Lecture 15: Multivariate normal distributions

Normal distributions with singular covariance matrices

Consider an n-dimensional $X \sim N(\mu, \Sigma)$ with a positive definite Σ and a fixed $k \times n$ matrix A that is not of rank k (so k may be larger than n). The mgf of $Y=A X$ is still equal to

$$
M_{Y}(t)=e^{(A \mu)^{\prime} t+t^{\prime}\left(A \Sigma A^{\prime}\right) t / 2}, \quad t \in \mathscr{R}^{k}
$$

But what is the distribution corresponding to this mgf?

Lemma.

For any $n \times n$ non-negative definite matrix Σ and $\mu \in \mathscr{R}^{n}$, $e^{\mu^{\prime} t+t^{\prime} \Sigma t / 2}$ defined for all $t \in \mathscr{R}^{n}$ is the mgf of an n-dimensional random vector X.

Proof.

From the theory of linear algebra, a non-negative definite matrix Σ of rank $r<n$ satisfies

$$
\Sigma=T^{\prime}\left(\begin{array}{ll}
\Lambda & 0 \\
0 & 0
\end{array}\right) T=C^{\prime} \wedge C \quad T=\binom{C}{D}
$$

where Λ is an $r \times r$ diagonal matrix whose all diagonal elements are
positive, 0 denotes a matrix of 0's of an appropriate order, C is an $r \times n$ matrix of rank r, T is an $n \times n$ matrix satisfying $T T^{\prime}=T^{\prime} T=I_{n}$ (the identity matrix of order n), $C C^{\prime}=I_{r}, D C^{\prime}=0, D D^{\prime}=I_{n-r}$, and
$C^{\prime} C+D^{\prime} D=I_{n}$.
Let Y be an r-dimensional random vector $\sim N(C \mu, \Lambda)$ and define

$$
X=T^{\prime}\binom{Y}{D \mu}=C^{\prime} Y+D^{\prime} D \mu
$$

Since $Y \sim N(C \mu, \Lambda)$, its mgf is $M_{Y}(s)=e^{(C \mu)^{\prime} s+s^{\prime} \Lambda s / 2}, s \in \mathscr{R}^{r}$ and the mgf of X is

$$
\begin{aligned}
M_{X}(t) & \left.=e^{\left(D^{\prime} D \mu\right)^{\prime} t} M_{Y}(C t)\right)=e^{\left(D^{\prime} D \mu\right)^{\prime} t} e^{(C \mu)^{\prime}(C t)+(C t)^{\prime} \Lambda(C t) / 2} \\
& =e^{\mu^{\prime}\left(D^{\prime} D+C^{\prime} C\right) t+t^{\prime} C^{\prime} \Lambda C t / 2}=e^{\mu^{\prime} t+t^{\prime} \Sigma t / 2} \quad t \in \mathscr{R}^{n}
\end{aligned}
$$

This completes the proof.

Definition

For any fixed $n \times n$ non-negative definite matrix Σ and $\mu \in \mathscr{R}^{n}$, the distribution of an n-dimensional random vector with $\mathrm{mgf} e^{\mu^{\prime} t+t^{\prime} \Sigma t / 2}$ is called normal distribution and denoted by $N(\mu, \Sigma)$.

- If Σ is positive definition, then this definition is the same as the previous definition using the pdf.
- If $X \sim N(\mu, \Sigma)$ and $Y=A X+b$, then $Y \sim N\left(A \mu, A \Sigma A^{\prime}\right)$, regardless of whether $A \Sigma A^{\prime}$ is singular or not.
- If X is multivariate normal, then any sub-vector of X is also normally distributed.
- If n-dimensional $X \sim N(\mu, \Sigma)$ and the rank of Σ is $r<n$, there exists an $r \times n$ matrix C of rank r and $Y=C X \sim N\left(C \mu, C \Sigma C^{\prime}\right)$, where $C \Sigma C^{\prime}$ is a diagonal matrix whose diagonal elements are all positive, and hence Y has an r-dimensional normal pdf and components of Y are independent.
- If n-dimensional $X \sim N(\mu, \Sigma)$ and the rank of Σ is $r<n$, then, from the previous discussion, $X=C^{\prime} Y+D^{\prime} D \mu$, where $Y \sim N\left(C \mu, C \Sigma C^{\prime}\right)$ and

$$
\begin{aligned}
E(X) & =C^{\prime} E(Y)+D^{\prime} D \mu=\left(C^{\prime} C+D^{\prime} D\right) \mu=\mu \\
\operatorname{Var}(X) & =C^{\prime} \operatorname{Var}(Y) C=C^{\prime} C \Sigma C^{\prime} C=\Sigma
\end{aligned}
$$

Thus, μ and Σ in $N(\mu, \Sigma)$ is still the mean and covariance matrix. Furthermore, any two components of $X \sim N(\mu, \Sigma)$ are independent iff they are uncorrelated.
This can be shown as follows.
Suppose that X_{1} and X_{2} are the first two components of X and $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$, i.e., the (1,2)th and (2,1)th elements of Σ are 0 .
Let μ_{1} and μ_{2} be the first two components of μ and σ_{1}^{2} and σ_{2}^{2} be the first and second diagonal elements of Σ, and let $t=\left(t_{1}, t_{2}, 0, \ldots, 0\right)$, $t_{1} \in \mathscr{R}, t_{2} \in \mathscr{R}$.
Then the mgf of $\left(X_{1}, X_{2}\right)$ is

$$
M_{\left(X_{1}, X_{2}\right)}\left(t_{1}, t_{2}\right)=e^{\mu^{\prime} t+t^{\prime} \Sigma t / 2}=e^{\mu_{1} t_{1}+\sigma_{1}^{2} t_{1}^{2} / 2} e^{\mu_{2} t_{2}+\sigma_{2}^{2} t_{2}^{2} / 2} \quad t_{1} \in \mathscr{R}, t_{2} \in \mathscr{R}
$$

By Theorem M4, X_{1} and X_{2} are independent.

Theorem.

An n-dimensional random vector $X \sim N(\mu, \Sigma)$ (regardless of whether Σ is singular or not) iff for any n-dimensional constant vector c, $c^{\prime} X \sim N\left(c^{\prime} \mu, c^{\prime} \Sigma c\right)$.

Proof.

We treat a degenerated $X=c$ as $N(c, 0)$.

- If $X \sim N(\mu, \Sigma)$, then $M_{X}(t)=e^{\mu^{\prime} t+t^{\prime} \Sigma t / 2}$.

For any $c \in \mathscr{R}^{n}$, by the properties of mgf, the mgf of $c^{\prime} X$ is

$$
M_{c^{\prime} X}(t)=M_{X}(c t)=e^{\mu^{\prime}(c t)+(c t)^{\prime} \Sigma(c t) / 2}=e^{\left(c^{\prime} \mu\right) t+\left(c^{\prime} \Sigma c\right) t^{2} / 2} \quad t \in \mathscr{R}
$$

which is the mgf of $N\left(c^{\prime} \mu, c^{\prime} \Sigma c\right)$.
By uniqueness, $c^{\prime} X \sim N\left(c^{\prime} \mu, c^{\prime} \Sigma c\right)$.

- If $c^{\prime} X \sim N\left(c^{\prime} \mu, c^{\prime} \Sigma c\right)$ for any $c \in \mathscr{R}^{n}$, then $t^{\prime} X \sim N\left(t^{\prime} \mu, t^{\prime} \Sigma t\right)$ for any $t \in \mathscr{R}^{n}$ and

$$
M_{t^{\prime} X}(s)=e^{\left(t^{\prime} \mu\right) s+\left(t^{\prime} \Sigma t\right) s^{2} / 2} \quad s \in \mathscr{R}
$$

Letting $s=1$, we obtain

$$
M_{t^{\prime} X}(1)=e^{\left(t^{\prime} \mu\right)+\left(t^{\prime} \Sigma t\right) / 2}=E\left(e^{t^{\prime} X}\right)=M_{X}(t) \quad t \in \mathscr{R}^{n}
$$

By uniqueness, $X \sim N(\mu, \Sigma)$.
The condition any $c \in \mathscr{R}^{n}$ is important.

The uniform distribution on $[a, b] \times[c, d]$

We have shown that the two marginal distributions are uniform distributions on intervals $[a, b]$ and $[c, d]$. For non-zero constants ξ and ζ, is the distribution of $\xi X+\zeta Y$ a uniform distribution on some interval?
If $\left(e^{b t}-e^{a t}\right) / t$ is defined to be $b-a$ when $t=0$ for any constants $a<b$, then

$$
\begin{aligned}
M_{X, Y}(t, s) & =\int_{a}^{b} \int_{c}^{d} e^{t x+s y} \frac{1}{(b-a)(d-c)} d x d y \\
& =\frac{\left(e^{b t}-e^{a t}\right)\left(e^{d s}-e^{c s}\right)}{(b-a)(d-c) t s} \quad s, t \in \mathscr{R}
\end{aligned}
$$

and

$$
M_{\xi X+\zeta Y}(t)=E\left(e^{t(\xi X+\zeta Y)}\right)=\frac{\left(e^{b \xi t}-e^{a \xi t}\right)\left(e^{d \zeta t}-e^{c \zeta t}\right)}{(b-a)(d-c) \xi \zeta t^{2}} \quad t \in \mathscr{R}
$$

This is not a mgf of a uniform distribution on an interval $[r, h]$, which is of the form $\left(e^{h t}-e^{r t}\right) /[t(h-r)]$ for $t \in \mathscr{R}$.

We have shown that if $X \sim N(\mu, \Sigma)$, then any linear function $A X+b$ is normally distributed.
The following result concerns the independence of linear functions of a normally distributed random vector.

Theorem N1.

Let X be an n-dimensional random vector $\sim N(\mu, \Sigma)$ and A be a fixed $k \times n$ matrix, and B be a fixed $I \times n$ matrix. Then, $A X$ and $B X$ are independent iff $A \Sigma B^{\prime}=0$.

Proof.

Let

$$
Y=\binom{A}{B} X=\binom{A X}{B X}
$$

From the properties of the multivariate normal distribution, we know that Y is multivariate normal with covariance matrix

$$
\binom{A}{B} \Sigma\left(\begin{array}{ll}
A^{\prime} & B^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
A \Sigma A^{\prime} & A \Sigma B^{\prime} \\
B \Sigma A^{\prime} & B \Sigma B^{\prime}
\end{array}\right)
$$

Hence, $A X$ and $B X$ are uncorrelated iff $A \Sigma B^{\prime}=0$ and, thus, the only if part follows since independence implies no correlation.
The proof for the if part is the same as the proof of two uncorrelated components of X are independent: we can show that if $A \Sigma B^{\prime}=0$, then the mgf of $(A X, B X)$ is a product of an mgf on \mathscr{R}^{k} and another mgf on \mathscr{R}^{\prime}, and then apply Theorem M4.

Theorem N 2 .

If (X, Y) is a random vector $\sim N(\mu, \Sigma)$ with

$$
\mu=\binom{\mu_{1}}{\mu_{2}}, \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

and if Σ is positive definite, then

$$
Y \mid X \sim N\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(X-\mu_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

It follows from the properties of normal distributions that

$$
E(Y \mid X)=\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(X-\mu_{1}\right), \quad \operatorname{Var}(Y \mid X)=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
$$

While the conditional mean depends on X, the conditional covariance matrix does not.

Proof.

Consider the transformation

$$
U=A X+Y
$$

with a fixed matrix A chosen so that U and X are independent.
From Theorem N 1 , we need U and X to be uncorrelated.
Since

$$
\begin{aligned}
\operatorname{Cov}(X, U) & =\operatorname{Cov}(X, A X+Y)=\operatorname{Cov}(X, A X)+\operatorname{Cov}(X, Y) \\
& =\operatorname{Cov}(X, X) A^{\prime}+\Sigma_{12}=\Sigma_{11} A^{\prime}+\Sigma_{12}
\end{aligned}
$$

we choose $A=-\Sigma_{21} \Sigma_{11}^{-1}$.
Consider the transformation
$\binom{V}{U}=\binom{X}{A X+Y}=\left(\begin{array}{cc}I & 0 \\ -\Sigma_{21} \Sigma_{11}^{-1} & I\end{array}\right)\binom{X}{Y}, \quad\left|\frac{\partial(U, V)}{\partial(X, Y)}\right|=1$
Let $f_{(X, Y)}$ be the pdf of $(X, Y), f_{(U, V)}$ be the pdf of $(U, V), f_{U}$ be the pdf of U and f_{V} be the pdf of V.
By the transformation formula and the independence of U and $V=X$,

$$
f_{(X, Y)}(x, y)=f_{(U, V)}(u, v)=f_{U}(u) f_{V}(v)=f_{U}\left(y-\Sigma_{21} \Sigma_{11}^{-1} x\right) f_{X}(x)
$$

Then the pdf of $Y \mid X$ is

$$
\frac{f_{(X, Y)}(x, y)}{f_{X}(x)}=\frac{f_{U}\left(y-\Sigma_{21} \Sigma_{11}^{-1} x\right) f_{X}(x)}{f_{X}(x)}=f_{U}\left(y-\Sigma_{21} \Sigma_{11}^{-1} x\right)
$$

Since $U=-\Sigma_{21} \Sigma_{11}^{-1} X+Y, U$ is normally distributed.

$$
\begin{aligned}
E(U) & =-\Sigma_{21} \Sigma_{11}^{-1} E(X)+E(Y)=-\Sigma_{21} \Sigma_{11}^{-1} \mu_{1}+\mu_{2} \\
\operatorname{Var}(U) & =\operatorname{Var}(A X+Y)=\operatorname{Var}(A X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(A X, Y) \\
& =A \operatorname{Var}(X) A^{\prime}+\Sigma_{22}+2 A \operatorname{Cov}(X, Y) \\
& =\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{11} \Sigma_{11}^{-1} \Sigma_{12}+\Sigma_{22}-2 \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\
& =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
\end{aligned}
$$

Hence, f_{U} is the pdf of $N\left(\mu_{2}-\Sigma_{21} \Sigma_{11}^{-1} \mu_{1}, \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)$.
Given $X=x, \Sigma_{21} \Sigma_{11}^{-1} x$ is a constant and, hence, $f_{U}\left(y-\Sigma_{21} \Sigma_{11}^{-1} x\right)$ is the pdf of $N\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x-\mu_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)$, considered as a function of y.

Quadratic forms

For a random vector X and a fixed symmetric matrix $A, X^{\prime} A X$ is called a quadratic function or quadratic form of X.
We now study the distribution of quadratic forms when X is multivariate normal.

Theorem N3.

Let $X \sim N\left(\mu, I_{n}\right)$ and A be a fixed $n \times n$ symmetric matrix. A necessary and sufficient condition for $X^{\prime} A X$ is chi-square distributed is $A^{2}=A$, in which case the degrees of freedom of the chi-square distribution is the rank of A and the noncentrality parameter $\mu^{\prime} A \mu$.

Proof.

Sufficiency.

If $A^{2}=A$, then A is a projection matrix and there exists an $n \times n$ matrix T such that $T^{\prime} T=T T^{\prime}=I_{n}$ and

$$
A=T^{\prime}\left(\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right) T=C^{\prime} C
$$

where k is the rank of A and C is the first k rows of T.

Then $X^{\prime} A X=(C X)^{\prime}(C X)$ is simply the sum of the squares of $C X$, the first k components of $T X$.
Since $T X \sim N\left(T \mu, T I_{n} T^{\prime}\right)=N\left(T \mu, I_{n}\right)$, by definition $X^{\prime} A X$ has the chi-square distribution with degrees of freedom k and noncentrality parameter $(C \mu)^{\prime}(C \mu)=\mu^{\prime} C^{\prime} C \mu=\mu^{\prime} A \mu$.
Necessity.
Suppose that $X^{\prime} A X$ is chi-square with degrees of freedom m and noncentrality parameter $\delta \geq 0$.
Then A must be nonnegative definite and there exists an $n \times n$ matrix T such that $T^{\prime} T=T T^{\prime}=I_{n}$ and

$$
A=T^{\prime}\left(\begin{array}{ll}
\Lambda & 0 \\
0 & 0
\end{array}\right) T
$$

where Λ is a $k \times k$ diagonal matrix contains k non-zero eigenvalues $0<\lambda_{1} \leq \cdots \leq \lambda_{k}$.
We still have $T X \sim N\left(T \mu, I_{n}\right)$.
Let Y_{1}, \ldots, Y_{k} be the first k components of $T X$.
Then Y_{i}^{2} 's are independent and $Y_{i}^{2} \sim$ chi-square with degree of freedom 1 and noncentrality parameter μ_{i}^{2}, where μ_{i} is the i th
component of μ, and

$$
X^{\prime} A X=\sum_{i=1}^{k} \lambda_{i} Y_{i}^{2}
$$

Using the mgf formula for noncentral chi-square distributions, the mgf's of the left and right hand sides are respectively given in the left and right hand sides of the following:

$$
\frac{e^{\delta t /(1-2 t)}}{(1-2 t)^{m / 2}}=\prod_{i=1}^{k} \frac{e^{\lambda_{i} \mu_{i}^{2} t /\left(1-2 \lambda_{i} t\right)}}{\left(1-2 \lambda_{i} t\right)^{1 / 2}} \quad t<1 / 2
$$

Suppose that $\lambda_{k}>1$.
When $t \rightarrow\left(2 \lambda_{k}\right)^{-1}$, the right hand side of the above equation diverges to ∞ whereas the left hand side of the above equation goes to $e^{\delta\left(2 \lambda_{k}\right)^{-1} /\left(1-\lambda_{k}^{-1}\right)} /\left(1-\lambda_{k}^{-1}\right)^{m / 2}<\infty$, which is a contradiction. Hence $\lambda_{k} \leq 1$ so that $\lambda_{i} \leq 1$ for all i.
Suppose that $\lambda_{k}=\cdots=\lambda_{I+1}=1>\lambda_{I} \geq \cdots \geq \lambda_{1}>0$ for a positive integer $I \leq k$, which implies

$$
\frac{e^{\delta t /(1-2 t)}}{(1-2 t)^{(m-k+l) / 2}}=\prod_{i=1}^{l} \frac{e^{\lambda_{i} \mu_{i}^{2} t /\left(1-2 \lambda_{i} t\right)}}{\left(1-2 \lambda_{i} t\right)^{1 / 2}} \quad t<1 / 2
$$

When $t \rightarrow 1 / 2$, the left hand side of the above equation diverges to ∞, whereas the right hand side of the above equation converges to

$$
\prod_{i=1}^{l} \frac{e^{\lambda_{i} \mu_{i}^{2} / 2\left(1-\lambda_{i}\right)}}{\left(1-\lambda_{i}\right)^{1 / 2}}
$$

which is a contradiction.
Therefore, we must have $\lambda_{1}=\cdots=\lambda_{k}=1$, i.e., A is a projection matrix.

Theorem N4 (Cochran's theorem).

Suppose that X is an n-dimensional random vector $\sim N\left(\mu, I_{n}\right)$ and

$$
X^{\prime} X=X^{\prime} A_{1} X+\cdots+X^{\prime} A_{k} X
$$

where I_{n} is the $n \times n$ identity matrix and A_{i} is an $n \times n$ symmetric matrix with rank $n_{i}, i=1, \ldots, k$. A necessary and sufficient condition for
(i) $X^{\prime} A_{i} X$ has the noncentral chi-square distribution with degrees of freedom n_{i} and noncentrality parameter $\delta_{i}, i=1, \ldots, k$,
(ii) $X^{\prime} A_{i} X^{\prime} s$ are independent,
is $n=n_{1}+\cdots+n_{k}$, in which case $\delta_{i}=\mu^{\prime} A_{i} \mu$ and $\delta_{1}+\cdots+\delta_{k}=\mu^{\prime} \mu$.

Suppose that (i)-(ii) hold.
Then $X^{\prime} X$ has the chi-square distribution with degrees of freedom $n_{1}+\cdots+n_{k}$ and noncentrality parameter $\delta_{1}+\cdots+\delta_{k}$.
By definition, $X^{\prime} X$ has the noncentral chi-square distribution with degrees of freedom n and noncentrality parameter $\mu^{\prime} \mu$.
Then we must have $n=n_{1}+\cdots+n_{k}$ and $\delta_{1}+\cdots+\delta_{k}=\mu^{\prime} \mu$.
Suppose now that $n=n_{1}+\cdots+n_{k}$.
From the theory of linear algebra, for each i there exists $c_{i j} \in \mathscr{R}^{n}$, $j=1, \ldots, n_{i}$, such that

$$
X^{\prime} A_{i} X= \pm\left(c_{i 1}^{\prime} X\right)^{2} \pm \cdots \pm\left(c_{i_{i}}^{\prime} X\right)^{2}
$$

Let C be the $n \times n$ matrix whose columns are $c_{11}, \ldots, c_{1 n_{1}}, \ldots, c_{k 1}, \ldots, c_{k n_{k}}$, Then

$$
X^{\prime} X=X^{\prime} C \Delta C^{\prime} X
$$

with an $n \times n$ diagonal matrix Δ whose diagonal elements are ± 1. This implies $C \Delta C^{\prime}=I_{n}$ and thus C is of full rank and $\Delta=C^{-1}\left(C^{\prime}\right)^{-1}$, which is positive definite.

This shows $\Delta=I_{n}$, which implies $C^{\prime} C=C C^{\prime}=I_{n}$ and

$$
X^{\prime} A_{i} X=\sum_{j=n_{1}+\cdots+n_{i-1}+1}^{n_{1}+\cdots+n_{i-1}+n_{i}} Y_{j}^{2}
$$

where Y_{j} is the j th component of $Y=C^{\prime} X \sim N\left(C^{\prime} \mu, I_{n}\right)$.
Hence Y_{j} 's are independent and $Y_{j} \sim N\left(\lambda_{j}, 1\right)$, where λ_{j} is the j th component of $C^{\prime} \mu$.
This shows that $X^{\prime} A_{i} X, i=1, \ldots, k$, are independent and $X^{\prime} A_{i} X$ has the chi-square distribution with degrees of freedom n_{i} and noncentrality parameter $\delta_{i}=\lambda_{n_{1}+\cdots+n_{i-1}+1}^{2}+\cdots+\lambda_{n_{1}+\cdots+n_{i-1}+n_{i}}^{2}$.
Letting $X=\mu$ and $Y=C^{\prime} X=C^{\prime} \mu$, we obtain that $\delta_{i}=\mu^{\prime} A_{i} \mu$ and $\delta_{1}+\cdots+\delta_{k}=\mu^{\prime} C C^{\prime} \mu=\mu^{\prime} \mu$.
This completes the proof.

Theorem N5.

Let X be an n-dimensional random vector $\sim N\left(\mu, I_{n}\right)$ and A_{1} and A_{2} be $n \times n$ projection matrices. Then a necessary and sufficient condition that $X^{\prime} A_{1} X$ and $X^{\prime} A_{2} X$ are independent is $A_{1} A_{2}=0$.

Proof.

If $A_{1} A_{2}=0$, then

$$
\begin{aligned}
\left(I_{n}-A_{1}-A_{2}\right)^{2} & =I_{n}-A_{1}-A_{2}-A_{1}+A_{1}^{2}+A_{2} A_{1}-A_{2}+A_{1} A_{2}+A_{2}^{2} \\
& =I_{n}-A_{1}-A_{2}
\end{aligned}
$$

i.e., $I_{n}-A_{1}-A_{2}$ is a projection matrix with rank $=\operatorname{trace}\left(I_{n}-A_{1}-A_{2}\right)$
$=n-r_{1}-r_{2}$, where $r_{i}=\operatorname{trace}\left(A_{i}\right)$ is the rank of $A_{i}, i=1,2$.
By Cochran's theorem and

$$
X^{\prime} X=X^{\prime} A_{1} X+X^{\prime} A_{2} X+X^{\prime}\left(I_{n}-A_{1}-A_{2}\right) X
$$

$X^{\prime} A_{1} X$ and $X^{\prime} A_{2} X$ are independent.
This proves the sufficiency.
Assume that $X^{\prime} A_{1} X$ and $X^{\prime} A_{2} X$ are independent.
Since $X^{\prime} A_{i} X$ has the noncentral chi-square distribution with degrees of freedom $r_{i}=$ the rank of A_{i} and noncentrality parameter $\delta_{i}=\mu^{\prime} A_{i} \mu$, $X^{\prime}\left(A_{1}+A_{2}\right) X$ has the noncentral chi-square distribution with degrees of freedom $r_{1}+r_{2}$ and noncentrality parameter $\delta_{1}+\delta_{2}$.

Consequently, $A_{1}+A_{2}$ is a projection matrix, i.e.,

$$
\left(A_{1}+A_{2}\right)^{2}=A_{1}+A_{2}
$$

which implies

$$
A_{1} A_{2}+A_{2} A_{1}=0
$$

Since $A_{1}^{2}=A_{1}$, we obtain that

$$
0=A_{1}\left(A_{1} A_{2}+A_{2} A_{1}\right)=A_{1} A_{2}+A_{1} A_{2} A_{1}
$$

and

$$
0=A_{1}\left(A_{1} A_{2}+A_{2} A_{1}\right) A_{1}=2 A_{1} A_{2} A_{1},
$$

which imply $A_{1} A_{2}=0$.
This proves the necessity.

