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Lecture 15: Multivariate normal distributions
Normal distributions with singular covariance matrices
Consider an n-dimensional X ∼N(µ,Σ) with a positive definite Σ and a
fixed k ×n matrix A that is not of rank k (so k may be larger than n).
The mgf of Y = AX is still equal to

MY (t) = e(Aµ)′t+t ′(AΣA′)t/2, t ∈Rk

But what is the distribution corresponding to this mgf?

Lemma.
For any n×n non-negative definite matrix Σ and µ ∈Rn, eµ ′t+t ′Σt/2

defined for all t ∈Rn is the mgf of an n-dimensional random vector X .

Proof.
From the theory of linear algebra, a non-negative definite matrix Σ of
rank r < n satisfies

Σ = T ′
(

Λ 0
0 0

)
T = C ′ΛC T =

(
C
D

)
where Λ is an r × r diagonal matrix whose all diagonal elements are
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positive, 0 denotes a matrix of 0’s of an appropriate order, C is an r ×n
matrix of rank r , T is an n×n matrix satisfying TT ′ = T ′T = In (the
identity matrix of order n), CC ′ = Ir , DC ′ = 0, DD′ = In−r , and
C ′C + D′D = In.
Let Y be an r -dimensional random vector ∼ N(Cµ,Λ) and define

X = T ′
(

Y
Dµ

)
= C ′Y + D′Dµ

Since Y ∼ N(Cµ,Λ), its mgf is MY (s) = e(Cµ)′s+s′Λs/2, s ∈Rr and the
mgf of X is

MX (t) = e(D′Dµ)′tMY (Ct)) = e(D′Dµ)′te(Cµ)′(Ct)+(Ct)′Λ(Ct)/2

= eµ ′(D′D+C′C)t+t ′C′ΛCt/2 = eµ ′t+t ′Σt/2 t ∈Rn

This completes the proof.

Definition
For any fixed n×n non-negative definite matrix Σ and µ ∈Rn, the
distribution of an n-dimensional random vector with mgf eµ ′t+t ′Σt/2 is
called normal distribution and denoted by N(µ,Σ).
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If Σ is positive definition, then this definition is the same as the
previous definition using the pdf.
If X ∼ N(µ,Σ) and Y = AX + b, then Y ∼ N(Aµ,AΣA′), regardless
of whether AΣA′ is singular or not.
If X is multivariate normal, then any sub-vector of X is also
normally distributed.
If n-dimensional X ∼ N(µ,Σ) and the rank of Σ is r < n, there
exists an r ×n matrix C of rank r and Y = CX ∼ N(Cµ,CΣC ′),
where CΣC ′ is a diagonal matrix whose diagonal elements are all
positive, and hence Y has an r -dimensional normal pdf and
components of Y are independent.
If n-dimensional X ∼ N(µ,Σ) and the rank of Σ is r < n, then, from
the previous discussion, X = C ′Y + D′Dµ, where
Y ∼ N(Cµ,CΣC ′) and

E(X ) = C ′E(Y ) + D′Dµ = (C ′C + D′D)µ = µ

Var(X ) = C ′Var(Y )C = C ′CΣC ′C = Σ
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Thus, µ and Σ in N(µ,Σ) is still the mean and covariance matrix.
Furthermore, any two components of X ∼ N(µ,Σ) are independent iff
they are uncorrelated.
This can be shown as follows.
Suppose that X1 and X2 are the first two components of X and
Cov(X1,X2) = 0, i.e., the (1,2)th and (2,1)th elements of Σ are 0.
Let µ1 and µ2 be the first two components of µ and σ2

1 and σ2
2 be the

first and second diagonal elements of Σ, and let t = (t1, t2,0, ...,0),
t1 ∈R, t2 ∈R.
Then the mgf of (X1,X2) is

M(X1,X2)(t1, t2) = eµ ′t+t ′Σt/2 = eµ1t1+σ2
1 t2

1 /2eµ2t2+σ2
2 t2

2 /2 t1 ∈R, t2 ∈R

By Theorem M4, X1 and X2 are independent.

Theorem.
An n-dimensional random vector X ∼ N(µ,Σ) (regardless of whether Σ
is singular or not) iff for any n-dimensional constant vector c,
c′X ∼ N(c′µ,c′Σc).
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Proof.
We treat a degenerated X = c as N(c,0).

If X ∼ N(µ,Σ), then MX (t) = eµ ′t+t ′Σt/2.
For any c ∈Rn, by the properties of mgf, the mgf of c′X is

Mc′X (t) = MX (ct) = eµ ′(ct)+(ct)′Σ(ct)/2 = e(c′µ)t+(c′Σc)t2/2 t ∈R

which is the mgf of N(c′µ,c′Σc).
By uniqueness, c′X ∼ N(c′µ,c′Σc).
If c′X ∼ N(c′µ,c′Σc) for any c ∈Rn, then t ′X ∼ N(t ′µ, t ′Σt) for
any t ∈Rn and

Mt ′X (s) = e(t ′µ)s+(t ′Σt)s2/2 s ∈R

Letting s = 1, we obtain

Mt ′X (1) = e(t ′µ)+(t ′Σt)/2 = E(et ′X ) = MX (t) t ∈Rn

By uniqueness, X ∼ N(µ,Σ).
The condition any c ∈Rn is important.
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The uniform distribution on [a,b]× [c,d ]
We have shown that the two marginal distributions are uniform
distributions on intervals [a,b] and [c,d ].
For non-zero constants ξ and ζ , is the distribution of ξX + ζY a
uniform distribution on some interval?
If (ebt −eat )/t is defined to be b−a when t = 0 for any constants
a < b, then

MX ,Y (t ,s) =
∫ b

a

∫ d

c
etx+sy 1

(b−a)(d −c)
dxdy

=
(ebt −eat )(eds−ecs)

(b−a)(d −c)ts
s, t ∈R

and

MξX+ζY (t) = E(et(ξX+ζY )) =
(ebξ t −eaξ t )(edζ t −ecζ t )

(b−a)(d −c)ξ ζ t2 t ∈R

This is not a mgf of a uniform distribution on an interval [r ,h], which is
of the form (eht −ert )/[t(h− r)] for t ∈R.
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We have shown that if X ∼ N(µ,Σ), then any linear function AX + b is
normally distributed.
The following result concerns the independence of linear functions of a
normally distributed random vector.

Theorem N1.
Let X be an n-dimensional random vector ∼ N(µ,Σ) and A be a fixed
k ×n matrix, and B be a fixed l×n matrix. Then, AX and BX are
independent iff AΣB′ = 0.

Proof.
Let

Y =

(
A
B

)
X =

(
AX
BX

)
From the properties of the multivariate normal distribution, we know
that Y is multivariate normal with covariance matrix(

A
B

)
Σ(A′ B′) =

(
AΣA′ AΣB′

BΣA′ BΣB′

)
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Hence, AX and BX are uncorrelated iff AΣB′ = 0 and, thus, the only if
part follows since independence implies no correlation.
The proof for the if part is the same as the proof of two uncorrelated
components of X are independent: we can show that if AΣB′ = 0, then
the mgf of (AX ,BX ) is a product of an mgf on Rk and another mgf on
R l , and then apply Theorem M4.

Theorem N2.
If (X ,Y ) is a random vector ∼ N(µ,Σ) with

µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

and if Σ is positive definite, then

Y |X ∼ N
(

µ2 + Σ21Σ−1
11 (X −µ1),Σ22−Σ21Σ−1

11 Σ12

)
It follows from the properties of normal distributions that

E(Y |X ) = µ2 + Σ21Σ−1
11 (X −µ1), Var(Y |X ) = Σ22−Σ21Σ−1

11 Σ12

While the conditional mean depends on X , the conditional covariance
matrix does not.
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Proof.
Consider the transformation

U = AX + Y

with a fixed matrix A chosen so that U and X are independent.
From Theorem N1, we need U and X to be uncorrelated.
Since

Cov(X ,U) = Cov(X ,AX + Y ) = Cov(X ,AX ) + Cov(X ,Y )

= Cov(X ,X )A′+ Σ12 = Σ11A′+ Σ12

we choose A =−Σ21Σ−1
11 .

Consider the transformation(
V
U

)
=

(
X

AX + Y

)
=

(
I 0

−Σ21Σ−1
11 I

)(
X
Y

)
,

∣∣∣∣∂ (U,V )

∂ (X ,Y )

∣∣∣∣= 1

Let f(X ,Y ) be the pdf of (X ,Y ), f(U,V ) be the pdf of (U,V ), fU be the pdf
of U and fV be the pdf of V .
By the transformation formula and the independence of U and V = X ,
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f(X ,Y )(x ,y) = f(U,V )(u,v) = fU(u)fV (v) = fU(y −Σ21Σ−1
11 x)fX (x)

Then the pdf of Y |X is

f(X ,Y )(x ,y)

fX (x)
=

fU(y −Σ21Σ−1
11 x)fX (x)

fX (x)
= fU(y −Σ21Σ−1

11 x)

Since U =−Σ21Σ−1
11 X + Y , U is normally distributed.

E(U) =−Σ21Σ−1
11 E(X ) + E(Y ) =−Σ21Σ−1

11 µ1 + µ2

Var(U) = Var(AX + Y ) = Var(AX ) + Var(Y ) + 2Cov(AX ,Y )

= AVar(X )A′+ Σ22 + 2ACov(X ,Y )

= Σ21Σ−1
11 Σ11Σ−1

11 Σ12 + Σ22−2Σ21Σ−1
11 Σ12

= Σ22−Σ21Σ−1
11 Σ12

Hence, fU is the pdf of N(µ2−Σ21Σ−1
11 µ1,Σ22−Σ21Σ−1

11 Σ12).

Given X = x , Σ21Σ−1
11 x is a constant and, hence, fU(y −Σ21Σ−1

11 x) is
the pdf of N(µ2 + Σ21Σ−1

11 (x −µ1),Σ22−Σ21Σ−1
11 Σ12), considered as a

function of y .
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Quadratic forms
For a random vector X and a fixed symmetric matrix A, X ′AX is called
a quadratic function or quadratic form of X .
We now study the distribution of quadratic forms when X is multivariate
normal.

Theorem N3.
Let X ∼ N(µ, In) and A be a fixed n×n symmetric matrix. A necessary
and sufficient condition for X ′AX is chi-square distributed is A2 = A, in
which case the degrees of freedom of the chi-square distribution is the
rank of A and the noncentrality parameter µ ′Aµ.

Proof.
Sufficiency.
If A2 = A, then A is a projection matrix and there exists an n×n matrix
T such that T ′T = TT ′ = In and

A = T ′
(

Ik 0
0 0

)
T = C ′C

where k is the rank of A and C is the first k rows of T .
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Then X ′AX = (CX )′(CX ) is simply the sum of the squares of CX , the
first k components of TX .
Since TX ∼ N(T µ,TInT ′) = N(T µ, In), by definition X ′AX has the
chi-square distribution with degrees of freedom k and noncentrality
parameter (Cµ)′(Cµ) = µ ′C ′Cµ = µ ′Aµ.

Necessity.
Suppose that X ′AX is chi-square with degrees of freedom m and
noncentrality parameter δ ≥ 0.
Then A must be nonnegative definite and there exists an n×n matrix
T such that T ′T = TT ′ = In and

A = T ′
(

Λ 0
0 0

)
T

where Λ is a k ×k diagonal matrix contains k non-zero eigenvalues
0 < λ1 ≤ ·· · ≤ λk .
We still have TX ∼ N(T µ, In).
Let Y1, ...,Yk be the first k components of TX .
Then Y 2

i ’s are independent and Y 2
i ∼ chi-square with degree of

freedom 1 and noncentrality parameter µ2
i , where µi is the i th
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component of µ, and

X ′AX =
k

∑
i=1

λiY 2
i

Using the mgf formula for noncentral chi-square distributions, the mgf’s
of the left and right hand sides are respectively given in the left and
right hand sides of the following:

eδ t/(1−2t)

(1−2t)m/2 =
k

∏
i=1

eλi µ
2
i t/(1−2λi t)

(1−2λi t)1/2 t < 1/2

Suppose that λk > 1.
When t → (2λk )−1, the right hand side of the above equation diverges
to ∞ whereas the left hand side of the above equation goes to
eδ(2λk )−1/(1−λ

−1
k )/(1−λ

−1
k )m/2 < ∞, which is a contradiction.

Hence λk ≤ 1 so that λi ≤ 1 for all i .
Suppose that λk = · · ·= λl+1 = 1 > λl ≥ ·· · ≥ λ1 > 0 for a positive
integer l ≤ k , which implies

eδ t/(1−2t)

(1−2t)(m−k+l)/2 =
l

∏
i=1

eλi µ
2
i t/(1−2λi t)

(1−2λi t)1/2 t < 1/2
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When t → 1/2, the left hand side of the above equation diverges to ∞,
whereas the right hand side of the above equation converges to

l

∏
i=1

eλi µ
2
i /2(1−λi )

(1−λi)1/2

which is a contradiction.
Therefore, we must have λ1 = · · ·= λk = 1, i.e., A is a projection matrix.

Theorem N4 (Cochran’s theorem).
Suppose that X is an n-dimensional random vector ∼ N(µ, In) and

X ′X = X ′A1X + · · ·+ X ′AkX ,

where In is the n×n identity matrix and Ai is an n×n symmetric matrix
with rank ni , i = 1, ...,k . A necessary and sufficient condition for

(i) X ′AiX has the noncentral chi-square distribution with degrees of
freedom ni and noncentrality parameter δi , i = 1, ...,k ,

(ii) X ′AiX ’s are independent,
is n = n1 + · · ·+ nk , in which case δi = µ ′Ai µ and δ1 + · · ·+ δk = µ ′µ.
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Proof.
Suppose that (i)-(ii) hold.
Then X ′X has the chi-square distribution with degrees of freedom
n1 + · · ·+ nk and noncentrality parameter δ1 + · · ·+ δk .
By definition, X ′X has the noncentral chi-square distribution with
degrees of freedom n and noncentrality parameter µ ′µ.
Then we must have n = n1 + · · ·+ nk and δ1 + · · ·+ δk = µ ′µ.
Suppose now that n = n1 + · · ·+ nk .
From the theory of linear algebra, for each i there exists cij ∈Rn,
j = 1, ...,ni , such that

X ′AiX =±(c′i1X )2±·· ·± (c′ini
X )2

Let C be the n×n matrix whose columns are c11, ...,c1n1 , ...,ck1, ...,cknk ,
Then

X ′X = X ′C∆C ′X
with an n×n diagonal matrix ∆ whose diagonal elements are ±1.
This implies C∆C ′ = In and thus C is of full rank and ∆ = C−1(C ′)−1,
which is positive definite.
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This shows ∆ = In, which implies C ′C = CC ′ = In and

X ′AiX =
n1+···+ni−1+ni

∑
j=n1+···+ni−1+1

Y 2
j ,

where Yj is the j th component of Y = C ′X ∼ N(C ′µ, In).
Hence Yj ’s are independent and Yj ∼ N(λj ,1), where λj is the j th
component of C ′µ.
This shows that X ′AiX , i = 1, ...,k , are independent and X ′AiX has the
chi-square distribution with degrees of freedom ni and noncentrality
parameter δi = λ 2

n1+···+ni−1+1 + · · ·+ λ 2
n1+···+ni−1+ni

.

Letting X = µ and Y = C ′X = C ′µ, we obtain that δi = µ ′Ai µ and
δ1 + · · ·+ δk = µ ′CC ′µ = µ ′µ.
This completes the proof.

Theorem N5.
Let X be an n-dimensional random vector ∼ N(µ, In) and A1 and A2 be
n×n projection matrices. Then a necessary and sufficient condition
that X ′A1X and X ′A2X are independent is A1A2 = 0.
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Proof.
If A1A2 = 0, then

(In−A1−A2)2 = In−A1−A2−A1 + A2
1 + A2A1−A2 + A1A2 + A2

2

= In−A1−A2,

i.e., In−A1−A2 is a projection matrix with rank = trace(In−A1−A2)
= n− r1− r2, where ri = trace(Ai) is the rank of Ai , i = 1,2.
By Cochran’s theorem and

X ′X = X ′A1X + X ′A2X + X ′(In−A1−A2)X ,

X ′A1X and X ′A2X are independent.
This proves the sufficiency.
Assume that X ′A1X and X ′A2X are independent.
Since X ′AiX has the noncentral chi-square distribution with degrees of
freedom ri = the rank of Ai and noncentrality parameter δi = µ ′Ai µ,
X ′(A1 + A2)X has the noncentral chi-square distribution with degrees
of freedom r1 + r2 and noncentrality parameter δ1 + δ2.
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Consequently, A1 + A2 is a projection matrix, i.e.,

(A1 + A2)2 = A1 + A2,

which implies
A1A2 + A2A1 = 0.

Since A2
1 = A1, we obtain that

0 = A1(A1A2 + A2A1) = A1A2 + A1A2A1

and
0 = A1(A1A2 + A2A1)A1 = 2A1A2A1,

which imply A1A2 = 0.
This proves the necessity.
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