Length-Based Assessment of the Fisheries Targeting Snappers, Groupers and Emperors in Indonesia, Fishery Management Area 718

YKAN Technical Paper

Peter J. Mous, Wawan B. IGede, Jos S. Pet

JUNE 28, 2022

Suggestion citation

Peter J. Mous, Wawan B. I Gede, and Jos S. Pet (2021). Length-based assessment of the fisheries targeting snappers, groupers, and emperors in Indonesia, Fishery Management Area 718. Yayasan Konservasi Alam Nusantara and People and Nature Consulting, Jakarta Indonesia. Report AR_718_280622

Abstract

This document provides an overview of fleet characteristics and catch composition of the demersal fishery targeting snappers in Indonesia Fishery Management Area 718. It also presents trends in length-based stock health indicators of the top-20 species in this FMA. The report presents overfishing risk levels of the top 50 species, both in terms of current status and trend. Finally, the report presents a table with the contribution of other species to the total catch. The findings are based on YKAN's Crew-Operated Data Recording System, an initiative that involves fishers in data collection using digital imagery.

Yayasan Konservasi Alam Nusantara Ikat Plaza Building - Blok L Jalan By Pass Ngurah Rai No.505, Pemogan, Denpasar Selatan Kota Denpasar 80221 Bali, Indonesia Ph. +62-361-244524

People and Nature Consulting International Jalan Tukad Pancoran 15X, Panjer, Denpasar Selatan Kota Denpasar 80225 Bali, Indonesia

TABLE OF CONTENTS

1	Intr	oduction	3
2	Mat	erials and methods for data collection, analysis and reporting	7
	2.1	Frame Survey	7
	2.2	Vessel Tracking and CODRS	7
	2.3	Data Quality Control	8
	2.4	Length-Frequency Distributions, CpUE, and Total Catch	8
	2.5	I-Fish Community	30
3	\mathbf{Fish}	ing grounds and traceability	35
4	Leng sam	gth-based assessments of Top 20 most abundant species in CODRS ples	39
5	Disc	cussion and conclusions	82
6	Refe	erences	90

1 Introduction

This report presents a length-based assessment of the multi-species deep shelf and slope fisheries targeting snappers, groupers, croakers, grunts and emperors, at depths ranging from 50 to 500 meters in fisheries management area (WPP) 718 in the Arafura Sea. Drop line and long line vessels fish in this area operate alongside a number of other gear types including traps, bottom set gillnets and other types of nets. Bottom long line vessels fish on the shelf area as well as on the top of the slopes that drop to deeper waters. Drop liners fish those slopes also to greater depths into the Banda Sea and the Timor Trough. All gear types operate on both sides of the borders of WPP 718 and neighboring areas, where habitats are continuous. Drop line fishers operating on the deep slopes often fish across multiple fisheries management areas, including WPP 718, within individual fishing trips.

Various fleets are operating in this region, including long liners from Probolinggo, Timika, Dobo and Tual, drop liners from Kema (North Sulawesi) and Ternate and gillnet operations from Timika and other bases. Vessels from most of these fleets contributed data to the current assessment. Some vessels are based and operate entirely within the WPP 718 boundaries, while others like some of the medium scale drop liners from Kema and Ternate make trips to locations up to 1,000 kilometers away from their home ports. Various staging points and logistical hubs are used by the Arafura Sea fishing fleets, throughout Eastern Indonesia.

The drop line fishery is an active vertical hook and line fishery operating at depths from 50 to 500 meters, whereas long lines are set horizontally along the bottom at depths ranging from 50 to 150 meters. Gillnet operations work mostly over the shallower parts of the shelf area at depths overlapping with the long line fisheries.

The Indonesian deep demersal fisheries catches a large number of species, and stocks of 100 of the most common species are monitored on a continuous basis through a Crew Operated Data Recording System (CODRS). The current report presents the top 50 most abundant species of fish in CODRS samples (Tables 1.1 and 1.2) in WPP 718, and analyses length frequencies of the 50 most important species in the combined deep demersal catches in this fisheries management area. For a complete overview of the species composition with images of all 100 target species, please refer to the ID guide prepared for these fisheries¹. For further background on species life history characteristics, and data-poor length based assessment methods, as applied in this report, please refer to the assessment guide that was separately prepared for these fisheries²..

Data in this report represent catches realized within WPP 718 boundaries by fishing boats from the above described fleets. Captured fish were photographed on measuring boards by fishing crew participating in our Crew Operated Data Recording System. Images were analysed by project staff to generate the species specific length frequency distributions of the catches which served as the input for our length based assessment. Fishing grounds were recorded with SPOT tracers placed on contracted vessels.

¹http://72.14.187.103:8080/ifish/pub/TNC_FishID.pdf

²http://72.14.187.103:8080/ifish/pub/DeepSlopeSpeciesAssessmentTool.pdf

Figure 1.1: Fisheries Management Areas (*Wilayah Pengelolaan Perikanan* or WPP) in Indonesian marine waters.

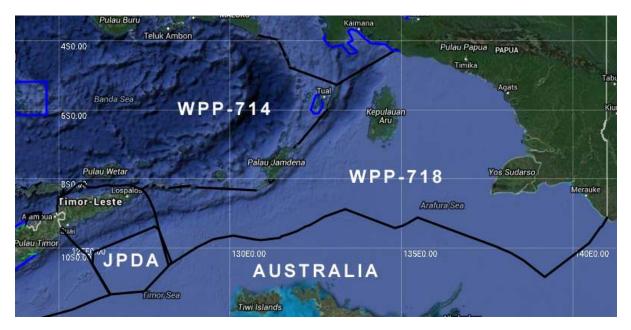


Figure 1.2: Bathymetric map of the Arafura Sea, WPP 718, with adjacent marine areas, in Eastern Indonesia. Black lines are WPP boundaries, blue lines are MPA boundaries.

			Reported Trade	117	a L^{b}	Length	Converted	Plotted Trade	
			Limit	vv =	аь	Type for a & b	Trade Limit	Limit	Sample
Rank	#ID	Species	Weight (g)	a	b	TL-FL-SL	L(cm)	TL(cm)	Sizes
1	100	Atrobucca brevis	1000	0.013	2.940	TL	46.15	46.15	621516
2	17	Lutjanus malabaricus	500		3.137	FL	33.11	33.11	329047
3	7	Pristipomoides multidens	500		2.944	$_{\rm FL}$	31.18	34.92	128690
4	64	Lethrinus laticaudis	300		2.986	FL	25.16	26.35	96769
5	91	Pomadasys kaakan	300		2.985	TL	26.57	26.57	30708
6	45	Epinephelus areolatus	300	0.011		$_{\rm FL}$	28.18	28.77	29572
7	18	Lutjanus sebae	500		3.208	FL	29.97	31.26	28828
8	8	Pristipomoides typus	500		2.916	TL	36.16	36.16	15464
9	77	Caranx bucculentus	2000		3.033	\mathbf{FL}	42.51	49.83	13667
10	25	Lutjanus russelli	300		2.907	\mathbf{FL}	27.28	28.49	13500
11	75	Carangoides chrysophrys	1000		2.902	\mathbf{FL}	37.68	42.12	12557
12	89	Diagramma labiosum	500		2.988	\mathbf{FL}	33.08	36.71	12217
13	27	Lutjanus vitta	300	0.017	2.978	FL	26.72	27.64	9924
14	50	Epinephelus coioides	1500	0.011	3.084	TL	46.94	46.94	8759
15	63	Lethrinus lentjan	300	0.020	2.986	FL	25.16	26.35	8193
16	24	Lutjanus johnii	300	0.020	2.907	FL	27.28	28.49	7913
17	70	Gymnocranius grandoculis	500	0.032	2.885	FL	28.43	30.53	7686
18	58	Epinephelus amblycephalus	1500	0.012	3.057	TL	45.99	45.99	7299
19	21	Lutjanus erythropterus	500	0.024	2.870	FL	31.79	31.79	7103
20	46	Epinephelus bleekeri	300	0.009	3.126	TL	28.09	28.09	5724
21	99	Protonibea diacanthus	1000	0.013	2.940	TL	46.15	46.15	5712
22	15	Lutjanus argentimaculatus	500	0.034	2.792	FL	31.22	31.78	4859
23	88	Glaucosoma buergeri	500		2.725	TL	30.40	30.40	4276
24	78	Caranx ignobilis	2000		2.913	FL	46.78	54.36	4143
25	86	Argyrops spinifer	300		2.670	TL	25.11	27.87	3951
26	41	Epinephelus latifasciatus	1500	0.010		TL	48.00	48.00	3805
27	65	Lethrinus nebulosus	500		2.996	FL	30.03	32.14	3392
28	72	Carangoides coeruleopinnatus	1000		2.902	$_{\rm FL}$	35.35	40.12	2518
29	9	Pristipomoides filamentosus	500		2.796	$_{\rm FL}$	29.70	33.27	2238
30	14	Lutjanus bitaeniatus	500		2.980	$_{\rm FL}$	33.61	34.18	2084
31	39	Cephalopholis sonnerati	300		3.058	TL	25.78	25.78	1988
32	20	Lutjanus gibbus	500	0.015		$_{\rm FL}$	28.87	31.09	1930
33	19	Lutjanus timorensis	500			$_{\rm FL}$	33.11	33.34	1874
34	66 09	Lethrinus olivaceus	300	0.029		FL	25.49	27.50	1872
35	98 01	Rachycentron canadum	1000		3.088	FL	60.67	67.28	1810
36 27	81	Caranx tille	2000		2.930	FL	43.43	49.51	1605
37	4	Etelis boweni	500		2.950	FL	30.16	32.84	1585
$\frac{38}{39}$	$\frac{76}{80}$	Carangoides gymnostethus Caranx sexfasciatus	$\frac{1000}{2000}$		$2.746 \\ 2.930$	$_{ m FL}$	$37.88 \\ 43.43$	$41.55 \\ 49.51$	1509
	$\frac{80}{26}$	Lutjanus lemniscatus	2000 300			FL			1453
$\begin{array}{c} 40\\ 41 \end{array}$	$\frac{20}{34}$	Paracaesio kusakarii	$\frac{500}{500}$		$2.907 \\ 3.135$	FL	$27.28 \\ 30.96$	$28.49 \\ 34.80$	$1375 \\ 1203$
41 42	54 60	Plectropomus maculatus	$\frac{500}{500}$		3.000	FL	$30.90 \\ 31.76$	34.80 31.76	$1203 \\ 1088$
42	56	Epinephelus multinotatus	1500		2.964	TL	46.90	46.90	1033 1057
43 44	$\frac{50}{49}$	Epinephelus malabaricus	$1500 \\ 1500$		3.034	TL	46.90 46.85	$46.90 \\ 46.85$	994
45	-1 <i>3</i> 54	Epinephelus stictus	300		3.000	SL	22.37	28.24	987
40	31	Symphorus nematophorus	1000		3.046	FL	38.63	40.18	387 872
47	53	Epinephelus heniochus	300		2.624	FL	25.59	25.59	797
48	16	Lutjanus bohar	500		3.059	FL	29.70	31.31	742
49	1	Aphareus rutilans	1000	0.015		$_{\rm FL}$	42.20	49.61	705
50	74	Carangoides malabaricus	1000		3.020	FL	34.20	39.74	635

Table 1.1: Length-weight relationships, trading limits and total sample sizes (including all years) for the 50 most abundant species in CODRS samples from deep water demersal fisheries in 718

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
3 Pristipomoides multidens 5337 11120 139961 21286 26238 5350 0 0 0 0 96769 5 Pormadaysy kaakan 1328 1131 2839 12140 8774 3060 0 0 0 20772 7 Lutajauus sebae 1140 376 5499 9772 6264 2257 0 0 0 12882 8 Pristipomoides typus 2062 1555 297 5131 4160 2259 0 0 0 13600 10 Lutjanus suselia 2071 1127 7443 3449 4488 1785 20 0 0 0 12557 12 Diagramma labiosum 311 677 7061 3827 2380 2806 0 0 0 12557 13 Lutjanus sinda 470 1160 21671 13504 6772 0 0 0 7299 1	1	Atrobucca brevis	239	1256	98637	272198	242111	7075	0	0	0	621516
4 Lethrinus laticaudis 3588 10346 2926 2238 5350 0 0 0 96769 5 Pomadasys kaakan 2537 2399 6321 5358 12189 1904 0 0 0 29572 7 Lutjanus sebae 1460 3476 5499 9772 6264 2357 0 0 0 1848 8 Pristipomoides typus 265 3382 3915 4455 1259 391 0 0 0 13667 10 Latiganus chrysophrys 117 7443 3449 1488 1786 0 0 0 13500 11 Caranyoides chrysophrys 311 177 3061 3827 2989 732 0 0 0 12217 13 Lutjanus vitta 334 685 1745 2484 3141 1171 0 0 0 7579 15 Lethrinus lohini 470	2	Lutjanus malabaricus	14454	43527	76895	80581	83641	29949	0	0	0	329047
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Pristipomoides multidens	5337	11120	13999	35849	43646	18739	0	0	0	128690
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Lethrinus laticaudis	3588	10346	29961	21286	26238	5350	0	0	0	96769
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Pomadasys kaakan	2537	2399	6321	5358	12189	1904	0	0	0	30708
8Pristipomoides typus20621555297513141602250000154649Caranx bucculentus26533823914445512393910001360710Lutjanus russelli207112724433449448817860001251712Diagramma labiosum331127730613827298973200001221713Lutjanus vita3346851745284831411171000992414Epinephelus coioides463739180025312554672000875915Lethrinus lentjan4701160216719001820396000791316Lutjanus grandoculis31566567133661713986000722919Lutjanus erythropterus209910848193220551149000772411Fotombeal dicanthus128326101627111504478000772412Lutjanus argentimaculatus2406337831766959478000772412Lutjanus grandoculatus24063378317661284637000380523Glancos	6	Epinephelus areolatus	1328	1131	2839	12440	8774	3060	0	0	0	29572
9 Caranx bucculerius 265 338.2 391.5 445.5 1259 391 0 0 0 13667 10 Carangoides Chrysophrys 112 2443 3449 4488 1786 0 0 0 12557 12 Diagramma labiosum 331 1277 3061 3827 2989 732 0 0 0 12557 13 Lutjanus vitta 334 685 1745 2848 3141 1171 0 0 0 8759 15 Lethrinus lentjan 448 959 1038 2360 2280 1088 0 0 0 7913 16 Lutjanus crythroptarus 206 511 625 2108 714 0 0 0 7713 20 Epinephelus amblycephalus 206 511 623 2062 1130 0 0 0 7113 21 Protonibea diacanthus 128 326 <td>7</td> <td>Lutjanus sebae</td> <td>1460</td> <td>3476</td> <td>5499</td> <td>9772</td> <td>6264</td> <td>2357</td> <td>0</td> <td>0</td> <td>0</td> <td>28828</td>	7	Lutjanus sebae	1460	3476	5499	9772	6264	2357	0	0	0	28828
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	Pristipomoides typus	2062	1555	297	5131	4160	2259	0	0	0	15464
11Carangoides chrysophrys41778021843435293528060001257712Diagramma labiosum331127730613827298973200001221713Lutjanus vitta334685174528483141117100992414Epinephelus coioides463739180025312554672000875915Lethrinus lentjan4489591038238022801088000791316Lutjanus igohni4701160216719001820396000729919Lutjanus aryenthropterus209910848193220551149000729919Lutjanus aryentimaculatus2206337831766959478000571221Protonibea diacanthus12832610162711150427000571222Lutjanus argentimaculatus2406337831766959478000448523Glaucosoma buergeri4013626320621307468000442624Caranx ignobilis5731312531144934442000448325Argyrops spinifer </td <td>9</td> <td>Caranx bucculentus</td> <td>265</td> <td>3382</td> <td>3915</td> <td>4455</td> <td>1259</td> <td>391</td> <td>0</td> <td>0</td> <td>0</td> <td>13667</td>	9	Caranx bucculentus	265	3382	3915	4455	1259	391	0	0	0	13667
12Diagramma labiosum33112773061382729897320001221713Lutjanus vitta3346851745284831411171000992414Epinephelus coioides643730180025312554672000875915Lethrinus lentjan44895910382380228010880000791316Lutjanus igrandoculis31566567133361713986000779317Gymnocranius grandoculis31566567133361713986000779320Epinephelus bleekeri1223488792172156064300572421Protonibea diacanthus128326101627111504270006772422Lutjanus argentimaculatus2406337831766959478000485923Glaucosoma buergeri4013626320621307468000427624Caranx ignobilis57313125311449344420000339226Epinephelus latifasciatus8731752115111054315000238827Lethrinus n	10	Lutjanus russelli	207	1127	2443	3449	4488	1786	0	0	0	13500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Carangoides chrysophrys	417	780	2184	3435	2935	2806	0	0	0	12557
14Epinephelus coioides463739180025312554672000875915Lethrinus lentjan4489591038238022801088000791316Lutjanus johnii4701160216719001820396000791317Gymnocranius grandoculis31566567133361713986000768618Epinephelus amblycephalus20651162530652108784000772919Lutjanus erythropterus209910848193220551149000572421Protonibea diacanthus128326101627111504478000485923Glaucosoma buergeri4013626320621307468000427624Caranx ignobilis5731312531144934442000380527Lethrinus nebulosus125073571831454231000223830Lutjanus eiflamentosus63775545775474129000223832Lutjanus gibbus19627917520369000183631Cephalopholis sonnerati79 <td>12</td> <td>Diagramma labiosum</td> <td>331</td> <td>1277</td> <td>3061</td> <td>3827</td> <td>2989</td> <td>732</td> <td>0</td> <td>0</td> <td>0</td> <td>12217</td>	12	Diagramma labiosum	331	1277	3061	3827	2989	732	0	0	0	12217
15Lethrinus lentjan4489591038238022801088000819316Lutjanus johnii4701160216719001820396000779317Gymnocranius grandoculis31566567133361713986000729919Lutjanus erythropterus209910848193220551149000772920Epinephelus bleckeri12234887921721560643000572421Protonibea diacanthus12832610162711150427000485923Glaucosoma buergeri4013626320621307468000447624Caranx ignobilis57313125311449344420003395126Epinephelus latifasciatus87317521151110543150003395126Epinephelus latifasciatus873175211511105431000228830Lutjanus bitaeniatus49237223742774129000228431Cephalopholis sonnerati797952137434658000193031Lutjanus bitaeniatus	13	Lutjanus vitta	334	685	1745	2848	3141	1171	0	0	0	9924
16Lutjanus johnii4701160216719001820396000791317Gymnocranius grandoculis31566567133361713986000768618Epinephelus amblycephalus206511162530652108784000729919Lutjanus erythropterus209910848193220551149000572421Protonibea diacanthus128326101627111560643000571222Lutjanus argentimaculatus2406337831766959478000427623Glaucosoma buergeri4013626320621307468000414325Argyrops spinifer6516150812961284637000339226Carangoides coeruleopinnatus186447933456221275000228829Pristipomoides filamentosus63715544575421631000228431Cephalopholis sonnerati797952137434658000198832Lutjanus gibbus19627917520369000187433Lutjanus gibbus <td>14</td> <td>Epinephelus coioides</td> <td>463</td> <td>739</td> <td>1800</td> <td>2531</td> <td>2554</td> <td>672</td> <td>0</td> <td>0</td> <td>0</td> <td>8759</td>	14	Epinephelus coioides	463	739	1800	2531	2554	672	0	0	0	8759
17Gymnocranius grandoculis31566567133361713986000768618Epinephelus amblycephalus20651162530652108784000729919Lutjanus crythropterus209910848193220551149000571420Epinephelus bleekeri12234887921721560643000571221Protonibea diacanthus12832610162711150427000485923Glaucosoma buergeri4013626320621307468004427624Caranx ignobilis5731312531144934442000395126Epinephelus latifasciatus873175211511105431500380527Lethrinus nebulosus125073571831454231000223830Lutjanus bitaeniatus49237223742704129000208431Cephalopholis sonnerati797952137434658000193033Lutjanus bitaeniatus49237223742744129000187235Rachycentron canadum80326 <td>15</td> <td>Lethrinus lentjan</td> <td>448</td> <td>959</td> <td>1038</td> <td>2380</td> <td>2280</td> <td>1088</td> <td>0</td> <td>0</td> <td>0</td> <td>8193</td>	15	Lethrinus lentjan	448	959	1038	2380	2280	1088	0	0	0	8193
18Epinephelus am lycephalus20651162530652108784000729919Lutjanus erythropterus209910848193220551149000710320Epinephelus bleekeri12234887921721560643000572421Protonibea diacanthus128326101627111504270006772422Lutjanus argentimaculatus2406337831766959478000485923Glaucosoma buergeri4013626320621307468000427624Caranx ignobilis5731312531144934442000414325Argyrops spinifer6516150812961284637000380527Lethrinus nebulosus125073571831454231000221828Carangoides coeruleopinnatus186447933456221275000223830Lutjanus gibbus19627917520369000193031Cephalopholis sonnerati79797952137434652615000187235Rachycentron ca	16	Lutjanus johnii	470	1160	2167	1900	1820	396	0	0	0	7913
19Lutjanus erythropterus209910848193220551149000710320Epinephelus bleekeri12234887921721560643000572421Protonibea diacanthus12832610162711150427000571222Lutjanus argentimaculatus2406337831766959478000485923Glaucosoma buergeri4013626320621307468000427624Caranx ignobilis5731312531144934442000414326Epinephelus latifasciatus873175211511105431500339227Lethrinus nebulosus125073571831454231000223829Pristipomoides filamentosus637155447933456221275000208431Cephalopholis sonnerati797952137434658000193032Lutjanus timorensis175257106705499132000187235Rachycentron canadum80326248480526150000187234Lethrinus olivaceus<	17	Gymnocranius grandoculis	315	665	671	3336	1713	986	0	0	0	7686
20Epinephelus bleekeri1223488792172156064300572421Protonibea diacanthus12832610162711150427000571222Lutjanus argentimaculatus2406337831766959478000427623Glaucosoma buergeri401362632621307468000427624Caranx ignobilis5731312531144934442000414325Argyrops spinifer65161508129612846370003395126Epinephelus latifasciatus8731752115111043315000339228Carangoides coeruleopinnatus186447933456221275000223830Lutjanus bitaeniatus49237223742704129000208431Cephalopholis sonnerati797952137434658000188832Lutjanus gibbus19627917520369000187434Lethrinus olivaceus9183681166273173000187434Lethrinus olivaceus9183257	18	Epinephelus amblycephalus	206	511	625	3065	2108	784	0	0	0	7299
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	Lutjanus erythropterus	209	910	848	1932	2055	1149	0	0	0	7103
22Lutjanus argentimaculatus2406337831766959478000485923Glaucosoma buergeri4013626320621307468000427624Caranx ignobilis5731312531144934442000414325Argyrops spinifer6516150812961284637000380526Epinephelus latifasciatus8731752115111054315000339228Carangoides coeruleopinnatus186447933456221275000223830Lutjanus bitaeniatus6371554457542163100223831Cephalopholis sonnerati79795213743465800198832Lutjanus gibbus19627917520369001887233Lutjanus gibbus19627917520369001887234Lethrinus olivaceus9183681166273173001887235Rachycentron canadum8032624848052615000188536Caranx tille3119125964522525400160	20	Epinephelus bleekeri	122	348	879	2172	1560	643	0	0	0	5724
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	Protonibea diacanthus	128	326	1016	2711	1504	27	0	0	0	5712
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	Lutjanus argentimaculatus	240	633	783	1766	959	478	0	0	0	4859
24Caranx ignobilis5731312531144934442000414325Argyrops spinifer6516150812961284637000395126Epinephelus latifasciatus8731752115111054315000380527Lethrinus nebulosus125073571831454231000221828Carangoides coeruleopinnatus186447933456221275000223830Lutjanus bitaeniatus49237223742704129000298431Cephalopholis sonnerati797952137434658000198832Lutjanus gibbus1962791752036900187434Lethrinus olivaceus918368116627317300187235Rachycentron canadum8032624848052615000181036Caranx tille3119125964522525400155938Carangoides gymnostethus578524948425138300155939Caranx sexfasciatus2123320648625225500 <td>23</td> <td>Glaucosoma buergeri</td> <td>40</td> <td>136</td> <td>263</td> <td>2062</td> <td>1307</td> <td>468</td> <td>0</td> <td>0</td> <td>0</td> <td>4276</td>	23	Glaucosoma buergeri	40	136	263	2062	1307	468	0	0	0	4276
26Epinephelus latifasciatus8731752115111054315000380527Lethrinus nebulosus125073571831454231000339228Carangoides coeruleopinnatus186447933456221275000221829Pristipomoides filamentosus63715544575421631000228430Lutjanus bitaeniatus49237223742704129000208431Cephalopholis sonnerati797952137434658000193033Lutjanus gibbus19627917520369000187234Lethrinus olivaceus9183681166273173000187235Rachycentron canadum8032624848052615000186537Etelis boweni11385325732735000158538Caranx tille31191259645252255000145340Lutjanus lemniscatus4811013565829512900145340Lutjanus lemniscatus48110135658270111 <td>24</td> <td></td> <td>57</td> <td>313</td> <td>1253</td> <td>1144</td> <td>934</td> <td>442</td> <td>0</td> <td>0</td> <td>0</td> <td>4143</td>	24		57	313	1253	1144	934	442	0	0	0	4143
26Epinephelus latifasciatus8731752115111054315000380527Lethrinus nebulosus125073571831454231000339228Carangoides coeruleopinnatus186447933456221275000251829Pristipomoides filamentosus63715544575421631000208430Lutjanus bitaeniatus49237223742704129000208431Cephalopholis sonnerati797952137434658000193033Lutjanus gibbus19627917520369000187434Lethrinus olivaceus9183681166273173000187235Rachycentron canadum8032624848052615000181036Caranx tille31191259645225254000158538Carangoides gymnostethus5785249484251383000145340Lutjanus lemniscatus48110135658295129000145340Lutjanus lemniscatus48110135 <td< td=""><td>25</td><td>Argyrops spinifer</td><td>65</td><td>161</td><td>508</td><td>1296</td><td>1284</td><td>637</td><td>0</td><td>0</td><td>0</td><td>3951</td></td<>	25	Argyrops spinifer	65	161	508	1296	1284	637	0	0	0	3951
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26		87	317	521	1511	1054	315	0	0	0	3805
29Pristipomoides filamentosus63715544575421631000223830Lutjanus bitaeniatus49237223742704129000208431Cephalopholis sonnerati797952137434658000198832Lutjanus gibbus19627917520369000187434Lethrinus olivaceus9183681166273173000187235Rachycentron canadum80326248480526150000158536Caranx tille31191259645225254000158538Carangoides gymnostethus5785249484251383000150939Caranx sexfasciatus21233206486252255000145340Lutjanus lemniscatus48110135658295129000108843Epinephelus multinotatus735202463270111000105744Epinephelus malabaricus1280127296400790098745Epinephelus malabaricus1280127296	27	Lethrinus nebulosus	12	507	357	1831	454	231	0	0	0	3392
30Lutjanus bitaeniatus49237223742704129000208431Cephalopholis sonnerati797952137434658000198832Lutjanus gibbus19627917520369000193033Lutjanus timorensis175257106705499132000187434Lethrinus olivaceus9183681166273173000187235Rachycentron canadum80326248480526150000181036Caranx tille31191259645225254000160537Etelis boweni11385325732735000158538Carangoides gymnostethus5785249484251383000145340Lutjanus lemniscatus48110135658295129000137541Paracaesio kusakarii451627262664000105742Plectropomus maculatus735202463270111000105744Epinephelus multinotatus487675681124530 <t< td=""><td>28</td><td>Carangoides coeruleopinnatus</td><td>186</td><td>447</td><td>933</td><td>456</td><td>221</td><td>275</td><td>0</td><td>0</td><td>0</td><td>2518</td></t<>	28	Carangoides coeruleopinnatus	186	447	933	456	221	275	0	0	0	2518
31Cephalopholis sonnerati797952137434658000198832Lutjanus gibbus19627917520369000193033Lutjanus timorensis175257106705499132000187434Lethrinus olivaceus9183681166273173000187235Rachycentron canadum80326248480526150000160537Etelis boweni11385325732735000158538Carangoides gymnostethus5785249484251383000150939Caranx sexfasciatus21233206486252255000145340Lutjanus lemniscatus48110135658295129000120341Paracaesio kusakarii451627262664000120342Plectropomus maculatus735202463270111000108843Epinephelus multinotatus48767568112453000105744Epinephelus malabaricus128012729640079	29	Pristipomoides filamentosus	637	155	445	754	216	31	0	0	0	2238
31Cephalopholis sonnerati797952137434658000198832Lutjanus gibbus19627917520369000193033Lutjanus timorensis175257106705499132000187434Lethrinus olivaceus9183681166273173000187235Rachycentron canadum80326248480526150000181036Caranx tille31191259645225254000160537Etelis boweni11385325732735000158538Carangoides gymnostethus5785249484251383000145340Lutjanus lemniscatus48110135658295129000120341Paracaesio kusakarii451627262664000120342Plectropomus maculatus735202463270111000108843Epinephelus multinotatus48767568112453000105744Epinephelus malabaricus1280127296400790<	30	Lutjanus bitaeniatus	49	237	223	742	704	129	0	0	0	2084
33Lutjanus timorensis175257106705499132000187434Lethrinus olivaceus9183681166273173000187235Rachycentron canadum80326248480526150000181036Caranx tille31191259645225254000160537Etelis boweni11385325732735000158538Carangoides gymnostethus5785249484251383000150939Caranx sexfasciatus21233206486252255000145340Lutjanus lemniscatus48110135658295129000120341Paracaesio kusakarii451627262664000108843Epinephelus multinotatus48767568112453000105744Epinephelus malabaricus1280127296400790098745Epinephelus malabaricus1280127296400790098746Symphorus nematophorus6847624361649500872	31	Cephalopholis sonnerati	79	79	52	1374	346	58	0	0	0	1988
34Lethrinus olivaceus9 183 68 1166 273 173 0001872 35 Rachycentron canadum 80 326 248 480 526 150 0001810 36 Caranx tille 31 191 259 645 225 254 0001605 37 Etelis boweni 113 853 257 327 35 0001585 38 Carangoides gymnostethus 57 85 249 484 251 383 0001453 40 Lutjanus lemniscatus 21 233 206 486 252 255 0001453 40 Lutjanus lemniscatus 48 110 135 658 295 129 0001203 41 Paracaesio kusakarii 45 162 726 266 4 0001088 43 Epinephelus multinotatus 7 35 202 463 270 111 0001057 44 Epinephelus malabaricus 12 80 127 296 400 79 000987 45 Epinephelus malabaricus 12 80 127 296 400 79 000987 46 Symphorus nematophorus 68 47 62 436 164 95 0<	32	Lutjanus gibbus	1	96	27	917	520	369	0	0	0	1930
35Rachycentron canadum 80 326 248 480 526 150 0 0 0 1810 36 Caranx tille 31 191 259 645 225 254 0 0 0 1605 37 Etelis boweni 113 853 257 327 35 0 0 0 0 1505 38 Carangoides gymnostethus 57 85 249 484 251 383 0 0 0 1509 39 Caranx sexfasciatus 21 233 206 486 252 255 0 0 0 1453 40 Lutjanus lemniscatus 48 110 135 658 295 129 0 0 0 1203 41 Paracaesio kusakarii 45 162 726 266 4 0 0 0 1203 42 Plectropomus maculatus 7 35 202 463 270 111 0 0 0 1088 43 Epinephelus multinotatus 48 76 75 681 124 53 0 0 0 994 45 Epinephelus stictus 4 7 99 586 223 68 0 0 0 987 46 Symphorus nematophorus 68 47 62 436 164 95 0 0 0 797 48 Lutjanus bohar <t< td=""><td>33</td><td>Lutjanus timorensis</td><td>175</td><td>257</td><td>106</td><td>705</td><td>499</td><td>132</td><td>0</td><td>0</td><td>0</td><td>1874</td></t<>	33	Lutjanus timorensis	175	257	106	705	499	132	0	0	0	1874
36Caranx tille 31 191 259 645 225 254 0 0 0 1605 37 Etelis boweni 113 853 257 327 35 0 0 0 0 1585 38 Carangoides gymnostethus 57 85 249 484 251 383 0 0 0 1509 39 Caranx sexfasciatus 21 233 206 486 252 255 0 0 0 1453 40 Lutjanus lemniscatus 48 110 135 658 295 129 0 0 0 1375 41 Paracaesio kusakarii 45 162 726 266 4 0 0 0 1203 42 Plectropomus maculatus 7 35 202 463 270 111 0 0 0 1088 43 Epinephelus multinotatus 48 76 75 681 124 53 0 0 0 1057 44 Epinephelus malabaricus 12 80 127 296 400 79 0 0 0 994 45 Epinephelus stictus 4 7 99 586 223 68 0 0 0 872 46 Symphorus nematophorus 68 47 62 436 164 95 0 0 0 797 48 Lutjanus bohar<	34	Lethrinus olivaceus	9	183	68	1166	273	173	0	0	0	1872
37Etelis boweni 113 853 257 327 35 0 0 0 0 1585 38 Carangoides gymnostethus 57 85 249 484 251 383 0 0 0 1509 39 Caranx sexfasciatus 21 233 206 486 252 255 0 0 0 1453 40 Lutjanus lemniscatus 48 110 135 658 295 129 0 0 0 1375 41 Paracaesio kusakarii 45 162 726 266 4 0 0 0 1203 42 Plectropomus maculatus 7 35 202 463 270 111 0 0 0 1088 43 Epinephelus multinotatus 48 76 75 681 124 53 0 0 0 1057 44 Epinephelus malabaricus 12 80 127 296 400 79 0 0 0 994 45 Epinephelus stictus 4 7 99 586 223 68 0 0 0 872 46 Symphorus nematophorus 68 47 62 436 164 95 0 0 0 797 48 Lutjanus bohar 61 97 40 319 186 39 0 0 0 742 49 Aphareus rutilans	35	Rachycentron canadum	80	326	248	480	526	150	0	0	0	1810
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	Caranx tille	31	191	259	645	225	254	0	0	0	1605
39Caranx sexfasciatus21233206486252255000145340Lutjanus lemniscatus48110135658295129000137541Paracaesio kusakarii4516272626640000120342Plectropomus maculatus735202463270111000108843Epinephelus multinotatus48767568112453000105744Epinephelus malabaricus12801272964007900099445Epinephelus stictus47995862236800087246Symphorus nematophorus6847624361649500079748Lutjanus bohar619740319186390074249Aphareus rutilans558316138711800705	37	Etelis boweni	113	853	257	327	35	0	0	0	0	1585
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	Carangoides gymnostethus	57	85	249	484	251	383	0	0	0	1509
41Paracaesio kusakarii4516272626640000120342Plectropomus maculatus735202463270111000108843Epinephelus multinotatus48767568112453000105744Epinephelus malabaricus12801272964007900099445Epinephelus stictus47995862236800098746Symphorus nematophorus6847624361649500087247Epinephelus heniochus321061601797924100079748Lutjanus bohar6197403191863900074249Aphareus rutilans5583161387118000705	39	Caranx sexfasciatus	21	233	206	486	252	255	0	0	0	1453
41Paracaesio kusakarii4516272626640000120342Plectropomus maculatus735202463270111000108843Epinephelus multinotatus48767568112453000105744Epinephelus malabaricus12801272964007900099445Epinephelus stictus47995862236800098746Symphorus nematophorus6847624361649500087247Epinephelus heniochus321061601797924100079748Lutjanus bohar6197403191863900074249Aphareus rutilans5583161387118000705	40	Lutjanus lemniscatus	48	110	135	658	295	129	0	0	0	1375
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	Paracaesio kusakarii	45	162	726		4	0	0	0	0	1203
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	Plectropomus maculatus	7	35	202	463	270	111	0	0	0	1088
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	Epinephelus multinotatus	48	76	75	681	124	53	0	0	0	1057
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44		12	80	127		400	79	0	0	0	994
46Symphorus nematophorus6847624361649500087247Epinephelus heniochus321061601797924100079748Lutjanus bohar6197403191863900074249Aphareus rutilans5583161387118000705			4						0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46		68	47				95	0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							79		0	0	0	
49	48			97	40				0	0	0	
	49		55	83			11		0	0	0	705
	50	Carangoides malabaricus	78	204	300	8	44	1	0	0	0	635

Table 1.2: Sample sizes over the period 2016 to 2024 for the 50 most abundant species in CODRS samples of deepwater demersal fisheries in WPP 718

2 Materials and methods for data collection, analysis and reporting

2.1 Frame Survey

A country-wide frame survey was implemented to obtain complete and detailed information on the deep demersal fishing fleet in Indonesia, using a combination of satellite image analysis and ground truthing visits to all locations where either satellite imagery or other forms of information indicated deep demersal fisheries activity. During the frame survey, data were collected on boat size, gear type, port of registration, licenses for specific FMAs, captain contacts and other details, for all fishing boats in the fleet. Following practices by fisheries managers in Indonesia, we distinguished 4 boat size categories including "nano" (<5 GT), "small" (5-< 10 GT), "medium" (10-30 GT), and "large" (>30 GT). We also distinguished 4 gear types used in these fisheries, including vertical drop lines, bottom set long lines, deep water gillnets and traps. A 5th category of gear classification was needed to record operations using "mixed gear" when 2 or more of the gear types were used on the same trip and catches were not separated.

Frame survey data are continuously updated to keep records of the complete and currently active fishing fleet in the deep demersal fisheries. Fleet information is summarized by registration port and home district (Table 2.14), while actual fishing grounds are determined by placing SPOT Trace units on all fishing boats participating in the program. By late 2020, most (over 90%) of the Indonesian coastline had been surveyed and the vast majority of the fleet was on record. The total fleet in each WPP is a dynamic number, as boats are leaving and being added to the local fleet all the time, and therefore the fleet survey data are updated continuously.

2.2 Vessel Tracking and CODRS

Vessel movement and fishing activity as recorded with SPOT data generates the information on fleet dynamics. When in motion, SPOT Trace units automatically report an hourly location of each fishing boat in the program, and when at rest for more than 24 hours, they relay daily status reports. Data on species and size distributions of catches, as needed for accurate length based stock assessments, are collected via Crew Operated Data Recording Systems or CODRS. This catch data is georeferenced as the CODRS works in tandem with the SPOT Trace vessel tracking system. Captains were recruited for the CODRS program from across the full range of boat size and gear type categories.

The CODRS approach involves fishers taking photographs of the fish in the catch, displayed on measuring boards, while the SPOT tracking system records the positions. Data recording for each CODRS fishing trip begins when the boat leaves port with the GPS recording the vessel tracks while it is steaming out. After reaching the fishing grounds, fishing will start, changing the track of recorded positions into a pattern that shows fishing instead of steaming. During the fishing activity, fish is collected on the deck or in chiller boxes on deck. The captain or crew will then take pictures of the fish, positioned over measuring boards (Figure 2.1), before moving the fish from the deck or from the chiller to the hold (to be stored on ice) or to the freezer. The process is slightly different on some of the "nano" boats (around 1 GT), where some crew take pictures upon landing instead of at sea. In these situations, the timestamps of the photographs are still used as an indication of the fishing day, even though most fishing may have happened on the day before.

At the end of the trip, the storage chip from the camera is handed over for processing of the images by expert staff. Processing includes ID of the species and measurement of the length of the fish (Figure 2.2), double checking by a second expert, and data storage in the IFish data base. Sets of images from fishing trips with unacceptable low quality photographs are not further processed and not included in the dataset. Body weight at length is calculated for all species using length-weight relationships to enable estimation of total catch weights as well as catch weights per species for individual fishing trips by CODRS vessels. Weight converted catch length frequencies of individual catches is verified against sales records of landings. These sales receipts or ledgers represent a fairly reliable estimate of the total weight of an individual catch (from a single trip, and including all species) that is independent from CODRS data.

2.3 Data Quality Control

With information from sales records we verify that individual catches are fully represented by CODRS images and we flag catches when they are incomplete, judging from comparison with the weight converted catch size frequencies. When estimated weights from CODRS are above 90% of landed weights from receipts, they are considered complete and accepted for use in length-based analysis and calculations of CpUE. CpUE is calculated on a day by day basis, in kg/GT/day, using only those days from the trip when images were actually collected. Medium size and larger vessels (10 GT and larger) do trips of at least a week up to over a month. There may be some days on which weather or other conditions are such that no images are collected, but sufficient days with images, within those trips usually remain for daily CpUE estimates and to supply samples for length-based analysis. For boats of 10 GT and above, incomplete data sets with 30% to 90% coverage are still used for analysis, using only those days on which images were collected. For boats below 10 GT (doing day trips or trips of just a few days) only complete data sets are used for CpUE calculations. All data sets on catches with less than 30% coverage are rejected and are not used in any analysis.

2.4 Length-Frequency Distributions, CpUE, and Total Catch

By the end of 2020, more than 400 boats participated in the CODRS program (Figure 2.3) across all fishing grounds in Indonesia, with close to 40 boats enrolled in each WPP (Table 2.1). Recruitment of captains from the overall fleet into the CODRS program iss not exactly proportional to composition of the fleet in terms of vessel size, gear type and the FMA where the boat normally operates. Actual fleet composition by boat size and gear type, and activity in terms of numbers of active fishing days per year for each category, are therefore used when CODRS data are used for CpUE and catch calculations. Species composition in the catch is also not exactly the same as species composition in the CODRS samples. Catch information by WPP and by fleet segment from CODRS samples is combined with fleet composition and activity information to obtain accurate annual catch information and species composition for each segment of the fleet.

Converted weights from catch size frequencies on individual fishing days, in combination with activity data from onboard trackers are used to estimate catch per unit of effort (CpUE) by fleet segment (boat size * gear type), by FMA, by species, and over time. Plotted data show clear differences between CpUE values for different gear types and different boat size categories (Figure 2.4) and we therefore work with separated gear types and boat size categories to generate CpUE values for each distinct segment of the fleet (Table 2.2 and Table 2.3). Activity data from onboard trackers on more than 400 fishing boats are used to estimate the number of active fishing days per year for each segment of the fleet (Table 2.4) and the total (hull) Gross Tonnage in each fleet segment is combined with fleet activity to establish a measure of effort. With this information, CpUE is precisely defined in kg per GT per active fishing day for each type of gear and each category of boat size in each FMA. Annual averages of CpUE by fleet segment are plotted for the top 7 species in each FMA (Figures 2.5 through 2.11), as indicators for stock health, and to compare with indicators from length-based analysis (i.e. Spawning Potential Ratio and percentage of immature fish in the catch).

Information on fleet activity, fleet size by gear type and boat size, and average size frequencies by species (per unit of effort) is used to estimate total catch. Fishing effort in terms of the average number of active fishing days per year for each gear type and boat size category (Table 2.4), is derived from SPOT data looking at movement patterns. Fleet size by gear type and boat size category (Table 2.5) is obtained from field surveys, where each vessel is recorded in a data base with estimated GT. Average size frequency distributions by fleet segment and species for each FMA, in combination with the information on effort by fleet segment, are thus used to estimate CATCH LFD (over the entire fleet) from average CODRS LFD by fleet segment are used for further calculations. Numbers per size class for each species in the catch are multiplied with weights per size class from lengthweight relationships, to calculate catches by fleet segment (Table 2.7), species distribution in the total catch (Table 2.8), and catch by species for each gear type separately (Tables 2.9 through 2.13).

As the CODRS program is still in final stage of development, some parts for the fleet ("fleet segments", a combination of WPP, gear type, and boat size category) are not yet represented. For those missing fleet segments, we apply the following approach to estimate annual catch. First, within each WPP, we estimate the total catch and the total effort for all fleet segments where we have representation by CODRS. We express annual effort as "tonnage-days", i.e. the GT of each vessel times the annual number of fishing days. Then, we calculate the average catch-per-unit-effort, over all fleet segments that have CODRS representation within each WPP (in metric tons per tonnage-day). This results in one catch-per-unit-effort estimate for each WPP (CPUE-estimate-per-WPP). Then, we calculate the effort, in tonnage-days, for the fleet segments where we do not have CODRS representation, and we multiply this effort with CPUE-estimate-per-WPP to get the estimated total annual catch for that fleet segment. This means that, within each WPP, fleet segments that do not have CODRS representation all have the same CPUE estimate-per-WPP, but their total catch estimates vary because effort between those fleet segments vary.

Trends in CpUE by species and by fleet segment (Figures 2.5 through 2.11) can be used as indicator for year-on-year changes in status of the stocks, for as far as time series are available within each fleet segment. Note, however, that these time series sometimes are incomplete or interrupted. This is due to variations in the presence of fleet segments between years in each WPP, and sometimes the CODRS vessels representing a fleet segment may disappear from one WPP and show up in another WPP. This may happen due to problems with processing permits at local authorities, but also due to the emerging differences in efficiencies between gear types and boat size categories, as well as due to perceptions on opportunities in other WPPs.

Figure 2.1: Fishing crew preparing fish on a measuring board.

Figure 2.2: Fish photographed by fishing crew on board as part of CODRS.

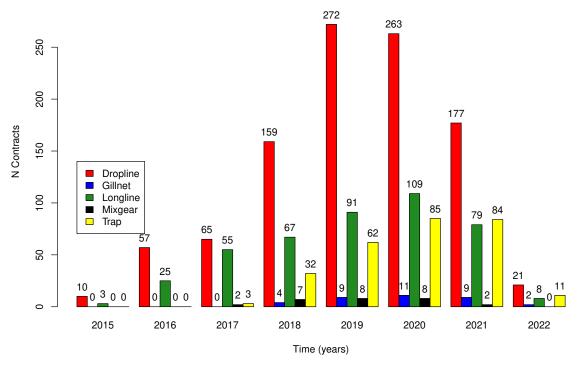


Figure 2.3: Number of CODRS contractors by gear type actively fishing in Indonesian waters.

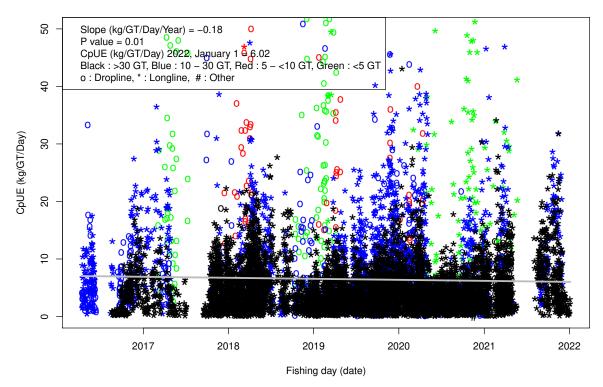


Figure 2.4: Catch per Unit of Effort in WPP 718.

Ν	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano	0	0	NA	NA	NA	0
Small	0	0	0	NA	NA	0
Medium	0	1	1	NA	NA	2
Large	0	6	0	NA	NA	6
Total	0	7	1	0	0	8

Table 2.1: Number of CODRS deployed by gear type and boat size category in WPP 718

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.2: CpUE by fishing gear and boat size category in WPP 718 in 2020

kg/GT/Day	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano	5.48	25.84	NA	NA	NA
Small	26.97	5.48	5.48	NA	NA
Medium	5.33	12.32	5.48	NA	NA
Large	7.05	4.12	7.50	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.3: Number of CODRS observations that contribute to CpUE value in WPP 718 in 2020

Ν	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano	2615	86	NA	NA	NA
Small	17	2615	2615	NA	NA
Medium	171	286	2615	NA	NA
Large	143	1887	25	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.4: Average active-fishing days per year by fishing gear and boat size category in all WPP

Days / Year	Dropline	Longline	Gillnet	Trap	Mix Gear
Nano Dedicated	201	235	224	194	265
Nano Seasonal	100	118	112	97	133
Small Dedicated	213	258	247	277	241
Small Seasonal	107	129	124	139	121
Medium Dedicated	204	213	258	219	202
Medium Seasonal	102	107	129	110	101
Large Dedicated	166	237	151	185	185
Large Seasonal	83	119	75	92	92

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.5: Current number of boats in the fleet by fishing gear and boat size category in WPP 718

Number of Boat	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	48	8	0	0	0	56
Nano Seasonal	0	0	0	0	0	0
Small Dedicated	6	6	3	0	0	15
Small Seasonal	2	0	0	0	0	2
Medium Dedicated	3	18	30	0	0	51
Medium Seasonal	100	6	0	0	0	106
Large Dedicated	0	140	91	0	0	231
Large Seasonal	1	0	0	0	0	1
Total	160	178	124	0	0	462

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Total GT	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	139	23	0	0	0	162
Nano Seasonal	0	0	0	0	0	0
Small Dedicated	43	44	28	0	0	114
Small Seasonal	18	0	0	0	0	18
Medium Dedicated	79	431	753	0	0	1263
Medium Seasonal	1814	114	0	0	0	1928
Large Dedicated	0	9794	6961	0	0	16755
Large Seasonal	35	0	0	0	0	35
Total	2128	10406	7742	0	0	20275

Table 2.6: Current total gross tonnage of all boats in the fleet by fishing gearand boat size category in WPP 718

Table 2.7: Total catch in metric tons per year by fishing gear and boat size category in WPP 718 in 2020

Total Catch	Dropline	Longline	Gillnet	Trap	Mix Gear	Total
Nano Dedicated	153	139	0	0	0	292
Nano Seasonal	0	0	0	0	0	0
Small Dedicated	247	62	37	0	0	346
Small Seasonal	51	0	0	0	0	51
Medium Dedicated	86	1131	1065	0	0	2283
Medium Seasonal	987	150	0	0	0	1137
Large Dedicated	0	9571	7882	0	0	17452
Large Seasonal	20	0	0	0	0	20
Total	1544	11053	8984	0	0	21581

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.8: Top 20 species by volume in deepwater demersal fisheries with % immature fish in the catch in WPP 718 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
Species	MT	%	% Weight	% Number	% Weight	Immature
Lutjanus malabaricus	6602	31	31	26	12	Med
Pristipomoides multidens	5289	25	55	36	20	High
Atrobucca brevis	2961	14	69	13	6	Med
Diagramma labiosum	1348	6	75	0	0	Low
Lethrinus laticaudis	1050	5	80	0	0	Low
Lutjanus sebae	535	2	82	30	14	High
Caranx bucculentus	502	2	85	1	0	Low
Protonibea diacanthus	345	2	86	8	3	Low
Pomadasys kaakan	333	2	88	5	1	Low
Epinephelus latifasciatus	255	1	89	9	3	Low
Epinephelus coioides	254	1	90	9	2	Low
Carangoides chrysophrys	169	1	91	0	0	Low
Lutjanus erythropterus	154	1	92	7	2	Low
Pristipomoides typus	154	1	92	23	11	Med
Caranx ignobilis	152	1	93	7	4	Low
Gymnocranius grandoculis	126	1	94	1	0	Low
Epinephelus amblycephalus	113	1	94	4	1	Low
Glaucosoma buergeri	112	1	95	1	0	Low
Lutjanus johnii	112	1	95	8	3	Low
Epinephelus bleekeri	87	0	96	0	0	Low
Total Top 20 Species	20652	96	96	18	11	Medium
Total Top 100 Species	21581	100	100	18	10	Medium

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
-	MT	%	% Weight	% Number	% Weight	Immature
Lutjanus malabaricus	515	33	33	26	11	Med
Lethrinus laticaudis	213	14	47	0	0	Low
Pristipomoides multidens	123	8	55	33	18	High
Protonibea diacanthus	110	7	62	7	4	Low
Lutjanus erythropterus	84	5	68	8	2	Low
Pristipomoides typus	41	3	70	22	10	Med
Lethrinus nebulosus	38	2	73	7	1	Low
Epinephelus coioides	34	2	75	4	1	Low
Lethrinus lentjan	34	2	77	6	2	Low
Diagramma labiosum	29	2	79	1	0	Low
Pomadasys kaakan	26	2	81	1	0	Low
Carangoides chrysophrys	25	2	82	0	0	Low
Lutjanus sebae	24	2	84	38	16	High
Sphyraena putnamae	23	1	85	1	0	Low
Atrobucca brevis	21	1	87	NA	NA	
Lutjanus gibbus	19	1	88	38	23	High
Plectropomus maculatus	16	1	89	NA	NA	
Lutjanus johnii	16	1	90	10	3	Low
Gymnocranius grandoculis	15	1	91	0	0	Low
Lutjanus russelli	13	1	92	6	2	Low
Total Top 20 Species	1420	92	92	15	7	Medium
Total Top 100 Species	1544	100	100	15	7	Medium

Table 2.9: Top 20 species by volume in Dropline fisheries with % immature fish in the catch in WPP 718 in 2020.

Table 2.10: Top 20 species by volume in Longline fisheries with % immature fish in the catch in WPP 718 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Lutjanus malabaricus	3433	31	31	24	11	Med
Atrobucca brevis	2773	25	56	13	6	Med
Pristipomoides multidens	1646	15	71	44	25	High
Lethrinus laticaudis	763	7	78	0	0	Low
Lutjanus sebae	361	3	81	30	14	High
Pomadasys kaakan	290	3	84	5	1	Low
Epinephelus coioides	189	2	86	9	2	Low
Carangoides chrysophrys	129	1	87	0	0	Low
Diagramma labiosum	110	1	88	0	0	Low
Pristipomoides typus	99	1	89	24	11	Med
Protonibea diacanthus	94	1	89	8	2	Low
Gymnocranius grandoculis	93	1	90	1	0	Low
Caranx ignobilis	92	1	91	7	4	Low
Lutjanus johnii	86	1	92	8	3	Low
Epinephelus amblycephalus	75	1	93	4	1	Low
Caranx bucculentus	74	1	93	3	0	Low
Epinephelus areolatus	69	1	94	0	0	Low
Epinephelus bleekeri	64	1	94	0	0	Low
Epinephelus latifasciatus	63	1	95	9	3	Low
Lutjanus erythropterus	51	0	95	4	1	Low
Total Top 20 Species	10554	95	95	17	10	Medium
Total Top 100 Species	11053	100	100	16	9	Medium

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
Pristipomoides multidens	3520	39	39	32	18	High
Lutjanus malabaricus	2654	30	69	28	13	Med
Diagramma labiosum	1208	13	82	0	0	Low
Caranx bucculentus	424	5	87	0	0	Low
Epinephelus latifasciatus	188	2	89	NA	NA	
Atrobucca brevis	166	2	91	NA	NA	
Lutjanus sebae	150	2	93	NA	NA	
Protonibea diacanthus	140	2	94	NA	NA	
Lethrinus laticaudis	74	1	95	NA	NA	
Glaucosoma buergeri	70	1	96	NA	NA	
Caranx ignobilis	52	1	96	NA	NA	
Epinephelus amblycephalus	34	0	97	NA	NA	
Epinephelus coioides	30	0	97	NA	NA	
Lutjanus argentimaculatus	30	0	97	NA	NA	
Caranx tille	22	0	98	NA	NA	
Lutjanus erythropterus	19	0	98	NA	NA	
Epinephelus bleekeri	18	0	98	NA	NA	
Gymnocranius grandoculis	18	0	98	NA	NA	
Lutjanus russelli	17	0	98	NA	NA	
Rachycentron canadum	17	0	99	NA	NA	
Total Top 20 Species	8854	99	99	23	12	Medium
Total Top 100 Species	8984	100	100	23	12	Medium

Table 2.11: Top 20 species by volume in Gillnet fisheries with % immature fish in the catch in WPP 718 in 2020.

Table 2.12: Top 20 species by volume in Trap fisheries with % immature fish in the catch in WPP 718 in 2020.

~			~ • •		-	
Species	Weight	Weight			Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
Total Top 20 Species	0	0	0	NA	NA	NA
Total Top 100 Species	0	0	0	NA	NA	NA

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
Total Top 20 Species	0	0	0	NA	NA	NA
Total Top 100 Species	0	0	0	NA	NA	NA

Table 2.13: Top 20 species by volume in Mixgears fisheries with % immature fish in the catch in WPP 718 in 2020.

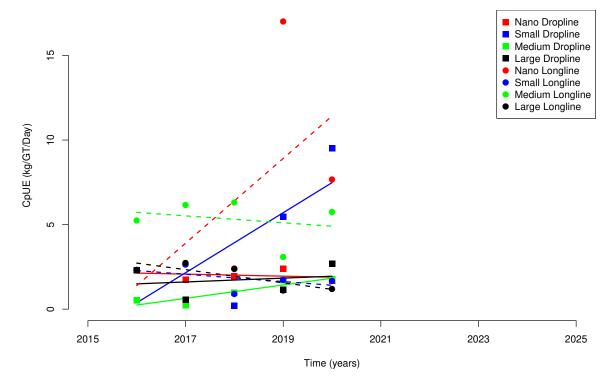
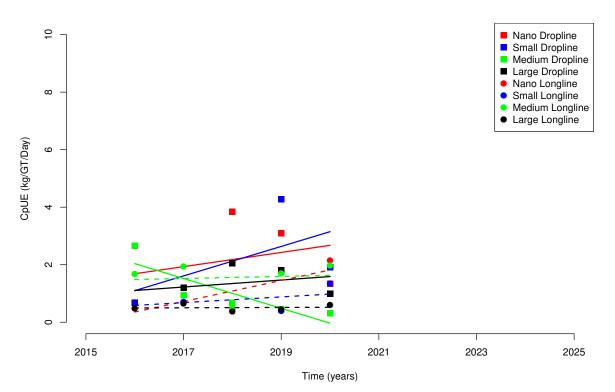
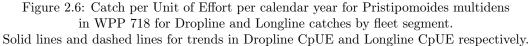




Figure 2.5: Catch per Unit of Effort per calendar year for Lutjanus malabaricus in WPP 718 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

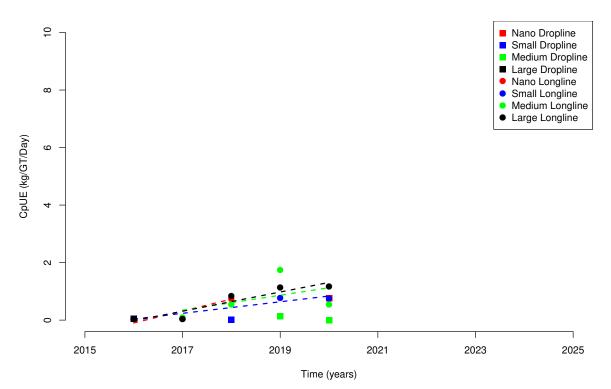


Figure 2.7: Catch per Unit of Effort per calendar year for Atrobucca brevis in WPP 718 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

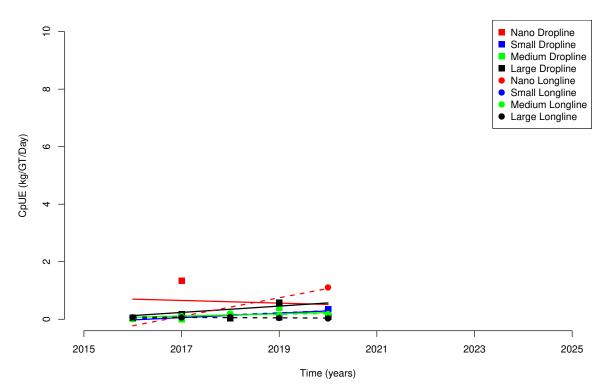


Figure 2.8: Catch per Unit of Effort per calendar year for Diagramma labiosum in WPP 718 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

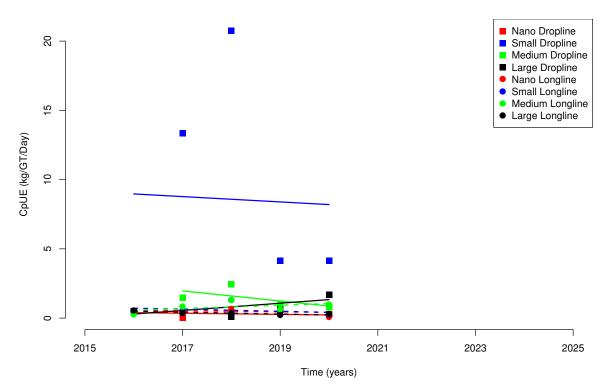


Figure 2.9: Catch per Unit of Effort per calendar year for Lethrinus laticaudis in WPP 718 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

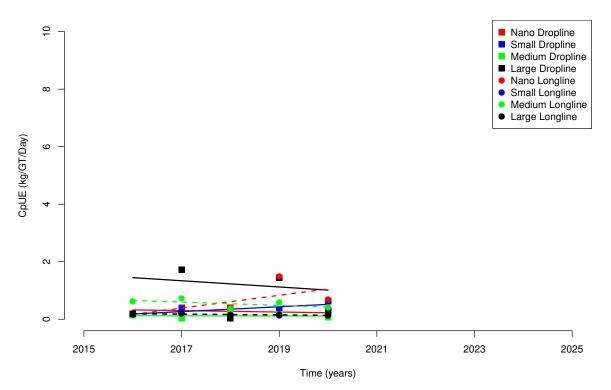


Figure 2.10: Catch per Unit of Effort per calendar year for Lutjanus sebae in WPP 718 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

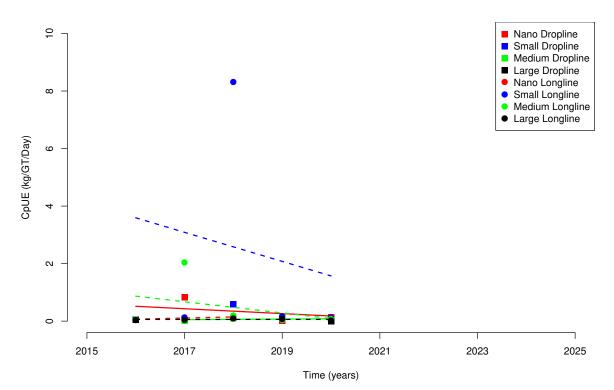


Figure 2.11: Catch per Unit of Effort per calendar year for Caranx bucculentus in WPP 718 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

Row	WPP	0	Home District	Boat Size		Ν	Total GT
1	571	Desa Sungai Kuruk III	Aceh Tamiang	Nano	Trap	2	6
2	571	Desa Sungai Kuruk III	Aceh Tamiang	Small	Trap	6	34
3	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Dropline	1	2
4	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Trap	5	10
5	571	Desa Belawan Lama	Kota Medan	Small	Trap	10	50
6	571	Desa Beurawang	Kota Sabang	Nano	Dropline	1	4
7	571	PP. Pasiran	Kota Sabang	Nano	Dropline	2	3
8	571	PP. Pasiran	Kota Sabang	Small	Dropline	1	8
9	571	Desa Sei Bilah	Langkat	Medium	Trap	2	22
10	571	Desa Sei Bilah	Langkat	Nano	Dropline	1	4
11	571	Desa Sei Bilah	Langkat	Small	Dropline	2	18
12	571	Desa Sei Bilah	Langkat	Small	Trap	2	16
13	571	Desa Ujung Kampung	Langkat	Medium	Trap	1	12
14	571	Desa Ujung Kampung	Langkat	Nano	Trap	6	27
15	571	Desa Ujung Kampung	Langkat	Small	Trap	3	20
16	571	Pangkalan Susu	Langkat	Nano	Trap	38	114
17	571	Pelabuhan Ujung Kampung	Langkat	Medium	Trap	1	13
18	571	PPI. Pangkalan Brandan	Langkat	Nano	Trap	32	131
19	571	PPI. Pangkalan Brandan	Langkat	Small	Trap	2	14
20	571	PP. Ujung Blang	Lhokseumawe	Nano	Longline	7	11
21	571	Desa Sialang Buah	Serdang Bedagai	Medium	Longline	1	13
22	571	Desa Sialang Buah	Serdang Bedagai	Nano	Longline	2	7
23	571	Desa Sialang Buah	Serdang Bedagai	Small	Longline	3	22
24	571	Sialang Buah	Serdang Bedagai	Nano	Longline	11	44
25	571	Sialang Buah	Serdang Bedagai	Small	Longline	4	30
26	571	Teluk Mengkudu	Serdang Bedagai	Small	Longline	5	48
27	572	Kuala Bubon	Aceh Barat	Medium	Trap	2	21
28	572	Kuala Bubon	Aceh Barat	Small	Trap	2	14
29	572	PP. Ujoeng Baroh	Aceh Barat	Nano	Longline	1	4
30	572	PP. Ujoeng Baroh	Aceh Barat	Small	Dropline	1	6
31	572	PP. Ujoeng Baroh	Aceh Barat	Small	Longline	1	5
32	572	PP. Ujong Baroeh	Aceh Barat	Nano	Dropline	8	28
33	572	PP. Ujong Baroeh	Aceh Barat	Nano	Longline	3	12
34	572	PP. Ujong Baroeh	Aceh Barat	Small	Dropline	14	84
35	572	PP. Ujong Baroeh	Aceh Barat	Small	Longline	3	21
36	572	PP. Ujong Baroeh	Aceh Barat	Small	Trap	2	10
37	572	Susoh	Aceh Barat Daya	Medium	Dropline	1	11
38	572	Susoh	Aceh Barat Daya	Small	Dropline	2	12
39	572	Desa Lampuyang	Aceh Besar	Nano	Dropline	15	22
40	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Dropline	5	6
41	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Longline	8	26
42	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Dropline	2	12
43	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Longline	27	165
44	572	PP. Meukek	Aceh Selatan	Nano	Longline	1	3
45	572	Desa Pulau Balai	Aceh Singkil	Medium	Gillnet	1	10
46	572	Desa Pulau Balai	Aceh Singkil	Nano	Trap	6	29
47	572	PP. Lampulo	Banda Aceh	Nano	Dropline	1	4
48	572	PP. Lampulo	Banda Aceh	Nano	Longline	2	6
49	572	PP. Lampulo	Banda Aceh	Small	Dropline	8	49
50	572	PP. Lampulo	Banda Aceh	Small	Longline	1	6
51	572	PPS Lampulo	Banda Aceh	Small	Dropline	9	63
52	572	PP. Sikakap	Kepulauan Mentawai	Nano	Dropline	1	3
53	572	PP. Tuapejat	Kepulauan Mentawai	Medium	Dropline	2	24
54	572	PP. Tuapejat	Kepulauan Mentawai	Small	Dropline	2	18
55	572	PP. Pulau Baai	Kota Bengkulu	Large	Trap	1	31
56	572	PP. Pulau Baai	Kota Bengkulu	Medium	Dropline	8	107
57	572	PP. Pulau Baai	Kota Bengkulu	Medium	Gillnet	7	153
58	572	PP. Pulau Baai	Kota Bengkulu	Nano	Dropline	4	16

Row	WPP	Registration Port	Home District	Boat Size		Ν	Total G ₁
59	572	PP. Pulau Baai	Kota Bengkulu	Small	Dropline	12	70
60	572	PP. Pulau Baai	Kota Bengkulu	Small	Gillnet	1	6
61	572	Desa Taluak	Kota Pariaman	Nano	Longline	10	16
52	572	Desa Keuneukai	Kota Sabang	Nano	Dropline	2	3
63	572	PP. Sibolga	Kota Sibolga	Medium	Trap	6	87
64	572	PP. Sibolga	Kota Sibolga	Nano	Dropline	4	14
65	572	PP. Sibolga	Kota Sibolga	Nano	Trap	12	47
66	572	PP. Sibolga	Kota Sibolga	Small	Dropline	3	18
67	572	PP. Sibolga	Kota Sibolga	Small	Trap	9	55
68	572	PP. Muara Piluk Bakauheni	Lampung	Nano	Longline	16	43
69	572	PP. Muara Piluk Bakauheni	Lampung	Small	Longline	1	5
70	572	PP. Pasar Bantal	Mukomuko	Small	Dropline	20	100
71	572	Kec. Teluk Dalam	Nias Selatan	Nano	Dropline	5	18
72	572	Desa Botolakha	Nias Utara	Small	Dropline	25	197
73	572	Desa Helera	Nias Utara	Nano	Longline	13	21
74	572	Desa Helera	Nias Utara	Small	Longline	2	11
75	572	Muara Padang	Padang	Medium	Longline	1	11
76	572	Muara Padang	Padang	Small	Dropline	4	21
77	572	PP. Bungus	Padang	Small	Longline	1	8
78	572	PP. Muaro	Padang	Medium	Dropline	4	52
79	572	PP. Muaro	Padang	Medium	Longline	5	61
80	572	PP. Muaro	Padang	Small	Dropline	1	5
81	572	PP. Muaro	Padang	Small	Longline	5	41
82	572	Pantai Ulakan	Padang Pariaman	Nano	Longline	10	17
33	572	PP. Labuan	Pandeglang	Small	Dropline	29	152
34	572	PP. Carocok Tarusan	Pesisir Selatan	Medium	Longline	4	40
85	572	PP. Kambang	Pesisir Selatan	Medium	Longline	3	30
86	572	Desa Pulau Tunda	Serang	Nano	Dropline	5	23
87	572	Desa Pulau Tunda	Serang	Small	Dropline	16	103
88	573	Desa Alor Kecil	Alor	Nano	Dropline	25	17
89	573	PP. Kedonganan	Badung	Nano	Dropline	30	56
90	573	PP. Grajagan	Banyuwangi	Nano	Dropline	452	1446
91	573	PP. Grajagan	Banyuwangi	Small	Dropline	150	780
92	573	PP. Pancer	Banyuwangi	Medium	Dropline	1	15
93	573	PP. Pancer	Banyuwangi	Nano	Dropline	174	348
94	573	PP. Pancer	Banyuwangi	Small	Dropline	125	625
95	573	Atapupu	Belu	Nano	Dropline	2	3
96	573	PP. Atapupu	Belu	Nano	Dropline	3	4
97	573	PP. Rompo	Bima	Nano	Dropline	15	15
98	573	PP. Rompo	Bima	Nano	Longline	57	44
99	573	PP. Sape	Bima	Nano	Dropline	162	553
100	573	PP. Sape	Bima	Small	Dropline	1	6
101	573	PP.Tambakrejo	Blitar	Nano	Longline	15	30
102	573	PP.Tambakrejo	Blitar	Small	Longline	1	6
103	573	Jetis	Cilacap	Nano	Longline	30	26
104	573	Pelabuhan Benoa	Denpasar	Medium	Dropline	11	241
105	573	Pelabuhan Benoa	Denpasar	Medium	Longline	1	27
106	573	PP. Tenau Kupang	Denpasar	Medium	Dropline	1	22
107	573	PP. Hu'u	Dompu	Small	Dropline	38	236
108	573	PP. Puger	Jember	Nano	Longline	50	160
109	573	Desa Yeh Kuning	Jembrana	Nano	Longline	150	126
110	573	PP. Pengambengan	Jembrana	Nano	Longline	20	40
111	573	Desa Tablolong	Kupang	Nano	Dropline	36	97
112	573	Pelabuhan Benoa	Kupang	Medium	Dropline	1	27
113	573	Pelabuhan Sulamu	Kupang	Nano	Dropline	50	87
114	573	PP. Mayangan	Kupang	Medium	Longline	1	29
115	573	PP. Oeba Kupang	Kupang	Nano	Dropline	5	5
		- · · · ·	Kupang	Medium	Dropline	-	~

Row	WPP	Registration Port	Home District	Boat Size		Ν	Total GT
117	573	PP. Tenau Kupang	Kupang	Medium	Longline	3	72
118	573	PP. Tenau Kupang	Kupang	Nano	Dropline	6	22
119	573	PP. Tenau Kupang	Kupang	Small	Dropline	21	166
120	573	Desa Tapolango	Lembata	Nano	Dropline	20	14
121	573	Desa waijarang	Lembata	Nano	Dropline	20	14
122	573	PP. Hadakewa	Lembata	Nano	Dropline	30	26
123	573	PP. Tanjung Luar	Lombok Timur	Medium	Longline	14	141
124	573	PP. Tanjung Luar	Lombok Timur	Nano	Dropline	15	36
125	573	PP. Tanjung Luar	Lombok Timur	Nano	Longline	39	101
126	573	Pulau Maringkik	Lombok Timur	Medium	Longline	1	10
127	573	Pulau Maringkik	Lombok Timur	Small	Longline	3	22
128	573	TPI Kampung Ujung	Manggarai Barat	Nano	Dropline	60	74
129	573	PP. Poumako	Mimika	Medium	Gillnet	1	29
130	573	PP. Watukarung	Pacitan	Nano	Longline	100	222
131	573	PP Cikidang	Pangandaran	Small	Gillnet	8	50
132	573	PP. Cikidang	Pangandaran	Nano	Gillnet	2	9
133	573	Desa Batutua	Rote Ndao	Nano	Dropline	9	11
134	573	Desa Oeseli	Rote Ndao	Nano	Dropline	2	2
135	573	Dusun Papela	Rote Ndao	Nano	Dropline	20	21 50
136	573	Sukabumi	Sukabumi	Nano	Longline	50 25	50
137	573	KSOP Kelas III Kupang	Sumba Barat	Nano	Dropline	35	80
138	573	Pelabuhan Waingapu	Sumba Barat	Nano	Dropline	8	14
139	573	Pelabuhan Waingapu	Sumba Barat	Nano	Longline	7	16
140	573	Desa Pulau Bungin	Sumbawa	Nano	Dropline	29	23
141	573	Desa Pulau Bungin	Sumbawa	Nano	Longline	15	12
142	573	Labuhan Mapin	Sumbawa	Nano	Dropline	61	43
143	573	Labuhan Mapin	Sumbawa	Nano	Longline	35	17
144	573	PP Labuhan Lalar	Sumbawa	Nano	Dropline	25	22
145	573	PP. Wini	Timor Tengah Utara	Nano	Dropline	7	12
146	711	PP. Sungailiat	Bangka	Medium	Trap	1	10
147	711	PP. Sungailiat	Bangka	Small	Dropline	1	6
148	711	PP. Sungailiat	Bangka	Small	Trap	17	133
149	711	PP. Kurau	Bangka Tengah	Small	Trap	30	159
150	711	Batam	Batam	Medium	Trap	2	56
151	711	Batam	Batam	Small	Dropline	2	12
152	711	Batam DD Manuary	Batam	Small Small	Trap	2	13
153	711	PP. Manggar	Belitung		Trap	1	9
154	711	PP. Tanjung Pandan	Belitung	Medium	Trap Ducu line	9	164
155 156	711	PP. Tanjung Pandan	Belitung	Nano	Dropline	108	250
156	711	PP. Tanjung Pandan	Belitung	Nano	Trap Ducu line	63	202
157	711	PP. Tanjung Pandan PP. Tanjung Pandan	Belitung	Small	Dropline	5 79	27 450
158	711		Belitung	Small	Trap	72	450
159	711	Tanjung Binga DD. Maraman Balitara Timura	Belitung	Small Madiana	Trap	20	192
$160 \\ 161$	$711 \\ 711$	PP. Manggar Belitung Timur	Belitung Timur Belitung Timur	Medium Nano	Trap Dropling	3	42
161 162	711 711	PP. Manggar Belitung Timur PP. Manggar Belitung Timur	Belitung Timur Belitung Timur	Nano	Dropline Trop	5	21
162	$711 \\ 711$	00 0	0	Nano	Trap Dropling	1	4
$163 \\ 164$	711 711	PP. Manggar Belitung Timur PP. Manggar Belitung Timur	Belitung Timur	Small Small	Dropline Trop	2	10
$164 \\ 165$	$711 \\ 711$	00 0	Belitung Timur Bintan		Trap Dropline	$\frac{87}{2}$	481
$165 \\ 166$	$711 \\ 711$	PP. Kijang PP. Kijang	Bintan Bintan	Medium Medium			33 4587
$166 \\ 167$	711 711	PP. Kijang	Bintan Bintan		Trap Trap	241	4587
167	$711 \\ 711$	PP. Kijang	Bintan Bintan	Nano	Trap Dropling	2	8 66
168 160	711	PP. Kijang	Bintan	Small	Dropline	10	66
$169 \\ 170$	$711 \\ 711$	PP. Kijang More	Bintan Karimun	Small	Trap Trap	204	1385
$170 \\ 171$	711	Moro Taniung Balai Karimun	Karimun	Small Madium	Trap Longling	1	7
171	711	Tanjung Balai Karimun	Karimun Kanulauan Anambaa	Medium	Longline	5	111
172	711	PP. Tarempa	Kepulauan Anambas Kepulauan Anambas	Nano	Dropline	202	298
$173 \\ 174$	711 711	PP. Tarempa PP. Tarempa	Kepulauan Anambas Kepulauan Anambas	Nano	Trap Dropling	19 11	24 62
174	711	PP. Tarempa	Kepulauan Anambas	Small	Dropline	11	63

Row	WPP	Registration Port	Home District	Boat Size		Ν	Total GT
175	711	PPI Ladan	Kepulauan Anambas	Nano	Dropline	73	182
176	711	PPI Ladan	Kepulauan Anambas	Small	Dropline	1	5
177	711	Pangkal Balam	Kota Pangkalpinang	Nano	Dropline	2	7
178	711	Pangkal Balam	Kota Pangkalpinang	Nano	Trap	1	4
179	711	Pangkal Balam	Kota Pangkalpinang	Small	Trap	12	67
180	711	PP. Muara Sungai Baturusa	Kota Pangkalpinang	Nano	Trap	3	12
181	711	PP. Muara Sungai Baturusa	Kota Pangkalpinang	Small	Trap	9	51
182	711	Dermaga Kayu Sededap	Natuna	Nano	Dropline	1	5
183	711	Desa Air Nusa	Natuna	Nano	Dropline	23	43
184	711	Desa Air Ringau	Natuna	Nano	Dropline	12	18
185	711	Desa Batu Ampar	Natuna	Nano	Dropline	5	4
186	711	Desa Batu Brilian	Natuna	Nano	Dropline	21	44
187	711	Desa Batu Brilian	Natuna	Nano	Trap	1	4
188	711	Desa Pakkalung	Natuna	Nano	Dropline	1	2
189	711	Desa Sabang Mawang Barat	Natuna	Small	Dropline	12	72
190	711	Desa Sedanau	Natuna	Nano	Dropline	22	79
191	711	Desa Sepempang	Natuna	Small	Dropline	22	132
192	711	Desa Serantas_ Teluk Lagong	Natuna	Nano	Dropline	23	69
193	711	Desa Subi besar	Natuna	Nano	Dropline	23	69
194	711	Desa Tanjung Belau	Natuna	Nano	Dropline	31	56
195	711	Desa Tanjung Kumbik Utara	Natuna	Small	Dropline	15	90
196	711	Desa Tanjung Setelung	Natuna	Nano	Dropline	9	16
197	711	Desa Tanjung Setelung	Natuna	Nano	Trap	18	39
198	711	Desa Tanjung Setelung	Natuna	Small	Trap	3	18
199	711	Desa Teluk Buton	Natuna	Nano	Dropline	26	78
200	711	Natuna	Natuna	Large	Longline	3	94
201	711	Pelabuhan Harapan Air Putih	Natuna	Nano	Dropline	59	159
202	711	Pelabuhan Harapan Air Putih	Natuna	Small	Dropline	1	6
203	711	Pelabuhan Midai	Natuna	Medium	Dropline	1	12
204	711	Pelabuhan Midai	Natuna	Medium	Trap	2	22
205	711	Pelabuhan Midai	Natuna	Small	Dropline	2	11
206	711	Pelabuhan Pasir Putih	Natuna	Nano	Dropline	1	2
207	711	Pelabuhan Pering	Natuna	Medium	Dropline	2	30 70
208	711	Pelabuhan Pering	Natuna	Nano	Dropline	21	78
209	711	Pelabuhan Pering	Natuna	Small Madiana	Dropline	1	8
210	711	Pelabuhan Sabang Barat-Midai	Natuna	Medium	Trap Du su lin s	1	11
211	711	Pelabuhan Sabang Barat-Midai	Natuna	Small	Dropline	2	11
212	711	Pelabuhan Tanjung	Natuna	Nano	Dropline Dropline	30	59
213	711	Pering	Natuna	Nano	Dropline Dropline	1	4
214	711	PP. Pering	Natuna	Small Madiana	Dropline Longline	1	5
215 216	711	PP. Tarempa Dulan Tima Natura	Natuna	Medium Small	Longline	1	18
216	711	Pulau Tiga Natuna	Natuna		Dropline Longline	1	8
217	711	Tanjung Balai Karimun	Natuna	Large	Longline	11	350
218	711	Tanjung Balai Karimun	Natuna Dati	Medium	Longline	43	1223
219	711	PP. Bajomulyo	Pati	Large Medium	Longline	1	85
220	711	PP. Kuala Mempawah	Pontianak Pontianak		Trap	2	20
221	711	PP. Kuala Mempawah PP. Tanjung Bandan		Small	Trap	3	$ \frac{19}{7} $
222	712 712	PP. Tanjung Pandan PP. Tanjung Pandan	Belitung	Nano Small	Trap Trap	2 12	7
223 224	712 712		Belitung		Trap Trap	12 26	63 404
224 225	712 712	Desa Parang	Jepara	Medium	Trap Trap	26 65	404
225	712 712	Desa Parang Palabuhan Kartini Japana	Jepara	Small	Trap Longlino	65_{15}	468
226	712 712	Pelabuhan Kartini, Jepara	Jepara	Nano Madium	Longline	15	21 104
227	712 712	PP. Karimun Jawa	Jepara	Medium	Trap	8	104
228	712	PP. Karimun Jawa	Jepara	Small	Trap Longilio e	4	37
229	712 712	TPI. Ujungbatu Kalurahan Dulau Kalana Dua	Jepara Kanulawan Sanihu	Nano	Longline	3	4
230	712 712	Kelurahan Pulau Kelapa Dua	Kepulauan Seribu Kepulauan Seribu	Small	Dropline	9	62
231	712 712	Kelurahan Pulau Pari Kelurahan Pulau Pari	Kepulauan Seribu Kepulauan Seribu	Nano	Trap	2	9 17
232	712	Kelurahan Pulau Pari	Kepulauan Seribu	Small	Trap	3	17

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
233	712	Kelurahan Pulau Untung Jawa	Kepulauan Seribu	Nano	Trap	20	36
234	712	Kelurahan Pulau Untung Jawa	Kepulauan Seribu	Small	Trap	8	51
235	712	PP. Brondong	Lamongan	Medium	Dropline	167	2158
236	712	PP. Brondong	Lamongan	Medium	Longline	14	176
237	712	PP. Brondong	Lamongan	Small	Dropline	115	880
238	712	PP. Brondong	Lamongan	Small	Longline	1	9
239	712	PP. Bajomulyo	Pati	Large	Longline	30	1432
240	712	PP. Bajomulyo	Pati	Medium	Longline	13	355
241	712	PP. Asem Doyong	Pemalang	Small	Dropline	10	57
242	712	PP. Mayangan	Probolinggo	Medium	Longline	1	29
243	712	PP. Pondok Mimbo	Situbondo	Nano	Longline	100	156
244	712	Desa Bancamara	Sumenep	Medium	Dropline	2	28
245	712	Desa Bancamara	Sumenep	Nano	Dropline	1	4
246	712	Desa Bancamara	Sumenep	Small	Dropline	102	702
247	712	Desa Masalima	Sumenep	Small	Dropline	12	84
248	712	Pagerungan Besar	Sumenep	Medium	Longline	4	41
249	712	Pagerungan Besar	Sumenep	Nano	Longline	21	28
250	712	Pagerungan Besar	Sumenep	Small	Longline	45	312
251	712	Pagerungan Kecil	Sumenep	Nano	Longline	30	36
252	712	PP. Dungkek	Sumenep	Medium	Dropline	3	32
253	712	PP. Dungkek	Sumenep	Nano	Dropline	2	9
254	712	PP. Dungkek	Sumenep	Small	Dropline	$\overline{7}$	43
255	712	Sumenep	Sumenep	Small	Dropline	300	2196
256	712	Pagatan	Tanah Bumbu	Small	Dropline	2	10
257	712	PP. Cituis	Tanggerang	Small	Trap	$\overline{7}$	64
258	713	PP. Filial Klandasan	Balikpapan	Nano	Dropline	2	8
259	713	PP. Filial Klandasan	Balikpapan	Small	Dropline	22	126
260	713	PP. Klandasan	Balikpapan	Small	Dropline	3	21
261	713	PP. Manggar Baru	Balikpapan	Medium	Dropline	16	274
262	713	PP. Manggar Baru	Balikpapan	Nano	Longline	1	3
263	713	PP. Manggar Baru	Balikpapan	Small	Dropline	1	6
264	713	PP. Manggar Baru	Balikpapan	Small	Longline	7	39
265	713	PP. Tanjung Pandan	Belitung	Nano	Trap	1	3
266	713	PP. Tanjung Pandan	Belitung	Small	Dropline	1	5
267	713	PP. Tanjung Pandan	Belitung	Small	Trap	4	21
268	713	PP. Kore	Bima	Nano	Dropline	10	33
269	713	Lok Tuan	Bontang	Nano	Dropline	4	13
270	713	PP. Tanjung Limau	Bontang	Nano	Dropline	5	11
271	713	PP. Tanjung Limau	Bontang	Small	Dropline	4	24
272	713	Tanjung Laut	Bontang	Nano	Dropline	1	1
273	713	Desa Sangsit	Buleleng	Nano	Dropline	50	15
274	713	PP. Dannuang	Bulukumba	Nano	Dropline	20	20
275	713	PP. Kalumeme	Bulukumba	Nano	Dropline	20	20
276	713	PP. Kota Bulukumba	Bulukumba	Nano	Dropline	300	300
277	713	PP. Keramat	Dompu	Nano	Longline	10	4
278	713	PP. Malaju	Dompu	Nano	Dropline	1	1
279	713	PP. Malaju	Dompu	Nano	Longline	1	0
280	713	PP. Malaju	Dompu	Small	Dropline	10	52
281	713	PP. Soro Kempo	Dompu	Nano	Longline	32	13
282	713	PP. Soro Kempo	Dompu	Small	Dropline	17	88
283	713	PP. Labean	Donggala	Nano	Dropline	27	24
284	713	Anawoi	Kolaka	Medium	Trap	5	64
285	713	PP. Beba	Kota Makassar	Medium	Dropline	25	349
286	713	PP. Beba	Kota Makassar	Medium	Longline	61	735
287	713	PP. Beba	Kota Makassar	Nano	Longline	1	3
288	713	PP. Beba	Kota Makassar	Small	Dropline	1	8
289	713	PP. Beba	Kota Makassar	Small	Longline	3	24
209	110						

Row	WPP	0	Home District	Boat Size		Ν	Total G
291	713	Kampung Terusan	Kutai Kartanegara	Small	Longline	10	85
292	713	Kuala Samboja	Kutai Kartanegara	Small	Longline	3	15
293	713	Pantai Biru Kersik	Kutai Kartanegara	Nano	Dropline	16	48
294	713	Semangkok	Kutai Kartanegara	Nano	Dropline	10	31
295	713	Maloy	Kutai Timur	Small	Dropline	1	5
296	713	Muara Selangkau	Kutai Timur	Nano	Dropline	40	120
297	713	PP. Kenyamukan	Kutai Timur	Medium	Dropline	3	32
298	713	PP. Kenyamukan	Kutai Timur	Nano	Dropline	40	40
299	713	PP. Kenyamukan	Kutai Timur	Small	Dropline	11	75
300	713	PP. Sangatta	Kutai Timur	Medium	Dropline	1	10
801	713	PP. Sangatta	Kutai Timur	Small	Dropline	5	31
302	713	PP. Brondong	Lamongan	Medium	Trap	1	19
803	713	Desa Wangatoa	Lembata	Nano	Dropline	20	23
804	713	Majene	Majene	Nano	Longline	38	114
805	713	Majene	Majene	Small	Dropline	1	7
806	713	Majene	Majene	Small	Longline	12	84
807	713	Pelabuhan Majene	Majene	Nano	Longline	34	96
808	713	PP. Rangas Majene	Majene	Nano	Longline	2	6
08 09	713	PP. Kasiwa	Mamuju	Nano	Dropline	$\frac{2}{31}$	93
103 10	713	PP. Kasiwa	Mamuju	Small	Dropline	4	33 20
10 11	713	PP. Labuhan Bajo	Manggarai Barat	Nano	Dropline	$\frac{4}{40}$	$\frac{20}{15}$
		0					
12	713	PP. Konge	Nagekeo	Nano	Dropline	30	8
313	713	Sumbawa	Pangkep	Nano	Longline	50	50
314	713	Muara Pasir	Paser	Nano	Longline	10	20
15	713	PP. Bajomulyo	Pati	Large	Longline	3	130
16	713	Kampung Pejala	Penajam Paser Utara	Nano	Dropline	2	7
17	713	Kampung Pejala	Penajam Paser Utara	Small	Dropline	17	85
18	713	Nenang	Penajam Paser Utara	Small	Trap	50	253
19	713	PP. Mayangan	Probolinggo	Medium	Longline	1	27
320	713	Desa Labuhan Sangoro	Sumbawa	Nano	Longline	20	37
21	713	Labuhan Sumbawa	Sumbawa	Medium	Dropline	1	17
322	713	Labuhan Sumbawa	Sumbawa	Nano	Dropline	3	12
23	713	Labuhan Sumbawa	Sumbawa	Small	Dropline	4	27
324	713	PP. Labuhan Terata	Sumbawa	Nano	Dropline	4	7
25	713	PP. Beba	Takalar	Medium	Dropline	2	25
26	713	PP. Beba	Takalar	Medium	Gillnet	12	185
27	713	PP. Beba	Takalar	Medium	Longline	19	244
28	713	PP. Beba	Takalar	Small	Dropline	2	17
20 29	713	PP. Beba	Takalar	Small	Gillnet	1	9
30	714	Kabola	Alor	Nano	Dropline	15	10
31	714	Kokar	Alor	Nano	Dropline	100	88
32	714 714	Banggai Kepulauan		Nano	Dropline	100	00 10
			Banggai Kepulauan Banggai Laut	Nano	-		
33	714	Banggai Laut	Banggai Laut		Dropline	50	50
34	714	Bontosi	Banggai Laut	Nano	Dropline	1	3
35	714	Desa Bontosi	Banggai Laut	Nano	Dropline	1	2
36	714	Desa Matanga	Banggai Laut	Nano	Longline	5	4
37	714	Desa Tinakin Laut	Banggai Laut	Nano	Dropline	1	1
38	714	Kasuari	Banggai Laut	Nano	Longline	14	16
39	714	PP. Tanjung Pandan	Belitung	Small	Dropline	1	6
40	714	Desa Balimu	Buton	Nano	Dropline	5	6
41	714	Kelurahan Watolo	Buton Tengah	Nano	Gillnet	4	4
42	714	Kelurahan Watolo	Buton Tengah	Nano	Longline	13	13
43	714	Desa Tanjung Batu	Kepulauan Tanimbar	Nano	Dropline	1	2
344	714	Kampung Babar	Kepulauan Tanimbar	Nano	Dropline	1	4
345	714	Kampung Barbar	Kepulauan Tanimbar	Nano	Dropline	6	12
46	714	Pasar Baru Omele Saumlaki	Kepulauan Tanimbar	Nano	Dropline	6	13
	714	Pasar Baru Omele Saumlaki	Kepulauan Tanimbar	Nano	Longline	1	3
347				TICUTO			

Row	WPP	Registration Port	Home District	Boat Size		Ν	Total GT
349	714	Saumlaki	Kepulauan Tanimbar	Nano	Dropline	3	8
350	714	PPI Soropia	Konawe	Medium	Trap	1	12
351	714	PPI Soropia	Konawe	Nano	Trap	1	1
352	714	Desa Labengki	Konawe Utara	Nano	Dropline	5	5
353	714	Labengki	Konawe Utara	Nano	Dropline	4	5
354	714	Labengki	Konawe Utara	Nano	Longline	1	1
355	714	Asilulu	Maluku Tengah	Nano	Dropline	30	56
356	714	Batu Lubang	Maluku Tengah	Nano	Dropline	30	53
357	714	PP. Tulehu	Maluku Tengah	Large	Dropline	1	34
358	714	Desa Langgur	Maluku Tenggara	Small	Dropline	1	10
359	714	Desa Selayar	Maluku Tenggara	Nano	Dropline	5	7
360	714	Desa Watdek	Maluku Tenggara	Small	Dropline	5	32
361	714	PP. Kema	Minahasa Utara	Large	Dropline	1	30
362	714	Desa Bahonsuai	Morowali	Nano	Dropline	3	3
363	714	Desa Moahino	Morowali	Nano	Longline	2	4
364	714	Desa Umbele	Morowali	Nano	Dropline	2	2
365	714	Desa Umbele	Morowali	Nano	Longline	2	4
366	714	Desa Limbo	Pulau Taliabu	Nano	Longline	30	18
367	714	Dusun Anauni	Seram Bagian Barat	Nano	Dropline	15	15
368	714	Dusun Anauni	Seram Bagian Barat	Nano	Longline	35	44
369	714	Dusun Huaroa	Seram Bagian Barat	Nano	Dropline	50	74
370	714	Dusun Huhua	Seram Bagian Barat	Nano	Dropline	20	27
371	714	Dusun Naeselan	Seram Bagian Barat	Nano	Dropline	20	33
372	714	Dusun Patinea	Seram Bagian Barat	Nano	Dropline	15	21
373	714	Dusun Pohon Batu	Seram Bagian Barat	Nano	Dropline	10	11
374	714	Dusun Waisela	Seram Bagian Barat	Nano	Dropline	4	4
375	714	Desa Mangon	Tual	Small	Dropline	1	7
376	714	PP. Tual	Tual	Medium	Dropline	1	28
377	714	PP. Tual	Tual	Nano	Dropline	1	2
378	714	PP. Tual	Tual	Small	Dropline	4	25
379	714	Binongko	Wakatobi	Medium	Dropline	1	13
380	714	Binongko	Wakatobi	Nano	Dropline	28	16
381	714	Dermaga Desa Wali	Wakatobi	Small	Dropline	1	5
382	714	Desa Lagongga	Wakatobi	Nano	Dropline	7	26
383	714	Desa Lagongga	Wakatobi	Small	Dropline	1	6
384	714	Desa Wali	Wakatobi	Nano	Dropline	2	8
385	714	Pelabuhan Lagelewa	Wakatobi	Nano	Dropline	1	3
386	715	Desa Jayabakti	Banggai	Nano	Dropline	51	40
387	715	Desa Jayabakti	Banggai	Nano	Longline	5	4
388	715	Pagimana	Banggai	Nano	Dropline	2	4
389	715	Pangkalaseang	Banggai	Nano	Dropline	10	10
390	715	Kampung Sekar	Fakfak	Nano	Dropline	7	7
391	715	Kampung Sosar, Kokas	Fakfak	Nano	Dropline	7	7
392	715	Kampung Ugar	Fakfak	Nano	Dropline	17	11
393	715	Pasar Sorpeha	Fakfak	Nano	Dropline	9	22
394	715	PP. PP. Dulan Pok-Pok	Fakfak	Nano	Dropline	215	206
395	715	Bacan	Halmahera Selatan	Nano	Dropline	9	5
396	715	Bacan	Halmahera Selatan	Nano	Longline	1	0
397	715	Bacan Barat	Halmahera Selatan	Nano	Dropline	6	2
398	715	Bacan Tengah	Halmahera Selatan	Nano	Dropline	24	8
399	715	Bacan Timur	Halmahera Selatan	Nano	Dropline	4	1
400	715	Bacan Utara	Halmahera Selatan	Nano	Dropline	5	2
401	715	Desa Akegula	Halmahera Selatan	Nano	Dropline	15	16
402	715	Desa Amasing Kota Barat	Halmahera Selatan	Nano	Longline	1	2
403	715	Desa Babang	Halmahera Selatan	Nano	Dropline	7	4
404	715	Desa Jikotamo	Halmahera Selatan	Nano	Dropline	15	20
405	715	Desa Laiwui	Halmahera Selatan	Nano	Dropline	12	13

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Sali Kecil Desa Tabapoma Gane Barat Gane Timur Selatan Kep. Batang Lomang Kep. Joronga Mandioli Selatan Mandioli Utara Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana PU. Kaimana PU. Kaimana PSar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kiltay Desa Namalena	Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kota Tidore Kepulauan Minahasa Utara Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Nano Nano	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Longline Dropline	$\begin{array}{c} 20\\ 11\\ 15\\ 40\\ 12\\ 7\\ 13\\ 17\\ 30\\ 10\\ 62\\ 7\\ 48\\ 10\\ 33\\ 10\\ 2\\ 2\\ 1\\ 2\\ 10\\ 55 \end{array}$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Gane Barat Gane Timur Selatan Kep. Batang Lomang Kep. Joronga Mandioli Selatan Mandioli Utara Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana Pu. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Nano Nano	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Longline Dropline	$15 \\ 40 \\ 12 \\ 7 \\ 13 \\ 17 \\ 30 \\ 10 \\ 62 \\ 7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	5 13 4 2 4 5 13 3 18 7 78 10 33 10 49 30 30 43 10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Gane Timur Selatan Kep. Batang Lomang Kep. Joronga Mandioli Selatan Mandioli Utara Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana Pu. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Nano Nano	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Longline Dropline	$\begin{array}{c} 40\\ 12\\ 7\\ 13\\ 17\\ 30\\ 10\\ 62\\ 7\\ 48\\ 10\\ 33\\ 10\\ 2\\ 2\\ 1\\ 2\\ 10\\ 55\\ \end{array}$	$ \begin{array}{r} 13 \\ 4 \\ 2 \\ 4 \\ 5 \\ 13 \\ 3 \\ 18 \\ 7 \\ 78 \\ 10 \\ 33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10 \\ 10 \\ 41 \\ 10 \\ 42 \\ 10 \\ 43 \\ 10 \\ 7 \\ 7 \\ 10 \\ 43 \\ 10 \\ 43 \\ 10 \\ 43 \\ 10 \\ 10 \\ 43 \\ 10 \\ 1$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 Kep. Batang Lomang Kep. Joronga Mandioli Selatan Mandioli Utara Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Kilfura Desa Kilfura Desa Kilfura 	Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Nano Nano	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Longline Dropline	$12 \\ 7 \\ 13 \\ 17 \\ 30 \\ 10 \\ 62 \\ 7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 4\\ 2\\ 4\\ 5\\ 13\\ 3\\ 18\\ 7\\ 78\\ 10\\ 33\\ 10\\ 49\\ 30\\ 30\\ 43\\ 10\\ \end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Kep. Joronga Mandioli Selatan Mandioli Utara Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana PU. Kaimana PU. Kaimana PSasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Nano Nano	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Longline Dropline Dropline	$\begin{array}{c} 7 \\ 13 \\ 17 \\ 30 \\ 10 \\ 62 \\ 7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \end{array}$	2 4 5 13 3 18 7 78 10 33 10 49 30 30 43 10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Mandioli Selatan Mandioli Utara Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana PU. Kaimana PU. Kaimana PSA Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Nano Nano	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Doropline Dropline Dropline	$ \begin{array}{r} 13 \\ 17 \\ 30 \\ 10 \\ 62 \\ 7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \\ \end{array} $	$\begin{array}{c} 4 \\ 5 \\ 13 \\ 3 \\ 18 \\ 7 \\ 78 \\ 10 \\ 33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10 \end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Mandioli Utara Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana PU. Kaimana PU. Kaimana PSA Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Nano Medium Large Medium Nano Nano Large Medium	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Dropline Dropline Dropline Dropline Dropline	$17 \\ 30 \\ 10 \\ 62 \\ 7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \\ 17 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	5 13 3 18 7 78 10 33 10 49 30 30 43 10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Pasar Tembal Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana PU. Kaimana PU. Kaimana PSasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Medium Large Medium Nano Nano Large Medium	Dropline Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Dropline Dropline Dropline Dropline Dropline	$ \begin{array}{r} 30 \\ 10 \\ 62 \\ 7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \\ \end{array} $	$ 13 \\ 3 \\ 18 \\ 7 \\ 78 \\ 10 \\ 33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10 $
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Puau Obilatu Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana PU. Kaimana Pu. Kaimana PSA Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Nano Medium Large Medium Nano Nano Large Medium	Dropline Dropline Dropline Dropline Dropline Dropline Longline Longline Longline Dropline Dropline Dropline	$ \begin{array}{c} 10\\62\\7\\48\\10\\33\\10\\2\\1\\2\\1\\2\\10\\55\end{array} $	$egin{array}{cccc} 3 \\ 18 \\ 7 \\ 78 \\ 10 \\ 33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10 \end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Pulau Obi Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana PU. Kaimana PU. Kaimana PSA Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Selatan Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Nano Medium Medium Large Medium Nano Large Medium	Dropline Dropline Dropline Dropline Dropline Longline Longline Longline Dropline Dropline Dropline	$\begin{array}{c} 62 \\ 7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \end{array}$	$ 18 \\ 7 \\ 78 \\ 10 \\ 33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10 \\ $
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Buli Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Timur Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Nano Medium Medium Large Medium Nano Large Medium	Dropline Dropline Dropline Dropline Dropline Longline Longline Dropline Dropline Dropline	$7 \\ 48 \\ 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55$	$7 \\ 78 \\ 10 \\ 33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Halmahera Timur Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota Namatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Halmahera Timur Kaimana Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Nano Medium Medium Large Medium Nano Large Medium	Dropline Dropline Dropline Dropline Longline Longline Dropline Dropline Dropline	$\begin{array}{c} 48\\ 10\\ 33\\ 10\\ 2\\ 2\\ 1\\ 2\\ 10\\ 55 \end{array}$	$78\\10\\33\\10\\49\\30\\30\\43\\10$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Trikora Kampung Air Merah Kampung Air Tiba Namatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Kaimana Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Medium Medium Large Medium Nano Large Medium	Dropline Dropline Dropline Longline Longline Dropline Dropline Dropline	$ \begin{array}{r} 10 \\ 33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \\ \end{array} $	$ \begin{array}{r} 10 \\ 33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10 \\ \end{array} $
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Kampung Air Merah Kampung Air Tiba Namatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kiltay	Kaimana Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Medium Large Medium Nano Nano Large Medium	Dropline Dropline Longline Longline Dropline Dropline Dropline	$33 \\ 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55$	$33 \\ 10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Kampung Air Tiba Namatota Numatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kiltay	Kaimana Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Medium Large Medium Nano Nano Large Medium	Dropline Dropline Longline Longline Dropline Dropline Dropline	$ \begin{array}{r} 10 \\ 2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55 \\ \end{array} $	$10 \\ 49 \\ 30 \\ 30 \\ 43 \\ 10$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Namatota Namatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Medium Medium Large Medium Nano Large Medium	Dropline Longline Longline Dropline Dropline Dropline	$2 \\ 2 \\ 1 \\ 2 \\ 10 \\ 55$	49 30 30 43 10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Namatota PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Kaimana Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Medium Large Medium Nano Large Medium	Longline Longline Dropline Dropline Dropline	2 1 2 10 55	$30 \\ 30 \\ 43 \\ 10$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PU. Kaimana PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kilfura	Kaimana Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Large Medium Nano Large Medium	Longline Longline Dropline Dropline Dropline	$ \begin{array}{c} 1 \\ 2 \\ 10 \\ 55 \end{array} $	$30 \\ 43 \\ 10$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PU. Kaimana Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kiltay	Kaimana Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Medium Nano Nano Large Medium	Longline Dropline Dropline Dropline	2 10 55	$\begin{array}{c} 43\\10\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Pasar Galala Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kiltay	Kota Tidore Kepulauan Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Nano Large Medium	Dropline Dropline Dropline	$\begin{array}{c} 10 \\ 55 \end{array}$	10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Sawai PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kiltay	Maluku Tengah Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Nano Large Medium	Dropline Dropline	55	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PP. Kema PP. Kema Desa Geser Desa Kilfura Desa Kiltay	Minahasa Utara Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Large Medium	Dropline		C1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PP. Kema Desa Geser Desa Kilfura Desa Kiltay	Minahasa Utara Seram Bagian Timur Seram Bagian Timur	Medium			61
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Geser Desa Kilfura Desa Kiltay	Seram Bagian Timur Seram Bagian Timur		-	3	130
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Kilfura Desa Kiltay	Seram Bagian Timur	3.7	Dropline	11	320
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Kiltay		Nano	Dropline	44	62
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ū.		Nano	Dropline	31	27
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Namalena	Seram Bagian Timur	Nano	Dropline	25	25
$\begin{array}{rrrr} 436 & 715 \\ 437 & 715 \\ 438 & 715 \\ 439 & 715 \\ 440 & 715 \\ 441 & 715 \\ 442 & 715 \\ 443 & 715 \\ 443 & 715 \\ 444 & 715 \\ 445 & 715 \\ 446 & 715 \end{array}$	1) COU 1 (UIIIGICIIG	Seram Bagian Timur	Nano	Dropline	26	26
$\begin{array}{rrrrr} 437 & 715 \\ 438 & 715 \\ 439 & 715 \\ 440 & 715 \\ 441 & 715 \\ 442 & 715 \\ 443 & 715 \\ 443 & 715 \\ 444 & 715 \\ 445 & 715 \\ 446 & 715 \end{array}$	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Dropline	10	17
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Longline	10	17
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Desa Waru	Seram Bagian Timur	Nano	Longline	2	3
$\begin{array}{rrrr} 440 & 715 \\ 441 & 715 \\ 442 & 715 \\ 443 & 715 \\ 444 & 715 \\ 445 & 715 \\ 446 & 715 \end{array}$	Pulau Parang	Seram Bagian Timur	Nano	Dropline	10	17
$\begin{array}{rrrr} 440 & 715 \\ 441 & 715 \\ 442 & 715 \\ 443 & 715 \\ 444 & 715 \\ 445 & 715 \\ 446 & 715 \end{array}$	Desa Kali Remu	Sorong	Nano	Dropline	2	6
$\begin{array}{rrrr} 442 & 715 \\ 443 & 715 \\ 444 & 715 \\ 445 & 715 \\ 446 & 715 \end{array}$	Desa Kali Remu	Sorong	Nano	Trap	1	3
$\begin{array}{rrrr} 442 & 715 \\ 443 & 715 \\ 444 & 715 \\ 445 & 715 \\ 446 & 715 \end{array}$	Jembatan Puri Sorong	Sorong	Medium	Dropline	4	75
444 715445 715446 715	Jembatan Puri Sorong	Sorong	Small	Dropline	3	20
444 715445 715446 715	PP. Sorong	Sorong	Medium	Dropline	9	170
446 715	PP. Sorong	Sorong	Medium	Longline	1	17
446 715	PP. Sorong	Sorong	Medium	Trap	10	153
	PP. Sorong	Sorong	Nano	Dropline	3	11
	PP. Sorong	Sorong	Small	Trap	2	18
448 715	Bajugan	Tolitoli	Nano	Dropline	10	6
449 716	Biduk-biduk	Berau	Medium	Dropline	1	22
450 716	Biduk-biduk	Berau	Nano	Dropline	23	69
451 716	Desa Tanjung Batu	Berau	Nano	Dropline	64	192
452 716	Giring-giring	Berau	Nano	Dropline	22	66
453 716	Labuan Cermin	Berau	Nano	Dropline	1	3
454 716	P. Derawan	Berau	Nano	Trap	4	7
455 716	Pantai Harapan	Berau	Nano	Dropline	20	60
456 716	Tanjung Batu	Berau	Nano	Trap	6	18
457 716	Tanjung Batu	Berau	Small	Trap	1	8
458 716	Teluk Sulaiman	Berau	Nano	Dropline	29	87
459 716	Desa Sampiro	Bolaang Mongondow Utara		Dropline	11	4
460 716		Gorontalo Utara	Nano	Dropline	11	5
461 716		Gorontalo Utara	Nano	Dropline	21	16
462 716	Desa Bulontio		Nano	Dropline	10	3
463 716	Desa Bulontio Desa Buluwatu	Gorontalo Utara		Dropline	10 26	5 7
464 716	Desa Bulontio	Gorontalo Utara Gorontalo Utara	Nano		4	2

Row	WPP	Registration Port	Home District	Boat Size		Ν	Total GT
465	716	Desa Lipang	Kepulauan Sangihe	Nano	Dropline	5	2
466	716	Desa Paruruang	Kepulauan Sangihe	Nano	Dropline	16	8
467	716	Desa Parururang	Kepulauan Sangihe	Nano	Dropline	5	2
468	716	Kampung Lipang	Kepulauan Sangihe	Nano	Dropline	5	1
469	716	Sangihe	Kepulauan Sangihe	Nano	Dropline	2	0
470	716	Tariang Baru	Kepulauan Sangihe	Nano	Longline	4	3
471	716	Buhias	Kepulauan Sitaro	Nano	Dropline	153	124
472	716	Mahongsawang Tagulandang	Kepulauan Sitaro	Nano	Dropline	8	4
473	716	Mongsawang	Kepulauan Sitaro	Nano	Dropline	16	6
474	716	Pulau Biaro	Kepulauan Sitaro	Nano	Dropline	29	7
475	716	Desa Damau	Kepulauan Talaud	Nano	Dropline	8	3
476	716	Dusun Bawunian	Kepulauan Talaud	Nano	Dropline	26	29
477	716	Belakang BRI, Selumit Pantai	Tarakan	Nano	Longline	46	138
478	716	Belakang BRI, Selumit Pantai	Tarakan	Small	Longline	4	20
479	716	Mamburungan Dalam	Tarakan	Nano	Dropline	48	144
480	717	Biak	Biak	Nano	Dropline	1796	1793
481	717	Desa Nikakamp	Biak	Nano	Dropline	4	7
482	717	Desa Tanjung Barari	Biak	Nano	Dropline	5	4
483	717	Fanindi Pantai	Manokwari	Nano	Dropline	10	26
484	717	Kampung Arowi 2	Manokwari	Nano	Dropline	4	9
485	717	Kampung Borobudur 2	Manokwari	Nano	Dropline	12	30
486	717	Kampung Fanindi	Manokwari	Nano	Dropline	20	22
487	717	Kampung Kimi	Nabire	Nano	Dropline	1	1
488	717	Kampung Smoker	Nabire	Nano	Dropline	4	9
489	717	Kampung Waharia	Nabire	Nano	Dropline	2	2
490	717	Pasar Kalibobo	Nabire	Nano	Dropline	1	4
491	717	PP. Sanoba	Nabire	Nano	Dropline	4	14
492	717	Wasior	Teluk Wondama	Nano	Dropline	19	23
493	718	PP. Nizam Zachman	Jakarta Utara	Large	Longline	4	205
494	718	Namatota	Kaimana	Large	Longline	1	72 72
495	718	Dusun Wamar Desa Durjela	Kepulauan Aru	Medium	Longline	4	73
496	718	PP. Bajomulyo	Kepulauan Aru	Large	Gillnet	1	82 02
497	718	PP. Benjina	Kepulauan Aru	Large	Longline	2	92
498	718	PP. Dobo	Kepulauan Aru	Large	Gillnet	8	527 506
499 500	718	PP. Dobo	Kepulauan Aru Kepulauan Aru	Large Medium	Longline	$\frac{10}{93}$	596 1659
500 501	$718 \\ 718$	PP. Dobo	-	Medium	Dropline Gillnet	95 5	$\begin{array}{c} 1658 \\ 121 \end{array}$
501 502	718 718	PP. Dobo PP. Dobo	Kepulauan Aru Kepulauan Aru	Medium			
$502 \\ 503$	718 718	PP. Dobo	Kepulauan Aru Kepulauan Aru	Nano	Longline Dropline	$\begin{array}{c} 10 \\ 11 \end{array}$	$\frac{185}{30}$
$503 \\ 504$	718	PP. Dobo	Kepulauan Aru	Nano	Longline	8	$\frac{30}{23}$
$504 \\ 505$	718	PP. Dobo	Kepulauan Aru	Small	Dropline	7	$\frac{23}{56}$
$505 \\ 506$	718	PP. Dobo	Kepulauan Aru	Small	Longline	1	50 7
$500 \\ 507$	718	PP. Kaimana	Kepulauan Aru	Large	Longline	1	51
508	718	PP. Klidang Lor	Kepulauan Aru	Large	Gillnet	1	73
$500 \\ 509$	718	PP. Mayangan	Kepulauan Aru	Large	Longline	19	1405
$503 \\ 510$	718	PP. Merauke	Kepulauan Aru	Large	Longline	4	397
511	718	PP. Nizam Zachman	Kepulauan Aru	Large	Gillnet	1	92
$511 \\ 512$	718	PP. Pekalongan	Kepulauan Aru	Large	Gillnet	1	115
$512 \\ 513$	718	PU. Dobo	Kepulauan Aru	Large	Gillnet	3	285
$513 \\ 514$	718	PU. Dobo	Kepulauan Aru	Large	Longline	36	2670
$514 \\ 515$	718	Saumlaki	Kepulauan Tanimbar	Nano	Dropline	$\frac{30}{37}$	109
$510 \\ 516$	718	Saumlaki	Kepulauan Tanimbar	Small	Dropline	1	5
$510 \\ 517$	718	Saumlaki	Kepulauan Tanimbar Kepulauan Tanimbar	Small	Longline	5	$\frac{5}{37}$
$517 \\ 518$	718	PP. Bajomulyo	Merauke	Large	Gillnet	1	91
$510 \\ 519$	718	PP. Merauke	Merauke	Large	Gillnet	48	3873
$519 \\ 520$	718 718	PP. Merauke	Merauke	Large	Longline	$\frac{48}{2}$	213
$520 \\ 521$	718	PP. Merauke	Merauke	Medium	Gillnet	$\frac{2}{5}$	138
$521 \\ 522$	718	PP. Nizam Zachman	Merauke	Large	Gillnet	13	841
044	110	11. mzam Zaemnan	meraune	Large	Guinet	10	041

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
523	718	PP. Nizam Zachman	Merauke	Large	Longline	1	60
524	718	PP. Poumako	Merauke	Medium	Gillnet	3	88
525	718	PP. Tegal	Merauke	Large	Gillnet	1	148
526	718	PP. Bajomulyo	Mimika	Large	Longline	1	82
527	718	PP. Dobo	Mimika	Large	Gillnet	1	75
528	718	PP. Mayangan	Mimika	Large	Gillnet	1	129
529	718	PP. Merauke	Mimika	Large	Gillnet	2	123
530	718	PP. Merauke	Mimika	Medium	Gillnet	2	49
531	718	PP. Muara Angke	Mimika	Large	Gillnet	1	92
532	718	PP. Nizam Zachman	Mimika	Large	Gillnet	1	88
533	718	PP. Paumako	Mimika	Large	Gillnet	1	30
534	718	PP. Paumako	Mimika	Medium	Gillnet	2	58
535	718	PP. Pekalongan	Mimika	Large	Gillnet	1	112
536	718	PP. Pomako	Mimika	Medium	Gillnet	1	16
537	718	PP. Poumako	Mimika	Large	Gillnet	2	60
538	718	PP. Poumako	Mimika	Medium	Gillnet	12	284
539	718	PP. Poumako	Mimika	Small	Gillnet	3	28
540	718	Timika	Mimika	Medium	Longline	3	88
541	718	PP. Bajomulyo	Pati	Large	Longline	1	119
542	718	Bagansiapiapi	Probolinggo	Large	Longline	1	40
543	718	Pelabuhan Perikanan Mayangan	Probolinggo	Large	Longline	1	35
544	718	PP. Dobo	Probolinggo	Large	Longline	2	142
545	718	PP. Mayangan	Probolinggo	Large	Gillnet	3	124
546	718	PP. Mayangan	Probolinggo	Large	Longline	33	2068
547	718	PP. Mayangan	Probolinggo	Medium	Longline	7	199
548	718	Probolinggo	Probolinggo	Large	Longline	20	1460
549	718	PP. Lappa	Sinjai	Large	Dropline	1	35
550	718	PP. Lappa	Sinjai	Medium	Dropline	10	235
551	718	PP. Bajomulyo	Tual	Large	Longline	1	87
		TOTAL				11536	62678

2.5 I-Fish Community

I-Fish Community only stores data that are relevant to fisheries management, whereas data on processed volume and sales, from the Smart Weighing and Measuring System, remain on servers at processing companies. Access to the I-Fish Community database is controlled by user name and password. I-Fish Community has different layers of privacy, which is contingent on the user's role in the supply chain. For instance, boat owners may view exact location of their boats, but not of the boats of other owners.

I-Fish Community has an automatic length-frequency distribution reporting system for length-based assessment of the fishery by species. The database generates length frequency distribution graphs for each species, together with life history parameters including length at maturity (Lmat), optimum harvest size (Lopt: Beverton, 1992), asymptotic length (Linf), and maximum total length (Lmax). Procedures for estimation of these length based life history characteristics are explained in the "Guide to Length Based Stock Assessment" (Mous et al., 2020). The data base also includes size limits used in the trade. These "trade limit" lengths are derived from general buying behavior (minimal weight) of processing companies. The weights are converted into lengths by using species-specific length- weight relationships.

Each length frequency distribution is accompanied by an automated length-based assessment on current status of the fishery by species. Any I-Fish Community user can access these graphs and the conclusions from the assessments. The report produces an assessment for the 50 most abundant species in the fishery, based on complete catches from the most recent complete calendar year (to ensure full year data sets). Graphs for the Top 20 species show the position of the catch length frequency distributions relative to various life history parameter values and trading limits for each species. Relative abundance of specific size groups is plotted for all years for which data are available, to indicate trends in status by species.

Immature fish, small mature fish, large mature fish, and a subset of large mature fish, namely "mega-spawners", which are fish larger than 1.1 times the optimum harvest size (Froese 2004), make up the specific size groups used in our length based assessment. For all fish of each species in the catch, the percentage in each category is calculated for further use in the length based assessment. These percentages are calculated and presented as the first step in the length based assessment as follows: W% is immature (smaller than the length at maturity), X% is small matures (at or above size at maturity but smaller than the optimum harvest size), and Y% is large mature fish (at or above optimum harvest size). The percentage of mega-spawners is Z%.

The automated assessment comprises of five elements from the catch length frequencies. These elements all work with length based indicators of various kinds to draw conclusions from species specific length frequencies in the catch.

1. Minimum size as traded compared to length and maturity.

We use a comparison between the trade limit (minimum size accepted by the trade) and the size at maturity as an indicator for incentives from the trade for either unsustainable targeting of juveniles or for more sustainable targeting of mature fish that have spawned at least once. We consider a trade limit at 10% below or above the length at maturity to be significantly different from the length at maturity and we consider trade limits to provide incentives for targeting of specific sizes of fish through price differentiation. IF "TradeLimit" is lower than 0.9 * L-mat THEN: "The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high."

ELSE, IF "TradeLimit" is greater than or equal to 0.9 * L-mat AND "TradeLimit" is lower than or equal to 1.1 * L-mat THEN: "The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium."

ELSE, IF "TradeLimit" is greater than 1.1 * L-mat THEN: "The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low."

2. Proportion of immature fish in the catch.

With 0% immature fish in the catch as an ideal target (Froese, 2004), a target of 10% or less is considered a reasonable indicator for sustainable (or safe) harvesting (Fujita et al., 2012; Vasilakopoulos et al., 2011). Zhang et al. (2009) consider 20% immature fish in the catch as an indicator for a fishery at risk, in their approach to an ecosystem based fisheries assessment. Results from meta-analysis over multiple fisheries showed stock status over a range of stocks to fall below precautionary limits at 30% or more immature fish in the catch (Vasilakopoulos et al., 2011). The fishery is considered highly at risk when more than 50% of the fish in the catch are immature (Froese et al, 2016).

IF "% immature" is lower than or equal to 10% THEN: "At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low."

ELSE, IF "% immature" is greater than 10% AND "% immature" is lower than or equal to 20% THEN: "Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium."

ELSE, IF "% immature" is greater than 20% AND "% immature" is lower than or equal to 30% THEN: "Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium."

ELSE, IF "% immature" is greater than 30% AND "% immature" is lower than or equal to 50% THEN: "Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high."

ELSE, IF "% immature" is greater than 50% THEN: "The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high."

3. Current exploitation level.

We use the current exploitation level expressed as the percentage of fish in the catch below the optimum harvest size as an indicator for fisheries status. We consider a proportion of 65% of the fish (i.e. the vast majority in numbers) in the catch below the optimum harvest size as an indicator for growth overfishing. We therefore consider a majority in the catch around or above the optimum harvest size (large matures) as an indicator for minimizing the impact of fishing (Froese et al., 2016). This indicator will be achieved when less than 50% of the fish in the catch are below the optimum harvest size.

IF "% immature + % small mature" is greater than or equal to 65% THEN: "The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high."

ELSE, IF "% immature + % small mature" is lower than or equal to 50% THEN: "The majority of the catch consists of size classes around or above the optimum harvest size (large mature fish). This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low."

ELSE, IF "% immature + % small mature" is greater than 50% AND "% immature + % small mature" is lower than 65% THEN: "The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium."

4. Proportion of mega spawners in the catch.

Mega spawners are fish larger than 1.1 times the optimum harvest size. We consider a proportion of 30% or more mega spawners in the catch to be a sign of a healthy population (Froese, 2004), whereas lower proportions are increasingly leading to concerns, with proportions below 20% indicating great risk to the fishery.

IF "% mega spawners" is greater than 30% THEN: "More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low."

ELSE, IF "% mega spawners" is greater than 20% AND "% mega spawners" is lower than or equal to 30% THEN: "The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium." ELSE, IF "% mega spawners" is lower than or equal to 20%, THEN: "Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

5. Spawning Potential Ratio.

As an indicator for Spawning Potential Ratio (SPR, Quinn and Deriso, 1999), we used the estimated spawning stock biomass as a fraction of the spawning stock biomass of that population if it would have been pristine (Meester et al 2001). We calculated SPR on a per-recruit basis from life-history parameters M, F, K, and Linf, and from gear selectivity parameters in the smaller part of the size spectrum caught by the fishery.

We estimated the instantaneous total mortality (Z) from the equilibrium Beverton-Holt estimator from length data using Ehrhardt and Ault (1992) bias-correction, implemented through the function bheq of the R Fishmethods package. For this estimation, we used the length range of the catch length-frequency distribution starting with the length 5% higher than the modal length and ending with the 99th percentile. We assumed that Z, and its constituents M and F, were constant over length range that we used to estimate Z. We calculated F (fishing mortality) as the difference between Z and M, assuming full selectivity for the size range starting at modal length and ending with the largest fish in the catch. We assumed an S-shaped (logistic) selectivity curve, with 99% selectivity achieved at modal length, and with the length at 50% selectivity halfway between the first percentile and modal length of the catch length-frequency distribution.

Gislason et al (2010) provides evidence that M increases with decreasing length, and fisheries scientists agree that the smaller size classes of each fish species experience higher mortality than larger fish due to higher predation risk. The method we used for calculating Z, however, assumes a Z that is constant, implicating a constant M, over the length range over which we estimated Z. To iron out this inconsistency, we applied the Gislason et al (2010) empirical relationship to the length classes (1 cm width) over which we estimated Z, we calculated the average M over these size classes, and we applied that average to the Z estimation range. Outside this range (i.e., at lengths below 1.05 times modal length and lengths above the 99th percentile), we assumed a varying M following Gislason's formula (Mous et al., 2020).

In a perfect world, fishery biologists would know what the appropriate SPR should be for every harvested stock based on the biology of that stock. Generally, however, not enough is known about managed stocks to be so precise. However, studies show that some stocks (depending on the species of fish) can maintain themselves if the spawning stock biomass per recruit can be kept at 20 to 35% (or more) of what it was in the un-fished stock. Lower values of SPR may lead to severe stock declines (Wallace and Fletcher, 2001). Froese et al. (2016) considered a total population biomass B of half the pristine population biomass Bo to be the lower limit reference point for stock size, minimizing the impact of fishing. Using SPR and B/Bo estimates from our own data set, this Froese et al. (2016) lower limit reference point correlates with an SPR of about 40%, not far from but slightly more conservative than the Wallace and Fletcher (2001) reference point. We chose an SPR of 40% as our reference point for low risk and after similar comparisons we consider and SPR between 25% and 40% to represent a medium risk situation. Risk levels on the basis of SPR estimates are determined as follows:

IF "SPR" is lower than 25% THEN: "SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high."

ELSE, IF "SPR" is greater than or equal to 25% AND "SPR" is lower than 40% THEN: "SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium."

ELSE, IF "SPR" is greater than or equal to 40% THEN: "SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low."

3 Fishing grounds and traceability

The Spot Trace data from the Timor Sea and Arafura Sea fisheries illustrate a classic "fishing the line" phenomenon. Many vessels fish right at the Indonesia - Australia border, on the edge of better managed fishing grounds on the Australian side, where fish densities are expected to be higher. Several drop line fishers were observed to operate illegally in Australian waters and some of these have been arrested by Australian patrol boats in 2015. Other vessels have been observed to illegally fish in Timor Leste waters. There is apparently little or no enforcement of fisheries regulations in Timor Leste waters and especially the Joint Petroleum Development Area or JPDA (Figure 3.1) is frequently targeted illegally by Indonesian vessels.

The Spot Trace data from WPP 718 and surrounding areas show great mobility of the medium-scale snapper fishing boats, making trips to fishing grounds that are up to 1,000 kilometres away from home ports (Figures 3.2 and 3.3). Not only are these fleets highly mobile in terms of their trips from home port, they are also flexible in changing their base of operations from one port to another, changing from landing at home port to offloading on transport vessels in remote ports or offloading for air cargo at yet other places. Decision making on movements by boat owners can be based on fisheries technical issues such as catch rates or weather, but also on administrative issues like licensing or enforcement of rules against under-marking in Gross Tonnage. Most recently we are observing movement of staging ports but also of processing capacity to remote areas in the east such as the island of Penambulai, East of the Aru Islands. Fish is landed there and moved onto transport vessels bound for processing plants elsewhere in the country.

Therefore the fish that is processed in major processing centres like Probolinggo comes from a number of different fleets that operate throughout the waters of Eastern Indonesian, including also WPP 718. For the purpose of this report, all fishing trips, recorded (from SPOT data) within WPP 718, mostly from long line and drop line operations (Figures 3.4 and 3.5), were included in the analysis for this WPP. This includes fishing trips originating from outside the WPP, for example from Probolinggo, Bali or Kema.

Potential IUU issues include the operation by various fleets outside Indonesian waters in the East Timorese - Australian JPDA as well as in strictly Australian waters. Additional issues include the under marking of medium scale vessels to below 30GT, the licensing of the various fleets for various WPP and the operation of fleets from remote ports inside Marine Protected Areas throughout Eastern Indonesia. All this needs to be discussed with fishing boat captains and boat owners to prevent issues of supply line "pollution" with IUU fish from thee protected areas.

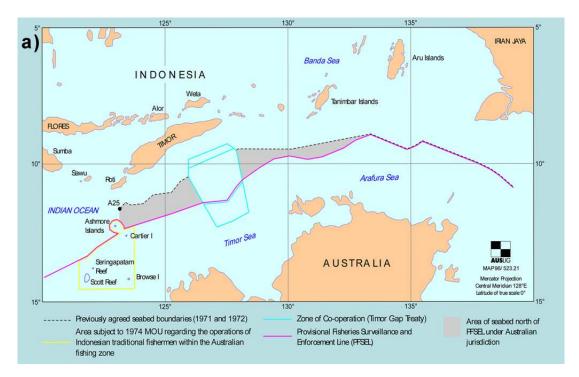
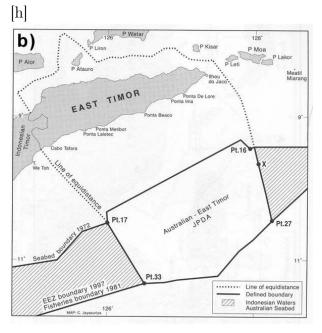



Figure 3.1: Timor Sea and Arafura Sea fishing grounds with current boundaries between Indonesia, East Timor and Australia.

a) The dotted line is the Australia - Indonesia Seabed Boundary. The pink line (PFSEL) is the Australia - Indonesia Fisheries Boundary. Indonesian vessels are allowed to fish in the grey area between the pink line and the dotted line, but not below the PFSEL. The light blue line is the boundary of the East Timor - Australia Zone of Cooperation which covers East Timorese fishing grounds where Indonesian fishing vessels are not allowed to fish. Australia does not enforce fisheries regulations here.

b) The shaded area between the Seabed Boundary and the Fisheries Boundary is Australian seabed, where fishers from Indonesia are allowed to fish. The Australian - East Timor zone of cooperation or "Joint Petroleum Development Area" (JPDA) is

not open to fishers from Indonesia. East Timor is responsible for fishery surveillance within the JPDA.

Source: Australian Surveying & Land Information Group (AUSLIG) Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

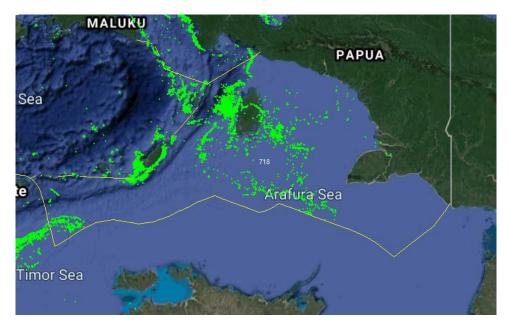


Figure 3.2: Fishing positions of dropliners participating in the CODRS program over the years 2014 - 2019 in WPP 718, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

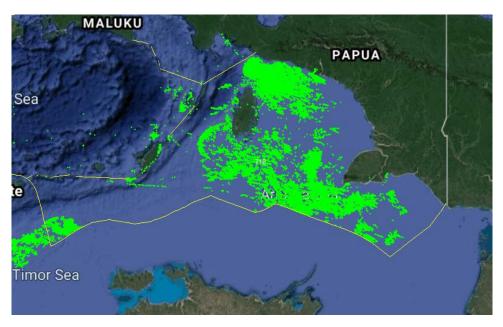


Figure 3.3: Fishing positions of longliners participating in the CODRS program over the years 2014 - 2019 in WPP 718, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

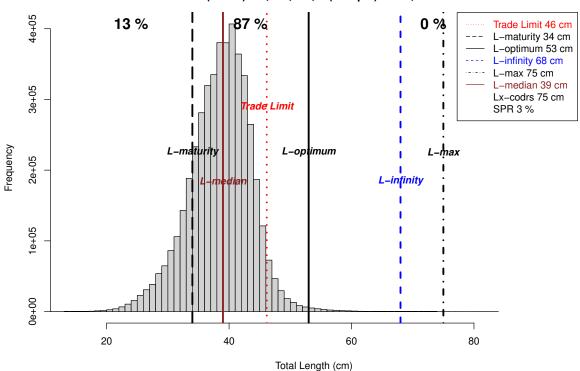
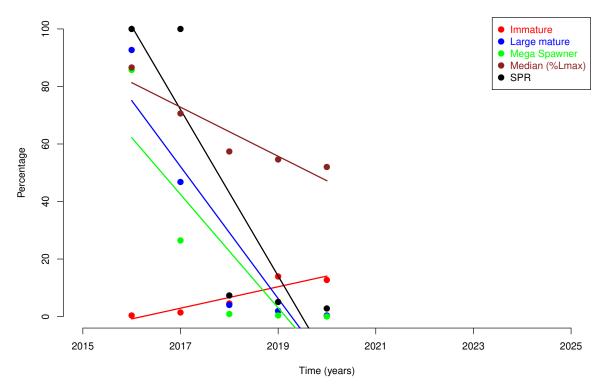


Figure 3.4: A typical snapper fishing boat from Probolinggo, Jawa Timur, operating in the Arafura Seas (WPP 718) and on nearby fishing grounds.


Figure 3.5: A typical snapper fishing boat from Dobo, Kepulauan Aru, Maluku, operating in the Arafura Seas (WPP 718) and on nearby fishing grounds.

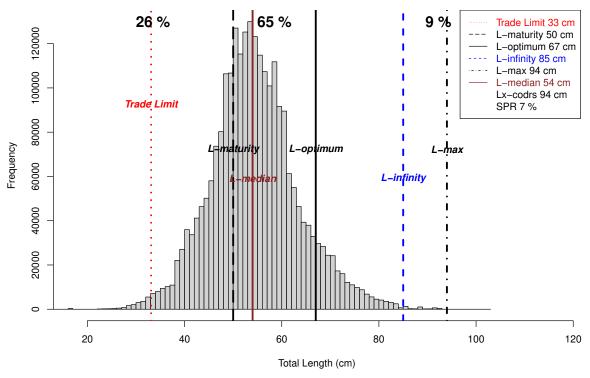
4 Length-based assessments of Top 20 most abundant species in CODRS samples

Catch length frequency for Atrobucca brevis (ID #100, Sciaenidae) in WPP 718 in 2020. N (Catch) = 4,598,877, n (Sample) = 233,478.

Trends in relative abundance by size group for Atrobucca brevis (ID #100, Sciaenidae) in WPP 718.

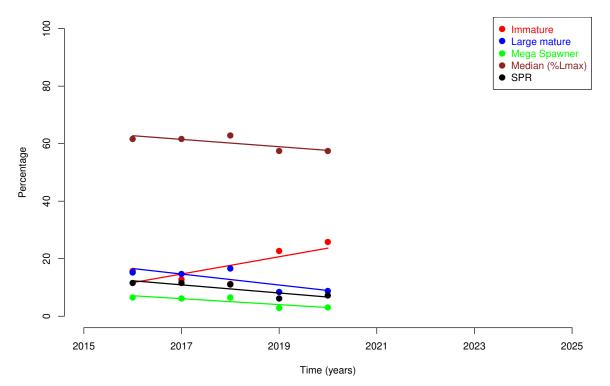
The percentages of Atrobucca brevis (ID #100, Sciaenidae) in 2020. N (Catch) =4,598,877, n (Sample) = 233,478 Immature (< 34cm): 13% Small mature (>= 34cm, < 53cm): 87% Large mature (>= 53cm): 0% Mega spawner (>= 58.3cm): 0% (subset of large mature fish) Spawning Potential Ratio: 3 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

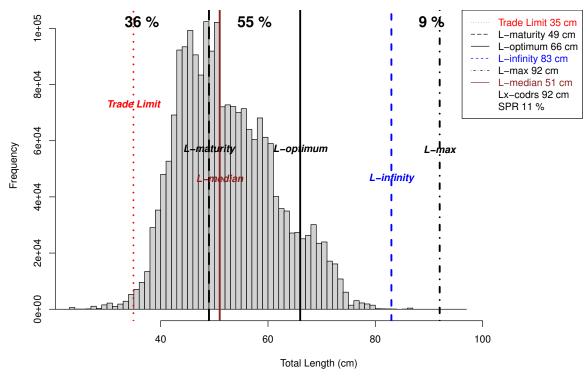
Trends in relative abundance by size group for Atrobucca brevis (ID #100, Sciaenidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.024
% Large Mature falling over recent years, situation deteriorating. P: 0.039
% Mega Spawner falling over recent years, situation deteriorating. P: 0.072
% SPR falling over recent years, situation deteriorating. P: 0.049

Catch length frequency for Lutjanus malabaricus (ID #17, Lutjanidae) in WPP 718 in 2020. N (Catch) = 2,471,515, n (Sample) = 82,049.

Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae) in WPP 718.

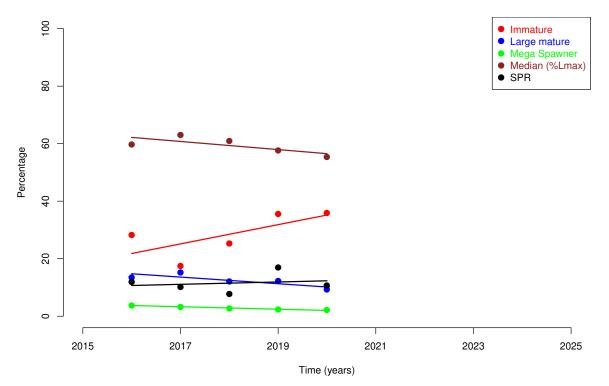
The percentages of Lutjanus malabaricus (ID #17, Lutjanidae) in 2020. N (Catch) =2,471,515, n (Sample) = 82,049 Immature (< 50cm): 26% Small mature (>= 50cm, < 67cm): 65% Large mature (>= 67cm): 9% Mega spawner (>= 73.7cm): 3% (subset of large mature fish) Spawning Potential Ratio: 7 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

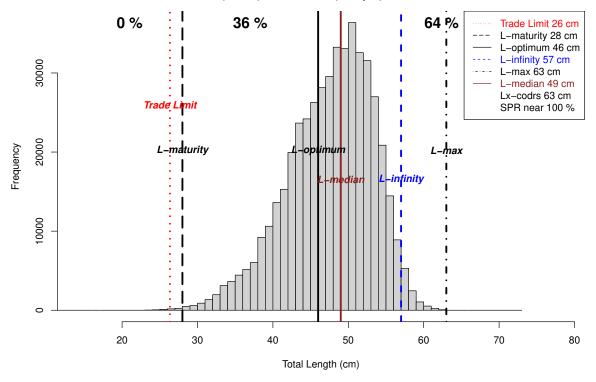
Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.144
% Large Mature falling over recent years, situation deteriorating. P: 0.114
% Mega Spawner falling over recent years, situation deteriorating. P: 0.059
% SPR falling over recent years, situation deteriorating. P: 0.064

Catch length frequency for Pristipomoides multidens (ID #7, Lutjanidae) in WPP 718 in 2020. N (Catch) = 2,063,245, n (Sample) = 42,857.

Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae) in WPP 718.

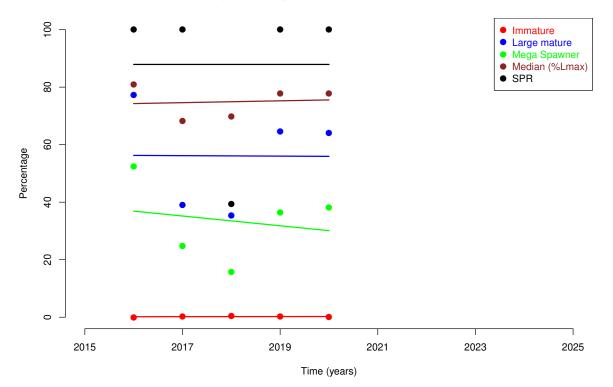
The percentages of Pristipomoides multidens (ID #7, Lutjanidae) in 2020. N (Catch) =2,063,245, n (Sample) = 42,857 Immature (< 49cm): 36% Small mature (>= 49cm, < 66cm): 55% Large mature (>= 66cm): 9% Mega spawner (>= 72.6cm): 2% (subset of large mature fish) Spawning Potential Ratio: 11 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

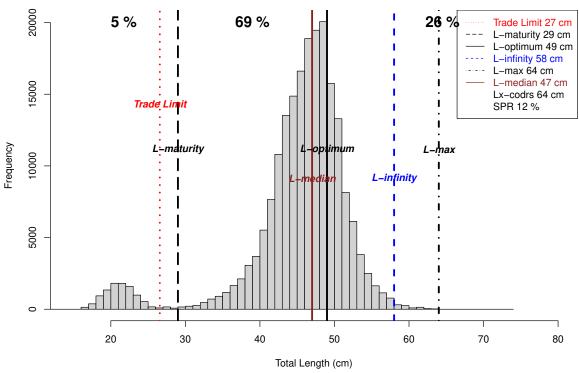
Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.201
% Large Mature falling over recent years, situation deteriorating. P: 0.079
% Mega Spawner falling over recent years, situation deteriorating. P: 0.002
% SPR rising over recent years, situation improving. P: 0.760

Catch length frequency for Lethrinus laticaudis (ID #64, Lethrinidae) in WPP 718 in 2020. N (Catch) = 476,459, n (Sample) = 26,054.

Trends in relative abundance by size group for Lethrinus laticaudis (ID #64, Lethrinidae) in WPP 718.

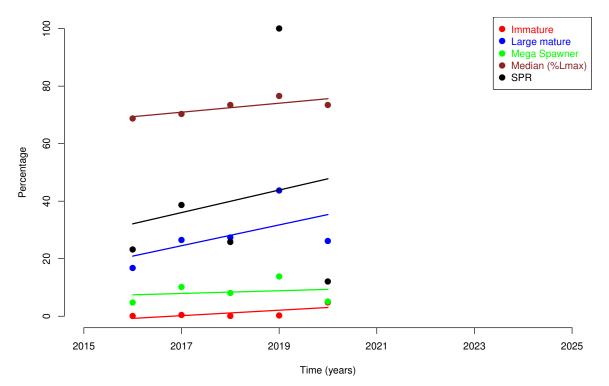
The percentages of Lethrinus laticaudis (ID #64, Lethrinidae) in 2020. N (Catch) =476,459, n (Sample) = 26,054 Immature (< 28cm): 0%Small mature (>= 28cm, < 46cm): 36%Large mature (>= 46cm): 64%Mega spawner (>= 50.6cm): 38% (subset of large mature fish) Spawning Potential Ratio: near 100 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.

More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low.


SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.

Trends in relative abundance by size group for Lethrinus laticaudis (ID #64, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature no trend over recent years, situation stable. P: 0.776
% Large Mature no trend over recent years, situation stable. P: 0.991
% Mega Spawner falling over recent years, situation deteriorating. P: 0.756
% SPR no trend over recent years, situation stable. P: 1.000

Catch length frequency for Pomadasys kaakan (ID #91, Haemulidae) in WPP 718 in 2020. N (Catch) = 205,865, n (Sample) = 12,044.

Trends in relative abundance by size group for Pomadasys kaakan (ID #91, Haemulidae) in WPP 718.

The percentages of Pomadasys kaakan (ID #91, Haemulidae) in 2020. N (Catch) =205,865, n (Sample) = 12,044 Immature (< 29cm): 5% Small mature (>= 29cm, < 49cm): 69% Large mature (>= 49cm): 26% Mega spawner (>= 53.9cm): 5% (subset of large mature fish) Spawning Potential Ratio: 12 %

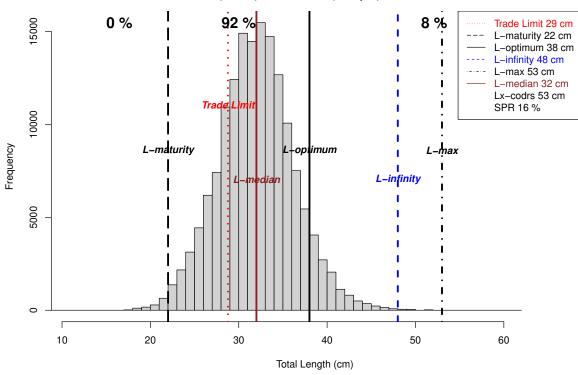
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

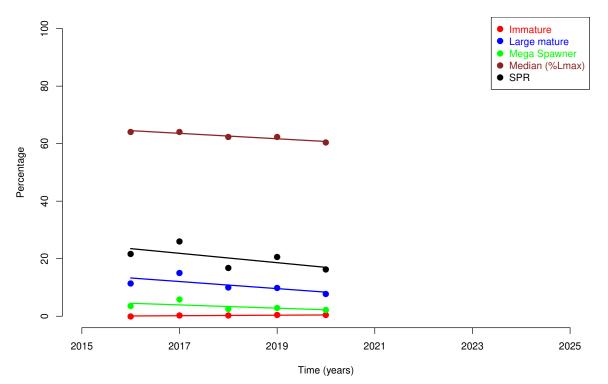
Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Pomadasys kaakan (ID #91, Haemulidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.167

% Large Mature rising over recent years, situation improving. P: 0.298


% Mega Spawner rising over recent years, situation improving. P: 0.748

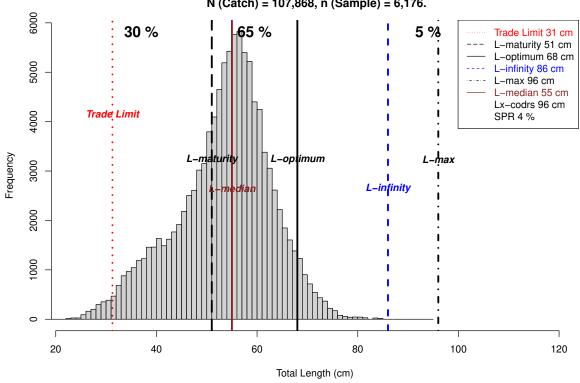
% SPR rising over recent years, situation improving. P: 0.775

Catch length frequency for Epinephelus areolatus (ID #45, Epinephelidae) in WPP 718 in 2020. N (Catch) = 156,711, n (Sample) = 8,431.

Trends in relative abundance by size group for Epinephelus areolatus (ID #45, Epinephelidae) in WPP 718

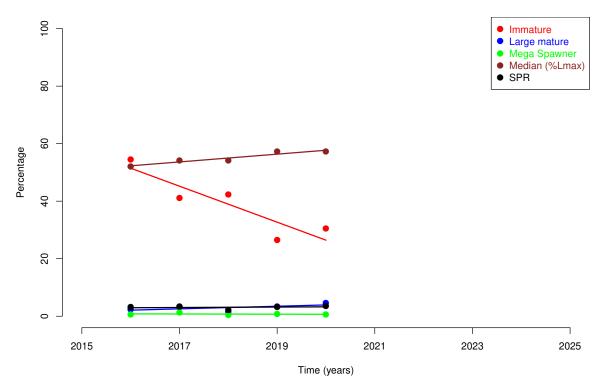
The percentages of Epinephelus areolatus (ID #45, Epinephelidae) in 2020. N (Catch) =156,711, n (Sample) = 8,431 Immature (< 22cm): 0% Small mature (>= 22cm, < 38cm): 92% Large mature (>= 38cm): 8% Mega spawner (>= 41.8cm): 2% (subset of large mature fish) Spawning Potential Ratio: 16 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Epinephelus areolatus (ID #45, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature no trend over recent years, situation stable. P: 0.043
% Large Mature falling over recent years, situation deteriorating. P: 0.169
% Mega Spawner falling over recent years, situation deteriorating. P: 0.268
% SPR falling over recent years, situation deteriorating. P: 0.240

Catch length frequency for Lutjanus sebae (ID #18, Lutjanidae) in WPP 718 in 2020. N (Catch) = 107,868, n (Sample) = 6,176.

Trends in relative abundance by size group for Lutjanus sebae (ID #18, Lutjanidae) in WPP 718.

The percentages of Lutjanus sebae (ID #18, Lutjanidae) in 2020. N (Catch) =107,868, n (Sample) = 6,176 Immature (< 51cm): 30% Small mature (>= 51cm, < 68cm): 65% Large mature (>= 68cm): 5% Mega spawner (>= 74.8cm): 1% (subset of large mature fish) Spawning Potential Ratio: 4 %

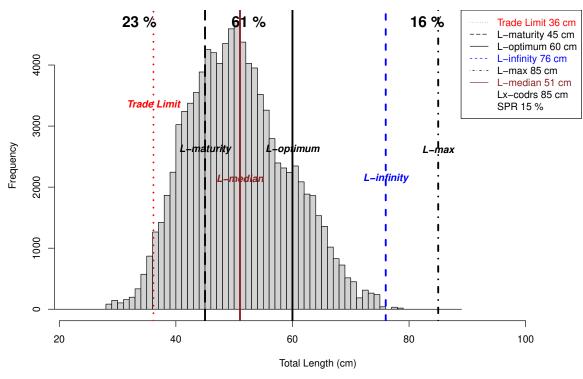
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

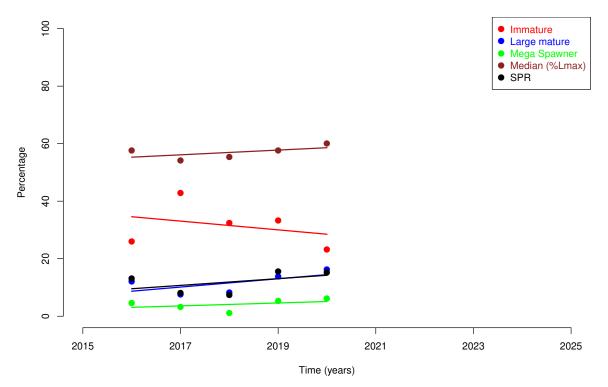
Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus sebae (ID #18, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature falling over recent years, situation improving. P: 0.037

% Large Mature rising over recent years, situation improving. P: 0.257


% Mega Spawner no trend over recent years, situation stable. P: 0.743

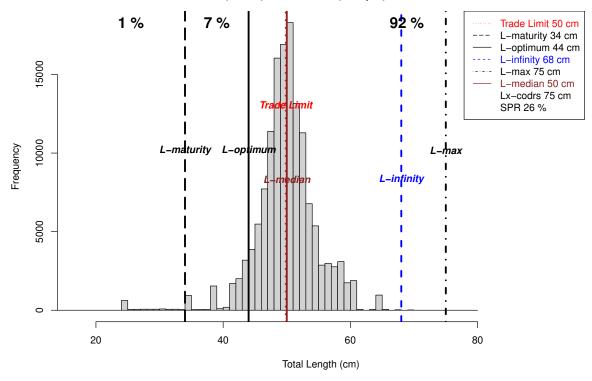
% SPR no trend over recent years, situation stable. P: 0.709

Catch length frequency for Pristipomoides typus (ID #8, Lutjanidae) in WPP 718 in 2020. N (Catch) = 97,058, n (Sample) = 4,130.

Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae) in WPP 718.

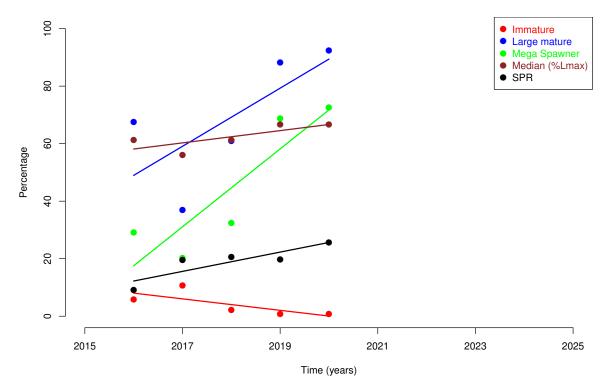
The percentages of Pristipomoides typus (ID #8, Lutjanidae) in 2020. N (Catch) =97,058, n (Sample) = 4,130 Immature (< 45cm): 23% Small mature (>= 45cm, < 60cm): 61% Large mature (>= 60cm): 16% Mega spawner (>= 66cm): 6% (subset of large mature fish) Spawning Potential Ratio: 15 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

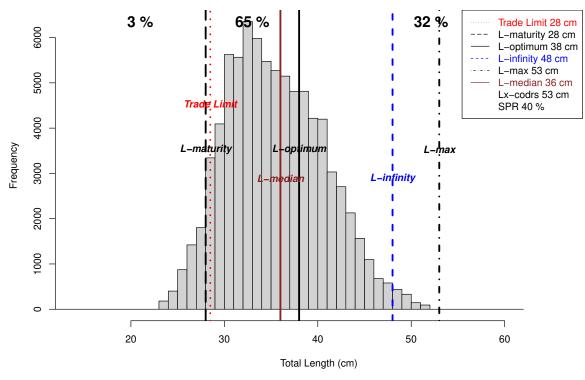

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature falling over recent years, situation improving. P: 0.605
% Large Mature rising over recent years, situation improving. P: 0.255
% Mega Spawner rising over recent years, situation improving. P: 0.495
% SPR rising over recent years, situation improving. P: 0.424

Catch length frequency for Caranx bucculentus (ID #77, Carangidae) in WPP 718 in 2020. N (Catch) = 143,807, n (Sample) = 1,232.

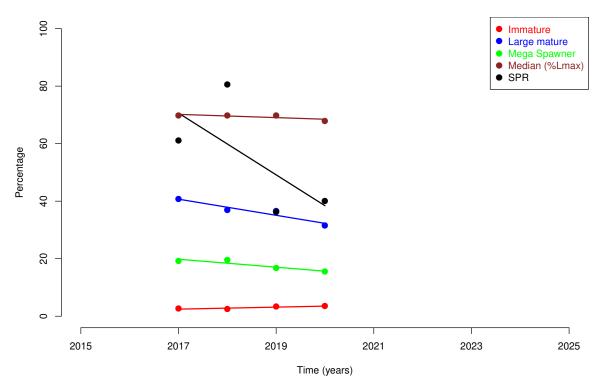
The percentages of Caranx bucculentus (ID #77, Carangidae) in 2020. N (Catch) =143,807, n (Sample) = 1,232 Immature (< 34cm): 1% Small mature (>= 34cm, < 44cm): 7% Large mature (>= 44cm): 92% Mega spawner (>= 48.4cm): 73% (subset of large mature fish) Spawning Potential Ratio: 26 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.

More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low.


SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.

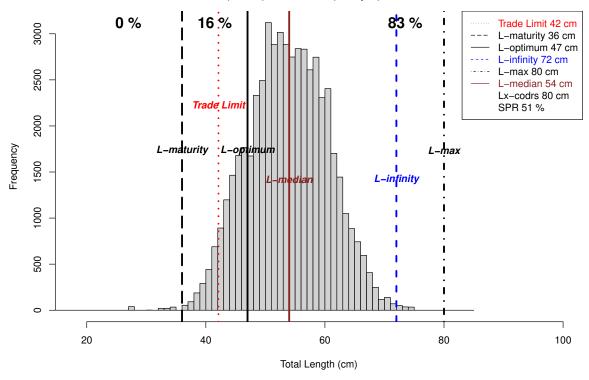
Trends in relative abundance by size group for Caranx bucculentus (ID #77, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature falling over recent years, situation improving. P: 0.153
% Large Mature rising over recent years, situation improving. P: 0.177
% Mega Spawner rising over recent years, situation improving. P: 0.047
% SPR rising over recent years, situation improving. P: 0.052

Catch length frequency for Lutjanus russelli (ID #25, Lutjanidae) in WPP 718 in 2020. N (Catch) = 82,361, n (Sample) = 4,354.

Trends in relative abundance by size group for Lutjanus russelli (ID #25, Lutjanidae) in WPP 718.

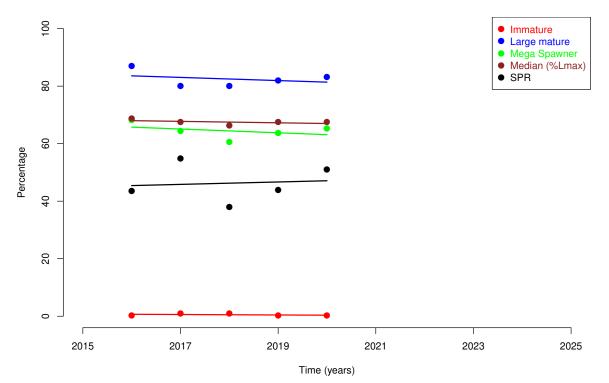
The percentages of Lutjanus russelli (ID #25, Lutjanidae) in 2020. N (Catch) =82,361, n (Sample) = 4,354 Immature (< 28cm): 3%Small mature (>= 28cm, < 38cm): 65%Large mature (>= 38cm): 32%Mega spawner (>= 41.8cm): 16% (subset of large mature fish) Spawning Potential Ratio: 40%

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

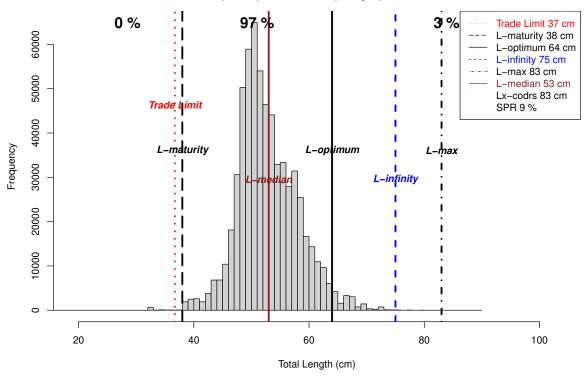

SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.

Trends in relative abundance by size group for Lutjanus russelli (ID #25, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.111
% Large Mature falling over recent years, situation deteriorating. P: 0.040
% Mega Spawner falling over recent years, situation deteriorating. P: 0.074
% SPR falling over recent years, situation deteriorating. P: 0.324

Catch length frequency for Carangoides chrysophrys (ID #75, Carangidae) in WPP 718 in 2020. N (Catch) = 53,283, n (Sample) = 2,886.

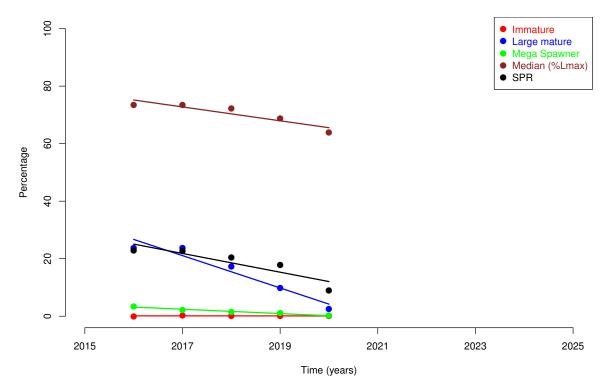
The percentages of Carangoides chrysophrys (ID #75, Carangidae) in 2020. N (Catch) =53,283, n (Sample) = 2,886 Immature (< 36cm): 0% Small mature (>= 36cm, < 47cm): 16% Large mature (>= 47cm): 83% Mega spawner (>= 51.7cm): 65% (subset of large mature fish) Spawning Potential Ratio: 51 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.

More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low.


SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.

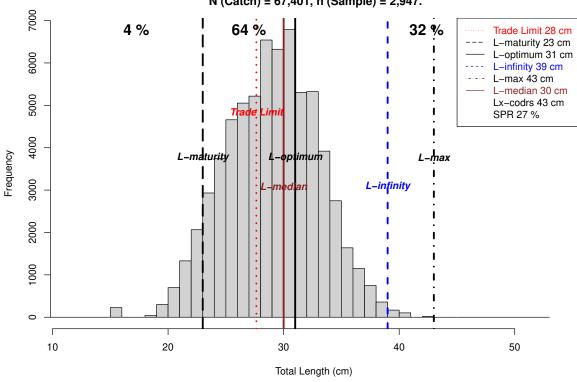
Trends in relative abundance by size group for Carangoides chrysophrys (ID #75, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature no trend over recent years, situation stable. P: 0.607
% Large Mature falling over recent years, situation deteriorating. P: 0.619
% Mega Spawner falling over recent years, situation deteriorating. P: 0.526
% SPR rising over recent years, situation improving. P: 0.874

Catch length frequency for Diagramma labiosum (ID #89, Haemulidae) in WPP 718 in 2020. N (Catch) = 629,257, n (Sample) = 2,945.

Trends in relative abundance by size group for Diagramma labiosum (ID #89, Haemulidae) in WPP 718.

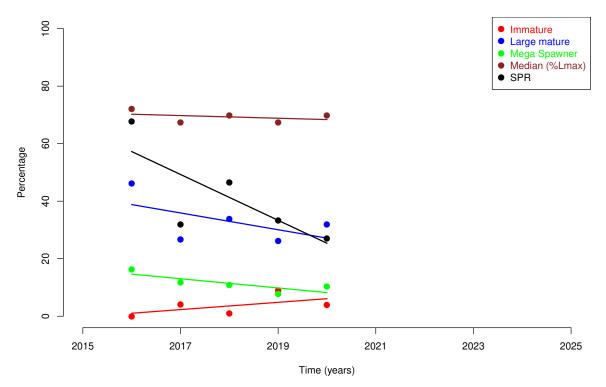
The percentages of Diagramma labiosum (ID #89, Haemulidae) in 2020. N (Catch) =629,257, n (Sample) = 2,945 Immature (< 38cm): 0% Small mature (>= 38cm, < 64cm): 97% Large mature (>= 64cm): 3% Mega spawner (>= 70.4cm): 0% (subset of large mature fish) Spawning Potential Ratio: 9 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Diagramma labiosum (ID #89, Haemulidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature no trend over recent years, situation stable. P: 0.930
% Large Mature falling over recent years, situation deteriorating. P: 0.008
% Mega Spawner falling over recent years, situation deteriorating. P: 0.003
% SPR falling over recent years, situation deteriorating. P: 0.036

Catch length frequency for Lutjanus vitta (ID #27, Lutjanidae) in WPP 718 in 2020. N (Catch) = 67,401, n (Sample) = 2,947.

Trends in relative abundance by size group for Lutjanus vitta (ID #27, Lutjanidae) in WPP 718.

The percentages of Lutjanus vitta (ID #27, Lutjanidae) in 2020. N (Catch) =67,401, n (Sample) = 2,947 Immature (< 23cm): 4% Small mature (>= 23cm, < 31cm): 64% Large mature (>= 31cm): 32% Mega spawner (>= 34.1cm): 10% (subset of large mature fish) Spawning Potential Ratio: 27 %

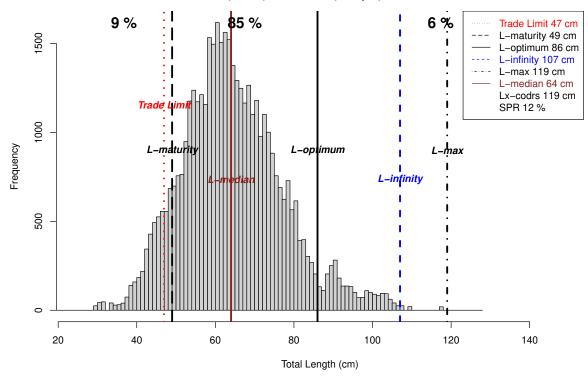
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

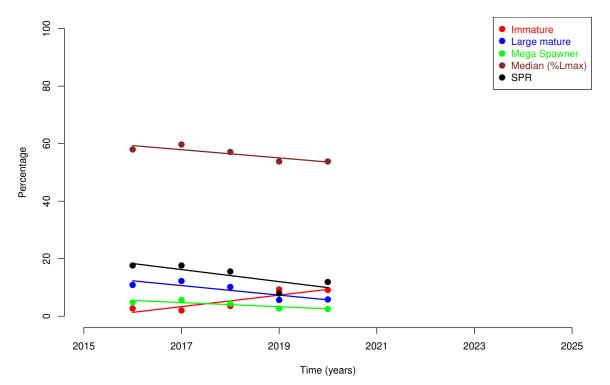
Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.


Trends in relative abundance by size group for Lutjanus vitta (ID #27, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.311

% Large Mature falling over recent years, situation deteriorating. P: 0.316


% Mega Spawner falling over recent years, situation deteriorating. P: 0.095

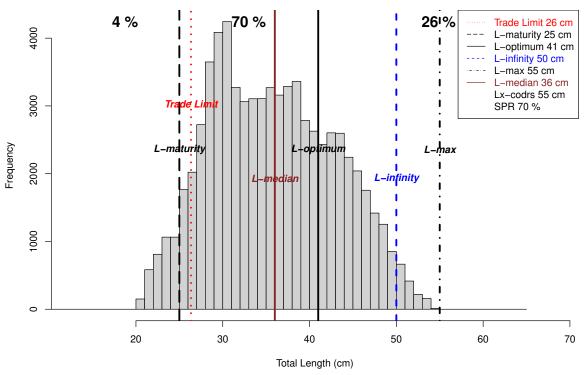
% SPR falling over recent years, situation deteriorating. P: 0.129

Catch length frequency for Epinephelus coioides (ID #50, Epinephelidae) in WPP 718 in 2020. N (Catch) = 43,675, n (Sample) = 2,511.

Trends in relative abundance by size group for Epinephelus coioides (ID #50, Epinephelidae) in WPP 718.

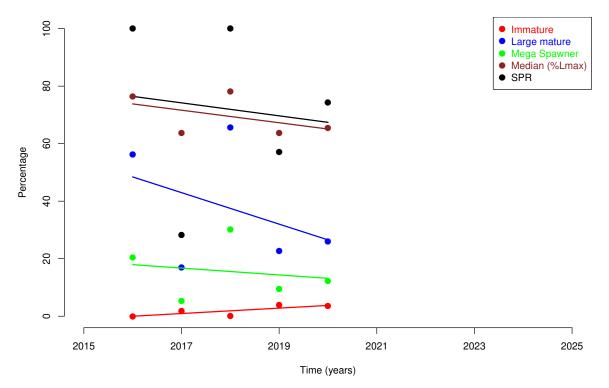
The percentages of Epinephelus coioides (ID #50, Epinephelidae) in 2020. N (Catch) =43,675, n (Sample) = 2,511 Immature (< 49cm): 9% Small mature (>= 49cm, < 86cm): 85% Large mature (>= 86cm): 6% Mega spawner (>= 94.6cm): 3% (subset of large mature fish) Spawning Potential Ratio: 12 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

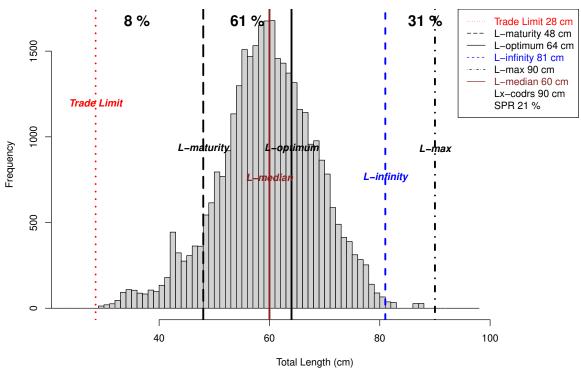
Trends in relative abundance by size group for Epinephelus coioides (ID #50, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance. % Immature rising over recent years, situation deteriorating. P: 0.044 % Large Mature falling over recent years, situation deteriorating. P: 0.055 % Mega Spawner falling over recent years, situation deteriorating. P: 0.058 % SPR falling over recent years, situation deteriorating. P: 0.106

Catch length frequency for Lethrinus lentjan (ID #63, Lethrinidae) in WPP 718 in 2020. N (Catch) = 71,877, n (Sample) = 2,099.

Trends in relative abundance by size group for Lethrinus lentjan (ID #63, Lethrinidae) in WPP 718.

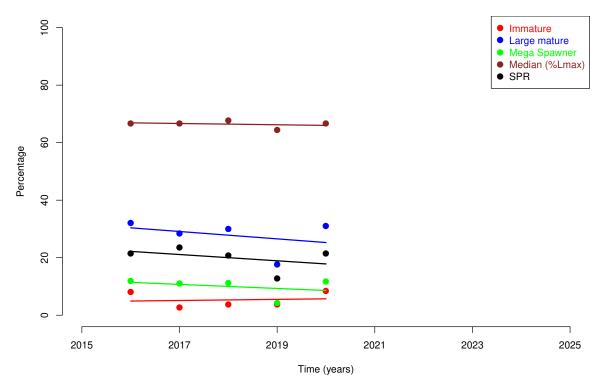
The percentages of Lethrinus lentjan (ID #63, Lethrinidae) in 2020. N (Catch) =71,877, n (Sample) = 2,099 Immature (< 25cm): 4% Small mature (>= 25cm, < 41cm): 70% Large mature (>= 41cm): 26% Mega spawner (>= 45.1cm): 12% (subset of large mature fish) Spawning Potential Ratio: 70 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.

Trends in relative abundance by size group for Lethrinus lentjan (ID #63, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.103
% Large Mature falling over recent years, situation deteriorating. P: 0.510
% Mega Spawner falling over recent years, situation deteriorating. P: 0.759
% SPR falling over recent years, situation deteriorating. P: 0.851

Catch length frequency for Lutjanus johnii (ID #24, Lutjanidae) in WPP 718 in 2020. N (Catch) = 33,369, n (Sample) = 1,791.

Trends in relative abundance by size group for Lutjanus johnii (ID #24, Lutjanidae) in WPP 718.

The percentages of Lutjanus johnii (ID #24, Lutjanidae) in 2020. N (Catch) =33,369, n (Sample) = 1,791 Immature (< 48cm): 8% Small mature (>= 48cm, < 64cm): 61% Large mature (>= 64cm): 31% Mega spawner (>= 70.4cm): 12% (subset of large mature fish) Spawning Potential Ratio: 21 %

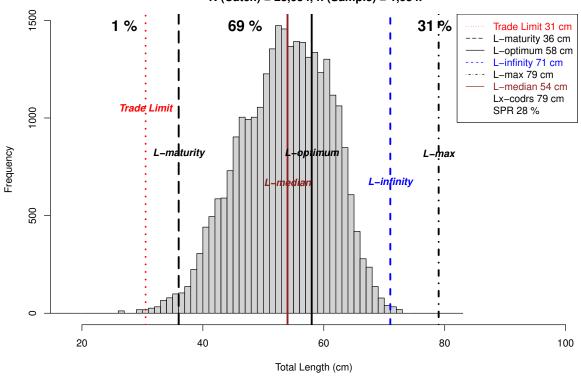
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

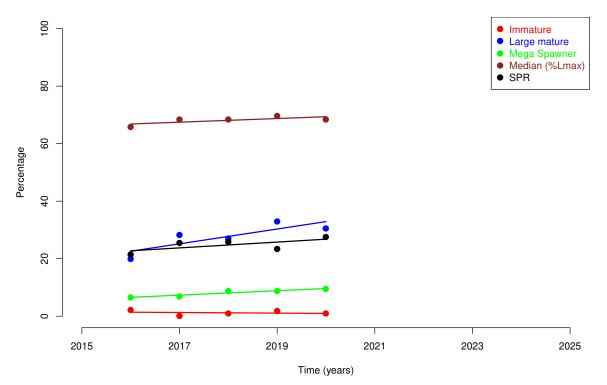
Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus johnii (ID #24, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.856

% Large Mature falling over recent years, situation deteriorating. P: 0.568


% Mega Spawner falling over recent years, situation deteriorating. P: 0.572

% SPR falling over recent years, situation deteriorating. P: 0.490

Catch length frequency for Gymnocranius grandoculis (ID #70, Lethrinidae) in WPP 718 in 2020. N (Catch) = 28,634, n (Sample) = 1,684.

Trends in relative abundance by size group for Gymnocranius grandoculis (ID #70, Lethrinidae) in WPP 71

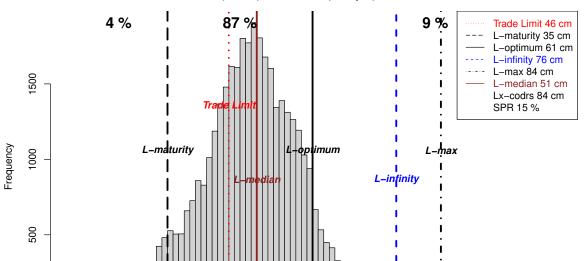
The percentages of Gymnocranius grandoculis (ID #70, Lethrinidae) in 2020. N (Catch) =28,634, n (Sample) = 1,684 Immature (< 36cm): 1% Small mature (>= 36cm, < 58cm): 69% Large mature (>= 58cm): 31% Mega spawner (>= 63.8cm): 9% (subset of large mature fish) Spawning Potential Ratio: 28 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.

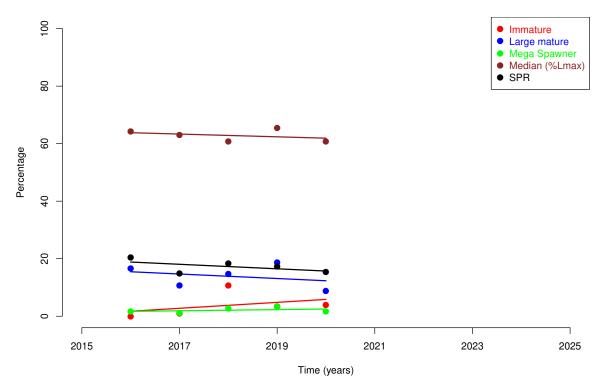
Trends in relative abundance by size group for Gymnocranius grandoculis (ID #70, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature falling over recent years, situation improving. P: 0.741
% Large Mature rising over recent years, situation improving. P: 0.079
% Mega Spawner rising over recent years, situation improving. P: 0.019
% SPR rising over recent years, situation improving. P: 0.208

0

∟ 20

40

Catch length frequency for Epinephelus amblycephalus (ID #58, Epinephelidae) in WPP 718 in 2020. N (Catch) = 37,104, n (Sample) = 2,088.



60

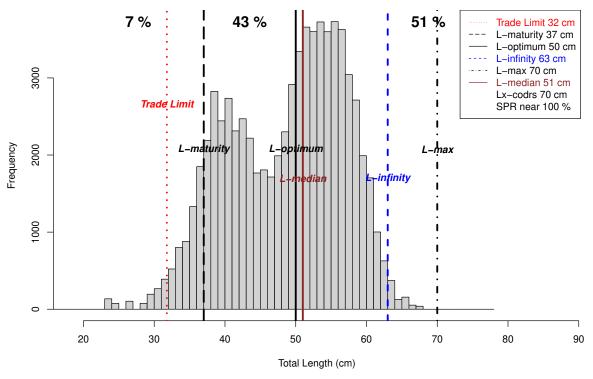
Total Length (cm)

80

100

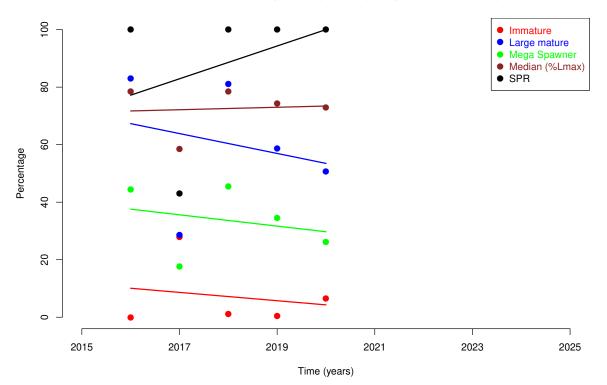
The percentages of Epinephelus amblycephalus (ID #58, Epinephelidae) in 2020. N (Catch) =37,104, n (Sample) = 2,088 Immature (< 35cm): 4% Small mature (>= 35cm, < 61cm): 87% Large mature (>= 61cm): 9% Mega spawner (>= 67.1cm): 2% (subset of large mature fish) Spawning Potential Ratio: 15 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

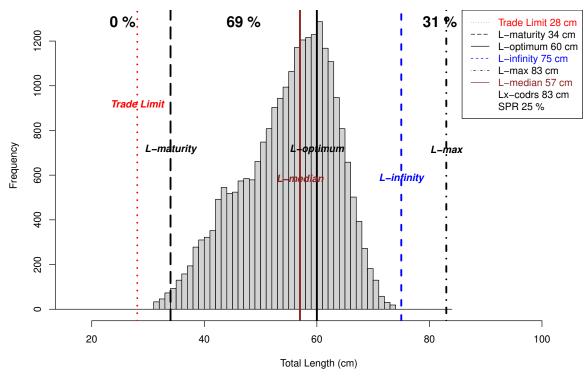
Trends in relative abundance by size group for Epinephelus amblycephalus (ID #58, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.519
% Large Mature falling over recent years, situation deteriorating. P: 0.624
% Mega Spawner rising over recent years, situation improving. P: 0.565
% SPR falling over recent years, situation deteriorating. P: 0.344

Catch length frequency for Lutjanus erythropterus (ID #21, Lutjanidae) in WPP 718 in 2020. N (Catch) = 73,436, n (Sample) = 2,028.

Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae) in WPP 718.

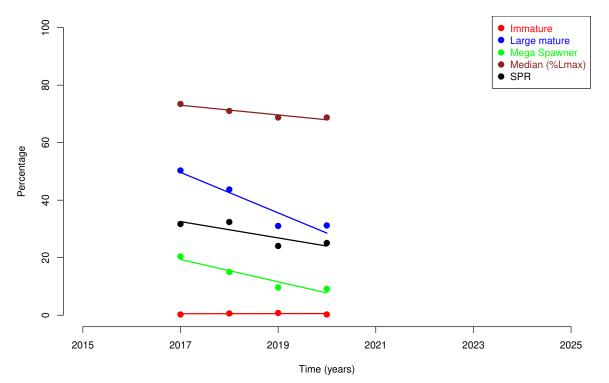
The percentages of Lutjanus erythropterus (ID #21, Lutjanidae) in 2020. N (Catch) =73,436, n (Sample) = 2,028 Immature (< 37cm): 7% Small mature (>= 37cm, < 50cm): 43% Large mature (>= 50cm): 51% Mega spawner (>= 55cm): 26% (subset of large mature fish) Spawning Potential Ratio: near 100 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.


The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.


SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.

Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature falling over recent years, situation improving. P: 0.757
% Large Mature falling over recent years, situation deteriorating. P: 0.696
% Mega Spawner falling over recent years, situation deteriorating. P: 0.673
% SPR rising over recent years, situation improving. P: 0.559

Catch length frequency for Epinephelus bleekeri (ID #46, Epinephelidae) in WPP 718 in 2020. N (Catch) = 24,313, n (Sample) = 1,506.

The percentages of Epinephelus bleekeri (ID #46, Epinephelidae) in 2020. N (Catch) =24,313, n (Sample) = 1,506 Immature (< 34cm): 0% Small mature (>= 34cm, < 60cm): 69% Large mature (>= 60cm): 31% Mega spawner (>= 66cm): 9% (subset of large mature fish) Spawning Potential Ratio: 25 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Epinephelus bleekeri (ID #46, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance. % Immature no trend over recent years, situation stable. P: 0.894 % Large Mature falling over recent years, situation deteriorating. P: 0.054 % Mega Spawner falling over recent years, situation deteriorating. P: 0.044 % SPR falling over recent years, situation deteriorating. P: 0.160

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
			Prop. Lmat	%	%	%	%
1	100	Atrobucca brevis	1.36	13	100	0	3
2	17	Lutjanus malabaricus	0.66	26	91	3	7
3	7	Pristipomoides multidens	0.71	36	91	2	11
4	64	Lethrinus laticaudis	0.94	0	36	38	near 100
5	91	Pomadasys kaakan	0.92	5	74	5	12
6	45	Epinephelus areolatus	1.31	0	92	2	16
7	18	Lutjanus sebae	0.61	30	95	1	4
8	8	Pristipomoides typus	0.80	23	84	6	15
9	77	Caranx bucculentus	1.47	1	8	73	26
10	25	Lutjanus russelli	1.02	3	68	16	40
11	75	Carangoides chrysophrys	1.17	0	17	65	51
12	89	Diagramma labiosum	0.97	0	97	0	9
13	27	Lutjanus vitta	1.20	4	68	10	27
14	50	Epinephelus coioides	0.96	9	94	3	12
15	63	Lethrinus lentjan	1.05	4	74	12	70
16	24	Lutjanus johnii	0.59	8	69	12	21
17	70	Gymnocranius grandoculis	0.85	1	69	9	28
18	58	Epinephelus amblycephalus	1.31	4	91	2	15
19	21	Lutjanus erythropterus	0.86	7	49	26	near 100
20	46	Epinephelus bleekeri	0.83	0	69	9	25
21	99	Protonibea diacanthus	0.80	8	92	1	7
22	15	Lutjanus argentimaculatus	0.62	13	77	8	21
23	88	Glaucosoma buergeri	0.95	1	52	24	41
24	78	Caranx ignobilis	0.89	7	95	1	4
25	86	Argyrops spinifer	1.16	6	80	5	22
26	41	Epinephelus latifasciatus	1.00	9	95	2	9
27	65	Lethrinus nebulosus	0.95	5	44	30	near 100
28	72	Carangoides coeruleopinnatus	1.29	0	4	92	near 100
29	9	Pristipomoides filamentosus	0.69	22	57	20	42
30	14	Lutjanus bitaeniatus	1.42	0	19	50	near 100
31	39	Cephalopholis sonnerati	1.03	0	64	13	45
32	20	Lutjanus gibbus	1.07	38	96	2	6
33	19	Lutjanus timorensis	0.98	3	59	15	27
34	66	Lethrinus olivaceus	0.62	3	60	17	87
35	98	Rachycentron canadum	0.96	11	99	0	4
36	81	Caranx tille	1.38	1	3	97	near 100
38	76	Carangoides gymnostethus	1.09	2	21	70	68
39	80	Caranx sexfasciatus	1.24	6	13	79	53
40	26	Lutjanus lemniscatus	0.84	7	46	32	near 100
42	60	Plectropomus maculatus	0.91	0	.41	24	near 100
43	56	Epinephelus multinotatus		unknown	unknown	unknown	unknown
44	49	Epinephelus malabaricus	0.82	50	100	0	2
45	54	Epinephelus stictus	1.28	0	57	19	47
46	31	Symphorus nematophorus		unknown	unknown	unknown	unknown
47	53	Epinephelus heniochus		unknown	unknown	unknown	unknown
48	16	Lutjanus bohar		unknown	unknown	unknown	unknown

Table 4.1: Values of indicators in length-based assessments for the top 50 most abundant species by total CODRS samples in WPP 718 in 2020.

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
1	100	Atrobucca brevis	low	medium	high	high	high
2	17	Lutjanus malabaricus	high	medium	high	high	high
3	7	Pristipomoides multidens	high	high	high	high	high
4	64	Lethrinus laticaudis	\mathbf{medium}	low	low	low	low
5	91	Pomadasys kaakan	\mathbf{medium}	low	high	high	high
6	45	Epinephelus areolatus	low	low	high	high	high
7	18	Lutjanus sebae	high	high	high	high	high
8	8	Pristipomoides typus	high	medium	high	high	high
9	77	Caranx bucculentus	low	low	low	low	medium
10	25	Lutjanus russelli	\mathbf{medium}	low	high	high	low
11	75	Carangoides chrysophrys	low	low	low	low	low
12	89	Diagramma labiosum	\mathbf{medium}	low	high	high	high
13	27	Lutjanus vitta	low	low	high	high	medium
14	50	Epinephelus coioides	\mathbf{medium}	low	high	high	high
15	63	Lethrinus lentjan	\mathbf{medium}	low	high	high	low
16	24	Lutjanus johnii	high	low	high	high	high
17	70	Gymnocranius grandoculis	high	low	high	high	medium
18	58	Epinephelus amblycephalus	low	low	high	high	high
19	21	Lutjanus erythropterus	high	low	low	medium	low
20	46	Epinephelus bleekeri	high	low	high	high	high
21	99	Protonibea diacanthus	high	low	high	high	high
22	15	Lutjanus argentimaculatus	high	medium	high	high	high
23	88	Glaucosoma buergeri	medium	low	medium	medium	low
24	78	Caranx ignobilis	high	low	high	high	high
25	86	Argyrops spinifer	low	low	high	high	high
26	41	Epinephelus latifasciatus	medium	low	high	high	high
$\overline{27}$	65	Lethrinus nebulosus	medium	low	low	low	low
28	72	Carangoides coeruleopinnatus	low	low	low	low	low
29	9	Pristipomoides filamentosus	high	medium	medium	medium	low
30	14	Lutjanus bitaeniatus	low	low	low	low	low
31	39	Cephalopholis sonnerati	medium	low	medium	high	low
32	20	Lutjanus gibbus	medium	high	high	high	high
33	19	Lutjanus timorensis	medium	low	medium	high	medium
34	66	Lethrinus olivaceus	high	low	medium	high	low
35	98	Rachycentron canadum	medium	medium	high	high	high
36	81	Caranx tille	low	low	low	low	low
$\frac{30}{38}$	76	Carangoides gymnostethus	medium	low	low	low	low
3 9	80	Caranx sexfasciatus	low	low	low	low	low
40	26	Lutjanus lemniscatus	high	low	low	low	low
40	$\frac{20}{60}$	Plectropomus maculatus	medium	low	low	medium	low
42 43	56	Epinephelus multinotatus	unknown	unknown	unknown	unknown	unknown
44	49	Epinephelus malabaricus	high	high	high	high	high
	$\frac{49}{54}$		low	low			low
45 46		Epinephelus stictus Symphorus nometophorus			medium	high	
46 47	31 52	Symphorus nematophorus	unknown	unknown	unknown	unknown	unknown
$47 \\ 48$	$\frac{53}{16}$	Epinephelus heniochus	unknown unknown	unknown unknown	unknown unknown	unknown unknown	unknown unknown
40	10	Lutjanus bohar	unknown	unknown	unknown	unknown	ulikilowil

Table 4.2: Risl	c levels in the fisheries for the top 50 most abundant species	;
ł	y total CODRS samples in WPP 718 in 2020.	

Rank	#ID	Species	% Immature	% Large Mature	% Mega Spawner	% SPR
1	100	Atrobucca brevis	deteriorating	deteriorating	deteriorating	deteriorating
2	17	Lutjanus malabaricus	deteriorating	deteriorating	deteriorating	deteriorating
3	7	Pristipomoides multidens	deteriorating	deteriorating	deteriorating	improving
4	64	Lethrinus laticaudis	\mathbf{stable}	\mathbf{stable}	deteriorating	\mathbf{stable}
5	91	Pomadasys kaakan	deteriorating	improving	improving	improving
6	45	Epinephelus areolatus	\mathbf{stable}	deteriorating	deteriorating	deteriorating
7	18	Lutjanus sebae	improving	improving	\mathbf{stable}	\mathbf{stable}
8	8	Pristipomoides typus	improving	improving	improving	improving
9	77	Caranx bucculentus	improving	improving	improving	improving
10	25	Lutjanus russelli	deteriorating	deteriorating	deteriorating	deteriorating
11	75	Carangoides chrysophrys	\mathbf{stable}	deteriorating	deteriorating	improving
12	89	Diagramma labiosum	\mathbf{stable}	deteriorating	deteriorating	deteriorating
13	27	Lutjanus vitta	deteriorating	deteriorating	deteriorating	deteriorating
14	50	Epinephelus coioides	deteriorating	deteriorating	deteriorating	deteriorating
15	63	Lethrinus lentjan	deteriorating	deteriorating	deteriorating	deteriorating
16	24	Lutjanus johnii	deteriorating	deteriorating	deteriorating	deteriorating
17	70	Gymnocranius grandoculis	improving	improving	improving	improving
18	58	Epinephelus amblycephalus	deteriorating	deteriorating	improving	deteriorating
19	21	Lutjanus erythropterus	improving	deteriorating	deteriorating	improving
20	46	Epinephelus bleekeri	\mathbf{stable}	deteriorating	deteriorating	deteriorating
21	99	Protonibea diacanthus	deteriorating	deteriorating	deteriorating	deteriorating
22	15	Lutjanus argentimaculatus	deteriorating	improving	improving	improving
23	88	Glaucosoma buergeri	improving	improving	deteriorating	deteriorating
24	78	Caranx ignobilis	improving	improving	\mathbf{stable}	improving
25	86	Argyrops spinifer	deteriorating	improving	improving	improving
26	41	Epinephelus latifasciatus	deteriorating	improving	improving	improving
27	65	Lethrinus nebulosus	deteriorating	improving	improving	improving
28	72	Carangoides coeruleopinnatus	improving	deteriorating	improving	\mathbf{stable}
29	9	Pristipomoides filamentosus	improving	improving	improving	improving
30	14	Lutjanus bitaeniatus	\mathbf{stable}	deteriorating	deteriorating	\mathbf{stable}
31	39	Cephalopholis sonnerati	unknown	unknown	unknown	unknown
32	20	Lutjanus gibbus	unknown	unknown	unknown	unknown
33	19	Lutjanus timorensis	improving	improving	improving	improving
34	66	Lethrinus olivaceus	unknown	unknown	unknown	$\mathbf{unknown}$
35	98	Rachycentron canadum	improving	deteriorating	deteriorating	deteriorating
36	81	Caranx tille	deteriorating	deteriorating	deteriorating	\mathbf{stable}
38	76	Carangoides gymnostethus	unknown	unknown	unknown	unknown
39	80	Caranx sexfasciatus	deteriorating	deteriorating	deteriorating	deteriorating
40	26	Lutjanus lemniscatus	unknown	unknown	unknown	unknown
42	60	Plectropomus maculatus	unknown	unknown	unknown	unknown
43	56	Epinephelus multinotatus	unknown	unknown	unknown	unknown
44	49	Epinephelus malabaricus	unknown	unknown	unknown	$\mathbf{unknown}$
45	54	Epinephelus stictus	unknown	unknown	unknown	unknown
46	31	Symphorus nematophorus	unknown	unknown	unknown	unknown
47	53	Epinephelus heniochus	unknown	unknown	unknown	unknown
48	16	Lutjanus bohar	unknown	unknown	unknown	unknown
	~					

Table 4.3: Trends during recent years for SPR and relative abundance by size group for the top 50 most abundant species by total CODRS samples in WPP 718.

5 Discussion and conclusions

Deepwater drop line fishing occurs in WPP 718 on deep slopes bordering the Banda Sea and in the Timor Trough, at depths between 50 and 500 meters. Bottom long line and gillnet fishing in WPP 718 occurs on the shelf areas and tops of slopes, mainly in the Arafura Sea with a relatively flat bottom profile at depths ranging from 50 to 150 meters. Bottom long line fishing grounds overlap with those previously heavily fished by bottom trawlers, a practice which is now prohibited throughout Indonesia. It is unclear though how much bottom trawling still continues illegally, in remote areas, or with dragging gear that is given different names. Drop line fisheries are characterized by a very low impact on habitat at the fishing grounds, whereas some more impact from entanglement can be expected from bottom long lines and gillnets. Nowhere near the habitat impact from destructive dragging gears is evident from either one of the two deep hook and line fisheries.

The deep demersal hook and line fisheries for croakers, snappers, groupers and emperors are fairly "clean" fisheries when it comes to the species spectrum in the catch (Table 5.7 and Table 5.8), even though it is much more species-rich then sometimes assumed, also within the "snapper" category, which forms one of the main target groups. Recent focus on "croakers" has occurred to supply the demand for swimming bladders which fetch very high prices on Chinese markets. The bottom long line fishery has seen croakers rise to become a major target species in recent years. Grunts and trevallies are also becoming more important, perhaps as a result of shifts to different habitats where croakers are targeted. By-catch species in the long line fisheries, like small sharks, cobia and trevallies, are often sun-dried by the crew and sold separately, outside of the catch of snappers, croakers, grunts, groupers and emperors.

Due to predictable locations of fish concentrations, combined with a very high fishing effort on the best known fishing grounds in WPP 718, there is a high potential for overfishing here. Risks of overfishing are high for most of the main target species in the Arafura Sea (Table 4.1 and Table 4.2), and SPR is dangerously low (Table 5.1) especially for those species which have been consistently targeted with drop line, bottom long line, gillnets over many years. The snapper feeding aggregations on the deep slopes are predictable, at well-known locations, and the deep water snappers here are therefore among the most vulnerable species in these fisheries. Fishing mortality in all major target species seems to be unacceptably high while the catches of some of these species include large percentages of relatively small and immature specimen. For several species of snappers, sizes are consistently targeted and landed well below the size where these fish reach maturity. Bigger specimen of the largest species are already becoming extremely rare in this region.

Fishing effort and fishing mortality have been far too high for years now in WPP 718. Bottom trawlers have been major contributors to overfishing until recently, but dragging gear is being removed now from the spectrum. Unfortunately though, the overall effort is still extremely high and the status of the stocks is currently not yet improving across the board. Time trends for most of the main target species (ranked by abundance in samples) either show continued decline of the stocks or unclear patterns, judging from size based indicators (Table 4.3). Those trends in length based indicators can also be compared with trends in CpUE by gear types and boat size category (Tables 5.2 to 5.6), although fishing at aggregating sites may be masking some of the direct effect on CpUE. We do see that for many fleet segments the CpUE is still higher in WPP 718 than in some of the Western fisheries management areas, which may be part of the reason that more and more vessels from Western Indonesia are moving their operations to the Arafura Sea in WPP 718.

Possibly one of the contributing reasons that the demersal fisheries in the Arafura Sea are still profitable is the huge amount of shelf habitat across the Australian border, which is well-managed and experiences low fishing pressure. Indonesian boats are "fishing the line" here in the most literal sense, and profiting from a âĂIJspill overâĂİ effect from that Australian shelf area where fish stocks of at least some of the target species are doing well. The differences in stock densities and fish sizes on either side of the border are stark and very well known by fishing boat captains. This has led to IUU incidences and arrests of Indonesian boats in Australian waters. Overall we are currently looking at a high risk of overfishing for all major target species in WPP 718, combined with a worrisome trend of deterioration in the stocks, based on the size based stock assessments from this area.

The groupers seem to be somewhat less vulnerable to the deep demersal fisheries than the snappers. This may be because most groupers are staying closer to high rugosity bottom habitat, which is avoided by trap and long line vessels due to risk of entanglement, while drop line fishers are targeting schooling snappers that are hovering higher in the water column, above the grouper habitat. Fishing mortality (from deep demersal fisheries) in large mature groupers may be somewhat lower than what we see for the snappers. Groupers generally mature as females at a size relative to their maximum size which is lower than for snappers. This strategy enables them to reproduce before they are being caught, although fecundity is still relatively low at sizes below the optimum length. Fecundity for the population as a whole peaks at the optimum size for each species, and this is also the size around which sex change from females to males happens in groupers.

For those grouper species which spend all or most of their life cycle in deep water habitats, the relatively low vulnerability to the deep slope hook and line fisheries is very good news. For other grouper species which spend major parts of their life cycle in shallower habitats, like coral reefs or mangroves or estuaries for example, the reality is that their populations in general are not in good shape due to excessive fishing pressure by small scale fisheries in those shallower habitats. This situation is also evident for a few snapper species such as for example the mangrove jack.

Overall there is a clear scope for some straightforward fisheries improvements supported by relatively uncomplicated fisheries management policies and regulations. Our first recommendation for industry-led fisheries improvements is for traders to adjust trading limits (incentives to fishers) species by species to the length at maturity for each species. For a number of important species the trade limits need adjustments upwards, with government support through regulations on minimum allowable sizes. Many of the target species in the deep demersal fisheries are traded at sizes that are too small, and this impairs sustainability. The impact is clearly visible already in landed catches.

Adjustment upwards of trading limits towards the size at first maturity would be a straightforward improvement in these fisheries. By refusing undersized fish in high value supply lines, the market can provide incentives for captains of fishing boats to target larger specimen. The captains can certainly do this by using their day to day experiences, selecting locations, fishing depths, habitat types, hook sizes, etc. Literature shows that habitat separation between size groups is evident for many species, while size selectivity of specific hook sizes is obvious. Captains know about this from experience. Besides size selectivity, fishing effort is a very important factor in resulting overall catch and size frequency of the catch. All major target species show a rapid decline in numbers above the size where the species becomes most vulnerable to the fisheries. This rapid decline in numbers, as visible in the LFD graphs, indicates a high fishing mortality for the vulnerable size classes. Fishing effort is probably too high to be sustainable and many species seem to be at risk in the deep demersal fisheries, judging from a number of indicators as presented in this report. At present these fisheries show clear signs of over-exploitation in WPP 718.

One urgently needed fisheries management intervention is to cap fishing effort (number of boats) at current level and to start looking at incentives for effort reductions. A reduction of effort will need to be supported and implemented by government to ensure an even playing field among fishing companies. An improved licensing system and an effort control system based on the Indonesia's mandatory Vessel Monitoring System, using more accurate data on Gross Tonnage for all fishing boats, could be used to better manage fishing effort. Continuous monitoring of trends in the various presented indicators will show in which direction these fisheries are heading and what the effects are of any fisheries management measures in future years.

Government policies and regulations are needed and can be formulated to support fishers and traders with the implementation of improvements across the sector. Our recommendations for supporting government policies in relation to the deep demersal fisheries include:

- Use scientific (Latin) fish names in fisheries management and in trade.
- Incorporate length-based assessments in management of specific fisheries.
- Develop species-specific length based regulations for these fisheries.
- Implement a controlled access management system for regulation of fishing effort on specific fishing grounds.
- Increase public awareness on unknown species and preferred size classes by species.
- Incorporate traceability systems in fleet management by fisheries and by fishing ground.

Recommendations for specific regulations may include:

- Make mandatory correct display of scientific name (correct labeling) of all traded fish (besides market name).
- Adopt legal minimum sizes for specific or even all traded species, at the length at maturity for each species.
- Make mandatory for each fishing vessel of all sizes to carry a simple GPS tracking device that needs to be functioning at all times. Indonesia already has a mandatory Vessel Monitoring System for vessels larger than 30 GT, so Indonesia could consider expanding this requirement to fishing vessels of smaller sizes.
- Cap fishing effort in the snapper fisheries at the current level and explore options to reduce effort to more sustainable levels.

Table 5.1: SPR values over the period 2016 to 2024 for the top 20 most abundant species in CODRS
samples in WPP 718, based on total catch LFD analysis, for all gear types combined
and adjusted for relative effort by gear type.

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024
1	Atrobucca brevis	100	100	7	5	3	NA	NA	NA	NA
2	Lutjanus malabaricus	12	12	11	6	7	NA	NA	NA	NA
3	Pristipomoides multidens	12	10	8	17	11	NA	NA	NA	NA
4	Lethrinus laticaudis	100	100	39	100	100	NA	NA	NA	NA
5	Pomadasys kaakan	23	39	26	100	12	NA	NA	NA	NA
6	Epinephelus areolatus	22	26	17	21	16	NA	NA	NA	NA
7	Lutjanus sebae	3	3	2	3	4	NA	NA	NA	NA
8	Pristipomoides typus	13	8	7	16	15	NA	NA	NA	NA
9	Caranx bucculentus	9	19	21	20	26	NA	NA	NA	NA
10	Lutjanus russelli	NA	61	81	36	40	NA	NA	NA	NA
11	Carangoides chrysophrys	43	55	38	44	51	NA	NA	NA	NA
12	Diagramma labiosum	23	23	20	18	9	NA	NA	NA	NA
13	Lutjanus vitta	68	32	47	33	27	NA	NA	NA	NA
14	Epinephelus coioides	18	18	16	8	12	NA	NA	NA	NA
15	Lethrinus lentjan	100	28	100	57	74	NA	NA	NA	NA
16	Lutjanus johnii	22	24	21	13	21	NA	NA	NA	NA
17	Gymnocranius grandoculis	22	25	26	23	28	NA	NA	NA	NA
18	Epinephelus amblycephalus	20	15	18	17	15	NA	NA	NA	NA
19	Lutjanus erythropterus	100	43	100	100	100	NA	NA	NA	NA
20	Epinephelus bleekeri	NA	32	32	24	25	NA	NA	NA	NA

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	2.3	1.7	1.9	2.4	1.7	NA	NA	NA	NA
Nano Longline	2.3	2.6	2.4	17.0	7.7	NA	NA	NA	NA
Small Dropline	2.3	NA	0.2	5.5	9.5	NA	NA	NA	NA
Small Longline	2.3	2.6	0.9	1.7	1.7	NA	NA	NA	NA
Medium Dropline	0.5	0.2	1.0	1.7	1.8	NA	NA	NA	NA
Medium Longline	5.2	6.2	6.3	3.1	5.8	NA	NA	NA	NA
Large Dropline	2.3	0.6	NA	1.1	2.7	NA	NA	NA	NA
Large Longline	2.3	2.7	2.4	1.1	1.2	NA	NA	NA	NA

Table 5.2: CpUE (kg/GT/day) trends by fleet segment for Lutjanus malabaricus in WPP 718

Table 5.3: CpUE (kg/GT/day) trends by fleet segment for Pristipomoides multidens in WPP 718

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	0.7	NA	3.8	3.1	1.3	NA	NA	NA	NA
Nano Longline	0.7	0.7	0.4	NA	2.1	NA	NA	NA	NA
Small Dropline	0.7	NA	NA	4.3	1.9	NA	NA	NA	NA
Small Longline	0.7	0.7	NA	0.4	1.3	NA	NA	NA	NA
Medium Dropline	2.7	0.9	0.7	0.4	0.3	NA	NA	NA	NA
Medium Longline	1.7	1.9	0.5	1.7	2.0	NA	NA	NA	NA
Large Dropline	0.7	1.2	2.0	1.8	1.0	NA	NA	NA	NA
Large Longline	0.5	0.6	0.4	0.4	0.6	NA	NA	NA	NA

Table 5.4: CpUE (kg/GT/day) trends by fleet segment for Atrobucca brevis in WPP 718

	• /		*	-					
CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	0.0	NA	NA	NA	0.8	NA	NA	NA	NA
Nano Longline	0.0	0.0	0.7	NA	NA	NA	NA	NA	NA
Small Dropline	0.0	NA	0.0	NA	NA	NA	NA	NA	NA
Small Longline	0.0	0.0	NA	0.8	0.8	NA	NA	NA	NA
Medium Dropline	NA	NA	NA	0.1	0.0	NA	NA	NA	NA
Medium Longline	NA	0.1	0.6	1.8	0.6	NA	NA	NA	NA
Large Dropline	0.0	NA							
Large Longline	0.0	0.0	0.8	1.1	1.2	NA	NA	NA	NA

Table 5.5: CpUE (kg/GT/day) trends by fleet segment for Diagramma labiosum in WPP 718

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	0.1	1.3	NA	NA	0.3	NA	NA	NA	NA
Nano Longline	0.1	0.1	0.1	NA	1.1	NA	NA	NA	NA
Small Dropline	0.1	NA	0.1	0.1	0.3	NA	NA	NA	NA
Small Longline	0.1	0.1	NA	0.2	0.3	NA	NA	NA	NA
Medium Dropline	0.0	0.0	0.2	0.4	0.1	NA	NA	NA	NA
Medium Longline	0.1	0.1	0.2	0.1	0.2	NA	NA	NA	NA
Large Dropline	0.1	0.2	0.0	0.6	0.1	NA	NA	NA	NA
Large Longline	0.1	0.1	0.1	0.0	0.0	NA	NA	NA	NA

Table 5.6: CpUE (kg/GT/day) trends by fleet segment for all species in WPP 718

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	4.9	38.6	25.4	39.0	5.5	NA	NA	NA	NA
Nano Longline	4.9	6.0	6.0	46.9	25.8	NA	NA	NA	NA
Small Dropline	4.9	14.9	31.0	32.1	27.0	NA	NA	NA	NA
Small Longline	4.9	6.0	50.7	4.8	5.5	NA	NA	NA	NA
Medium Dropline	6.0	11.3	9.8	9.3	5.3	NA	NA	NA	NA
Medium Longline	11.9	16.2	11.4	11.1	12.3	NA	NA	NA	NA
Large Dropline	4.9	11.3	13.3	11.9	7.1	NA	NA	NA	NA
Large Longline	4.5	4.7	4.9	3.8	4.1	NA	NA	NA	NA

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Sample
Acanthuridae	0	0	0	2	1	0	0	0	0	3	0.000
Albulidae	0	0	0	0	0	0	0	0	0	0	0.000
Ariidae	0	12	12	10	133	968	0	0	0	1135	0.074
Ariommatidae	0	0	0	0	0	0	0	0	0	0	0.000
Balistidae	0	0	0	42	31	11	0	0	0	84	0.005
Bramidae	0	0	0	0	0	0	0	0	0	0	0.000
Caesionidae	0	0	0	1	16	0	0	0	0	17	0.001
Carangidae	2	42	65	135	573	339	0	0	0	1156	0.075
Centropomidae	0	0	0	0	0	0	0	0	0	0	0.000
Chirocentridae	0	0	0	0	0	0	0	0	0	0	0.000
Clupeidae	0	0	0	0	0	0	0	0	0	0	0.000
Coryphaenidae	0	0	2	2	0	0	0	0	0	4	0.000
Drepaneidae	0	0	0	0	0	0	0	0	0	0	0.000
Ephippidae	0	0	10	30	2	0	0	0	0	42	0.003
Epinephelidae	6	9	9	82	49	11	0	0	0	166	0.011
Gempylidae	5	0	0	0	0	0	0	0	0	5	0.000
Glaucosomatidae	0	0	0	4	0	0	0	0	0	4	0.000
Haemulidae	0	1	0	8	32	70	0	0	0	111	0.007
Harpodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Holocentridae	1	0	1	14	13	0	0	0	0	29	0.002
Istiophoridae	0	0	0	0	0	0	0	0	0	0	0.000
Labridae	0	0	0	4	8	0	0	0	0	12	0.001
Lethrinidae	1	29	15	299	252	118	0	0	0	714	0.047
Lobotidae	0	0	0	0	0	0	0	0	0	0	0.000
Lutjanidae	5	21	56	216	201	68	0	0	0	567	0.037
Malacanthidae	1	0	0	0	0	0	0	0	0	1	0.000
Mullidae	0	0	0	0	0	0	0	0	0	0	0.000
Muraenesocidae	0	0	0	0	0	0	0	0	0	0	0.000
Nemipteridae	0	2	0	110	253	12	0	0	0	377	0.025
Other	14	125	95	85	80	21	0	0	0	420	0.027
Polynemidae	0	0	0	0	0	0	0	0	0	0	0.000
Pomacanthidae	0	0	0	1	0	0	0	0	0	1	0.000
Priacanthidae	1	0	3	9	8	0	0	0	0	21	0.001
Psettodidae	0	0	0	0	0	0	0	0	0	0	0.000
Rays	0	0	1	0	0	0	0	0	0	1	0.000
Scaridae	0	0	0	40	3	0	0	0	0	43	0.003
Sciaenidae	0	0	0	0	0	0	0	0	0	0	0.000
Scombridae	22	533	132	10	2	1	0	0	0	700	0.046
Scorpaenidae	0	0	0	0	0	0	0	0	0	0	0.000
Serranidae	0	1	0	0	0	0	0	0	0	1	0.000
Sharks	1	6	2	13	16	0	0	0	0	38	0.002
Sillaginidae	0	0	0	2	0	0	0	0	0	2	0.000
Sparidae	0	0	1	0	0	0	0	0	0	1	0.000
Sphyraenidae	1	1	4	4	1	5	0	0	0	16	0.001
Synodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Terapontidae	0	0	0	0	0	0	0	0	0	0	0.000
Tetraodontidae	0	Õ	0	0	0	0	0	0	0	0	0.000
Trichiuridae	0	0	1	0	$\tilde{5}$	0	0	0	0	6	0.000
Total	60	782	409	1123	1679	1624	0	0	0	5677	0.370
	. •						v				• •

Table 5.7: Sample sizes over the period 2016 to 2024 for the others species in WPP 718 Dropline

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Sample
Acanthuridae	0	0	0	0	7	0	0	0	0	7	0.000
Albulidae	0	0	0	0	1	0	0	0	0	1	0.000
Ariidae	9	234	1129	6799	9772	1199	0	0	0	19142	1.248
Ariommatidae	0	0	0	0	0	2	0	0	0	2	0.000
Balistidae	0	8	2	55	19	9	0	0	0	93	0.006
Bramidae	0	0	0	0	0	0	0	0	0	0	0.000
Caesionidae	0	0	0	0	0	0	0	0	0	0	0.000
Carangidae	101	456	228	1922	2126	2618	0	0	0	7451	0.486
Centropomidae	0	0	0	1	0	0	0	0	0	1	0.000
Chirocentridae	0	0	0	2	0	0	0	0	0	2	0.000
Clupeidae	0	0	0	1	0	0	0	0	0	1	0.000
Coryphaenidae	0	0	0	7	4	0	0	0	0	11	0.001
Drepaneidae	0	0	0	0	2	0	0	0	0	2	0.000
Ephippidae	0	0	2	5	1	2	0	0	0	10	0.001
Epinephelidae	9	50	<u>-</u> 93	165	210	239	Ő	Õ	Õ	766	0.050
Gempylidae	0	0	0	117	653	0	Ő	Õ	Õ	770	0.050
Glaucosomatidae	Õ	0	Õ	0	0	1	Ő	Õ	Ő	1	0.000
Haemulidae	6	3	12	202	352	73	0	0	0	648	0.042
Harpodontidae	Õ	0	0	3	0	0	Ő	Õ	Ő	3	0.000
Holocentridae	Õ	4	1	5	1	1	Õ	Õ	Õ	12	0.001
Istiophoridae	Ő	0	0	1	0	0	Ő	Õ	Ő	1	0.000
Labridae	0	0	0	21	6	0	0	0	0	27	0.002
Lethrinidae	4	14	51	183	29	12	0	0	0	293	0.019
Lobotidae	0	0	0	0	1	0	Ő	Õ	Ő	1	0.000
Lutjanidae	2	26	377	146	21	31	Ő	Õ	Ő	603	0.039
Malacanthidae	0	0	4	3	0	1	Ő	Õ	Ő	8	0.001
Mullidae	Õ	0	0	2	Õ	0	Ő	Õ	Ő	$\overset{\circ}{2}$	0.000
Muraenesocidae	Õ	0	123	1818	2718	8	Ő	Õ	Ő	4667	0.304
Nemipteridae	$\overset{\circ}{2}$	27	145	595	2 541	166	Ő	Õ	Ő	3476	0.227
Other	37	1020	681	599	770	125	Ő	Õ	Ő	3232	0.211
Polynemidae	0	0	0	30	13	0	0	0	0	43	0.003
Pomacanthidae	Õ	0	Õ	0	0	0	Ő	Õ	Ő	0	0.000
Priacanthidae	1	2	1	15	9	5	Ő	Ő	Ő	33	0.002
Psettodidae	0	0	0	1	2	0	Ő	Õ	Ő	3	0.000
Rays	0	12	9	25	12	0	0	0	0	58	0.000
Scaridae	0	0	4	39	5	$\frac{1}{2}$	0	0	0	50	0.003
Sciaenidae	0	0	0	5	0	0	0	0	0	5	0.000
Scombridae	6	42	28	51	9	8	0	0	0	144	0.009
Scorpaenidae	0	0	0	2	0	0	0	0	0	2	0.000
Serranidae	0	0	$\frac{1}{2}$	1	0	0	0	0	0	3	0.000
Sharks	0	1	131	151	1020	83	0	0	0	1386	0.090
Sillaginidae	0	0	0	0	0	0	0	0	0	0	0.000
Sparidae	0	0	0	0	1	$\frac{1}{2}$	0	0	0	3	0.000
Sphyraenidae	1	21^{-1}	25	43	31	12^{2}	0	0	0	133	0.009
Synodontidae	0	0	0	45 0	3	0	0	0	0	3	0.000
Terapontidae	0	0	0	0	166	0	0	0	0	166	0.000
reraponnuae	0	0	129	124	224	0	0	0	0	477	0.011 0.031
Tetraodontidae			140	14 1	44 4	0	0	0	0	111	0.001
Tetraodontidae Trichiuridae	0	Õ	602	5156	8864	620	0	0	0	15242	0.994

	1 . 1 0010 .		
Table 5.8: Sample sizes over	r the period 2016 to	> 2024 for the others species in	1 WPP (18 Longline

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Sample
Acanthuridae	0	0	0	0	0	0	0	0	0	0	0.000
Albulidae	0	0	0	0	0	0	0	0	0	0	0.000
Ariidae	0	0	0	358	70	4	0	0	0	432	0.028
Ariommatidae	0	0	0	0	0	0	0	0	0	0	0.000
Balistidae	0	0	0	0	0	0	0	0	0	0	0.000
Bramidae	0	0	0	1	0	0	0	0	0	1	0.000
Caesionidae	0	0	0	0	0	0	0	0	0	0	0.000
Carangidae	0	0	0	9	11	21	0	0	0	41	0.003
Centropomidae	0	0	0	0	0	0	0	0	0	0	0.000
Chirocentridae	0	0	0	0	0	0	0	0	0	0	0.000
Clupeidae	0	0	0	0	0	0	0	0	0	0	0.000
Coryphaenidae	0	0	0	0	0	0	0	0	0	0	0.000
Drepaneidae	0	0	0	0	0	0	0	0	0	0	0.000
Ephippidae	0	0	0	0	0	0	0	0	0	0	0.000
Epinephelidae	0	0	0	0	0	0	0	0	0	0	0.000
Gempylidae	0	0	0	0	0	0	0	0	0	0	0.000
Glaucosomatidae	0	0	0	0	0	0	0	0	0	0	0.000
Haemulidae	0	0	0	4	0	0	0	0	0	4	0.000
Harpodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Holocentridae	0	0	0	0	0	0	0	0	0	0	0.000
Istiophoridae	0	0	0	0	0	0	0	0	0	0	0.000
Labridae	0	0	0	0	0	0	0	0	0	0	0.000
Lethrinidae	0	0	0	0	0	0	0	0	0	0	0.000
Lobotidae	0	0	0	0	0	0	0	0	0	0	0.000
Lutjanidae	0	0	0	0	0	0	0	0	0	0	0.000
Malacanthidae	0	0	0	0	0	0	0	0	0	0	0.000
Mullidae	0	0	0	0	0	0	0	0	0	0	0.000
Muraenesocidae	0	0	0	0	0	0	0	0	0	0	0.000
Nemipteridae	0	0	0	0	0	0	0	0	0	0	0.000
Other	0	0	0	3	23	1	0	0	0	27	0.002
Polynemidae	0	0	0	0	0	7	0	0	0	7	0.000
Pomacanthidae	0	0	0	0	0	0	0	0	0	0	0.000
Priacanthidae	0	0	0	0	0	0	0	0	0	0	0.000
Psettodidae	0	0	0	1604	162	4	0	0	0	1770	0.115
Rays	0	0	0	0	0	0	0	0	0	0	0.000
Scaridae	0	0	0	0	0	0	0	0	0	0	0.000
Sciaenidae	0	0	0	0	0	2	0	0	0	2	0.000
Scombridae	0	0	0	113	2	11	0	0	0	126	0.008
Scorpaenidae	0	0	0	0	0	0	0	0	0	0	0.000
Serranidae	0	0	0	0	0	0	0	0	0	0	0.000
Sharks	0	0	0	3	48	1	0	0	0	52	0.003
Sillaginidae	0	0	0	0	0	0	0	0	0	0	0.000
Sparidae	0	0	0	0	0	0	0	0	0	0	0.000
Sphyraenidae	0	0	0	0	0	0	0	0	0	0	0.000
Synodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Terapontidae	0	0	0	0	0	0	0	0	0	0	0.000
Tetraodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Trichiuridae	0	0	0	0	0	0	0	0	0	0	0.000
Total	0	0	0	2095	316	51	0	0	0	2462	0.160

Table 5.9: Sample sizes over the period 2016 to 2024 for the others species in WPP 718 Gillnet

6 References

Australian Surveying & Land Information Group (AUSLIG), 1996. Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

Ehrhardt, N.M. and Ault, J.S. 1992. Analysis of two length-based mortality models applied to bounded catch length frequencies. Trans. Am. Fish. Soc. 121:115-122.

Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5: 86-91.

Froese, R. and Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 56:758-773.

Froese, R. and D. Pauly, (eds.) 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines. 344 p.

Froese, R., Winker, H., Gascuel, D., Sumaila, U.R. and Pauly, D. 2016. Minimizing the impact of fishing. Fish and Fisheries DOI: 10.1111/faf.12146.

Fujita, R., Karr, K., Apel, A. and Mateo, I. 2012. Guide to the use of Froese sustainability indicators to assess and manage data-limited fish stocks. Oceans Program, Environmental Defense Fund, Research and Development Team.

Gislason, H., Daan, N., Rice, J.C. and J.G. Pope, 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11: 149 U158.

Martinez-Andrade F., 2003. A comparison of life histories and ecological aspects among snappers (Pisces: lutjanidae). Dissertation http://etd.lsu.edu/docs/available/etd-1113103-230518/unrestricted/Martinez-Andrade_dis.pdf

Meester G.A., Ault J.S., Smith S.G., Mehrotra A. 2001. An integrated simulation modeling and operations research approach to spatial management decision making. Sarsia 86:543-558.

Prescott, V., 2000. East Timor's Potential Maritime Boundaries. East Timor and its Maritime Dimensions: Legal and Policy Implications for Australia, Australian Institute of International Affairs, Canberra.

Quinn, T.J. and Deriso R.B. 1999. Quantitative Fish Dynamics. New York: Oxford University Press.

Vasilakopoulos, P., O'Neill, F. G. and Marshall, C. T. 2011. Misspent youth: does catching immature fish affect fisheries sustainability? - ICES Journal of Marine Science, 68: 1525-1534.

Wallace, R.K. and Fletcher, K.M. 2001. Understanding Fisheries Management: A Manual for understanding the Federal Fisheries Management Process, Including Analysis of the 1996 Sustainable Fisheries Act. Second Edition. Auburn University and the University of Mississippi. 62 pp.

Zhang, C.I., Kim, S., Gunderson, D., Marasco, R., Lee, J.B., Park, H.W. and Lee, J.H. 2009. An ecosystem-based fisheries assessment approach for Korean fisheries. Fisheries Research 100: 26-41.