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overidentifying restrictions (OR) is inconsistent.When there is the notion of a ‘‘true parameter’’, we relate
this inconsistency result to the literature on optimality properties of various versions of the test of OR.
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1. Introduction and motivation

For motivation, consider the linear regression model

y1 = y2θ∗
+ Xγ +u ∈ Rn, E(ui|y2i, Xi) = 0, (1)

where θ∗
∈ Θ ⊂ R, γ ∈ Rd, and by ui, y2i, and Xi we denote the

i-th rows ofu, y2, and X , respectively, written as column vectors (or
scalars) and similarly for other random variables. The parameter of
interest θ∗ in this model is the expected change in y1i of changing y2i
by one unit holding Xi constant. We assume that the ultimate goal
of the applied researcher is inference on this ‘‘true parameter’’ θ∗.
For example, in a wage regression, the applied researcher might
be interested in the expected change in wage of changing an
individual’s education by one year holding all other covariates
fixed.

An applied researcher may be faced with various data prob-
lems that complicate inference in (1) and, in particular, rule out
OLS inference. As one scenario, assume there is measurement er-
ror εi = (εyi, ε

′

Xi)
′
∈ R1+d and instead of (y2i, X ′

i )
′, the applied re-

searcher observes (y∗

2i, X
∗′

i )′ = (y2i, X ′

i )
′
+ (εyi, ε

′

Xi)
′. For example,

the variable ‘‘years of education’’ may be mismeasured in a wage
regression. The measurement error εi orui may be be correlated
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with (y∗

2i, X
∗′

i )′ leading to an endogeneity problem in the regression
of observed variables y1 = y∗

2θ
∗
+X∗γ +u, for u =u−εyθ

∗
−εXγ .

As a second scenario, assume a component of the covariate vec-
tor Xi, X2i ∈ Rf for f ≤ d and Xi = (X ′

1i, X
′

2i)
′, may not be observed

by the applied researcher, for instance ‘‘ability’’ in a wage regres-
sion. If the variable X2i is correlated with y2i or X1i, then an endo-
geneity problem is caused in the induced regression y1 = y2θ∗

+

X1γ1 + u, for u = u + X2γ2 and γ = (γ ′

1, γ
′

2)
′. For a nonlinear

example, consider Hansen and Singleton’s (1982) model of stock
prices. The unknown ‘‘true parameter vector’’ of interest consists
of the marginal utility of consumption and the discount rate.

In these endogenous scenarios, OLS inference is inconsistent for
the true parameter θ∗ and instrumental variables (IVs) are needed
to do inference on θ∗. Consider the linear IV model

y1 = y2θ∗
+ u,

y2 = Zπ + v, (2)

where y1, y2 ∈ Rn are vectors of endogenous variables, Z ∈ Rn×k

for k ≥ 2 is a matrix of IVs, and (θ∗, π ′)′ ∈ R1+k are the unknown
parameters.1

1 For simplicity, we have excluded exogenous variables X ∈ Rn×d from themodel,
y1 = y2θ∗

+Xγ +u, y2 = Zπ +Xφ+v. If there are exogenous variables in (2), then
all variables in what follows should be interpreted as the residuals from projection
onto the column space of X . With more complicated notation and assumptions we
could also consider nonlinear models.
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Assume that {(ui, vi, Z ′

i )
′
: i ≤ n} are i.i.d. with distribution F .

Assuming fixed π ≠ 0, identification of and inference on the
parameter of interest θ∗ hinges on the exogeneity assumption
EFuiZi = 0, where EF denotes expectation when the distribution
of the random vector (ui, vi, Z ′

i )
′ is F . If the instruments are nonex-

ogenous,

EFuiZi ≠ 0, (3)

the two-stage least squares (2SLS) estimatorθ is inconsistent andθ →p θ∗
+b, where the ‘‘large sample bias’’ b is defined in (15), see

Lemma 1(iii) in the Appendix, and a t test based on 2SLS testing
a hypothesis involving θ∗ is size distorted. Clearly, whether or not
the instruments are exogenous does not affect the value of the true
parameter θ∗ and its interpretation above, as an expected change
in the original linear regression model (1).

Exogeneity of the instruments is often a questionable assump-
tion in applied work, see Guggenberger (2012) for examples. In an
effort to preventwrong inference on θ∗ based on nonexogenous in-
struments, applied researchers typically implement a test of overi-
dentifying restrictions (14), Sargan (1958) and Hansen (1982), in
overidentified situations, where k ≥ 2, prior to implementing a
hypothesis test on θ∗. Consider the following null and alternative
hypotheses:

H0 : EFuiZi = 0 against H1 : EFuiZi ≠ 0. (4)

The first objective of this note is to show that for this formulation
of the null and alternative hypotheses, the test of overidentifying
restrictions is inconsistent against certain fixed alternatives and
to characterize these alternatives; also see Kadane and Anderson
(1977) and Small (2007). To do so, we introduce the following
notation. For a matrix A with k rows, let Ik be the identity matrix
of dimension k, PA = A(A′A)−1A′, and MA = Ik − PA. Proposition 1
shows that in model (2), such thatM(EF ZiZ ′

i )
1/2π (EFZiZ ′

i )
−1/2EFuiZi =

0 and an additional weak restriction hold, the test statistic to test
overidentifying restrictions is Op(1) and, therefore, the rejection
probability of the test of overidentifying restrictions does not
converge to 1 as the sample size n goes off to infinity even if
EFuiZi ≠ 0. Therefore, in these cases, no matter how large the
sample size n, the overidentifying restrictions pretest may not
prevent the use of 2SLS inferencemethods in the second stage even
though these methods will suffer from size distortion.

Despite the inconsistency, we recommend the use of a test of
overidentifying restrictions as a pretest before testing a hypothesis
on θ∗. Rejection of the null hypothesis in (4) by the test of
overidentifying restrictions provides valuable information to the
applied researcher who is interested in inference on θ∗. It may
prevent the researcher from doing inference on θ∗ using the
– likely nonexogenous – instruments Z . However, nonrejection
of the test of overidentifying restrictions should be interpreted
carefully by the applied researcher given Proposition 1.2 In
particular, in that case Guggenberger and Kumar (forthcoming)
advocate supplementing the result of a two-stage test on θ∗ for a
hypothesis on θ∗, i.e. a test of overidentifying restrictions followed
by a t-test based on 2SLS, by the Anderson and Rubin (1949)
test that is shown to be more robust in terms of size distortion
to violations of the exogeneity assumption of the instruments if
the two-stage test is implemented with same nominal size in the

2 Of course, nonrejection by a test should always be interpretedwith care because
it could be that nonrejection occurs – even though the null is false – because the
sample size is too small. However, here the situation is worse because for certain
fixed alternatives, the rejection probability of the test does not converge to 1 as the
sample size goes off to infinity.

See also the results in Guggenberger and Kumar (forthcoming) about size
distortion of a two-stage test involving θ∗ when a test of overidentifying restrictions
is used as a pretest.

first and second stages. (The AR test is also fully robust to weak
instruments, a scenario which is ruled out in the current note by
Assumption 1.)

The second aspect of this note is the following discussion of
the relation of the above statements about inconsistency of the
test of overidentifying restrictions to the recent large literature
in econometrics that derives optimality properties of the test of
overidentifying restrictions under a different formulation of the
null and alternative hypothesis than that in (4).3 The original
test of overidentifying restrictions (and its various modifications,
for instance, versions based on empirical likelihood methods) is
consistent against fixed alternatives if one considers the following
formulation of the null and alternative hypotheses, namely

H0 : F ∈ F0 versus H1 : F ∈ F1 = F \ F0, (5)

where Wi ∈ W for i = 1, . . . , n is an i.i.d. sequence of random
variables with distribution F ∈ F , F denotes a set of (properly
restricted) distributions, g : W × Θ → Rk is a known (possibly
nonlinear) measurable function, and

F0 = {F ∈ F ; ∃θ ∈ Θ s.t. EFg(Wi, θ) = 0}. (6)

In the context of the current paper, we can take Wi = (ui, vi,
Z ′

i )
′, F is the set of distributions forWi restricted by Assumption 1,

and

g(Wi, θ) ≡ (y1i − y2iθ)Zi
= ZiZ ′

iπ(θ∗
− θ) + ZiVi(θ

∗
− θ) + Ziui, (7)

where (2) is used for the second equality.We do not index g(Wi, θ)
by π because π is assumed fixed. Under Assumption 1, we have
EFg(Wi, θ) = EFZiZ ′

iπ(θ∗
− θ) + EFZiui. Thus, for Θ = R, the null

in (5) holds iff EFZiZ ′

iπ and EFZiui are colinear, or, equivalently, if
M(EF ZiZ ′

i )
1/2π (EFZiZ ′

i )
−1/2EFuiZi = 0. To relate (5) to (4), note that (4)

can be equivalently formulated as follows4:

H0 : F ∈ F0(θ
∗) versus H1 : F ∈ F1(θ

∗) = F \ F0(θ
∗), (8)

where

F0(θ
∗) = {F ∈ F ; EFg(Wi, θ

∗) = 0}. (9)

Noting that F0(θ
∗) ⊂ F0, any test whose limiting null rejection

probability does not exceed the nominal size of the test under
F ∈ F0 does not do so either under F ∈ F0(θ

∗). However, because
F1(θ

∗) ⊃ F1, tests that are consistent against any fixed alternative
in F1 are not necessarily consistent against any fixed alternative in
F1(θ

∗).
If the test of overidentifying restrictions is used as a pretest and

the ultimate goal of the researcher is inference on the true param-
eter θ∗ (as is often the case), then the consistency of the test of
overidentifying restrictions for tests of (5) should not lead applied
researchers to disregard the abovewarning about careful interpre-
tation of the test of overidentifying restrictions. In the linear IV
model (2), if EFuiZi ≠ 0, (16) and (17) hold, easy calculations show
that the ‘‘pseudo-true’’ parameter θ+

= θ∗
+b satisfies themoment

3 See, among other important contributions, Hansen et al. (1996), Imbens et al.
(1998), Kitamura (2001), Otsu (2009), Kitamura et al. (2012) and Canay and
Otsu (forthcoming, Section 3.2). Several of these papers are concerned with large
deviation optimality properties of tests of (5); for instance, Kitamura (2001) and
Kitamura et al. (2012) investigate Hoeffding optimality of empirical likelihood, Otsu
(2009) establishes Bahadur efficiency of empirical likelihood based tests, and Canay
and Otsu (forthcoming) discuss Hodges–Lehmann efficiency.
4 I would like to thank the referee for pointing out this connection. The

equivalence of (4) and (8) follows directly from noting that EF g(Wi, θ
∗) = EF Ziui .

Overidentifying restrictions can only be tested if the model is overidentified.
Because θ∗ is scalar that means we need to assume k ≥ 2. Note that if k = 1, it
follows that under Assumption 1, F0 = F and F1 = ∅ in (5), that is, a θ always
exists that satisfies EF g(Wi, θ) = 0.
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condition Eg(Wi, θ
+) = 0; however, obviously θ+ differs from the

‘‘true parameter’’ θ∗ by the – potentially large amount – b, and
2SLS estimation is inconsistent for θ∗ and estimates the ‘‘pseudo
true’’ parameter.5 However, the rejection probability of the test of
overidentifying restrictions does not converge to 1 in this case. If
inference on the true θ∗ is the ultimate objective, the optimality
properties established for some versions of the test of overiden-
tifying restrictions in the recent literature for alternatives as in
(5) therefore have to be carefully interpreted. In particular, even
though the various different tests under consideration are incon-
sistent against certain fixed alternatives EFuiZi ≠ 0 as in (17), the
tests may differ in their (finite sample) power properties against
such alternatives. Also, for theultimate goal of inference on θ∗, high
power of the test of overidentifying restrictions in a pretest stage
is particularly important for a parameter constellation where the
second stage inference procedure on θ∗ is likely to overreject the
null hypothesis involving θ∗. In other words, if θ∗ is the ultimate
object of interest, the optimality properties of a pretest depend on
the inference procedure in the second stage. These potentially im-
portant power differences of the pretest (for subsequent inference
on θ∗) are not taken into account under the various optimality cri-
teria if the hypothesis is formulated as in (5).

2. Theoretical results

In this section it is shown that the (standard) test statistic for
overidentifying restrictions is Op(1) for certain fixed parameter
constellations even if EFuiZi ≠ 0. We write gi(θ) as shorthand for
g(Wi, θ) from now on. Let

g(θ) = n−1
n

i=1

gi(θ). (10)

The test statistic under conditional homoskedasticity is given by

Jn = ng(θ)′(σ 2
u n

−1Z ′Z)−1g(θ), (11)

where

σ 2
u = n−1

n
i=1

u2
i forui = y1i − y2iθ (12)

is an estimator for σ 2
u = EFu2

i andθ = (y′

2PZy2)
−1y′

2PZy1 (13)

is the 2SLS estimator. The test of overidentifying restrictions rejects
the null hypothesis in (4) at nominal size α if

Jn > χ2
k−1,1−α, (14)

where χ2
k−1,1−α denotes the 1 − α-quantile of a central chi-square

distribution χ2
k−1 with k − 1 degrees of freedom.

Assumption 1. π ≠ 0 and F are fixed, such that EFu2
i ZiZ

′

i = σ 2
u EF

ZiZ ′

i , EFZiZ
′

i has full rank, σ 2
u > 0, EFZivi = 0, and ∥EF (∥Ziui ∥

2,

∥ZiZ ′

i ∥
2, ∥Zivi ∥

2, ∥ui ∥
2, ∥uivi ∥

2, ∥Ziu2
i vi∥)∥ < ∞, where ∥ · ∥ de-

notes the Euclidean norm.

Assumption 1 implies conditional homoskedasticity, strong
instruments, andmaintains the interpretation of the reduced form
equation by assuming EFZivi = 0. Define

b ≡ (π ′EFZiZ ′

iπ)−1π ′EFZiu. (15)

5 White (1982) coins the term ‘‘minimum ignorance’’ estimator for the quasi
maximum likelihood estimator of the ‘‘pseudo true’’ parameter in an MLE context
undermisspecification. Also see Chalak andWhite (2011, Theorem 3.1) for a related
result.

Proposition 1. Under Assumption 1 and assuming that F and π
satisfy

σ 2
u − 2(π ′(EFZiui) + EFviui)b

+ (EF (π ′Zi)2 + σ 2
v )b2 > 0 and (16)

M(EF ZiZ ′
i )

1/2π (EFZiZ ′

i )
−1/2EFuiZi = 0, (17)

the statistic Jn in (11) is Op(1) as n → ∞, even if EFuiZi ≠ 0.

The proposition, whose proof is given in the Appendix, states
that, under fixed alternatives EFuiZi ≠ 0 satisfying (16) and (17),
the statistic Jn does not go off to infinity. For (small enough)
significance levels α this then implies that the power of the test
of overidentifying restrictions does not go to 1 as the sample size n
increases. Condition (17) simply states that (EFZiZ ′

i )
−1/2EFuiZi and

(EFZiZ ′

i )
1/2π are colinear. This result supplements Newey (1985,

Propostion 1) who shows in nonlinear models that for this type
of local alternatives the local power of the test of overidentifying
restrictions does not exceed the nominal size of the test. Also, see
Guggenberger and Kumar (forthcoming) for the discussion of local
power of the test of overidentifying restrictions and the resulting
consequences of using the test of overidentifying restrictions as a
pretest.

Condition (16) is a weak technical condition that guarantees
that (σu/σu) is Op(1). It is easy to find distributions F of (ui, vi, Zi)
and π such that (16) and (17) and Assumption 1 are satisfied,
e.g. see Guggenberger (2012, proof of Theorem 2). Proposition 1
could be generalized to nonlinear models at the expense of more
complicated notation.

It is maybe worthwhile to mention that the statistic Jn is
in general not asymptotically distributed as χ2

k−1 under the
assumptions of Proposition 1 despite the fact that the pseudo-true
parameter θ+ satisfies the moment condition EFgi(θ+) = 0. The
reason is that not all assumptions of Lemma 4.2 in Hansen (1982)
are satisfied here. In particular, the weighting matrix σ 2

u n
−1Z ′Z

employed in (11) is not consistent for EFgi(θ+)gi(θ+)′, see Hansen
(1982, p. 1049, line 5 ↑). Consider instead a heteroskedasticity
robust version of the statistic in (11),

JHen = ng(θHe)′(Ωn)
−1g(θHe), (18)

where

Ωn = n−1
n

i=1

u2
i ZiZ

′

i ,

θHe
= (n−1y′

2Z(Ωn)
−1n−1Z ′y2)−1n−1y′

2Z(Ωn)
−1n−1Z ′y1, (19)

andui is defined in (12). Under (17), π ≠ 0, EFZivi = 0, and ap-
propriatemoment conditions, Lemma4.2 inHansen (1982) implies
that JHen →d χ2

k−1 even if EFZiui ≠ 0 and without imposing condi-
tional homoskedasticity.
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Appendix

This Appendix provides the proof of Proposition 1. The follow-
ing lemma is helpful.
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Lemma 1. Under Assumption 1 we have (i) n−1Z ′Z = EFZiZ ′

i +

Op(n−1/2), (ii) n−1y′

2PZy2 = π ′EFZiZ ′

iπ + Op(n−1/2), (iii) θ −

θ∗
→p b, (iv) σ 2

u →p σ 2
u − 2(π ′(EFZiui) + EFviui)b + (EF (π ′Zi)2 +

σ 2
v )b2, and, also assuming (16) and (17), (v)n1/2(σ 2

u n
−1Z ′Z)−1/2g(θ)

= Op(1).

Note that Proposition 1 follows immediately frompart (v) of the
lemma because

Jn = (n1/2(σ 2
u n

−1Z ′Z)−1/2g(θ))′n1/2(σ 2
u n

−1Z ′Z)−1/2g(θ).

Proof of Lemma 1. Statement (i) follows from n−1Z ′Z = (n−1Z ′Z
− EFZiZ ′

i ) + EFZiZ ′

i = EFZiZ ′

i + Op(n−1/2) using the central limit
theorem (CLT) for the second equality. Statement (ii) follows from

n−1y′

2PZy2
= (π ′n−1Z ′Z + n−1v′Z)(n−1Z ′Z)−1(n−1Z ′Zπ + n−1Z ′v)

= (π ′EFZiZ ′

i + Op(n−1/2))

× (EFZiZ ′

i + Op(n−1/2))−1(EFZiZ ′

iπ + Op(n−1/2))

= π ′EFZiZ ′

iπ + Op(n−1/2)

using (i) and a CLT for n−1Z ′v. Statement (iii) follows fromθ −θ∗
=

(n−1y′

2PZy2)
−1n−1y′

2PZu, (ii), and

n−1y′

2PZu = (π ′EFZiZ ′

i + Op(n−1/2))

× (EFZiZ ′

i + Op(n−1/2))−1(n−1Z ′u),

using the law of large numbers (LLN) n−1Z ′u→p EFZiui. Statement
(iv) follows from

σ 2
u = n−1

n
i=1

(y1i − y2iθ)2

= n−1
n

i=1

(ui − y2i(θ − θ∗))2

= n−1
n

i=1

(u2
i − 2y2iui(θ − θ∗) + y22i(θ − θ∗)2)

→ pσ
2
u − 2(π ′(EFZiui) + EFviui)b + (EF (π ′Zi)2 + σ 2

v )b2, (20)

using y2iui = π ′Ziui+viui, the LLN, and (iii). For statement (v), note
that

n1/2(σ 2
u n

−1Z ′Z)−1/2g(θ)

= (σ 2
u n

−1Z ′Z)−1/2
[Ik − (y′

2PZy2)
−1Z ′y2

× y′

2Z(Z ′Z)−1
]n−1/2Z ′u

= [Ik − P(EF ZiZ ′
i )

1/2π + Op(n−1/2)](σ 2
u n

−1Z ′Z)−1/2n−1/2Z ′u

= [M(EF ZiZ ′
i )

1/2π + Op(n−1/2)](ϕn + mn),

where

ϕn = (σ 2
u n

−1Z ′Z)−1/2n−1/2(Z ′u − EFZ ′u),

mn = (σ 2
u n

−1Z ′Z)−1/2n1/2EFuiZi,

and ϕn is Op(1). Note that

[M(EF ZiZ ′
i )

1/2π + Op(n−1/2)]mn

= [M(EF ZiZ ′
i )

1/2π + Op(n−1/2)]((σ 2
u EFZiZ

′

i )
−1/2

+Op(n−1/2))n1/2EFuiZi
= [M(EF ZiZ ′

i )
1/2π + Op(n−1/2)](σ 2

u

× EFZiZ ′

i )
−1/2n1/2EFuiZi + Op(1)

= Op(1),

where for the last equality we use (17). Clearly, [M(EF ZiZ ′
i )

1/2π +

Op(n−1/2)]ϕn = Op(1) and thus n1/2(σ 2
u n

−1Z ′Z)−1/2g(θ) = Op(1).
Thus n1/2(σ 2

u n
−1Z ′Z)−1/2g(θ) = (σu/σu) n1/2(σ 2

u n
−1Z ′Z)−1/2g(θ)

= Op(1) by condition (16) and (20). �
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