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1 Predicate calculus

1.1 Languages and structures

Definition 1 (First-order language). A first-order language L is defined by

• The logical symbols

– Variables V
– Equality

.
=

– Logical connectives ¬, ∧
– Existential quantifier ∃

• The signature σL of L:

– Constants CL

– Function symbols FL

– Function relations RL

See [Tent and Ziegler, 2012, Definition 1.1.1].

Example 1.

• L∅ , ∅
• LMon , {e, ·}
• LGp , {e, ·,−−1}
• LOrd , {<}
• LEns , {∈}
• LRing , {0, 1,+,×,−}

Definition 2 (Sublanguage). A subset κ of σL defines a sublanguage of L.

Example 2. LMon is a sublanguage of LGp.

Definition 3 (L-structure). An L-structure A is composed of

• A non-empty set A, called the universe of A
• for every c ∈ CL, a cA ∈ A
• for every f ∈ FL, a fA ∈ An → A

• for every R ∈ RL, a RA ∈ An

We write A , 〈A,
(
zA

)
z∈σL〉.

See [Tent and Ziegler, 2012, Definition 1.1.2].
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Example 3.

• 〈Z, 0,+〉 is an LMon-structure

• 〈N, 0,+〉 is an LMon-structure

• 〈Z, 0,+, λn.− n〉 is an LGp-structure

• 〈N, <〉 is an LOrd-structure

• 〈Z, <〉 is an LOrd-structure

• 〈N, <〉 is an LEns-structure

• 〈SetsFin,∈〉 is an LEns-structure

• 〈Sets,∈〉 is an LEns-structure

• 〈Pow(S), ∅, S,∆,∩, λx.S − x〉 is an LRing-structure (a Boolean ring)

1.1.1 Homomorphisms of structures

Let M,N be two L-structures.

Definition 4 (L-homomorphism). F : M → N is an L-homomorphism if

• for every c ∈ CL, F (cM) = cN ;

• for every f ∈ FL, for every a ∈M , F (fM(a)) = fN (F (a)) ;

• for every R ∈ RL, for every a ∈M , if a ∈ RM then F (a) ∈ RN .

See [Tent and Ziegler, 2012, Definition 1.1.3].

Example 4. λA.card(A) : SetsFin → N is an LEns-homomorphism

Definition 5 (Embedding). F : M → N is an embedding, written F :M ↪→ N , if F is
injective and

• for every c ∈ CL, F (cM) = cN ;

• for every f ∈ FL, for every a ∈M , F (fM(a)) = fN (F (a)) ;

• for every R ∈ RL, for every a ∈M , a ∈ RM iff F (a) ∈ RN .

Example 5. N ↪→ Z is an LOrd-embedding.

Definition 6 (Isomorphism). An isomorphism of structures, written M ∼= N , is a
surjective embedding, i.e. a bijection F : M → N that defines an embedding F :M ↪→
N .

See [Tent and Ziegler, 2012, Isomorphism (p.2)].

Example 6. N− {0} ∼= N, by the embedding λn.n− 1 : N− {0} ↪→ N.
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1.1.2 Reduct and expansion

Definition 7 (Reduct). Let K be a sublanguage of L. Let A be an L-structure.
The reduct of A to K, written A � K, is defined by forgetting the interpretation of the

symbols from L−K:
A � K , 〈A, (zA)z∈σK〉

Example 7. Z is an LGp-structure. Its reduct Z � LMon is an LMon-structure.

Definition 8 (Expansion). Conversely, A is an expansion of A � K.

Definition 9 (Expansion by a subset). Let A be an L-structure. Let B be a subset of
A.

We extend the language L with every element of B as a new constant:

L(B) , L ∪B

and define the expansion of L by B, written AB, with

AB , 〈A, (zA)z∈σL ∪ (b)b∈B〉

Example 8. Find example.

1.2 Terms and formulas

Definition 10 (L-terms). The set of L-terms T L is built according to the following
rules:

• Every constant in CL is an L-term.

• For every f ∈ FL, and every L-terms t, f(t) is an L-term.

Definition 11 (Height of a term). Written height(−), denotes the number of occurence
of function symbols

See [Tent and Ziegler, 2012, Complexity (p.6)].

Definition 12 (Atomic L-formula). formulas built from terms and relations on terms

Definition 13 (L-formulas). Written FmlL, formulas built from atomic formulas and
logical operators.

Definition 14 (Height of a formula). Written height(−), denotes the number of logical
operators.

Definition 15 (Free occurrence). Variable that is not used at all in a formula

Definition 16 (Bound occurrence). Opposite of free

Definition 17 (Free variables). Written Free(ϕ), variables occurring free

Definition 18 (Sentence). A formula ϕ is called a sentence if it has not free variable,
i.e. Free(ϕ) = ∅.

Definition 19 (Theory). A theory T is a set of L-sentences.
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1.3 Semantics

Let A be an L-structure.

Definition 20 (Assignment). Function α : V → A

Definition 21 (Intepretation). Let α be an assignment.
Written tL[α], interprets the term in A.

Definition 22 (Satisfiability). Written A |= t[α], translates a formula into the structure
A.

Definition 23 (Satisfiability of a sentence). A satisfies a sentence ϕ if A |= ϕ[ε], written
A |= ϕ for short.

Definition 24 (Model). A is a model of T , written A |= T , if for every ϕ ∈ T , we have
A |= ϕ .

1.4 Substitution

Definition 25 (Simultaneous substitution). Written ts/v, substitutes s for v in t.

1.5 Universally valid formulas

Definition 26 (Universally valid formula). Written |= ϕ , a formula that is satisfiable
in all L-structures, for all valuations

Definition 27 (Universal closure). Universally quantify the free variables of a formula:
just as universally valid.

Definition 28 (Logical consequence). Let T be a L-theory. Let ϕ be a L-sentence.
ϕ is a (logical) consequence of T , written T |= ϕ , if for every L-structure A, A |= T

implies A |= ϕ .

See [?, p.41].

1.6 Formal proofs and Gödel completeness theorem

Axioms: Tautologies (decidable by truth tables)

Equality: ∀x.x .
= x (Sym)

∀xy.x .
= y → y

.
= x (Refl)

∀xyz.x .
= y → y

.
= z → x

.
= z (Trans)

∀xy.x .
= y → f(x)

.
= f(y) (Cong-Fun)

∀xy.x .
= y → R(x)↔ R(y) (Cong-Rel)

Existential: ϕt/x → ∃x.ϕ (∃-Ax)
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Inference rules:
ϕ ϕ→ ψ

ψ
(MP)

ϕ→ ψ

∃x.ϕ→ ψ
(x 6∈ Free(ϕ)) (∃-Intro)

Definition 29 (Formal proof). Tree built from axioms or inferences.

Definition 30 (Provability). Written T `L ϕ, exists a formal proof of ϕ in T

Theorem 1 (Completeness (Gödel)). Let T be an L-theory. Let ϕ be an L-formula.
We have:

T |= ϕ iff T `L ϕ

Let T be an L-theory.

Definition 31 (Inconsistent theory). T is inconsistent if there exists an L-sentence ϕ
such that

T `L ϕ and T `L ¬ϕ

Definition 32 (Consistent theory). T is consistent if it is not inconsistent.

Definition 33 (Complete theory). T is complete if it is consistent and for every sentence
ϕ, we either have T ` ϕ or T ` ¬ϕ.

Remark 1 (Theory of a structure). Let A be an L-structure.
The theory Th(A) , {ϕ | A |= ϕ } is a complete theory.

Theorem 2 (Existence of a model). Let T be a consistent theory.
T necessarily has a model.

Definition 34 (Henkin theory). Let L be a language. Let C ⊆ CL be a set of constants.
An L-theory T is called a Henkin theory (or is said to contain (Henkin) witnesses in

C) if for all L-formula ϕ(x), there exists c ∈ C such that (∃x.ϕ→ ϕc/x) ∈ T

Remark 2. We are asking for the witness to be part of the theory (not deducible, for
example), that’s quite strong, isn’t it?

2 Model Theory

2.1 Fundemental results

Theorem 3 (Compactness theorem). A theory T has a model if every finite subset of
T has a model.

See [Tent and Ziegler, 2012, §2.2].

Theorem 4 (Semantic characterisations of homomorphisms and embeddings). Let M
and N be two L-structures. Let F : M → N be a function on their universes.
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1. f is a homomorphism iff for every atomic L-formula ϕ(x) and every tuple a : M ,
we have

M |= ϕ [a]⇒ N |= ϕ [F a]

2. f is an embedding iff for every atomic L-formula ϕ(x) and every tuple a : M , we
have

M |= ϕ [a]⇔ N |= ϕ [F a]

See [?, Theorem 1.3.1].

Definition 35 (Elementary embedding). F : M → N is an elementary embedding,

written F :M 4
↪→ N , if for every L-formulas ϕ(x), for every a ∈M , we have

M |= ϕ [a]⇔ N |= ϕ [F a]

Remark 3. An elementary embedding is, in particular, an embedding (by Theorem 4
(2))

Example 9. Find example? See [?, Exercise 2.5.1].

Definition 36 (Elementary equivalence). M and N are elementarily equivalent, written
M≡ N , if Th(M) = Th(N ).

See Remark 1.

Lemma 1. If M∼= N , then M≡ N .

See Definition 6.

Proof. Using the bijection on the universesM andN , valid formulas in Th(M) translates
to (valid) formulas in Th(N ), and vice versa.

Example 10. By the above lemma, we have: N−{0} ≡ N. For instance, to the formula
ϕ , ∃x, sucx

.
= 1 satisfying N |= ϕ corresponds ψ , ∃x, sucx

.
= 2 satisfying N−{0} |= ψ.

Definition 37 ((Elementary) substructure). M is an (elementary) substructure of N ,
written M⊆ N (M 4 N ), if M ⊆ N and the inclusion is an (elementary) embedding.

Example 11. N − {0} is a substructure of N, which is not elementary: the formula
∃x, suc x

.
= 1 is satisfied in the latter, but not in the former.

Definition 38 (Extension). Conversely, N is an extension ofM ifM is a substructure
of N .
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Lemma 2. If M⊆ N , then M≡ N .

Proof.

Theorem 5 (Tarski-Vaught’s test). Let M be an L-structure. Let A be a subset of M .
A is the universe of an elementary substructure of M iff for all L(A)-formula ϕ(x),

if MA |= ∃x.ϕ , then there exists a ∈ A such that MA |= ϕ [a].

Proof. Fix and finish!

〈1〉1. Assume: 1. A is the universe of an elementary substructure of M
2. ϕ(x) is an L(A)-formula
3. MA |= ∃x.ϕ

Prove: There exists a ∈ A such that MA |= ϕ [a]
〈2〉1. A |= ∃x.ϕ

Proof: By Assumption (3) and the fact that A 4M
〈2〉2. there exists a ∈ A such that A |= ϕ [a]

Proof: By 〈2〉1 and definition of |=
〈2〉3. Let: a ∈ A such that A |= ϕ [a]

Prove: MA |= ϕ [a]
Proof: By 〈2〉2 and the fact that A 4M

〈1〉2. Assume: for all L(A)-formula ϕ(x), if MA |= ∃x.ϕ , then there exists a ∈ A such
that MA |= ϕ [a]

Prove: A is the universe of an elementary substructure of M

Definition 39 (Generated substructure). Let A be any non-empty subset of M .
There exists a smallest substructure 〈A〉M – the substructure generated by S – that

contains S. If S is finite, then 〈A〉M is said to be finitely generated.

Theorem 6 (Downward Löwenheim-Skolem). Let M be an L-structure. Let A be a
subset of A. Let κ be a cardinal (infinite).

Assume that max(card(A), card(L)) ≤ κ ≤ card(M).
We have that there exists B 4M with A ⊆ B and card(B) = κ.

Let (I,<) be a totally ordered set.

Definition 40 ((Elementary) chain). A family (Ai)i∈I forms a chain (respectively, an
elementary chain) if for every i < j, Ai ⊆ Aj (respectively, Ai 4 Aj).

Let A be an L-structure.

Definition 41 (Elementary diagram). The elementary diagram of A, written D(A), is
the L(A)-theory

D(A) , Th(AA)

Definition 42 (Atomic diagram). The atomic diagram of A, written ∆(A), is the L(A)-
theory

∆(A) , {ϕ atomic L(A)-sentence | AA |= ϕ }
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Theorem 7 (Upward Lowenheim-Skolem). Let M be an infinite L-structure. Let κ be
a cardinal such that max(card(M), card(L)) ≤ κ.
M has an elementary extension of cardinality κ.

Let M be an L-structure. Let A be a subset of M . Let ϕ(x) be an L(A)-formula.

Definition 43 (A-definable set). The set ϕ[M], called A-definable set, is defined by

ϕ[M] , {b ∈M | M |= ϕ b}

Definition 44 (0-definable set). A 0-definable set is a set definable without parameter.

Definition 45 (Definable set). A relation D of M is said definable if it is M -definable.

Definition 46 (Categorical theory). Let κ be an (infinite) cardinal. Let T be a theory.
T is a κ-categorical theory if T has a model of cardinality κ and if its models of

cardinality κ are isomorphic.

Theorem 8 (Vaught’s criterion). Let T be a theory.
If T is κ-categorical for κ ≥ card(L) and does not have a finite model, then T is

complete.

See [Tent and Ziegler, 2012, Exercise 2.1.2].

2.2 Preservation theorems

Lemma 3 (Separation). Let T1 and T2 be two consistent L-theories. Let H be a set of
L-sentences closed by conjunction and disjunction.

The following are equivalent:

Local separation: for allM1 |= T1 andM2 |= T2 , there exists ϕ ∈ H such thatM1 |= ϕ
and M∈ |= ¬ϕ

Global separation: there exists ϕ ∈ H such that T1 |= ϕ and T2 |= ¬ϕ

Remark 4 (Notation). Let φ be a set of L-formulas. LetM,N be two L-structures. Let
f : M → N be a function.

• We write φM the set of sentences from φ that are true in M:

φM , {ϕ ∈ φ | M |= ϕ }

• We write f :M→φ N if f preserves all the formulas in φ

• We write f :M⇒φ N if φM ⊆ φN

Remark 5 (Terminology). • A universal formula is a formula ∀x.ϕ, with ϕ without
quantifier.

• An existential formula is a formula ∃x.ϕ, with ϕ without quantifier.

Theorem 9 (Preservation of the universal quantifier). Let T be an L-theory.
Write statement.
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2.3 Quantifier elimination

Definition 47 (Quantifier elimination). A theory T has quantifier elimination if for all
formula ϕ(x), there exists a formula ψ(x) without quantifiers that is equivalent modulo
T to ϕ.

Definition 48 (Primitive existential formula). State.

Definition 49 (Substructure completeness). Let M,N two models of T . Let A a
common substructure of M and N .
T is substructure-complete if

MA ≡ NA

Theorem 10. Let T be an L-theory. The following are equivalent:

• T has quantifier elimination ;

• T is substructure-complete ;

• For M,N two models of T , a common substructure A of M and N , an primitive
existential L-formula ϕ(x), and a ∈ A, we have M |= ϕ [a] iff N |= ϕ [a].

Definition 50 (Model completeness). Let T be an L-theory.
T is model-complete if for all M,N |= T with M⊆ N , we have M 4 N .

Proposition 1 (Robinson’s test). State.

2.4 Theories with quantifier elimination

2.5 Types and saturation

Definition 51 (Partial n-type). State.

Definition 52 (Complete n-type). State.

Definition 53 (Set of n-types). State.

Definition 54 (Realisation of a type). State.
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