
variable, the lifetime of a heap object,
the value of a function’s parameter,
the number of times a while loop
iterates, etc.

44CS 538 Spring 2004
©

Example: In Fortran
• The scope of an identifier is the whole

program or subprogram.

• Each identifier may be declared only
once.

• Variable declarations may be implicit.
(Using an identifier implicitly declares it
as a variable.)

• The lifetime of data objects is the whole
program.

45CS 538 Spring 2004
©

Block Structured Languages
• Include Algol 60, Pascal, C and Java.

• Identifiers may have a non-global scope.
Declarations may be local to a class,
subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained) scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

46CS 538 Spring 2004
©

Binding of an identifier to its
corresponding declaration is usually
static (also called lexical), though
dynamic binding is also possible.
Static binding is done prior to
execution—at compile-time.
Example (drawn from C):

int x,z;
void A() {

float x,y;
 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

47CS 538 Spring 2004
©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside their
scope.

• Nearest Declaration Applies
Static name scoping.

• Automatic Allocation and Deallocation
of Locals

Lifetime of data objects is bound to
the scope of the Identifiers that
denote them.

48CS 538 Spring 2004
©

Variations in these rules of name
scoping are possible.
For example, in Java, the lifetime of
all class objects is from the time of
their creation (via new) to the last
visible reference to them.
Thus
 ... Object O; ...
creates an object reference but does
not allocate any memory space for O.
You need
 ... Object O = new Object(); ...
to actually create memory space for
O.

49CS 538 Spring 2004
©

Dynamic Scoping
An alternative to static scoping is
dynamic scoping, which was used in
early Lisp dialects (but not in Scheme,
which is statically scoped).
Under dynamic scoping, identifiers
are bound to the dynamically closest
declaration of the identifier. Thus if
an identifier is not locally declared,
the call chain (sequence of callers) is
examined to find a matching
declaration.

50CS 538 Spring 2004
©

Example:
 int x;

 void print() {

 write(x); }

 main () {

 bool x;

 print();

 }

Under static scoping the x written in
print is the lexically closest
declaration of x , which is as an int .
Under dynamic scoping, since print
has no local declaration of x , print ’s
caller is examined. Since main calls
print , and it has a declaration of x
as a bool , that declaration is used.

51CS 538 Spring 2004
©

Dynamic scoping makes type checking
and variable access harder and more
costly than static scoping. (Why?)
However, dynamic scoping does allow
a notion of an “extended scope” in
which declarations extend to
subprograms called within that scope.
Though dynamic scoping may seen a
bit bizarre, it is closely related to
virtual functions used in C++ and
Java.

52CS 538 Spring 2004
©

Virtual Functions
A function declared in a class, C, may
be redeclared in a class derived from
C. Moreover, for uniformity of
redeclaration, it is important that all
calls, including those in methods
within C, use the new declaration.
Example:
 class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println(“C rules!”);}
 }
 class D extends C {
 void PrintIt()
 {println(“D rules!”);}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

