Lecture 15: Multivariate normal distributions

Normal distributions with singular covariance matrices

Consider an n-dimensional X ~ N(u,Xx) with a positive definite X and a
fixed k x n matrix A that is not of rank k (so kK may be larger than n).
The mgf of Y = AX is still equal to

MY(t) _ e(Au)’t—i—t’(AZA’)t/Z’ te %k
But what is the distribution corresponding to this mgf?

For any n x n non-negative definite matrix * and u € %", e¥'t+1'>/2
defined for all t € #" is the mgf of an n-dimensional random vector X.

From the theory of linear algebra, a non-negative definite matrix X of
rank r < n satisfies

(N O o ([ C
(3 O)reone  1-(8)

where A is an r x r diagonal matrix whose all diagonal elements are
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positive, 0 denotes a matrix of 0’s of an appropriate order, Cis an r x n
matrix of rank r, T is an n x n matrix satisfying TT' = T'T = I, (the
identity matrix of order n), CC' = I,, DC' =0, DD' = I,_,, and
C'C+DD=I,.
Let Y be an r-dimensional random vector ~ N(Cu,A\) and define
X = T’( D‘; > _C'Y+DDy
Since Y ~ N(Cu,N), its mgf is My(s) = e(CH)'s+SAs/2 5 c 79 and the
mgf of X is
My (t) = e(D'D“)/tMy(Ct)) — (D'Duy't o(Cuy (CH+(CtYA(CH) /2
_ gW(DD+C'OMHICAC/2 _ qu't+'Et/2 tep"

This completes the proof.

Definition
For any fixed n x n non-negative definite matrix ~ and u € Z", the

distribution of an n-dimensional random vector with mgf e't+1>t/2 jg
called normal distribution and denoted by N(u,X).
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@ If X is positive definition, then this definition is the same as the
previous definition using the pdf.

@ If X~ N(u,x)and Y =AX+b, then Y ~ N(Au,AXA'), regardless
of whether AL A’ is singular or not.

@ If X is multivariate normal, then any sub-vector of X is also
normally distributed.

@ If n-dimensional X ~ N(u,X) and the rank of X is r < n, there
exists an r x n matrix C of rank rand Y = CX ~ N(Cu,CxC’),
where CX.C’ is a diagonal matrix whose diagonal elements are all
positive, and hence Y has an r-dimensional normal pdf and
components of Y are independent.

@ If n-dimensional X ~ N(u,X) and the rank of X is r < n, then, from
the previous discussion, X = C'Y + D'Du, where
Y ~N(Cu,CxC’) and

E(X)=CE(Y)+DDu=(CC+DD)u=un
Var(X) = C'Var(Y)C=C'CxC'C=%
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Thus, 1 and X in N(u,X) is still the mean and covariance matrix.

Furthermore, any two components of X ~ N(u,X) are independent iff
they are uncorrelated.

This can be shown as follows.

Suppose that X; and X, are the first two components of X and
Cov(Xi,X2) =0, i.e., the (1,2)th and (2,1)th elements of X are 0.

Let uy and up be the first two components of 1 and o2 and o2 be the
first and second diagonal elements of ¥, and let t = (#, ,0,...,0),
heZ beZ.

Then the mgf of (X1, X2) is
M(X1 .XZ)(t17t2) — eu’t+t’2t/2 — e/.L1 t1+(712t12/26,u2f2+622f22/2 t1 c %, t2 cR

By Theorem M4, X; and Xs are independent.

Theorem.

An n-dimensional random vector X ~ N(u,X) (regardless of whether ©
is singular or not) iff for any n-dimensional constant vector c,
¢'X ~N(cu,c'xe).
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We treat a degenerated X = ¢ as N(c,0).
@ If X ~ N(u,X), then Mx(t) = et t+I>t/2,
For any c € Z", by the properties of mgf, the mgf of ¢/ X is
My x(t) = Mx(ct) = gt (et)+(ctyx(ct)/2 _ e(c’u)t+(c’):c)t2/2 te R
which is the mgf of N(c'u,c’~c).
By uniqueness, ¢/’ X ~ N(c'u,c’xc).

@ Ifc/’X ~N(c'u,cxc)forany c e 2", then t' X ~ N(t'u,t'xt) for
any te #" and

Myx(s) = e(t’u)s+(t’2t)s2/2 ScR
Letting s = 1, we obtain
Myx(1) = eWHIED/2 — E(ofX) = My(t)  te®"

By uniqueness, X ~ N(u,X).
The condition any ¢ € 2" is important.

V.
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The uniform distribution on [a, b] x [c, d]

We have shown that the two marginal distributions are uniform
distributions on intervals [a, b] and [c, d].

For non-zero constants & and £, is the distribution of EX+ Y a
uniform distribution on some interval?

If (e®! — e?!)/t is defined to be b— a when t = 0 for any constants
a< b, then

My y(t,s) = // R )( 5
e

bt eat)(eds eCS)
= T (b-a)(d—0o)s St

and

bét _ qatt dét _ Aelt
_ e atExtry)yy (€75 —e®) (e —e) @
MéX-f—CY(t) E(e ) (b—a)(d—C)égtz te
This is not a mgf of a uniform distribution on an interval [r, h], which is
of the form (e — e™)/[t(h—r)] for t € Z.
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We have shown that if X ~ N(u,X), then any linear function AX + b is
normally distributed.

The following result concerns the independence of linear functions of a
normally distributed random vector.

Theorem N1.

Let X be an n-dimensional random vector ~ N(u,%) and A be a fixed
k x n matrix, and B be a fixed / x n matrix. Then, AX and BX are
independent iff AXB' = 0.

|

Proof.

. e

From the properties of the multivariate normal distribution, we know
that Y is multivariate normal with covariance matrix

A o [ ATA ALB
(B)Z(A B)_<BZA’ BZB’>
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Hence, AX and BX are uncorrelated iff A~B’ = 0 and, thus, the only if
part follows since independence implies no correlation.

The proof for the if part is the same as the proof of two uncorrelated
components of X are independent: we can show that if AXB' = 0, then
the mgf of (AX, BX) is a product of an mgf on % and another mgf on
Z', and then apply Theorem M4.

Theorem N2.
If (X,Y) is a random vector ~ N(u,X) with

M 249 Xy )
= o z = .
H < Hz ) < Yo1 Xoo
and if X is positive definite, then
Y[IX~N (#2 + X1 T (X — 1), Top — Ty X7 Z12)

It follows from the properties of normal distributions that
E(Y|X)=to+Zo1X7{ (X—p1),  Var(Y|X) =Yoo —¥o1T7, T12
While the conditional mean depends on X, the conditional covariance

maitrix does not.
UW-Madison (Statistics) Stat 609 Lecture 15 2015 8/18




Proof.
Consider the transformation

U=AX+Y
with a fixed matrix A chosen so that U and X are independent.
From Theorem N1, we need U and X to be uncorrelated.
Since

Cov(X,U) = Cov(X,AX+Y) = Cov(X,AX)+Cov(X,Y)
= COV(X,X)A’+Z12 =Y 1A+

we choose A= ¥ X .
Consider the transformation

Vi X B / 0 X a(u, V)| ’

Uu) \AX+Y )\ —Zxzy] | Y )’ IX,Y)|
Let fx,v) be the pdf of (X, Y), fu,v) be the pdf of (U, V), fy be the pdf
of U and fy be the pdf of V.

By the transformation formula and the independence of U and V = X,
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fox.v) (%, ¥) = fuvy (U, v) = fu(U)fy(v) = fu(y — Z21 517 X)fx (X)
Then the pdf of Y|X is
fxn(x.y) _ fuly — L2177 X)fx(X)
fx(x) fx(x)
Since U= —X»1X{{ X+ Y, Uis normally distributed.
E(U) = —S2157 E(X) + E(Y) = —To1 7] 1 + 2

= fu(y —Z21 11 )

Var(U) = Var(AX + Y) = Var(AX) + Var(Y) +2Cov(AX, Y)
= AVar(X)A + X +2ACov(X,Y)
SHTID IR NI R RPN WIRE~) WD WD R
=Yoo~ T01T;{ 12
Hence, fy is the pdf of N(uo — Xo1X 17 i1, oo — o1 X1, Z12).
Given X = x, To1X{ x is a constant and, hence, fy(y — X1 X7, X) is

the pdf of N([Jg + Y o1 2?11 (X — Uy ), Y00 — ¥ o4 21711 212), considered as a

function of y.
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Quadratic forms
For a random vector X and a fixed symmetric matrix A, X’AX is called
a quaderatic function or quadratic form of X.

We now study the distribution of quadratic forms when X is multivariate
normal.

Theorem N3

Let X ~ N(u,In) and A be a fixed nx n symmetric matrix. A necessary
and sufficient condition for X’AX is chi-square distributed is A2 = A, in
which case the degrees of freedom of the chi-square distribution is the
rank of A and the noncentrality parameter u’Au.

|

Proof

Sufficiency.
If A2 = A, then A is a projection matrix and there exists an n x n matrix
T suchthat '"T=TT' =/, and

A—T’< l O)T—C’C

0 O
where k is the rank of A and C is the first k rows of T.
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Then X’AX = (CX)'(CX) is simply the sum of the squares of CX, the
first kK components of TX.

Since TX ~ N(Tu, TI,T") = N(Tu,I,), by definition X’AX has the
chi-square distribution with degrees of freedom k and noncentrality
parameter (Cu)'(Cu) =pu'C'Cu = p'Au.

Necessity.

Suppose that X’AX is chi-square with degrees of freedom m and
noncentrality parameter 6 > 0.

Then A must be nonnegative definite and there exists an n x n matrix
T suchthat 'T=TT' = I, and

L (AO
A_T<O O>T

where A is a k x k diagonal matrix contains k non-zero eigenvalues
0< A< < Ao

We still have TX ~ N(Tp,I,).

Let Yi,..., Yk be the first Kk components of TX.

Then Y,-2’s are independent and Y,? ~ chi-square with degree of
freedom 1 and noncentrality parameter u,?, where y; is the ith
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component of i, and .
X'AX =Y A Y?F
i=1
Using the mgf formula for noncentral chi-square distributions, the mgf’s
of the left and right hand sides are respectively given in the left and
right hand sides of the following:

edt/(1-21) Kk ghiu?t/(1-2At)
(1—2nm?2 ~ 11 (1 —2n1)/2

Suppose that A4 > 1.

When t — (2A)~", the right hand side of the above equation diverges
to oo whereas the left hand side of the above equation goes to

e3@4) /(=4 /(1 — 2,7 1)™/2 < o, which is a contradiction.

Hence A <1 so that 4; <1 for all /.

t<1/2

Suppose that A4y =--- =41 =1> A4, >--- > A > 0 for a positive
integer / < k, which implies
edt/(1-2t) I ghin?t/(1-24t)
t<1/2

(1—2nmkhz — LU =op1)172
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When t — 1/2, the left hand side of the above equation diverges to oo,
whereas the right hand side of the above equation converges to

I ghin?/2(1-4)
i (1=2)1/2

which is a contradiction.
Therefore, we must have A, =--- = A =1, i.e., Ais a projection matrix.

Theorem N4 (Cochran’s theorem).

Suppose that X is an n-dimensional random vector ~ N(u, I,) and
X'X=XA X+ +XAcX,

where I, is the n x nidentity matrix and A; is an n x n symmetric matrix

with rank n;, i =1, ..., k. A necessary and sufficient condition for

(i) X'A;X has the noncentral chi-square distribution with degrees of
freedom n; and noncentrality parameter o;, i =1, ..., Kk,

(i) X’'AiX’s are independent,
iSs n=ny+---+ ng, in which case 6; = u'Aju and 8; +--- + & = u'u.
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Proof.

Suppose that (i)-(ii) hold.

Then X’X has the chi-square distribution with degrees of freedom
ny +---+ ng and noncentrality parameter &¢ + - - - + .

By definition, X’X has the noncentral chi-square distribution with
degrees of freedom n and noncentrality parameter p'u.

Then we must have n=n;y +---+nx and &1 +---+ 8 = p'u.
Suppose now that n=nqy +--- + n.
From the theory of linear algebra, for each i there exists ¢; € %",
j=1,...,n;, such that

X AX =£(cyX)? £ (), X)?
Let C be the n x n matrix whose columns are ¢4, ...,Cin,, .., Ck1, ---, Ckn,»
Then

X'X=XCAC'X
with an n x n diagonal matrix A whose diagonal elements are +1.
This implies CAC’ = I, and thus C is of full rank and A = C~1(C")1,

which is positive definite.
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This shows A = /,, which implies C'C = CC’ = I, and
Mt +Ni g +0;
X AX = ) Y?,

J=ni++ni_q+1
where Y; is the jth component of Y = C'X ~ N(C'u, I).
Hence Y/’s are independent and Y; ~ N(4;,1), where 4, is the jth
component of C'p.
This shows that X’A; X, i =1,...,k, are independent and X’A;X has the
chi-square distribution with degrees of freedom n; and noncentrality
parameter & =A% . . i+ FAE in in
Letting X = u and Y = C'X = C'u, we obtain that ; = u’A;u and
S1+ -+ =p'CC'u=p'p.
This completes the proof.

Theorem N5.

Let X be an n-dimensional random vector ~ N(u, I,) and Ay and A, be
n x n projection matrices. Then a necessary and sufficient condition
that X’A; X and XA, X are independent is AjA; = 0.
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Proof.
If AjA> =0, then

(Ih— A1 —A2)? = In— A1 — Ag — Ay + A2+ AyAy — Ao+ At Ap + AS

= In— A1 - Az,
i.e., I— Ay — Az is a projection matrix with rank = trace(/, — Ay — Az)
=n-—r; —r, where r; =trace(A)) is the rank of A;, i =1,2.
By Cochran’s theorem and
XX =XAX+XAX+X(Ih—A —A)X,

X'A; X and X’A; X are independent.
This proves the sufficiency.
Assume that X’A; X and X’A, X are independent.

Since X’A; X has the noncentral chi-square distribution with degrees of
freedom r; = the rank of A; and noncentrality parameter §; = u'A;u,
X'(Aq + A2)X has the noncentral chi-square distribution with degrees
of freedom ry + ro and noncentrality parameter &; + ..

v
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Consequently, Ay + A, is a projection matrix, i.e.,
(A1 +Az2)? = Ay + Az,

which implies
P A1As +AA; =0.

Since A2 = Ay, we obtain that
0= A1(A1A2 +A2A1) = A1 Az + A1 A2 A

and
0 = A1(A1A2 + A2A1)A1 = 2A1 A2A;,

which imply A{A; =0.
This proves the necessity.
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