SARDI

Marine Environment & Ecology

A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park

David R. Currie and Shirley J. Sorokin

SARDI Publication No. F2011/000526-1 **SARDI Research Report Series No. 592**

SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024

December 2011

Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities

Department of Sustainability, Environment, Water, Population and Communities

Director of National Parks

A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park

Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities

David R. Currie and Shirley J. Sorokin

SARDI Publication No. F2011/000526-1 SARDI Research Report Series No. 592

December 2011

This Publication may be cited as:

Currie, D.R. and Sorokin, S.J (2011). A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park. Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000526-1. SARDI Research Report Series No. 592. 61pp.

South Australian Research and Development Institute

SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024

Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au

DISCLAIMER

The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions. SARDI Aquatic Sciences does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it.

© 2011 SARDI

This work is copyright. Apart from any use as permitted under the *Copyright Act* 1968 (Cth), no part may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owner. Neither may information be stored electronically in any form whatsoever without such permission.

Printed in Adelaide: December 2011

SARDI Publication No. F2011/000526-1 SARDI Research Report Series No. 592

- Author(s): Dr David R. Currie and Ms Shirley J. Sorokin
- Reviewer(s): Dr Maylene Loo and Ms Emma Brock
- Approved by: Dr Jason E. Tanner Principal Scientist – Marine Environment & Ecology
- Signed: Man Tan

Date: 14 December 2011

Distribution: South Australian Department of Environment and Natural Resources, Commonwealth Department of Sustainability, Environment, Water, Population and Communities, SAASC Library, University of Adelaide Library, Parliamentary Library, State Library and National Library

Circulation: Public Domain

TABLE OF CONTENTS

LIST	OF	FIGURES	.IV
LIST	OF	TABLES	v
LIST	OF	APPENDICES	v
EXE	сит	IVE SUMMARY	1
1 I	NT	RODUCTION	3
1.1		BACKGROUND	3
1.2		OBJECTIVES	4
2 1	МЕТ	HODS	5
2.1		FIELD SAMPLING AND LABORATORY PROCESSING	5
2.1		STATISTICAL ANALYSES	
	2.2.1	Univariate patterns in infauna and epifauna	
_	2.2.2	Environmental parameters	
	2.2.3	Multivariate patterns	
2	2.2.4	Biodiversity	
3 F	RES	SULTS	8
3.1		ENVIRONMENTAL CHARACTERISTICS	8
	3.1.1		
3.2		INFAUNA	
	3.2.1	Species composition	
	3.2.2		
	3.2.3	Community structure	
ź	3.2.4	Environmental linkages - community structure	
ź	3.2.5		
3.3		EPIFAUNA	. 11
ŝ	3.3.1	Species composition	. 11
ź	3.3.2	Spatial patterns in species richness and biomass	. 12
ź	3.3.3	Community structure	. 13
Ĵ	3.3.4	Environmental linkages - community structure	. 14
Ĵ	3.3.5	Biodiversity	. 14
4 [DISC	CUSSION	16
4.1		FAUNAL PATTERNS	. 16
4.2		CONSERVATION SIGNIFICANCE	. 17
4.3		ANNA'S PIMPLE: THE DISCOVERY OF AN ENIGMATIC VOLCANO IN THE BPZ	. 18
4.4		FUTURE RESEARCH	. 19
REF	ERE	NCES	22

LIST OF FIGURES

Figure 7. Plots of (a) total biomass (grams wet weight), (b) total species richness, and (c) total occurrence (out of three sampling stations) of each major epifaunal phyla collected during trawl sampling in the BPZ. Values for each variable are shown as percentages above each bar.....33

Figure 9. Dendrogram of epifaunal community structure at three depth-stratified sampling stations inside the BPZ. Three discrete communities are identified at the 10% Bray-Curtis similarity level (horizontal line): upper slope (BPZ_500), mid slope (BPZ_1000) and lower slope (BPZ_2000).

Figure 11. Swath bathymetric image of the Benthic Protection Zone of the Great Australian Bight Marine Park showing the voyage path (yellow line), benthic sampling stations (stars), and the location of *Anna's Pimple* (a 200m high volcanic pinnacle) identified from EM300 multibeam soundings collected during *Southern Surveyor* transit voyage SS2010_T02......37

Figure 12. 3D renderings of Anna's Pimple developed from EM300 multi-beam soundings collected during Southern Surveyor transit voyage SS2010_T02. Note all depths in metres....38

LIST OF TABLES

Table 2. Spearman's rank correlation coefficients between infaunal abundance and richness and adjacent environmental conditions at three depth-stratified sampling stations inside the BPZ. Significant positive (+) and negative (-) correlations are denoted at the ** 1% level....... 40

LIST OF APPENDICES

Appendix 1. Taxonomic and functional classification of 138 benthic species collected from three grab and three trawl shots at three depth-stratified sampling stations (500 m, 1000 m, 2000 m) inside the Benthic Protection Zone (BPZ) of the Great Australian Bight Marine Park (GABMP).

EXECUTIVE SUMMARY

- This report describes the composition and distribution of benthic macrofauna collected from the deep, offshore, waters of the Great Australian Bight Marine Park (GABMP) during RV Southern Surveyor voyage SS2010_T02 in August 2010.
- Quantitative samples of infauna and epifauna were collected from three depth stratified sampling stations (500 m, 1000 m, and 2000 m) on the continental slope of the Benthic Protection Zone (BPZ) using a 0.1 m² Smith-McIntyre grab and 4 m-wide beam trawl.
- A total of 57 putative infaunal species representing eight phyla were collected. Less than 4% of these taxa (2/57) could be confidently assigned to existing species, and it appears that a large proportion of the infauna is undescribed.
- 4. Motile organisms (mostly annelids, arthropods and molluscs) dominated the infauna, and collectively comprised over 73% of the total abundance and 74% of the total species richness.
- 5. Infaunal abundance declined with increasing depth and was highest in the upper-slope sediments (which also supported the highest concentrations of nitrogen and organic carbon). Infaunal diversity did not vary directly with depth and was highest at the 1000 m sampling station (31 spp.) and lowest at the 2000 m station (5 spp.).
- 6. Cluster analyses of the infaunal species abundance data revealed a strong environmental gradient on the BPZ slope, and highlighted marked shifts in species representation and the presence of three distinct infaunal communities (upper-slope, mid-slope and lower-slope) that were closely allied with changes in depth and sediment sorting.
- 7. A species accumulation model developed with contemporary grab data suggests that the deep-water infaunal communities of the BPZ slope are considerably more diverse than those found on the shallower waters of the adjacent continental shelf.
- 8. A total of 84 putative epifaunal species representing ten phyla were also collected during the survey. As for the infauna, most epifaunal taxa (51/84) could not be confidently assigned to existing species, and it appears that a large proportion of the epifauna (61%) is also undescribed.
- 9. Motile scavenging and predatory organisms (mainly arthropods, chordates and echinoderms) were the dominant epifauna, and collectively comprised over 63% of the total biomass and 58% of the total species richness.

- 10. Epifaunal richness and biomass were positively correlated, and both metrics were highest on the mid-slope (1000 m depth) where the sediments were muddy and poorly sorted, and lowest on the lower-slope (2000 m depth) where the sediments were bimodal in structure and composed of very-fine sand and silt.
- 11. Cluster analyses of the epifaunal species composition was similar to that of infauna and confirmed a strong environmental gradient on the BPZ slope and the presence of three distinct communities (upper-slope, mid-slope and lower-slope) that are closely related to changes in depth and sediment sorting.
- 12. Spatial patterns in epifaunal and infaunal community structure were broadly consistent with depth-related discontinuities in water circulation along Australia's southern continental margin.
- 13. A species accumulation model developed using contemporary sled data suggests that the deep-water epifaunal communities of the BPZ slope are marginally more diverse than those found in the shallower waters of the adjacent continental shelf. However, the reliability of this estimate is uncertain due to gear differences between surveys.
- 14. The discovery of a volcanic pinnacle *Anna's Pimple* inside the BPZ was a noteworthy feature of the voyage. This cone-shaped igneous structure, rising almost 200 m from the surrounding soft-sediment, was located at a depth of 2000 m in the middle of BPZ by the vessels swath acoustics. Due to its extreme age (~45 Ma) and geographical isolation, this pinnacle is significant, as it may support benthic organisms and communities that have evolved on and are unique to the rocky structure.
- 15. This preliminary research has provided novel insights into the composition and distribution of benthic fauna from the deep-water bedforms of the BPZ. However, with little comparable data available outside the BPZ it remains uncertain if the BPZ effectively represents and preserves the benthic habitats and assemblages of the continental slope.
- 16. A sustained commitment to data collection is required to address these data insufficiencies. As four petroleum exploration tenements straddling the BPZ are scheduled to be drilled for hydrocarbons in 2013/14 (PIRSA, 2011), it is imperative that the composition, distribution and ecological significance of the region's benthic fauna and habitats are comprehensively audited as a matter of priority.

1 INTRODUCTION

1.1 Background

The Benthic Protection Zone (BPZ) of the Great Australian Bight Marine Park (GABMP) was proclaimed in 1998, and consists of a 20 nautical-mile-wide strip orientated north to south and extending from three nautical miles from the coast to the edge of Australia's Exclusive Economic Zone (EEZ), 200 nautical miles offshore (Figure 1). Within this zone, the benthic communities are protected from demersal trawling and other potentially destructive human activities.

The location of the BPZ was not established on the basis of any quantitative ecological data. In the absence of such information, the BPZ was located with the goal of preserving the benthic assemblages from a cross-shelf (and slope) transect near the widest part of the continental margin. As a result, the suitability of the BPZ for representing the region's benthic biodiversity was, and has remained to a large extent, unknown. In 2002, several important advances in our understanding of the benthic biodiversity of the eastern Great Australian Bight (GAB) shelf were made, when the first quantitative epibenthic survey of the region was undertaken (Sorokin et al., 2005; Ward et al., 2003). This exploratory seafloor study demonstrated that the BPZ was effective in representing the epifaunal biodiversity of the eastern GAB shelf (Ward et al., 2006). Furthermore, it established that the macrofaunal communities of the eastern GAB shelf are among the world's most diverse (with almost 800 invertebrate species being identified from 65 individual sled tows of 5-minutes duration).

Follow-up surveys conducted on the eastern shelf during 2006 (Currie et al., 2007, 2008, 2009), have provided additional insights into patterns of faunal distribution on the shelf and their relationships to environmental factors. In particular, these surveys have confirmed that species richness and biomass generally decline with increasing depth and distance offshore. Moreover, these surveys have served to highlight the patchwork in sedimentary habitats and associated faunas on the shelf, and the role that recurrent oceanographic conditions have in mitigating these. While different benthic communities are also likely to inhabit the different sedimentary facies that blanket the deeper water bedforms of the continental slope, this remote environment remains poorly studied.

Almost half of the seafloor in the BPZ is located in waters between 200 m and 5,000 m depth, and remains un-surveyed for benthos. Accordingly, it is unclear if the BPZ effectively represents and preserves the benthic habitats and assemblages of the continental slope. The continental slope and deep-water reaches of the BPZ present significant sampling challenges,

and few vessels in Australia (e.g. RV *Southern Surveyor*) are presently equipped to undertake such work. The close proximity of the *Southern Surveyor* to the BPZ during a transit from Fremantle to Hobart (Voyage No. SS010_T02) in August 2010, provided an opportunity to sample the deep-water benthos of the GABBPZ, and to quantify, for the first time, the areas benthic biodiversity (Currie, 2010a). This report details the benthic sampling undertaken during the transit voyage to evaluate infaunal and epifaunal biodiversity on the continental slope of the BPZ.

1.2 Objectives

The BPZ is currently one of 14 temperate Commonwealth Marine Protected Areas (MPAs) in Australia (DSEWPaC, 2011). These MPAs form part of an integrated strategy for marine conservation and management through the National Representative System of Marine Protected Areas. While conservation of marine biological diversity is the overarching goal of the strategy, it remains to be determined what biological diversity is being conserved offshore on the seafloor of the BPZ slope. This study aims to address this knowledge gap and provide quantitative information on the distribution and diversity of the deep-water faunal communities of the BPZ.

While this report concentrates on describing the infaunal and epifaunal assemblages collected from targeted sampling of the seafloor in the BPZ, three additional objectives were pursued during the *Southern Surveyor* voyage. These included operations to: 1) investigate water mass structure and interactions along the southern margin of Australia (Figure 2a), and particularly the chemical properties and isotopic signatures of the westward flowing Flinders Current; 2) characterise and map previously unsurveyed sections of Australia's upper-slope seabed to support bio-regional planning and management; and 3) deploy autonomous profiling floats to characterise the changing state of the upper ocean and patterns of ocean climate variability (Figure 2b). Further information on these piggy-back surveys can be found in Currie (2010b).

2 METHODS

2.1 Field sampling and laboratory processing

Six depth-stratified stations inside the BPZ (at 200 m, 500 m, 1000 m, 1500 m, 2000 m and 4000 m depth) were initially identified as prospective sampling locations for benthos (Figure 1). However, poor weather conditions during the transit meant that only half these stations could be sampled safely (i.e. 500 m, 1000 m, 2000 m). Prior to sampling these three stations, a broad-scale mapping survey was conducted using the vessels multi-beam sonar (Kongsberg-Simrad EM300). This provided high-resolution bathymetry of the target stations, and subsequently guided our gear deployments in each area.

Benthic infauna were quantified from a single 0.1 m² Smith-McIntyre grab sample at each station (Figure 2c). These grabs were sieved through a 1 mm mesh screen, and the fauna retained preserved in 5% formaldehyde solution. The fauna was later sorted in the laboratory to the lowest taxonomic level (generally species) before being counted and photographed. Voucher specimens and a database were subsequently lodged at the South Australian Museum, Adelaide.

Two sediment sub-samples (70 ml and 10 ml) were retained from each grab prior to sieving to determine the composition and structure of the seabed at each sampling station. These were collected from each grab by scraping an open vial across the top of each sample, and were subsequently snap-frozen and stored at -20 °C before being analysed. The larger of the two sediment sub-samples was wet-sieved through an agitated stack of Endecotts sieves to determine the grain-size structure and sorting coefficients of the sediments. The smaller sample was freeze dried, sieved, and then ground to a talcum-powder consistency before being processed in an elemental analyser (LECO TruSpec CN) to determine the organic carbon and total nitrogen content.

Quantitative samples of epifauna were collected using a 4 m wide beam trawl fitted with a 1 cm mesh bag (Figure 2d). This trawl gear was towed once over a 1000 m distance at each sampling station. On retrieval the catch was emptied on deck and a photograph taken. The collective weight of each shot was then determined, and the catch transferred to labelled plastic bags before being snap-frozen. Samples were later stored at -20 °C prior to laboratory analysis.

Trawl samples were defrosted and sorted in the laboratory to the lowest taxonomic level (species level where possible) before being counted and weighed. During this process, all broken shells and rocks were discarded, while fragments of the same non-unitary organism

(e.g. colonial ascidians) were consolidated and collectively weighed and counted as a single entity. Voucher specimens of all species collected were photographed before being preserved in 70% ethanol. All voucher specimens have been lodged at the South Australian Museum, Adelaide

2.2 Statistical analyses

2.2.1 Univariate patterns in infauna and epifauna

One-way analysis of variance (ANOVA) was used to test differences in total species richness and abundance of infauna among the different depth strata. Similar tests were also applied separately for differences in total species richness and biomass of epifauna between the different depth strata. Prior to conducting all ANOVAs, homogeneity of variance was examined using Levene's test and heterogeneity removed where necessary using a $log_{10}(n+1)$ transformation.

2.2.2 Environmental parameters

Spatial trends in benthic abundance, biomass and species richness were examined in relation to the physical and chemical attributes at each sampling station. The relative strength of each environmental relationship was assessed independently for both infauna and epifauna using Spearman's rank correlation coefficients.

2.2.3 Multivariate patterns

Depth-related differences in community structure were examined using Bray-Curtis (B-C) dissimilarity measures (Bray and Curtis, 1957). A single square-root transformation was applied to the data before calculating the B-C dissimilarity measures. This transformation was necessary to prevent a small number of large or abundant species unduly influencing the B-C dissimilarity measures (Clarke, 1993).

The computer package PRIMER (Primer-E Ltd., Plymouth) was used to generate B-C dissimilarities and to undertake all multivariate analyses (Clarke and Gorley, 2001). Spatial patterns in dissimilarity were initially assessed using hierarchical agglomerative clustering. A similarity percentages (SIMPER) routine was then applied to identify those species contributing most to observed differences. The extent to which measured environmental variables

accounted for any community differences was subsequently tested using the biological environmental (BIOENV) routine (Clarke and Ainsworth, 1993).

2.2.4 Biodiversity

To assess relative biodiversity of the BPZ slope fauna, randomised species accumulation curves were constructed using the grab and trawl data. The increasing number of different species observed as samples are successively pooled (*Sobs*), was determined using the (Species-Area) plot routine in PRIMER (Clarke and Gorley, 2001). A second order polynomial model was fitted to the *Sobs* means using SPSS software (SPSS, 2007), and the equation used to estimate the numbers of species collected with increasing levels of sampling (i.e. up to 65 grabs or trawls). These were then compared to the species accumulation curves of 65 epifaunal sled samples taken from the eastern GAB shelf during 2002 (Ward et al., 2006), and 65 infaunal grab samples taken from the same shelf locations during 2006 (Currie et al., 2009).

3 RESULTS

3.1 Environmental characteristics

3.1.1 Sediment composition and structure

Sediments taken from the three depth-stratified sampling stations inside the BPZ (500 m, 1000 m and 2000 m) were variable in structure and ranged from very-fine sand to very-fine silt (Table 1). These sediments were found to be composed almost entirely of biogenic material, including fragments of sponges, bryozoans, scaphopods, pteropods and foraminifera. Spatial patterns in grain-size were broadly consistent with patterns in bathymetry, with sediments being coarsest at at the shallowest station (500 m) and finer in the deeper waters offshore (1000 m and 2000 m). Sediment sorting, by comparison, was less clearly related to depth, and was lowest (least variable is size structure) at the 1000 m station (Table 1).

The organic carbon content of the sediments ranged between 0.765 and 1.285%, and broadly reflected trends in sediment size structure (Table 1). Notably, organic carbon content was found to be almost twice as high in the coarser sediments of the upper slope (500 m) than in the finer sediments of the lower slope (1000 m and 2000 m). Similar trends were also observed for concentrations of sedimentary nitrogen and sulphur (Table 1).

3.2 Infauna

3.2.1 Species composition

A total of 57 infaunal species representing eight phyla were collected from grab samples at the three depth-stratified sampling stations (Appendices 1-3). Annelida (bristle worms) were the dominant phyla in terms of abundance and accounted for 37.6% of the total number of individuals collected (93) (Figure 3a). Mollusca (shellfish), Arthropoda (mostly crabs and shrimps) and Sipuncula (peanut worms) were also relatively well represented, and comprised approximately 19.4%, 16.1% and 12.9% of the total abundance. All other phyla collected, including Cnidaria (hydroids), Echinodermata (brittle stars), Nematoda (round worms) and Porifera (sponges) were much less common, and individually comprised less than 8% of the total abundance.

Annelids were also the best represented phylum in terms of species richness, and accounted for 48.3% (28) of all infaunal species collected (Figure 3b). Sipunculids, arthropods, and

molluscs were also well represented, and accounted for 15.5% (9), 13.8% (8) and 12.1% (7) of the total species richness. Most other phyla collected, including cnidarians, echinoderms, nematodes and poriferans were relatively less diverse and represented by fewer than 4% (2) of the total species collected.

Annelids, arthropods and molluscs were the most widely distributed phyla, and occurred at all three of the depth-stratified sampling stations (Figure 3c). Nematodes and sipunculids, by comparison, had much more restricted distributions and were only encountered at the two shallower stations surveyed (500 m and 1000 m). All other phyla collected were limited to just a single depth stratum, with echinoderms and poriferans only being collected from the 1000 m station and the cnidarians only being collected from the 2000 m station.

3.2.2 Spatial patterns in species richness and abundance

Infauna species richness varied inconsistently with depth, and was highest at the 1000 m sampling station (31 spp.) and lowest at the 2000 m station (5 spp.), with an intermediate number (22 spp.) being collected from the shallowest station surveyed (500 m) (Figure 4a). This pattern in species richness followed general trends in sediment sorting across the BPZ slope (as indicated by the significant inverse correlation between these parameters (Table 2)) and suggests that infaunal diversity is elevated in the more homogeneous (poorly-sorted) sediments.

Infaunal abundance, by comparison, varied directly with depth and was more than 91% lower at the 2000 m sampling station than at the 500 m sampling station (Figure 4b). The strength of this relationship between abundance and depth is further verified by a significant inverse correlation between these parameters (Table 2). Because depth also co-varied with the nitrogen and organic carbon contents of the sediments, significant rank correlations between these chemical elements and infaunal abundance are also apparent. Most notably, infaunal abundances are highest in the shallow upper-slope sediments that support the highest concentrations of nitrogen and organic carbon.

3.2.3 Community structure

Three discrete communities were separated at the 10% B-C similarity level (Figure 5). These included an "upper slope" community (comprising the one and only grab sample take at 500 m depth), a "mid slope" community (comprising the 1000 m grab sample), and a "lower slope" community (comprising the 2000 m grab sample). Annelids dominated all three communities

and accounted for more than 40%, 36% and 33% of the total faunal abundance on the "upper slope", "mid slope" and "lower slope", respectively. All other phyla varied markedly in abundance across the three communities (0-33%).

SIMPER analysis was undertaken to determine which species contributed most to differences between the three communities. Abundances of the 15 species contributing \geq 3% to the between-sample dissimilarity are given in Table 3. Results from the SIMPER analysis confirm that the three communities are characterised by small subsets of species with restricted distributions.

The "upper slope" community (i.e. BPZ_500) was primarily separated from all other communities by nine relatively abundant species representing four phyla. These included the pteropod *Limacina* sp.1, the bristle worm Maldanidae 4, the bivalve mollusc *Cuna* sp.1 and the peanut worm Sipuncula 3; all of which were unique to the "upper slope". Notably, only one of the 22 species represented in this community (i.e. the round worm Chromadoroidae 1) had a wider distribution, and was also recorded from the "mid slope" (i.e. BPZ_1000).

The "mid slope" community, although the most diverse (31 spp.), was also characterised and differentiated by a small number of relatively common species that were not found elsewhere on the BPZ slope. These included the tanaid *Cyathura* sp. 1, the amphipods *Birubius* sp. 1 and *Metaphoxus* sp.1, and the sponge Demospongiae 5. The presence of the round worm Chromadoroidae 1 in this community (i.e. a species which was also encountered in the "upper slope"), accounted for all of the B-C similarity between these communities, and was a primary discriminator in separating these from the "lower slope".

The "lower slope" community (i.e. BPZ_2000) comprised the least diverse collection of species and also displayed the highest level of local endemism, with none of the five infaunal species comprising the community being found elsewhere on the slope. This deep-water community was typified by just a single species of cnidarian (i.e. Hydroid 1), on account of its relatively higher abundance.

3.2.4 Environmental linkages - community structure

The PRIMER routine BIOENV was used to assess the correspondence and significance of environmental data from the seafloor to the three communities identified from the infaunal cluster analyses. Measures of organic carbon and nitrogen in the sediments were excluded from these analyses as they are highly correlated and co-vary with depth. Depth and sediment sorting both provided equivalent solutions and independently correlated most closely with the infaunal community structure ($\rho w = 0.87$). The other primary variables (sediment % <63 µm and sedimentary sulphur) were much more weakly correlated ($\rho w < 0.01$), and failed to provide an improved explanation for the biological pattern when combined with either depth of sediment sorting.

3.2.5 Biodiversity

By extrapolating the species accumulation curve using the polynomial model (Equation 1) it is estimated that an equivalent number of random grab samples undertaken on the BPZ slope will collect higher numbers of infaunal species than has previously been recorded on the shelf (Figure 6).

Where

S = number of species predicted, and n = number of grab samples

During 2006, a total of 240 species of infauna were collected from 65 replicate 0.1 m² Smith-McIntyre grabs taken across a 700 km section of the eastern GAB shelf (Currie et al., 2007). In comparison, an equal number of grab samples (65) taken across the BPZ slope is predicted to return more than twice this number of species (i.e. ~676 spp.). This result suggests that the infauna inhabiting the deep-water bedforms of the continental slope of the BPZ is considerably more diverse than the infauna of the adjacent continental shelf.

3.3 Epifauna

3.3.1 Species composition

A total of 84 epifaunal species representing ten phyla were collected from beam-trawl samples at the three depth-stratified sampling stations (Appendices 1-3). Chordata (fish) were the dominant phyla in terms of biomass, and accounted for 41.2% (8186 g) of the total catch (Figure 7a). Porifera (sponges), Echinodermata (mostly brittle stars and sea cucumbers) and Cnidaria (corals and anemones) were also relatively well represented, and comprised 24.6% (4891 g), 20.9% (4157 g) and 10.6% (2106 g) of the total biomass sampled, respectively. All other phyla collected, including Annelida (bristle worms), Arthropoda (mostly crabs and

shrimps), Mollusca (shellfish), Priapulida (penis worms), Sipuncula (peanut worms) and Urochordata (Tunicates), were much less common and individually comprised less than 2% (259 g) of the total epifaunal biomass.

While arthropods represented only a small proportion (1.1%) of the overall epifaunal biomass, this taxonomic grouping was the most speciose, and contained 23.8% (20) of all species collected in the beam-trawl shots (Figure 7b). Chordates were the next most diverse phylum collected (21.4%, 18), followed by molluscs (14.3%, 12) and echinoderms (13.1%, 11). All other epifaunal phyla collected, including annelids, cnidarians, poriferans, priapulids sipunculids and urochordates had much lower diversities, and individually compromised less than 9.5% (8) of the total species richness.

Arthropods, chordates, cnidarians and echinoderms were the most widely distributed taxa, and were encountered at all three depth-stratified sampling stations (Figure 7c). Annelids, molluscs, poriferans and sipunculids had much more restrictive distributions, with the two former phyla occurring only at the 500 m and 1000 m stations, and the two latter phyla being collected only at the 1000 m and 2000 m stations. All other phyla sampled were limited to just a single depth stratum; with urochordates only being collected from the 1000 m station, and priapulids only being collected from the 2000 m station.

3.3.2 Spatial patterns in species richness and biomass

The spatial distribution of epifaunal species among the three depth-stratified sampling stations in the BPZ was broadly consistent with the infauna. Species richness was, for example, highest at the 1000 m station (42 spp.), lowest at the 2000 m station (12 spp.), and intermediate at the 500 m station (30 spp.) (Figure 8a). As for the infauna, this distribution pattern followed trends in sediment size-structure, and hence epifaunal richness was negatively correlated with sediment sorting (Table 4). This result furthermore indicates that epifaunal diversity on the slope bedforms may be enhanced by progressively more homogeneous sediments.

Depth-related trends in epifaunal biomass closely follow those of richness (Figure 8b), and accordingly richness and biomass are significantly correlated (Table 4). Epifaunal biomass was highest at the 1000 m station (10,317 g), marginally smaller at the 500 m station (9519 g), and markedly lower at the 2000 m station (42 g). This trend in epifaunal biomass parallels that of sediment sorting (Table 4), and indicates that the more homogeneous sediments support the highest epibenthic standing-stocks.

3.3.3 Community structure

As for the infauna, three discrete communities were separated at the 10% B-C similarity level (Figure 9). These are an "upper slope" community (comprising the single trawl shot undertaken at 500 m depth), a "mid slope" community (containing the 1000 m trawl sample), and a "lower slope" community (comprising the 2000 m trawl sample). The higher order taxonomy and associated trophic structure varied markedly between these communities. Predatory and scavenging chordates (fish) dominated the "upper slope" communities (62% of total biomass), while filter-feeding poriferans (sponges) and cnidarians (sea pens) dominated the "mid slope" and "lower slope" communities, respectively (47% and 48% of biomass).

SIMPER analysis was undertaken to evaluate which species contributed most to differences between the three communities. Biomasses of the 20 species contributing \geq 3% to the between-sample dissimilarity are given in Table 5. This SIMPER analysis is generally consistent with the results obtained for infauna, and shows that the three communities are characterised by small subsets of epifaunal species with very limited distributions.

The "upper slope" community (i.e. BPZ_500) is characterised and principally separated from the other communities by nine species with relatively high biomasses. These mostly include fish (pink ling *Genypterus blacodes*, blacktip cucumberfish *Paraulopus nigripinnis*, little whiptail *Coelorinchus gormani*, banded-fin flounder *Azygopus pinnifasciatus* and three-spined cardinal fish *Apogonops anomalus*), sea cucumbers (*Holothuria* sp. 1 and 2), and cup corals (*Desmophyllum dianthus*); all of which are unique to the upper slope. The community also contains a large (>70 mm height) and abundant anemone species (*Hormathia lacunifera*), that appears to have a much wider range on the slope, and is also encountered on the "mid slope".

The glass sponge *Rosella* sp. 1, was recognised by SIMPER as a primary discriminator for the "mid slope" community (i.e. BPZ_1000). This small, globular species (<30 mm diameter) accounted for almost half of the total biomass sampled at this location. Moreover, this same species was also the most commonly encountered organism during the survey, with 1345 individuals collected from the single trawl shot undertaken at this location. Eight other species unique to the location, including the brittle star *Ophioplinthus accomodata*, cut-throat eel *Synaphobranchus oregoni*, warty oreo *Allocyttus verrucosus*, spotty-faced whiptail *Coelorinchus acanthiger*, basketwork eel *Diastobranchus capensis*, globehead whiptail *Cetonurus globiceps*, and pteropod *Cavolina* sp. 1, typified and distinguished the "mid slope" community on account of their relatively high biomasses. The anemone *Hormathia lacunifera*, which was also found in the "upper slope", accounted for all of the B-C similarity between these communities, and was the principal species separating the "upper slope" and "mid slope" communities from those of the "lower slope".

As was the case for infauna, the "lower slope" community (i.e. BPZ_2000) contained the least diverse collection of species, and also displayed the highest level of local endemism, with none of the 12 epifaunal species from the community being found elsewhere on the slope. This community was characterised by just two species on account of their relatively high biomasses. These included the delicate sea pen *Umbellula* sp. 1 (>300 mm length), and the strawberry prawn Sergestidae 1 (<30 mm carapace length).

3.3.4 Environmental linkages - community structure

The PRIMER routine BIOENV was used to assess the correspondence and significance of environmental data from the seafloor to the three communities identified from the epifaunal cluster analyses. As was the case for the infaunal analysis, measures of organic carbon and nitrogen in the sediments were excluded from these analyses as they are highly correlated and co-vary with depth. Depth and sediment sorting both provided equivalent solutions and independently correlated most closely with the epifaunal community structure ($\rho w = 0.87$). The other primary variables (sediment % <63 µm and sedimentary sulphur) were much more weakly correlated ($\rho w < 0.01$), and failed to provide an improved explanation for the biological pattern when combined with either depth of sediment sorting.

3.3.5 Biodiversity

As no other beam-trawl data exist for the GAB, this assessment of epifaunal diversity on the BPZ slope relies on comparisons with benthic sled collections undertaken across the eastern GAB shelf during 2002 (Ward et al., 2006). While gear differences between surveys mean that these compassions are less than perfect (i.e. swept area beam-trawl \approx 4X swept area sled tow), they presently represent the only viable option for gauging regional differences in epifaunal biodiversity.

During the Ward et al. survey of the GAB shelf in 2002, a total of 797 species were obtained from 65 replicate 500 m sled tows (1.8 m wide) spanning a 700 km section of the eastern continental shelf. The randomised mean species accumulation curve for this sled sampling is presented in Figure 10, together with the species curve predicted for beam-trawl sampling by the polynomial model (Equation 2)

$S = -0.19n^2 + 27.57n$

Equation 2

Where

S = number of species predicted, and n = number of beam-trawl tows

Under this simulation, an estimated 989 epibenthic species could be collected if an equivalent number of beam-trawl samples (65) were randomly undertaken on the BPZ slope. Based on this comparison, it appears that the deep-water epifaunal communities of the BPZ slope are marginally more diverse than those encountered on the adjacent continental shelf.

4 DISCUSSION

4.1 Faunal patterns

Almost all of the seafloor beyond the State water limits (3 nm) out to the edge of the Australian Exclusive Economic Zone (200 nm) is composed of soft sediments, but despite the prevalence of this habitat very little is known about the diversity and distribution of the associated biota. Few systematic surveys of benthic infauna and epifauna have been undertaken on the slope waters surrounding Australia (Poore, 1995), and patterns and drivers of faunal composition are only now beginning to emerge for this deep-water ecosystem as the Commonwealth Government seeks to implement a network of Marine Protected Areas in south-western Australia to better manage biodiversity and resources (DEWHA, 2007; Williams et al., 2010).

The sediments of the BPZ slope can be characterised as muddy oozes containing large quantities of skeletal organic fragments. Due largely to variations in the quantities of the skeletal remnants, the sediment size-structure varies markedly between locations. In the current study, we observed strong correlations between sediment sorting and the number of infaunal and epifaunal species, and it appears that the least variable sediments support the most diverse faunas. They also appear to support the highest biomasses of epifauna. Similar relationships have been demonstrated for many coastal and shelf environment (Bergen et al., 2001; Coleman et al., 1997; Snelgrove, 1999), but these associations do not infer causality. Faunal correlations with sediment are complex, and may in part reflect the influences of other factors such as hydrodynamic and sediment transport processes which affect the distribution of both sediment and fauna (Snelgrove and Butman, 1994).

Strong correlations were also observed in this study between infaunal abundance and depth, with the number of infaunal organisms declining progressively with increasing depth and distance offshore. This faunal pattern is not replicated in the adjacent GAB shelf, where hotspots of infaunal abundance coincide with areas of recurrent seasonal upwelling (Currie et al., 2009). I n spite of such discrepancies, depth-related faunal gradients are a general feature of the GAB shelf (Currie et al., 2009; Ward et al., 2006), and also appear to be a characteristic of the BPZ slope.

Marked shifts in community structure were observed across the BPZ slope in relation to depth. Such changes in community structure are widely reported on shelf and slope habitats (Cartes et al., 2009; Kroncke et al., 2003; Louzao et al., 2010), but geographical differences between studies, as well as variations in the range of depths considered or the classification procedures employed, mean that patterns are frequently contradictory. In this study spanning water depths of 500 to 2000 m on the continental slope off southern Australia, three distinct infaunal and epifaunal communities were identified. In respect of the taxonomically better known group, the epifauna, these include: a moderately diverse upper slope community (500 m) characterised by several species endemic to Australasia (e.g. the blacktip cucumberfish *Paraulopus nigripinnis* and three-spined cardinal fish *Apogonops anomalus*), a highly diverse mid slope community (1000 m) typified by more widely ranging southern temperate species (e.g. the brittle star *Ophioplinthus accomodata* and basketwork eel *Diastobranchus capensis*) and a low-diversity lower slope community (2000 m) that includes species with circumglobal distributions (e.g. the sea spider *Colossendeis antarctica*). These results appear to be broadly consistent with faunal breaks in demersal fish data from a narrower depth range (500-1200 m) off southern Australia (Koslow et al., 1994); where district assemblages are evident in the upper (500 m) and mid-slope (800-1200 m).

Similarities in fish community structure between the southeast Australian mid slope and the North Atlantic, prompted Koslow et al. (1994) to suggest that the biogeographic patterns were consistent with ocean circulation at intermediate depths. They observed that their mid slope community resided within the core depth range (800-1200 m) of the Antarctic Intermediate Water mass, which extends around the northern rim of the Southern Ocean (Fine, 1993). Like Koslow et al. (1994), our mid slope infaunal and epifaunal communities also corresponded with the Antarctic Intermediate Water, but a faunal break on the upper slope also corresponds with the core depth range (400-900 m) of the westward moving Flinders Current (Middleton and Bye, 2007). While these relationships are not necessarily causative, they are of considerable interest, as they suggest that ocean circulation patterns play a key role in structuring benthos at regional scales (10-1000 km).

4.2 Conservation significance

Due to the remote and generally inaccessible nature of the coastline, the marine ecosystems of the GAB have received considerably less research attention than other areas of temperate Australia. Despite this, there is increasing evidence that the shelf waters spanning the GAB support a benthic marine biodiversity that is globally significant (Edyvane, 1999; Sorokin et al., 2005; Ward et al., 2006). High levels of species richness on the shelf have been attributed to a lack of mass extinction events over the recent geological past (McGowran et al., 1997), while high levels of endemism are attributed to Australia's long period of isolation as a continent (~80 Ma) (Phillips, 2001). High levels of benthic biodiversity and endemism have also been

postulated for the adjacent GAB slope (Currie and Kendrick, 2006), but remain unproven in this poorly studied region.

During the present study, 57 species of infauna and 84 species of epifauna were collected from the deep-water section of the BPZ. While these collections represent only a small component of Australia's marine macrofaunal biodiversity (>250,000 species (Butler et al., 2010)), the low levels of sampling effort applied during the survey infer that the BPZ slope is remarkably diverse. Indeed, our preliminary species accumulation models suggested that the benthic assemblages of the continental slope are comparatively more diverse than those found on the adjacent continental shelf. This finding is consistent with a number of other cross shelf-slope studies (Levin et al., 2001; Rex, 1981). However, geographical variations in substrate heterogeneity mean that such patterns in diversity do not always hold true (Danovaro et al., 2009; Gray et al., 1997). Unfortunately, the reliability of our estimates of diversity in this study are constrained to a large degree by a very small sample size. Differences in sampling methodologies between surveys add further uncertainly in respect of our hypotheses on epifauna diversity. An increase in sampling effort and the application of a consistent sampling technique would certainly support more robust and equitable estimates of diversity, and should promote a better understanding of their distribution patterns and the factors underpinning them.

At present, it is hard to comment on the conservation values of many of the benthic fauna sampled in the BPZ, as their identities have either yet to be confirmed, or because no data have been published on their distribution. Almost 96% of infauna and 61% of epifauna collected could not be confidently assigned to existing species and appears that a large proportion of these organisms may be undescribed. Voucher material for each taxon collected in this study has been lodged in the South Australian Museum, and will be a valuable reference source for future bio-geographical assessments once their identities are accurately verified.

4.3 Anna's Pimple: the discovery of an enigmatic volcano in the BPZ

Bathymetric maps defining the distribution of seafloor features and the benthic communities that colonise them are essential to our understanding of marine ecosystems and our ability to manage them responsibly. Seabed maps provide a geographical basis for evaluating the quality and quantity of benthic resources and can aid the sustainable use of seafloor resources and focus monitoring efforts. As part of a national habitat mapping project, swath data are currently being collected around Australia's continental margin, with a major focus on the upper-slope and mid-slope seabed (200 m to 1500 m depth range). Benthic habitat mapping was a key objective during *Southern Surveyor* voyage SS2010_T02, and available transit time was

used to target unmapped sections of the upper-slope and mid-slope seabed between Fremantle and Hobart.

One of the most remarkable findings during this mapping process was the discovery of a coneshaped volcanic pinnacle at a depth of 2000 m inside the BPZ (Figures 11 and 12). This 800 m diameter structure, rising almost 200 m above the surrounding soft-sediments, was undocumented when the Benthic Protection Zone was first proclaimed in 1998. Australia's southern margin had previously been considered a non-volcanic rifted margin, however over the last two decades numerous volcanic bodies have been reported as scattered across the GAB slope (Schofield and Totterdell, 2008). These intrusive bodies have been collectively referred to as the "Bight Basin Igneous Complex" by Schofield and Totterdell (2008), and are believed to have been formed during the middle Eocene (~45 Ma), when seafloor spreading rates along Australia's southern margin were accelerating.

Similar volcanic features off southern Tasmania and New Zealand's north-east coast have been shown to support extremely diverse and unique benthic faunas (Clark and Rowden, 2009; Koslow et al., 2001), and it seems likely that *Anna's Pimple* in the BPZ also supports a diverse collection of faunal elements, including some species that may be unique to the structure. Seamounts exert strong influences on the patchiness of deep-sea benthos by providing habitat for sessile suspension-feeding organisms in an environment otherwise dominated by fine-grained sediments (Probert et al., 1997). With larval connectivity in the deep-sea controlled to a large degree by water circulation patterns, low species overlap and high levels of endemicity may be expressed by seamounts separated by small geographical distances when current flows are unfavourable (Richer de Forges et al., 2000).

While the biology and life histories of most seamount species is poorly known, some species appear to be extremely long-lived and slow growing (Grigg, 1993). These characteristics mean that seamount faunas are particularly vulnerable to direct human impacts from activities such as bottom trawling and mining (Clark et al., 2010). As yet, the relative vulnerabilities of any faunal communities associated with *Anna's Pimple* in the BPZ are unknown, as the feature remains unsurveyed for benthos.

4.4 Future research

Conservation of benthos in the BPZ is a fundamental objective of the current marine park management plan (DEH, 2005). However, it is largely uncertain what levels of benthic biodiversity and endemicity are currently being protected in the BPZ, particularly in the deeper

offshore waters. The location of the BPZ was not determined on the basis of any quantitative ecological data. In the absence of any baseline data, the BPZ was located with the aim of conserving a representative strip of seafloor at the widest part of the continental margin. As a result, the suitability of the BPZ for representing the region's benthic biodiversity was, and has remained to a large extent, unknown.

Benthic surveys undertaken in and around the BPZ over the last decade have made significant contributions to our understanding of the regional benthos, and in particular have provided a quantitative basis for evaluating the effectiveness of the BPZ in representing the infaunal and epifaunal biodiversity of the continental shelf (Currie et al., 2007; Ward et al., 2006). Most notably, these studies have demonstrated that the BPZ is well-placed to represent and conserve the benthic infaunal and epifaunal communities of the eastern shelf. However, these same studies have also served to highlight inadequacies in our understanding of benthic biodiversity on the western and inner shelves, and particularly our knowledge of the deep offshore waters of the GAB slope. Moreover, these studies have emphasised gaps in our understanding of other key benthic faunal groups, most notably demersal fish.

Documenting the composition and distribution of the central GAB benthos has gained considerable relevance in recent years, as the deep offshore area is thought to support significant oil and gas reserves, and is currently the subject of an extensive 3D seismic survey (PIRSA, 2011). Before a need arises to manage hydrocarbon extraction in or around the BPZ, it is imperative that the environmental values of the region are adequately assessed.

In the present study, a small number of infaunal and epifaunal samples were collected using grabs and beam-trawls inside the deep-water section of the BPZ. These samples are providing novel insights into the region's seafloor biodiversity, but the restricted spatial coverage precludes any robust assessment of the geographical uniqueness of the faunal elements collected. If the representativeness of the slope fauna potentially impacted by hydrocarbon exploration activities is to be established, then a dedicated survey of the area needs to be undertaken as a matter of priority.

The exploratory drilling programme currently proposed for the central GAB slope (PIRSA, 2011), will have both direct and indirect effects on the benthos. The spatial extent, magnitude and persistence of these impacts, being dependent on a wide variety of factors including the location of the wells and the volume and composition of the drill cuttings discharged, as well as the vulnerabilities of the species themselves. A robust assessment of these impacts will require a Before After Control Impact (BACI) survey design, and will need to embrace sufficient timeseries sampling before exploratory drilling commences, to evaluate natural variations in the composition and population structures of the faunal elements. Given that an exploratory drilling

programme has been proposed for 2013-14, the need to initiate baseline sampling in the very near future is highlighted.

REFERENCES

- Bergen, M., Weisberg, S.B., Smith, R.W., Cadien, D.B., Dalkey, A., Montagne, D.E., Stull, J.K., Velarde, R.G., and Ranasinghe, J.A., 2001, Relationship between depth, sediment, latitude, and the structure of benthic infaunal assemblages on the mainland shelf of southern California: Marine Biology, v. 138, p. 637-647.
- Bray, J.R., and Curtis, J.T., 1957, An ordination of the upland forest communities of southern Wisconsin: Ecological Monographs, v. 27, p. 326-349.
- Butler, A.J., Rees, T., Beesley, P., and Bax, N.J., 2010, Marine Biodiversity in the Australian Region: PLoS ONE, v. 5, p. 1-15.
- Cartes, J.E., Maynou, F., Fanelli, E., Romano, C., Mamouridis, V., and Papiol, V., 2009, The distribution of megabenthic, invertebrate epifauna in the Balearic Basin (western Mediterranean) between 400 and 2300 m: environmental gradients influencing assemblage composition and biomass trends: Journal of Marine Systems, v. 61, p. 244-257.
- Clark, M.R., and Rowden, A.A., 2009, Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand: Deep Sea Research Part I: Oceanographic Research Papers, v. 56, p. 1540-1554.
- Clark, M.R., Rowden, A.A., Schlacher, T., Williams, A., Consalvey, M., Stocks, K.I., Rogers, A.D., O'Hara, T.D., White, M., Shank, T.M., and Hall-Spencer, J.M., 2010, The Ecology of Seamounts: Structure, Function, and Human Impacts: Annual Review of Marine Science, v. 2, p. 253-278.
- Clarke, K.R., 1993, Non-parametric multivariate analysis of changes in community structure: Australian Journal of Ecology, v. 18, p. 117-143.
- Clarke, K.R., and Ainsworth, M., 1993, A method for linking multivariate community structure to environmental variables: Marine Ecology-Progress Series, v. 92, p. 205-219.
- Clarke, K.R., and Gorley, R.N., 2001, PRIMER v5: User manual/tutorial: Plymouth, United Kingdom, PRIMER-E Ltd, 91 p.
- Coleman, N., Gason, A.S.H., and Poore, G.C.B., 1997, High species richness in the shallow marine waters of south-east Australia: Marine Ecology Progress Series, v. 154, p. 17-26.
- Currie, D.R., 2010a, Southern Surveyor Voyage Plan SS02_ 2010T: Deep water benthic biodiversity of the GAB Marine Park, Report to the Marine National Facility, Volume http://www.marine.csiro.au/nationalfacility/voyagedocs/2010/MNF-SS02-

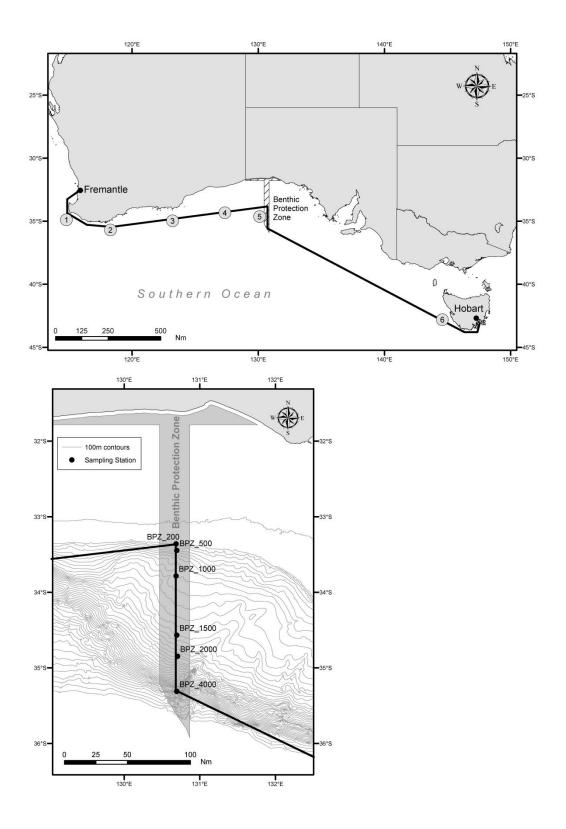
2010_ transit_ plan.pdf: Hobart, CSIRO Marine and Atmospheric Research, p. 7.

Currie, D.R., 2010b, Southern Surveyor Voyage Summary SS02_ 2010T: Deep water benthic biodiversity of the GAB Marine Park, Report to the Marine National Facility, Volume

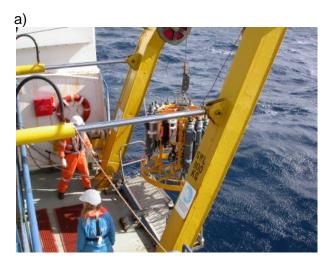
http://www.marine.csiro.au/nationalfacility/voyagedocs/2010/MNF-

SS2010_ t02_ summary.pdf: Hobart, CSIRO Marine and Atmospheric Research, p. 10.

- Currie, D.R., and Kendrick, G.A., 2006, Ecological Integration Biodiversity, *in* McClatchie, S., Middleton, J.F., Pattiaratchi, C., Currie, D.R., and Kendrick, G.A., eds., The Southwest Marine Region: Ecosystems and Key Species Groups, Volume 1: Canberra, Department of the Environment and Water Resources, p. 68-83.
- Currie, D.R., Sorokin, S.J., and Ward, T.M., 2007, Infaunal assemblages of the eastern Great Australian Bight: Effectiveness of a Benthic Protection Zone in representing regional biodiversity, Final report to the South Australian Department for Environment and Heritage and the Commonwealth Department of the Environment and Water Resources, Volume F2007/001079-1: Adelaide, SARDI Aquatic Sciences p. 61.
- Currie, D.R., Sorokin, S.J., and Ward, T.M., 2008, Performance assessment of the Benthic Protection Zone of the Great Australian Bight Marine Park: Epifauna, Final report to the South Australian Department for Environment and Heritage and the Commonwealth Department of the Environment and Water Resources, Volume F2008/000647-1: Adelaide, SARDI Aquatic Sciences, p. 113.
- Currie, D.R., Sorokin, S.J., and Ward, T.M., 2009, Infaunal macroinvertebrate assemblages of the eastern Great Australian Bight: effectiveness of a marine protected area in representing the regions benthic biodiversity: Marine and Freshwater Research, v. 60, p. 459-474.
- Danovaro, R., Canals, M., Gambi, C., Heussner, S., Lampadariou, N., and Vanreusel, A., 2009, Exploring benthic biodiversity patterns and hotspots on European margin slopes: Oceanography, v. 22, p. 16-25.
- DEH, 2005, Great Australian Bight Marine Park (Commonwealth Waters) Management Plan 2005-2012: Canberra, p. 72.
- DEWHA, 2007, South-west Marine Bioregional Plan Bioregional Profile: Canberra, Department of the Environment, Water, Heritage and the Arts, p. 208.
- DSEWPaC, 2011, Marine Protected Areas, <u>http://www.environment.gov.au/coasts/mpa/index.html:</u> Canberra, Department of Sustainability, Environment, Water, Population and Communities.
- Edyvane, K.S., 1999, Conserving marine biodiversity in South Australia. Part 1: background, status and review of approach to marine biodiversity conservation in South Australia: Adelaide, SARDI Aquatic Sciences, p. 173.
- Fine, R.A., 1993, Circulation of Antarctic intermediate water in the South Indian Ocean: Deep-Sea Research Part I-Oceanographic Research Papers, v. 40, p. 2021-2042.

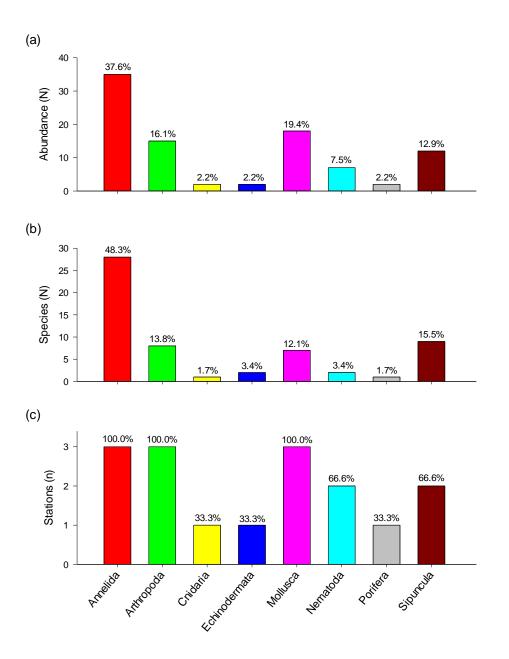

- Gray, J.S., Poore, G.C.B., Ugland, K.I., Wilson, R.S., Olsgard, F., and Johannessen, O., 1997, Coastal and deep-sea benthic diversities compared: Marine Ecology Progress Series, v. 159, p. 97-103.
- Grigg, R.W., 1993, Precious coral fisheries of Hawaii and the US Pacific islands: Marine Fisheries Review, v. 55, p. 50-60.
- Koslow, J.A., Bulman, C.M., and Lyle, J.M., 1994, The mid-slope demersal fish community off southeastern Australia: Deep-Sea Research Part I-Oceanographic Research Papers, v. 41, p. 113-141.
- Koslow, J.A., Gowlett-Holmes, K., Lowry, J.K., O¹Hara, T., Poore, G.C.B., and Williams, A., 2001, Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling: Marine Ecology Progress Series, v. 213, p. 111-125.
- Kroncke, I., Turkay, M., and Fiege, D., 2003, Macrofauna communities in the eastern Mediterranean deep sea: Marine Ecology, v. 24, p. 193-216.
- Levin, L.A., Etter, R.J., Rex, M.A., Gooday, A.J., Smith, C.R., Pineda, J., Stuart, C.T., Hessler, R.R., and Pawson, D., 2001, Environmental influences on regional deep-sea species diversity: Annual Review of Ecology and Systematics, v. 32, p. 51-93.
- Louzao, M., Anadon, N., Arrontes, J., Alvarez-Claudio, C., Fuente, D.M., Ocharan, F., Anadon, A., and Acuna, J.L., 2010, Historical macrobenthic community assemblages in the Aviles Canyon, N Iberian Shelf: baseline biodiversity information for a marine protected area: Journal of Marine Systems, v. 80, p. 47-56.
- McGowran, B., Li, Q., Cann, J., Padley, D., McKirdy, D.M., and Shafik, S., 1997, Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 136, p. 19-40.
- Middleton, J.F., and Bye, J.A.T., 2007, A review of the shelf-slope circulation along Australia's southern shelves: Cape Leeuwin to Portland: Progress in Oceanography, v. 75, p. 1-41.
- Phillips, J., 2001, Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora?: Biodiversity and Conservation, v. 10, p. 1555-1577.
- PIRSA, 2011, Grant of Petroleum Exploration Permits to BP Exploration (Alpha) Ltd, <u>http://www.pir.sa.gov.au/petroleum/prospectivity/basin_ and_ province_ information/pro</u> <u>spectivity_ bight/grant_ of_ petroleum_ exploration_ permits_ to_ bp_ exploration_ alp</u> ha_ Itd_ faq: Adelaide, Primary Industries and Resources South Australia.
- Poore, G.C.B., 1995, Australia's marine ecosystems: the continental shelf and slope, *in* Zann,
 L.P., and Kailola, P., eds., The State of the Marine Environment Report for Australia.
 Technical Annex 1. The Marine Environment.: Townsville, Great Barrier Reef and
 Marine Park Authority, p. 145-149.

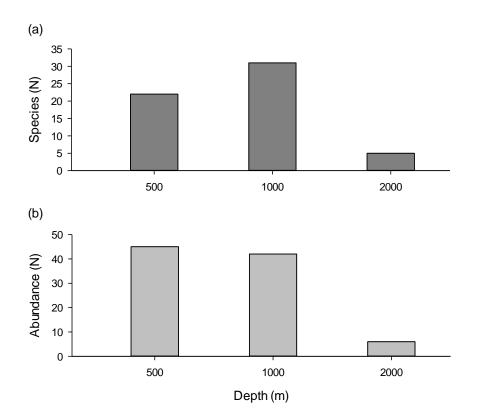
- Probert, P.K., McKnight, D.G., and Grove, S.L., 1997, Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand: Aquatic Conservation-Marine and Freshwater Ecosystems, v. 7, p. 27-40.
- Rex, M.A., 1981, Community structure in the deep-sea benthos: Annual Review of Ecology and Systematics, v. 12, p. 331-353.
- Richer de Forges, B., Koslow, J.A., and Poore, G.C.B., 2000, Diversity and endemism of the benthic seamount fauna in the southwest Pacific: Nature, v. 405, p. 944-947.
- Schofield, A., and Totterdell, J., 2008, Distribution, timing and origin of magmatism in the Bight and Eucla Basins, Volume 2008/24: Canberra, Geoscience Australia, p. 19.
- Snelgrove, P.V.R., 1999, Getting to the bottom of marine biodiversity: sedimentary habitats: Bioscience, v. 49, p. 129-138.
- Snelgrove, P.V.R., and Butman, C.A., 1994, Animal sediment relationships revisited: cause versus effect, Oceanography and Marine Biology, Vol 32, Volume 32: Oceanography and Marine Biology, p. 111-177.
- Sorokin, S.J., Currie, D.R., and Ward, T.M., 2005, Sponges from the Great Australian Bight Marine Park Benthic Protection Zone, Report to the South Australian National Parks and Wildlife Council, Volume RD04/0170: Adelaide, SARDI Aquatic Sciences p. 92.
- SPSS, 2007, SPSS Base 16.0 for Windows User's Guide: Chicago, SPSS Inc, 736 p.
- Ward, T.M., Sorokin, S.J., Currie, D.R., Rogers, P.J., and McLeay, L.J., 2006, Epifaunal assemblages of the eastern Great Australian Bight: Effectiveness of a benthic protection zone in representing regional biodiversity: Continental Shelf Research, v. 26, p. 25-40.
- Ward, T.M., Sorokin, S.J., Rogers, P.J., McLeay, L.J., and Turner, D.J., 2003, Benthic protected zone of the Great Australian Bight Marine Park: Pilot study for performance assessment, Report to National Parks and Wildlife South Australia and the Commonwealth Department for Environment and Heritage, Volume 1: Adelaide, SARDI Aquatic Sciences p. 43.
- Williams, A., Althaus, F., Dunstan, P.K., Poore, G.C.B., Bax, N.J., Kloser, R.J., and McEnnulty, F.R., 2010, Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100-1100 m depths) : Marine Ecology, v. 31, p. 222-236.

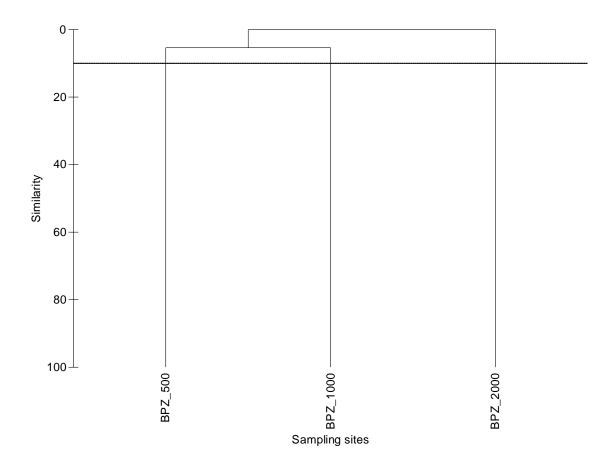

AKNOWLEDGEMENTS

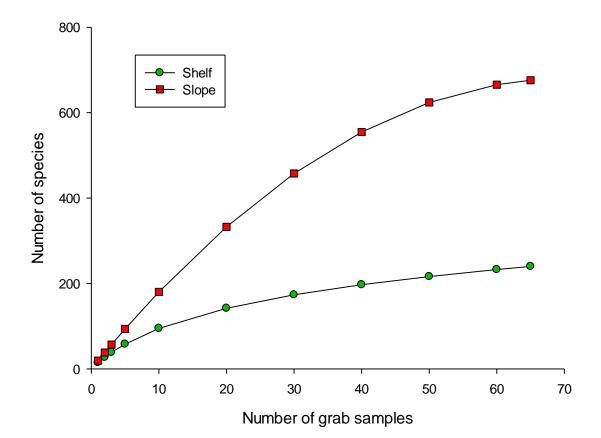
This research could not have been undertaken safely and efficiently without the assistance of a highly skilled group of mariners. In particular, we would like to thank the Captain (Les Morrow), First Mate (John Boyes), and Crew (Alex Cherchukan, James Hickie, Nick Fleming, Graeme Perkins, Tony Hearne, Nathan Arahanga, John Allwood, Jonathan Lumb, Daniel Nicholson, Scott Nichols, Lynette McLaren, Charmayne Aylett) of the RV Southern Surveyor for their professional and enthusiastic support throughout the voyage. Thanks are also due the following Marine National Facility (MNF) staff for their contributions to a highly successful voyage; Ron Plaschke (Acting Director), Don McKenzie (Operations Manager), Lisa Woodward (Voyage Support Officer), Pamela Brodie (Voyage Manager), Bernadette Heaney (Swath Mapping), Karl Forcey (Electronics) and Sue Reynolds (Hydrochemistry). We are also very much indebted to the following scientific staff for their outstanding efforts in collecting and processing the field samples; Rodney Simpson and Saras Kumar (Invertebrate Biology), Laura Richardson (Oceanography), Anna Hill (Hydro-acoustics), Jessica Nilsson (Ichthyology) and Leo Mantilla (Photography). Thanks are also due to the many support staff at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the South Australian Research and Development Institute (SARDI), who helped develop and mobilise the benthic sampling equipment. This project was jointly funded by the South Australian Department of Environment and Natural Resources (DENR), Marine Innovation South Australia (MISA), and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities (DSEWPaC).

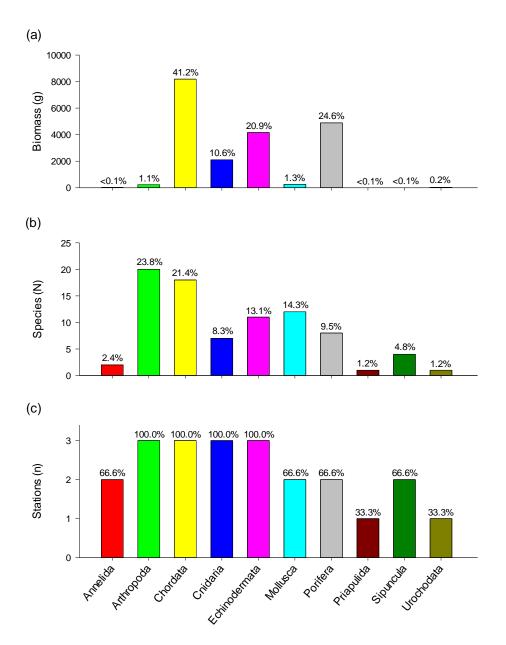
Figure 1. Maps showing the transit route of *Southern Surveyor* during research voyage SS2010_T02 (Fremantle-Hobart, 11-20 August 2010), and the locations of 6 proposed deep-water benthic sampling stations on the continental slope of the Great Australian Bight Marine Park – Benthic Protection Zone. Numerals circled in the upper map denote the locations of stations sampled for water column properties.

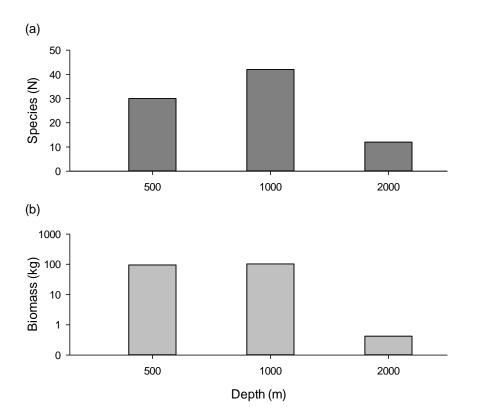

Figure 2. Images of sampling gear deployed during *Southern Surveyor* transit voyage SS2010_T02 including: a) Niskin rosette with Conductivity Temperature Depth (CTD) sensor, b) Argo float (yellow cylinder), c).Smith-McIntyre grab and d) beam trawl.

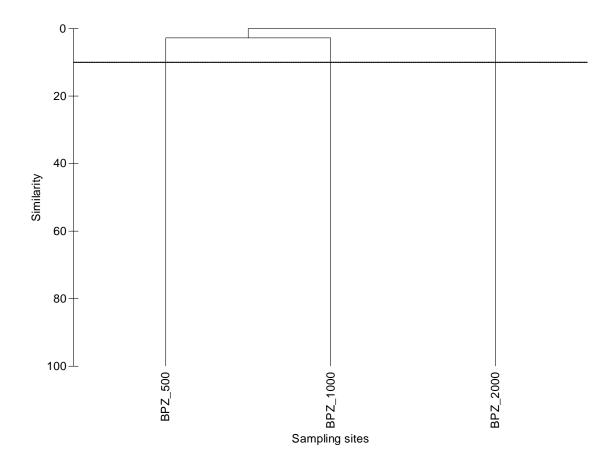



Figure 3. Plots of (a) total abundance, (b) total species richness, and (c) total occurrence (out of three sampling stations) of each major infaunal phyla collected during grab sampling in the BPZ. Values for each variable are shown as percentages above each bar.


Figure 4. Total number of (a) infaunal species, and (b) infaunal organisms collected from grab samples taken at three depth-stratified sampling stations inside the BPZ.


Figure 5. Dendrogram of infaunal community structure at three depth-stratified sampling stations inside the BPZ. Three discrete communities are identified at the 10% Bray-Curtis similarity level (horizontal line): upper slope (BPZ_500), mid slope (BPZ_1000) and lower slope (BPZ_2000).


Figure 6. Cumulative species curves displaying the observed randomised accumulation of infaunal organisms from 65 grab samples on the eastern GAB shelf (green circles), and the predicted mean number of infaunal organisms from replicate grab samples on the BPZ slope (red squares). Note shelf data presented are from a 2006 survey (Currie et al., 2007).


Figure 7. Plots of (a) total biomass (grams wet weight), (b) total species richness, and (c) total occurrence (out of three sampling stations) of each major epifaunal phyla collected during trawl sampling in the BPZ. Values for each variable are shown as percentages above each bar.

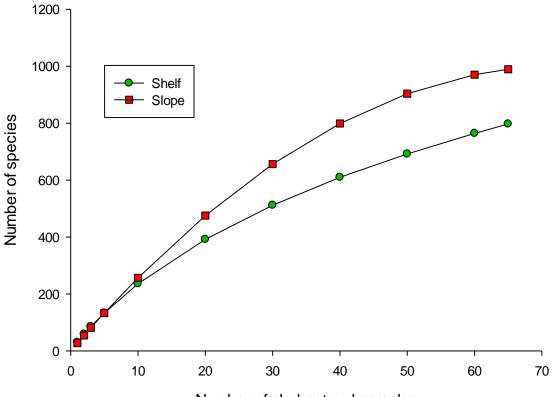

Figure 8. Total (a) number of epifaunal species, and (b) wet-weights of epifaunal organisms collected from beam-trawl samples taken at three depth-stratified sampling stations inside the BPZ.

Figure 9. Dendrogram of epifaunal community structure at three depth-stratified sampling stations inside the BPZ. Three discrete communities are identified at the 10% Bray-Curtis similarity level (horizontal line): upper slope (BPZ_500), mid slope (BPZ_1000) and lower slope (BPZ_2000).

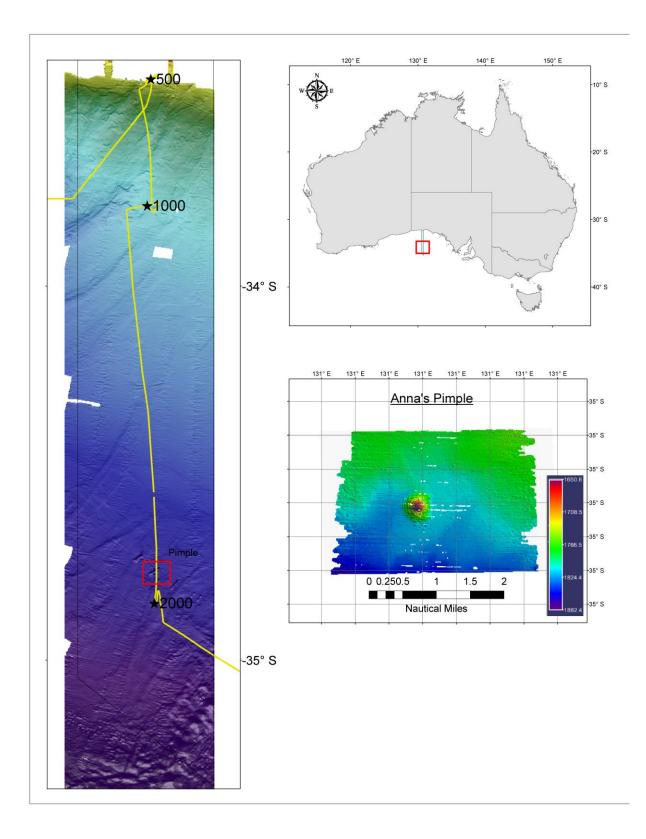
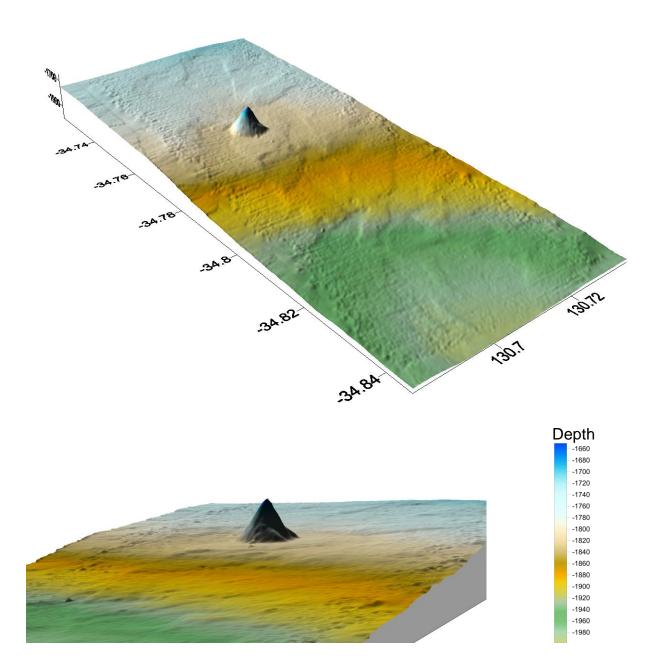


Figure 10. Cumulative species curves displaying the observed randomised accumulation of epifaunal organisms from 65 sled shots on the eastern GAB shelf (green circles), and the predicted mean number of epifaunal organisms for replicate beam-trawl shots on the BPZ slope (red squares). Note shelf data presented are from a 2002 survey (Ward et al., 2006).



Number of sled or trawl samples

Figure 11. Swath bathymetric image of the Benthic Protection Zone of the Great Australian Bight Marine Park showing the voyage path (yellow line), benthic sampling stations (stars), and the location of *Anna's Pimple* (a 200m high volcanic pinnacle) identified from EM300 multi-beam soundings collected during *Southern Surveyor* transit voyage SS2010_T02.

Figure 12. 3D renderings of Anna's Pimple developed from EM300 multi-beam soundings collected during Southern Surveyor transit voyage SS2010_T02. Note all depths in metres.

Table 1. Summary of environmental factors at three depth-stratified sampling stations in the BenthicProtection Zone of the Great Australian Bight Marine Park.

Station	Latitude (°S)	Longitude (°E)	Depth (m)	Sediment size (%<63µm)	Sediment sorting (Phi)	Sediment carbon (% organic)	Sediment nitrogen (%)	Sediment sulphur (%)
BPZ_500	33.4516	130.6865	500	62.53	2.100	1.285	0.099	0.179
BPZ_1000	33.8022	130.7043	1000	81.70	1.990	0.769	0.089	0.108
BPZ_2000	34.8481	130.7064	2000	76.10	2.285	0.765	0.086	0.112

Table 2. Spearman's rank correlation coefficients between infaunal abundance and richness and adjacent environmental conditions at three depth-stratified sampling stations inside the BPZ. Significant positive (+) and negative (-) correlations are denoted at the ** 1% level.

	Depth	% Mud	Sediment sorting	Sediment carbon	Sediment nitrogen	Sediment sulphur	Abundance
Depth					•		
% Mud	ns						
Sediment sorting	ns	ns					
Sediment carbon	(-)**	ns	ns				
Sediment nitrogen	(-)**	ns	ns	(+)**			
Sediment sulphur	ns	(-)**	ns	ns	ns		
Abundance	(-)**	ns	ns	(+)**	(+)**	ns	
Richness	ns	ns	(-)**	ns	ns	ns	ns

Phylum	Scientific Name	BPZ_500	BPZ_1000	BPZ_2000
Mollusca	Limacina sp. 1	8		
Nematoda	Chromadoroidae 1	3	4	
Annelida	Maldanidae 4	6		
Mollusca	Cuna sp. 1	4		
Arthropoda	Cyathura sp. 1		4	
Arthropoda	Birubius sp. 1		3	
Arthropoda	Metaphoxus sp. 1		3	
Sipuncula	Sipuncula 3	3		
Annelida	Ampharetidae 1	2		
Porifera	Demospongiae 5		2	
Mollusca	Dentalium sp. 1	2		
Cnidaria	Hydroid 1			2
Annelida	Magelonidae 1	2		
Sipuncula	Sipuncula 1	2		

Table 3. Total abundance (N per 0.1 m²) of infauna in three communities identified from cluster analysis. Species listed were identified as contributing 3% or more to the dissimilarity between samples. Species are ranked in order of decreasing abundance across all samples.

Table 4. Spearman's rank correlation coefficients between epifaunal biomass and richness and adjacentenvironmental conditions at three depth-stratified sampling stations inside the BPZ. Significant positive(+) and negative (-) correlations are denoted at the ** 1% level.

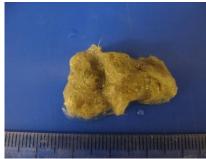
	Depth	% Mud	Sediment sorting	Sediment carbon	Sediment nitrogen	Sediment sulphur	Biomass
Depth	•					•	
% Mud	ns						
Sediment sorting	ns	ns					
Sediment carbon	(-)**	ns	ns				
Sediment nitrogen	(-)**	ns	ns	$(+)^{**}$			
Sediment sulphur	ns	(-)**	ns	ns	ns		
Biomass	ns	ns	(-)**	ns	ns	ns	
Richness	ns	ns	(-)**	ns	ns	ns	$(+)^{**}$

Table 5. Total biomass (g per 4000 m²) of epifauna in three communities identified from cluster analysis. Species listed were identified as contributing 3% or more to the dissimilarity between samples. Species are ranked in order of decreasing biomass across all samples.

Phylum	Scientific Name	BPZ_500	BPZ_1000	BPZ_2000
Chordata	Genypterus blacodes	4900		
Porifera	Rosella sp. 1		4883	
Echinodermata	Ophioplinthus accomodata		2822	
Cnidaria	Hormathia lacunifera	1191	14	
Echinodermata	Holothuria sp. 1	1006		
Cnidaria	Desmophyllum dianthus	870		
Chordata	Synaphobranchus oregoni		757	
Chordata	Allocyttus verrucosus		438	
Chordata	Coelorinchus acanthiger		405	
Chordata	Paraulopus nigripinnis	385		
Chordata	Coelorinchus gormani	299		
Chordata	Diastobranchus capensis		267	
Chordata	Coelorinchus fasciatus		236	
Mollusca	Cavolina sp. 1		159	
Echinodermata	Holothuria sp. 2	144		
Chordata	Azygopus pinnifasciatus	140		
Chordata	Apogonops anomalus	121		
Chordata	Cetonurus globiceps		101	
Cnidaria	Umbellula sp. 1			14
Arthropoda	Sergestidae 1			8

Appendix 1. Taxonomic and functional classification of 138 benthic species collected from three grab and three trawl shots at three depth-stratified sampling stations (500 m, 1000 m, 2000 m) inside the Benthic Protection Zone (BPZ) of the Great Australian Bight Marine Park (GABMP).

Phylum	Class	Family	Species	Common Name	Code
Porifera	Demospongiae	Undefined	Demospongiae 1	Sponge	S001
Porifera	Demospongiae	Undefined	Demospongiae 2	Sponge	S006
Porifera	Demospongiae	Undefined	Demospongiae 3	Sponge	S007
Porifera	Demospongiae	Undefined	Demospongiae 4	Sponge	S008
Porifera	Demospongiae	Undefined	Demospongiae 5	Sponge	INF_38
Porifera	Hexactinellida	Euplectellidae	Euplectella sp. 1	Sponge	S005
Porifera	Hexactinellida	Rosellidae	Rosella sp. 1	Sponge	S003
Porifera	Hexactinellida	Undefined	Hexactinellida 1	Sponge	S004
Porifera	Hexactinellida	Undefined	Hexactinellida 2	Sponge	S002
Cnidaria	Anthozoa	Antipathidae	Antipathidae 1	Coral	H001
Cnidaria	Anthozoa	Caryophylliidae	Desmophyllum dianthus	Coral	O004
Cnidaria	Anthozoa	Caryophylliidae	Stephanocyathus sp. 1	Coral	O005
Cnidaria	Anthozoa	Hormathidae	Hormathia lacunifera	Anemone	O002
Cnidaria	Anthozoa	Umbellulidae	Umbellula sp. 1	Sea Pen	O001
Cnidaria	Hydrozoa	Stylasteridae	Stylasteridae 1	Hydrocoral	O003
Cnidaria	Hydrozoa	Undefined	Hydroid 1	Hydroid	INF_05
Nematoda	Chromadorea	Chromadoroidae	Chromadoroidae 1	Round Worm	INF_24
Annelida	Polychaeta	Ampharetidae	Ampharetidae 1	Bristle Worm	INF_12
Annelida	Polychaeta	Aphroditidae	Aphrodita sp. 1	Bristle Worm	P002
Annelida	Polychaeta	Capitellidae	Capitellidae 1	Bristle Worm	INF_5
Annelida	Polychaeta	Chaetopteridae	Chaetopteridae 1	Bristle Worm	INF_14
Annelida	Polychaeta	Chaetopteridae	Chaetopteridae 2	Bristle Worm	INF_20
Annelida	Polychaeta	Cirratulidae	Cirratulidae 1	Bristle Worm	INF_13
Annelida	Polychaeta	Eulepethidae	Grubeulepis kurnai	Bristle Worm	INF_1
Annelida	Polychaeta	Flabelligeridae	Flabelligeridae 1	Bristle Worm	INF_4
Annelida	Polychaeta	Goniadidae	Goniadidae 1	Bristle Worm	INF_54
Annelida	Polychaeta	Lumbrineridae	Lumbrineridae 1	Bristle Worm	INF_50
Annelida	Polychaeta	Lumbrineridae	Lumbrineris sp. 1	Bristle Worm	INF_1
Annelida	Polychaeta	Magelonidae	Magelonidae 1	Bristle Worm	INF_19
Annelida	Polychaeta	Maldanidae	Maldanidae 1	Bristle Worm	INF_0
Annelida	Polychaeta	Maldanidae	Maldanidae 2	Bristle Worm	INF_02
Annelida	Polychaeta	Maldanidae	Maldanidae 3	Bristle Worm	INF_1
Annelida	Polychaeta	Maldanidae	Maldanidae 4	Bristle Worm	INF_1
Annelida	Polychaeta	Nereidae	Nereidae 1	Bristle Worm	INF_4
Annelida	Polychaeta	Opheliidae	Armandia sp. 1	Bristle Worm	INF_4
Annelida	Polychaeta	Orbiniidae	Orbiniidae 1	Bristle Worm	INF_1
Annelida	Polychaeta	Paraonidae	Paraonidae 1	Bristle Worm	INF_4
Annelida	Polychaeta	Poecilochaetidae	Poecilochaetus sp. 1	Bristle Worm	INF_6
Annelida	Polychaeta	Polygordiidae	Polygordiidae 1	Bristle Worm	INF_5
Annelida	Polychaeta	Polynoidae	Harmothoe sp. 1	Bristle Worm	P001
Annelida	Polychaeta	Sabellidae	Sabellidae 1	Bristle Worm	INF_2
Annelida	Polychaeta	Spionidae	Prionospio sp. 1	Bristle Worm	INF_5

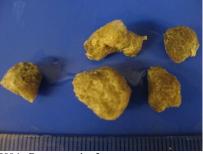

Phylum	Class	Family	Species	Common Name	Code
Annelida	Polychaeta	Spionidae	Spionidae 1	Bristle Worm	INF_44
Annelida	Polychaeta	Spionidae	Spionidae 2	Bristle Worm	INF_46
Annelida	Polychaeta	Spionidae	Spionidae 3	Bristle Worm	INF_58
Annelida	Polychaeta	Syllidae	Syllidae 1	Bristle Worm	INF_55
Annelida	Polychaeta	Terebellidae	Terebellidae 1	Bristle Worm	INF_53
Sipuncula	Sipuncula	Undefined	Sipuncula 1	Peanut Worm	INF_21
Sipuncula	Sipuncula	Undefined	Sipuncula 2	Peanut Worm	INF_22
Sipuncula	Sipuncula	Undefined	Sipuncula 3	Peanut Worm	INF_23
Sipuncula	Sipuncula	Undefined	Sipuncula 4	Peanut Worm	INF_27
Sipuncula	Sipuncula	Undefined	Sipuncula 5	Peanut Worm	INF_28
Sipuncula	Sipuncula	Undefined	Sipuncula 6	Peanut Worm	INF_39
Sipuncula	Sipuncula	Undefined	Sipuncula 7	Peanut Worm	INF_40
Sipuncula	Sipuncula	Undefined	Sipuncula 8	Peanut Worm	INF_42
Sipuncula	Sipuncula	Undefined	Sipuncula 9	Peanut Worm	INF_60
Sipuncula	Undefined	Undefined	Sipuncula 10	Peanut Worm	I001
Sipuncula	Undefined	Undefined	Sipuncula 11	Peanut Worm	I003
Sipuncula	Undefined	Undefined	Sipuncula 12	Peanut Worm	1005
Sipuncula	Undefined	Undefined	Sipuncula 13	Peanut Worm	I006
Priapulida	Undefined	Undefined	Priapulida 1	Penis Worm	I002
Arthropoda	Cirripedia	Scalpellidae	Arcoscalpellum sp. 1	Goose Barnacle	C008
Arthropoda	Malacostraca	Anthuridae	Cyathura sp. 1	Tanaid	INF_32
Arthropoda	Malacostraca	Aristeidae	Austropenaeus nitidus	Prawn	C004
Arthropoda	Malacostraca	Campylonotidae	Campylonotus rathbunae	Shrimp	C013
Arthropoda	Malacostraca	Cerolidae	Brucerolis victoriensis	Isopod	C001
Arthropoda	Malacostraca	Crangonidae	Crangonidae 1	Shrimp	C005
Arthropoda	Malacostraca	Crangonidae	Metacrangon sp. 1	Shrimp	C017
Arthropoda	Malacostraca	Cymonomidae	Cymonomus sp. 1	Crab	C016
Arthropoda	Malacostraca	Galatheidae	Agononida procera	Squat Lobster	C011
Arthropoda	Malacostraca	Glyphocrangonidae	Glyphocrangon sp. 1	Shrimp	C014
Arthropoda	Malacostraca	Goneplacidae	Carcinoplax meridionalis	Crab	C009
Arthropoda	Malacostraca	Idoteidae	<i>Idotea</i> sp. 1	Idoteid	INF_36
Arthropoda	Malacostraca	Majidae	Majidae 1	Spider Crab	C015
Arthropoda	Malacostraca	Neotanaidae	Neotanais giganteus	Tanaid	INF_31
Arthropoda	Malacostraca	Oplophoridae	Acanthephyra quadrispinosa	Shrimp	C003
Arthropoda	Malacostraca	Paguridae	Paguridae 1	Hermit Crab	C006
Arthropoda	Malacostraca	Paguridae	Paguridae 2	Hermit Crab	C007
Arthropoda	Malacostraca	Paguridae	Propagurus deprofundus	Hermit Crab	C010
Arthropoda	Malacostraca	Pandalidae	Pandalidae 1	Shrimp	C018
Arthropoda	Malacostraca	Paratanaidae	Paratanaidae 1	Tanaid	INF_35
Arthropoda	Malacostraca	Phoxocephalidae	Birubius sp. 1	Amphipod	INF_33
Arthropoda	Malacostraca	Phoxocephalidae	Metaphoxus sp. 1	Amphipod	INF_34
Arthropoda	Malacostraca	Polychelidae	Polycheles suhmi	Deep-sea Lobster	C012
Arthropoda	Malacostraca	Sergestidae	Sergestidae 1	Prawn	C012
Arthropoda	Malacostraca	Urohaustoridae	Urohaustorius sp. 1	Amphipod	INF_06
Arthropoda	Maxillopoda	Calanidae	Calanidae 1	Copepod	INF_03

SARDI Aquatic Sciences Report - Page 45

Phylum	Class	Family	Species	Common Name	Code
Arthropoda	Pycnogonida	Colossendeidae	Colossendeidae 1	Sea Spider	PY002
Arthropoda	Pycnogonida	Colossendeidae	Colossendeis antarctica	Sea Spider	PY001
Mollusca	Bivalvia	Condylocardiidae	Cuna sp. 1	Cardita	INF_08
Mollusca	Bivalvia	Tellinidae	Tellina 1	Tellin	INF_04
Mollusca	Gastropoda	Bullidae	Bulla sp. 1	Bubble Shell	M005
Mollusca	Gastropoda	Cavolinidae	Cavolina sp. 1	Pteropod	M001
Mollusca	Gastropoda	Cavoliniidae	Cavolina sp. 2	Pteropod	INF_07
Mollusca	Gastropoda	Cerithiidae	Cerithium sp. 1	Cerithid	INF_30
Mollusca	Gastropoda	Janthinidae	Janthina sp. 1	Purple Shell	M008
Mollusca	Gastropoda	Limacinidae	Limacina sp. 1	Pteropod	INF_10
Mollusca	Gastropoda	Muricidae	Enixotrophon obtusiliratum	Murex Shell	M002
Mollusca	Gastropoda	Naticidae	Naticidae 1	Moon Shell	M011
Mollusca	Gastropoda	Philinidae	Philine sp. 1	Sea Slug	M009
Mollusca	Gastropoda	Rissoidae	Pusillina sp. 1	Rissoid	INF_29
Mollusca	Gastropoda	Trochidae	Clanculus sp. 1	Top Shell	M004
Mollusca	Gastropoda	Turbinellidae	Columbarium sp. 1	Pagoda Shell	M010
Mollusca	Gastropoda	Turridae	Comitas sp. 1	Turrid	M006
Mollusca	Gastropoda	Turridae	Fusinus novaehollandiae	Turrid	M007
Mollusca	Scaphopoda	Dentaliidae	Dentalium francisense	Tusk Shell	M003
Mollusca	Scaphopoda	Dentaliidae	Dentalium sp. 1	Tusk Shell	INF_09
Echinodermata	Asteroidea	Astropectinidae	Astropecten sp. 1	Sea Star	E006
Echinodermata	Asteroidea	Astropectinidae	Astropecten sp. 2	Sea Star	E005
Echinodermata	Echinoidea	Cidaridae	Histiocidaris sp. 1	Urchin	E004
Echinodermata	Echinoidea	Echinothuriidae	Phomosoma bursarium	Pancake Urchin	E011
Echinodermata	Holothuroidea	Chiridotidae	Chiridotidae 1	Sea Cucumber	INF_43
Echinodermata	Holothuroidea	Chiridotidae	Trochodota sp. 1	Sea Cucumber	E007
Echinodermata	Holothuroidea	Holothuriidae	Holothuria sp. 1	Sea Cucumber	E008
Echinodermata	Holothuroidea	Holothuriidae	Holothuria sp. 2	Sea Cucumber	E009
Echinodermata	Holothuroidea	Holothuriidae	Holothuria sp. 3	Sea Cucumber	E010
Echinodermata	Ophiuroidea	Ophiuridae	Ophioplinthus accomodata	Brittle Star	E002
Echinodermata	Ophiuroidea	Ophiuridae	<i>Ophiura</i> sp. 1	Brittle Star	E001
Echinodermata	Ophiuroidea	Ophiuridae	Ophiuridae 1	Brittle Star	INF_37
Urochodata	Undefined	Undefined	Urochordata 1	Tunicate	I007
Chordata	Actinopterygii	Acropomatidae	Apogonops anomalus	Three-spined Cardinal Fish	F003
Chordata	Actinopterygii	Bathygadidae	Bathygadus cottoides	Rat-tail	F012
Chordata	Actinopterygii	Callionymidae	Foetonepus phasis	Stinkfish	F004
Chordata	Actinopterygii	Callionymidae	Foetorepus apricus	Stinkfish	F011
Chordata	Actinopterygii	Hoplichthyidae	Hoplichthys haswelli	Deep-sea Flathead	F002
Chordata	Actinopterygii	Macrouridae	Cetonurus globiceps	Whiptail	F008
Chordata	Actinopterygii	Macrouridae	Coelorinchus acanthiger	Whiptail	F015
Chordata	Actinopterygii	Macrouridae	Coelorinchus fasciatus	Whiptail	F016
Chordata	Actinopterygii	Macrouridae	Coelorinchus gormani	Whiptail	F006
Chordata	Actinopterygii	Moridae	Antimora rostrata	Violet cod	F017
Chordata	Actinopterygii	Myctophidae	Myctophidae 1	Lantern Fish	F001
Chordata	Actinopterygii	Ophidiidae	Genypterus blacodes	Pink Ling	F018

Phylum	Class	Family	Species	Common Name	Code
Chordata	Actinopterygii	Oreosomatidae	Allocyttus verrucosus	Warty Oreo	F009
Chordata	Actinopterygii	Paraulopidae	Paraulopus nigripinnis	Blacktip Cucumberfish	F007
Chordata	Actinopterygii	Rhombosoleidae	Azygopus pinnifasciatus	Banded-fin Flounder	F005
Chordata	Actinopterygii	Stomiidae	Chauliodus sloani	Viperfish	F010
Chordata	Actinopterygii	Synaphobranchidae	Diastobranchus capensis	Eel	F014
Chordata	Actinopterygii	Synaphobranchidae	Synaphobranchus oregoni	Eel	F013

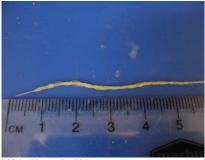
Appendix 2. Photographic plates depicting 138 species collected in grab and trawl shots at three depthstratified sampling stations inside the Benthic Protection Zone of the Great Australian Bight Marine Park.


S001 - Demospongiae 1

S005 - Euplectella sp. 1

O004 - Desmophyllum dianthus

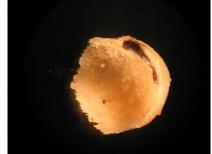
S006 - Demospongiae 2


S003 - Rosella sp. 1

O005 - Stephanocyathus sp. 1

S007 - Demospongiae 3

S004 - Hexactinellida 1


0002 - Hormathia lacunifera

S008 - Demospongiae 4

INF_38 - Demospongiae 5

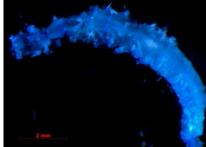
S002 - Hexactinellida 2

H001 - Antipathidae 1

O001 - Umbellula sp. 1

O003 - Stylasteridae 1

INF_05 - Hydroid 1


INF_24 - Chromadoroidae 1

INF_12 - Ampharetidae 1

INF_14 - Chaetopteridae 1

INF_20 - Chaetopteridae 2

INF_13 - Cirratulidae 1

INF_50 - Lumbrineridae 1

INF_15 - Lumbrineris sp. 1

INF_19 - Magelonidae 1

INF_01 - Maldanidae 1

P002 - Aphrodita sp. 1

INF_51 - Capitellidae 1

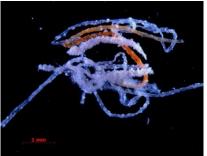
INF_11 - Grubeulepis kurnai

INF_45 - Flabelligeridae 1

INF_02 - Maldanidae 2

INF_17 - Maldanidae 3

INF_16 - Orbiniidae 1


INF_48 - Paraonidae 1

INF_25 - Sabellidae 1

INF_56 - Prionospio sp. 1

INF_18 - Maldanidae 4

INF_47 - Nereidae 1

INF_41 - Armandia sp. 1

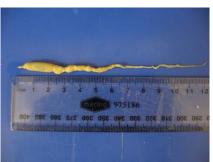
INF_61 - Poecilochaetus sp. 1

INF_59 - Polygordiidae 1

P001 - Harmothoe sp. 1

INF_46 - Spionidae 2

INF_58 - Spionidae 3


INF_55 - Syllidae 1

INF_27 - Sipuncula 4

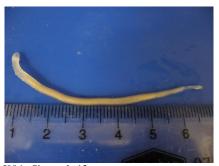
INF_60 - Sipuncula 9

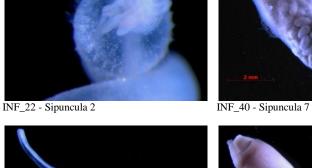
I001 - Sipuncula 10

INF_21 - Sipuncula 1

INF_53 - Terebellidae 1

INF_39 - Sipuncula 6


INF_28 - Sipuncula 5


I003 - Sipuncula 11

I005 - Sipuncula 12

I006 - Sipuncula 13

INF_23 - Sipuncula 3

INF_42 - Sipuncula 8

I002 - Priapulida 1

C008 - Arcoscalpellum sp. 1

C005 - Crangonidae 1

C014 - Glyphocrangon sp. 1

INF_36 - Idotea sp. 1

C015 - Majidae 1

INF_31 – Neotanais giganteus

INF_32 - Cyathura sp. 1

C004 - Austropenaeus nitidus

C013 - Campylonotus rathbunae

C017 - Metacrangon sp. 1

C016 - Cymonomus sp. 1

C011 - Agononida procera

C003 – A. quadrispinosa

INF_35 - Paratanaidae 1

INF_06 - Urohaustorius sp. 1

C006 - Paguridae 1

INF_33 - Birubius sp. 1

INF_03 - Calanidae 1

C007 - Paguridae 2

INF_34 - Metaphoxus sp. 1

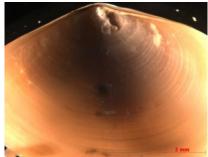
C012 - Polycheles suhmi

PY002 - Colossendeidae 1

PY001 - Colossendeis antarctica

INF_08 - Cuna sp. 1

C010 - Propagurus deprofundus


C018 - Pandalidae 1

12 13 14 15 16 17

C002 - Sergestidae 1

12

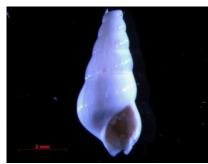
INF_04 - Tellina 1

INF_10 - Limacina sp. 1

INF_29 - Pusillina sp. 1

M002 – E. obtusiliratum

M010 - Columbarium sp. 1



INF_07 - Cavolina sp. 2

INF_30 - Cerithium sp. 1

M003 - Dentalium francisense

E011 - Phomosoma bursarium

INF_09 - Dentalium sp. 1

INF_43 - Chiridotidae 1

E002 - Ophioplinthus accomodata

E006 - Astropecten sp. 1

E007 - Trochodota sp. 1

E001 - Ophiura sp. 1

INF_37 - Ophiuridae 1

I007 - Urochordata 1

E005 - Astropecten sp. 2

E004 - Histiocidaris sp. 1

E008 - Holothuria sp. 1

E009 - Holothuria sp. 2

F003 - Apogonops anomalus

F008 - Cetonurus globiceps

F001 - Myctophidae 1

F012 - Bathygadus cottoides

F015 - Coelorinchus acanthiger

F018 - Genypterus blacodes

F004 - Foetonepus phasis

F011 - Foetorepus apricus

F002 - Hoplichthys haswelli

F016 - Coelorinchus fasciatus

F006 - Coelorinchus gormani

F017 - Antimora rostrata

F009 - Allocyttus verrucosus (centre)

F005 - Azygopus pinnifasciatus

F010 - Chauliodus sloani

F014 - Diastobranchus capensis

F013 - Synaphobranchus oregoni

Appendix 3. Summary list of species abundances (N) and biomasses (weight in grams - trawls only) collected from three grabs (0.1 m^2) and three beam-trawl shots (4000 m^2) at three depth-stratified sampling stations (500 m, 1000 m, 2000 m) inside the Benthic Protection Zone (BPZ) of the Great Australian Bight Marine Park (GABMP).

Station	Method	Weight	Abundance	Code	Species	Phylum
BPZ_500	Grab	-	2	INF_12	Ampharetidae 1	Annelida
BPZ_500	Grab	-	1	INF_14	Chaetopteridae 1	Annelida
BPZ_500	Grab	-	1	INF_20	Chaetopteridae 2	Annelida
BPZ_500	Grab	-	1	INF_13	Cirratulidae 1	Annelida
BPZ_500	Grab	-	1	INF_11	Grubeulepis kurnai	Annelida
BPZ_500	Grab	-	1	INF_15	Lumbrineris sp. 1	Annelida
BPZ_500	Grab	-	2	INF_19	Magelonidae 1	Annelida
BPZ_500	Grab	-	1	INF_17	Maldanidae 3	Annelida
BPZ_500	Grab	-	6	INF_18	Maldanidae 4	Annelida
BPZ_500	Grab	-	1	INF_16	Orbiniidae 1	Annelida
BPZ_500	Grab	-	1	INF_25	Sabellidae 1	Annelida
BPZ_500	Grab	-	1	INF_06	Urohaustorius sp. 1	Arthropoda
BPZ_500	Grab	-	1	INF_07	Cavolina sp. 2	Mollusca
BPZ_500	Grab	-	4	INF_08	Cuna sp. 1	Mollusca
BPZ_500	Grab	-	2	INF_09	Dentalium sp. 1	Mollusca
BPZ_500	Grab	-	8	INF_10	Limacina sp. 1	Mollusca
BPZ_500	Grab	-	3	INF_24	Chromadoroidae 1	Nematoda
BPZ_500	Grab	-	2	INF_21	Sipuncula 1	Sipuncula
BPZ_500	Grab	-	1	INF_22	Sipuncula 2	Sipuncula
BPZ_500	Grab	-	3	INF_23	Sipuncula 3	Sipuncula
BPZ_500	Grab	-	1	INF_27	Sipuncula 4	Sipuncula
BPZ_500	Grab	-	1	INF_28	Sipuncula 5	Sipuncula
BPZ_500	Trawl	16	4	P002	Aphrodita sp. 1	Annelida
BPZ_500	Trawl	6	2	C011	Agononida procera	Arthropoda
BPZ_500	Trawl	10	1	C013	Campylonotus rathbunae	Arthropoda
BPZ_500	Trawl	72	33	C009	Carcinoplax meridionalis	Arthropoda
BPZ_500	Trawl	1	1	C016	Cymonomus sp. 1	Arthropoda
BPZ_500	Trawl	1	2	C014	Glyphocrangon sp. 1	Arthropoda
BPZ_500	Trawl	2	1	C015	Majidae 1	Arthropoda
BPZ_500	Trawl	0.5	1	C017	Metacrangon sp. 1	Arthropoda
BPZ_500	Trawl	47	23	C018	Pandalidae 1	Arthropoda
BPZ_500	Trawl	2	1	C012	Polycheles suhmi	Arthropoda
BPZ_500	Trawl	39	2	C010	Propagurus deprofundus	Arthropoda
BPZ_500	Trawl	121	4	F003	Apogonops anomalus	Chordata
BPZ_500	Trawl	140	25	F005	Azygopus pinnifasciatus	Chordata
BPZ_500	Trawl	299	9	F006	Coelorinchus gormani	Chordata
BPZ_500	Trawl	39	7	F004	Foetonepus phasis	Chordata
BPZ_500	Trawl	4900	1	F018	Genypterus blacodes	Chordata
BPZ_500	Trawl	3	1	F002	Hoplichthys haswelli	Chordata
BPZ_500	Trawl	385	3	F007	Paraulopus nigripinnis	Chordata

Station	Method	Weight	Abundance	Code	Species	Phylum
BPZ_500	Trawl	870	132	O004	Desmophyllum dianthus	Cnidaria
BPZ_500	Trawl	1191	34	O002	Hormathia lacunifera	Cnidaria
BPZ_500	Trawl	11	1	O005	Stephanocyathus sp. 1	Cnidaria
BPZ_500	Trawl	13	2	E006	Astropecten sp. 1	Echinodermata
BPZ_500	Trawl	92	3	E005	Astropecten sp. 2	Echinodermata
BPZ_500	Trawl	11	3	E004	Histiocidaris sp. 1	Echinodermata
BPZ_500	Trawl	1006	125	E008	Holothuria sp. 1	Echinodermata
BPZ_500	Trawl	144	3	E009	Holothuria sp. 2	Echinodermata
BPZ_500	Trawl	25	11	E010	Holothuria sp. 3	Echinodermata
BPZ_500	Trawl	11	4	M010	Columbarium sp. 1	Mollusca
BPZ_500	Trawl	23	7	M007	Fusinus novaehollandiae	Mollusca
BPZ_500	Trawl	38	26	M009	Philine sp. 1	Mollusca
BPZ_1000	Grab	-	1	INF_41	Armandia sp. 1	Annelida
BPZ_1000	Grab	-	1	INF_51	Capitellidae 1	Annelida
BPZ_1000	Grab	-	1	INF_45	Flabelligeridae 1	Annelida
BPZ_1000	Grab	-	1	INF_54	Goniadidae 1	Annelida
BPZ_1000	Grab	-	1	INF_50	Lumbrineridae 1	Annelida
BPZ_1000	Grab	-	1	INF_47	Nereidae 1	Annelida
BPZ_1000	Grab	-	1	INF_48	Paraonidae 1	Annelida
BPZ_1000	Grab	-	1	INF_61	Poecilochaetus sp. 1	Annelida
BPZ_1000	Grab	-	1	INF_59	Polygordiidae 1	Annelida
BPZ_1000	Grab	-	1	INF_56	Prionospio sp. 1	Annelida
BPZ_1000	Grab	-	1	INF_44	Spionidae 1	Annelida
BPZ_1000	Grab	-	1	INF_46	Spionidae 2	Annelida
BPZ_1000	Grab	-	1	INF_58	Spionidae 3	Annelida
BPZ_1000	Grab	-	1	INF_55	Syllidae 1	Annelida
BPZ_1000	Grab	-	1	INF_53	Terebellidae 1	Annelida
BPZ_1000	Grab	-	3	INF_33	Birubius sp. 1	Arthropoda
BPZ_1000	Grab	-	4	INF_32	Cyathura sp. 1	Arthropoda
BPZ_1000	Grab	-	1	INF_36	<i>Idotea</i> sp. 1	Arthropoda
BPZ_1000	Grab	-	3	INF_34	Metaphoxus sp. 1	Arthropoda
BPZ_1000	Grab	-	1	INF_31	Neotanais giganteus	Arthropoda
BPZ_1000	Grab	-	1	INF_35	Paratanaidae 1	Arthropoda
BPZ_1000	Grab	-	1	INF_43	Chiridotidae 1	Echinodermata
BPZ_1000	Grab	-	1	INF_37	Ophiuridae 1	Echinodermata
BPZ_1000	Grab	-	1	INF_30	<i>Cerithium</i> sp. 1	Mollusca
_ BPZ_1000	Grab	-	1		Pusillina sp. 1	Mollusca
BPZ_1000	Grab	-	4	INF_24	Chromadoroidae 1	Nematoda
	Grab	-	2	 INF_38	Demospongiae 5	Porifera
_ BPZ_1000	Grab	-	1		Sipuncula 6	Sipuncula
BPZ_1000	Grab	-	1	INF_40	Sipuncula 7	Sipuncula
BPZ_1000	Grab	-	1	INF_42	Sipuncula 8	Sipuncula
BPZ_1000	Grab	-	1	INF_60	Sipuncula 9	Sipuncula
BPZ_1000	Trawl	0.5	1	P001	Harmothoe sp. 1	Annelida
BPZ_1000	Trawl	8	2	C003	Acanthephyra quadrispinosa	Arthropoda
BPZ_1000	Trawl	1	- 1	C008	Arcoscalpellum sp. 1	Arthropoda

SARDI Aquatic Sciences Report - Page 59

Station	Method	Weight	Abundance	Code	Species	Phylum
BPZ_1000	Trawl	19	4	C004	Austropenaeus nitidus	Arthropoda
BPZ_1000	Trawl	5	2	C005	Crangonidae 1	Arthropoda
BPZ_1000	Trawl	0.5	1	C006	Paguridae 1	Arthropoda
BPZ_1000	Trawl	1.5	5	C007	Paguridae 2	Arthropoda
BPZ_1000	Trawl	438	1	F009	Allocyttus verrucosus	Chordata
BPZ_1000	Trawl	54	2	F017	Antimora rostrata	Chordata
BPZ_1000	Trawl	1	1	F012	Bathygadus cottoides	Chordata
BPZ_1000	Trawl	101	1	F008	Cetonurus globiceps	Chordata
BPZ_1000	Trawl	36	1	F010	Chauliodus sloani	Chordata
BPZ_1000	Trawl	405	2	F015	Coelorinchus acanthiger	Chordata
BPZ_1000	Trawl	236	1	F016	Coelorinchus fasciatus	Chordata
_ BPZ_1000	Trawl	267	1	F014	Diastobranchus capensis	Chordata
BPZ_1000	Trawl	3	2	F011	Foetorepus apricus	Chordata
BPZ_1000	Trawl	757	- 1	F013	Synaphobranchus oregoni	Chordata
BPZ_1000	Trawl	14	1	O002	Hormathia lacunifera	Cnidaria
BPZ_1000	Trawl	24	1	E004	Histiocidaris sp. 1	Echinodermata
BPZ_1000	Trawl	2822	648	E002	Ophioplinthus accomodata	Echinodermata
BPZ_1000	Trawl	13	2	E011	Phomosoma bursarium	Echinodermata
BPZ_1000	Trawl	13	1	E007	Trochodota sp. 1	Echinodermata
BPZ_1000	Trawl	9	20	M005	Bulla sp. 1	Mollusca
BPZ_1000	Trawl	159	270	M001	Cavolina sp. 1	Mollusca
BPZ_1000	Trawl	155	270	M004	Clanculus sp. 1	Mollusca
BPZ_1000	Trawl	2	1	M004	<i>Comitas</i> sp. 1	Mollusca
BPZ_1000	Trawl	2	3	M000	Dentalium francisense	Mollusca
BPZ_1000	Trawl	10	1	M003	Enixotrophon obtusiliratum	Mollusca
BPZ_1000	Trawl	3	3	M002 M007	Fusinus novaehollandiae	Mollusca
BPZ_1000	Trawl	0.5	1	M007 M008	Janthina sp. 1	Mollusca
BPZ_1000	Trawl	0.5	9	M008	Naticidae 1	Mollusca
BPZ_1000 BPZ_1000	Trawl	0.5	9	S006		Porifera
		0.5		S000 S007	Demospongiae 2	Porifera
BPZ_1000	Trawl		1		Demospongiae 3	
BPZ_1000	Trawl	1	3	S008	Demospongiae 4	Porifera
BPZ_1000	Trawl	0.5	1	S005	Euplectella sp. 1	Porifera
BPZ_1000	Trawl	0.5	1	S004	Hexactinellida 1	Porifera
BPZ_1000	Trawl	1	2	S002	Hexactinellida 2	Porifera
BPZ_1000	Trawl	4883	1345	S003	Rosella sp. 1	Porifera
BPZ_1000	Trawl	3	3	I003	Sipuncula 11	Sipuncula
BPZ_1000	Trawl	0.5	10	I005	Sipuncula 12	Sipuncula
BPZ_1000	Trawl	0.5	1	I006	Sipuncula 13	Sipuncula
BPZ_1000	Trawl	31	3	I007	Urochordata 1	Urochodata
BPZ_2000	Grab	-	1	INF_01	Maldanidae 1	Annelida
BPZ_2000	Grab	-	1	INF_02	Maldanidae 2	Annelida
BPZ_2000	Grab	-	1	INF_03	Calanidae 1	Arthropoda
BPZ_2000	Grab	-	2	INF_05	Hydroid 1	Cnidaria
BPZ_2000	Grab	-	1	INF_04	Tellina 1	Mollusca
BPZ_2000	Trawl	1	2	C001	Brucerolis victoriensis	Arthropoda
BPZ_2000	Trawl	0.5	1	PY002	Colossendeidae 1	Arthropoda

SARDI Aquatic Sciences Report - Page 60

Station	Method	Weight	Abundance	Code	Species	Phylum
BPZ_2000	Trawl	0.5	1	PY001	Colossendeis antarctica	Arthropoda
BPZ_2000	Trawl	8	2	C002	Sergestidae 1	Arthropoda
BPZ_2000	Trawl	1	6	F001	Myctophidae 1	Chordata
BPZ_2000	Trawl	1	1	H001	Antipathidae 1	Cnidaria
BPZ_2000	Trawl	5	1	O003	Stylasteridae 1	Cnidaria
BPZ_2000	Trawl	14	13	O001	Umbellula sp. 1	Cnidaria
BPZ_2000	Trawl	6	9	E001	Ophiura sp. 1	Echinodermata
BPZ_2000	Trawl	3	1	S001	Demospongiae 1	Porifera
BPZ_2000	Trawl	1	1	I002	Priapulida 1	Priapulida
BPZ_2000	Trawl	1	1	I001	Sipuncula 10	Sipuncula